Chapter 4

Analysis of Variance

In this chapter we discuss analysis of variance models.

e Many of the concepts of linear models are best illustrated in the
analysis of variance context.

o In addition, extensions to generalized linear models are most
easily illustrated using analysis of variance models.

e Many think that since use of dummy variables reduces analysis of
variance models to regression models there is no need to study anal-
ysis of variance models in any detail.

o However the concepts of interaction, contrasts, confounding and
balance are fundamental to the interpretation of analyses and
experimental design.
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4.1 One Way Analysis of Variance

4.1.1 Treatment structure I: Fixed Effects Models

Let y1, yo, ..., y, be realized values of Y7,Y5,...,Y, such that

o i=j
E(Y;) = p and cov (Y%Y}) ~) 0 elsewhere

e Thus the X matrix is n x 1 and equal to 1, a column of ones.
e The least squares equations are given by
1716 = 1Ty
so that b = ¢ is the least squares estimate of p.

e The associated error sum of squares is given by

n
vy -y = Yy - ng

with n — 1 d.f.
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A one way analysis of variance model is defined by the following model:
the observations y;; are assumed to be realized values of Y;; where

o i =i, j =]
B¥) = ptm and cov (¥, Vi) = { 0 elsewhere

and
1=1,2,...,p,7=1,2,...,n;

e In this case the X matrix is given by:

1'I’Ll 1’I’L1 O’I'Ll e O'I’Ll 7,:1

B(y)= |t B e O
1”12 Onp O"p 1”1) -
L Tp |

where 1, is an n; X 1 vector with each element equal to 1.
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Interest focuses on assessing differences among the groups.

e The least squares equations X”Xb = X’y are given by:

n non n m G
n nl O2 Op b I
o tr | = | Ta
n, 0 0 -+ m t _ T;p |
where
o m is the estimate of u
ot;,i=1,2,...,pis the estimate of 7;

o G is the sum of all observations i.e. G = X0 YL,y 1
o T; is the sum of the observations in the ith group
omn=mn;+ng+--+np
e Note that the sum of the last p rows equals the first row on both sides
of the equations. Thus the least squares equations, while consistent,

will not have a unique solution since the rank of the X7 X matrix is
not p+ 1 but p.
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e It is easily verified, however, that a solution is

G
m = —
n
7, G
tp = —— —
n, n

e The error sum of squares is thus

s = 32347 - e

i=1j= i=1 T
with n — p degrees of freedom.

e We know that a linearly estimable function £7 3 has best linear un-
biased estimator £7 b where

bl — [G h ¢n 6 5 G

)
n"ng n ne n "n, n

o Since
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o It follows that

T;
E(%) = pu+ 7 and E(—) =u+T

n;
Where T = —1 E -1 M;T; SO that
n ~i=1"""1

T;
E(——§>:Ti—7_'

n; n

o If £73 is to be estimable £y, 41, Lo, . . . , £p must satisfy

p

p
Eou—l—z&n:Eo(,u+%)+26i(n—%)

=1 1=1
or

p p
EO—ZEi:Oi.e. Zfi:&)
i=1

i=1

e In particular, the following is a set of p linearly independent estimable

functions

[p +1 +1 +1 - +1 41 [ p ]
0 1 -1 0--- 0 0||m
L’B={0 1 0 -1+ 0 0|]|m

0 1 0 0 -+ 0 —1][m]
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e The hypothesis that all groups are the same i.e.

H(): 7'1:T2:'-':Tp

is thus equivalent to the hypothesis:

Tn — T2 = 0
™ — T3 — 0
1—T = 0

which constitutes a set of p — 1 linearly independent estimable func-
tions.

Setting
M=M= "=Tp=T
results in a reduced or conditional model having expected values
given by
E(Yj)=p+7=4"
for which we have the least squares estimate m* = % and conditional
error sum of squares given by

p n; G2
SSCE= Y. 3 4% — —

i=1j=1

with n — 1 d.f.
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e It follows that the sum of squares (deviance) due to the hypothesis
that all groups are equal is

SSCE — SSE [iz’yfj—%?] lfz% o

i=1j=1 i=1j i=1 T
p T;Q G2

i=1 T n

p

with (n — 1) — (n — p) = p — 1 degrees of freedom.

o In this expression ¥;+ = % is the mean of the ¢th group and
Yiy = % is the mean of all observations.

We may summarize the above analysis in an ANOVA table as

Source | d.f. | Sum of Squares (Deviance)

Groups | p—1 S i (Fiv — Uat)?
Error |n—p P, E?Q(yij — Jit)?
Total |n—1 P, il (Y — Yis)?
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At this point a natural question to ask is: why is the model formulated
as E(Y;j) = p+ 7; rather than the more natural formulation E(Y;;) = p;?

e In such an alternative formulation we have

1”1 0n1 0”1 T On1 H1

0p, 1., Op, --- Op,
E(Y)=| "™ T T T Dee ) K2

Om,J Onp Onp e ]-np Hp

e so that the least squares equations X”Xb = Xy are given by

nq 0O --- 0 my T1
0 ng --- O mg | | T
0 0 - np | |my T,

where m; denotes the estimate of u; and 7; is the sum of all obser-
vations in the ith group.

e The least squares estimates are clearly

T;
m; — —
n;
and
p n p T2
SSE = ¥ Yy — > —
i=1j=1 i=1 T

b n 9
= > > (Yij — ¥i+)
i=1j=1

with n — p d.f. since the XX matrix is of full rank equal to p.
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e The hypothesis that all groups are equal is
H1 = p2 == Hp = [
for which the reduced model is E(Y;;) = p which has
G2
SSCE = Z Z ym -

=1 =

e Thus the sum of squares due to the hypothesis that the groups are
equal is

SSCE = S5E = [zp:%yfj—%j [ZZ%J ZpIT2

i=1j=1 i=1j i=1 T

= 2 ni(¥ir — r4)?

with (n — 1) — (n — p) = p — 1 degrees of freedom exactly as in the
previous formulation.
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e In order to see the reason for the first formulation

o Define a mean or overall effect by

N:H1+H2+"'+:U/p
b

o and a main effect of the ith group by
Ti = K — [
o then we can write
i =+ T
where the 7; obey the natural restriction ¥¥_; 7; = 0.

o Thus in the original formulation we view the 7; as the differential
effect of the ith group relative to an overall expected response.

o For many experiments this is a convenient formulation, i.e.
Y;; = (overall) + (group effect) + (error)

e Still another parametrization is useful in analysis of variance models.
o Consider a one way ANOVA in which there are p groups with n;
observations in the ith group.

o The response variable and the covariate (dummy variable) values
are then given by
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Dummy Variable

Response | Dy D3 --- D,
(5} o 0 --- 0
Y12 o 0 --- 0
Yy, |0 0 - 0
Y21 1 0o --- 0
Y22 r 0 - 0
Yon, 1 0 --- 0
Y31 o 1 --- 0
Y32 o 1 --- 0
y3’I’L3 O 1 ot 0
Yol o 0 -.-- 1
Yp2 0 o --- 1
Ypn, o 0 --- 1
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o The equations for the regression coeflicients are thus given by

nb0+n262+---—|—npbp = ny

naobo + ngby = nayat
n3by + n3bs = n3ys+
npbo + npby = NpYp+

o Adding the last p — 1 equations together yields the equation
(n —n1)by + ngby + - - - + npbp = NaYoy + - NYYpy = NY — N1+
o Subtracting this from the first equation yields
niby = n1y1+

o Thus by = %1, and substituting this into the remaining equations
yields
bi = Yi+ — Y1+ for ’6.22,3,...,]9

o This solution corresponds to the solution obtained in a one way

analysis of variance model used in many statistical packages
(STATA, S-PLUS, SAS).
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4.1.2 Contrasts in one way analysis of variance

Consider an experiment designed to investigate the response to varying
levels of a quantitative treatment such as amount of a drug, pesticide,
etc.

e In such cases there may be a “dose response curve” relating response
to dose.

e We may then be interested in some of the features of this function
i.e. is it linear, quadratic etc.?

e It is possible to obtain separate measures of such tendencies using a
decomposition of the treatment sum of squares using contrasts.

Definition: A linear combination of treatment effects ¥Y_; 4;7; is called
a treatment contrast if ¥, ¢; = 0.

o A treatment contrast is called a canonical treatment contrast if
it is of the form 7 — 7;.



4.1. ONE WAY ANALYSIS OF VARIANCE 171

e The treatment or group sum of squares can be calculated by selecting
a set of p — 1 linearly independent estimable treatment contrasts,
finding the coresponding estimates L”b where b is any solution to
the least squares equations and then calculating

(L") [L"(X"X) L7 (L"b)
e Equivalently, one may find a matrix CT such that
C'y = L'(X"X) X"y)
e Then the treatment sum of squares is given by
(Cy)'(c'e)7!(CMy)
where CT is (p — 1) X n of rank p — 1.

e If we choose C so that CTC is a diagonal matrix i.e. the rows of CT
are orthogonal then the treatment sum of squares is given by
r=1 (ciy)?

2 7

i=1 C; G

where ¢! is the ith row of CT.
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e If we choose the rows of CT appropriately

(ciy)’

T
Ci CZ’

can be used as a measure of linearity, quadratic tendency etc.

e A general approach to finding orthogonal contrasts uses the Gram
Schmidt process. Thus if the dose levels are z1,z9,...,2, and we
want r(< p) orthogonal polynomials giving linear, quadratic, etc.
components of the responses we simply write

1 z; 22 --- 2]

1 o 23 --- x4,

2 2

X=1. . . :
2 r

1z, =z T,

and use the Gram Schmidt process on the successive columns of X.
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4.1.3 Treatment structure II: Random Effect Models

In the one way analysis of variance the sums of squares in the analysis of
variance are

SS(Mean) = %
P T 2
SS(Groups) = Zn—_%
pon p T2
SS(Error) = ZZ Zn—z
i=1j=1 i=1 T

with d.f. equal to 1, p — 1 and n — p respectively, where n = ¥2_; n;.

e If we view the model as conditional on a structure S, the model we
have used thus far is defined by the structure

0'2 Z',7j, - Z’]
E(YMS) = u; and cov (Y;j,Y;'j"S) = { 0 élsew)heref )
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e Under S we thus have

E(Y;19) = var (Y;;|S) + [E(Yy]S))*
= o+

E(T71S) = var (T|S) + [E(Ti|S))"
= niaz—l—n?,u?

E(G?|S) = var (G|S) + [E(G|9))?
2
= no’+ (Z ni,ui)
i=1
e [t follows that
E(SS(Mean)|S) = o+

P
E(SS(Treatment)|S) = (p—1)0® + Y njui — ni’
=1

E(SS(Error)|S) = (n —p)o?
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We thus have, conditional on S, the following table for the expected
values of the mean squares

Source | d.f. | Sum of Squares Expected Mean Square
Mean 1 %2 o? + M

Groups [ p—1 | P, %’j— — %2 o+ S nip? —nip?/(p—1)
Error |n—p | S8 S0l yh — X %’i o

e The expected mean square column is E(SS)/d.f.
e If the structure S is appropriate the above expectations are correct.

e If, however, we entertain a model which specifies that the u; are a
sample from a population of possible groups which could have been
selected for inclusion in the experiment we have an entirely different
situation.

e We must specify the stochastic structure of the u; and then take
expectations with respect to this structure to obtain the expected
values of the sums of squares.
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One useful model is the so called random effects model in which we

assume that
o i =i
E(ps) = p and cov (i pir) = 0 elsewhere

e Note that this model implies that the Yj; are correlated since
o’ +ai (7,5) = (i,4)
cov (Y, Yiji) = o? V=1, #J
0 elsewhere

e Also note that we repeatedly use the result

cov (Y, Yiy) = Elcov (Y4, Yy j1|S)] + cov (E(Y;|S, E(Yij]5))

e Also note that the correlation between any two observations in the
same group is given by

of

cov (Yij, Y;j,) — m

which is called the intra-class correlation.
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We can easily find the expectations of the various sums of squares
under this model by noting that

E(i) = p* + o}

e Thus

E [(Z]ig:l ni#z‘)zl var [Ch_; i) + [E (-, ni#i)]2
n n

(Zg?:l "?) o} + n?p?

e and hence

E(SS(Mean)) = o2+ (f

E(SS(Groups)) = (p— 1)o?+ <n =S %2) o2

E(SS(Error)) = (n —p)o?
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e In the important special case where ny = ng = --- =n, = r, called
balance, we find that

E(SS(Mean)) = o° + roj + rpu’
E(SS(Groups)) = (p—1)o*+r(p—1)o?
E(SS(Error)) = (n— p)o?

e Because of these expectations natural estimators for o2 and o7 are
are given by

5 _ _SSE

p(r—1)
~ SST SSE
52 =

rp—1) pr(r—1)

o These estimators are unbiased but there is nothing in their deriva-
tion which suggests any optimality properties.

o We shall return to this question later.

o 02 and o? are called variance components since the variance
of an individual response is 0%+ 0%, a sum of the two components
o? and o%.
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Estimation of p
Consider now the estimation of y in the random effects model.

e Since F(Y) = p, Y is an unbiased estimator of u.

e However, the presence of correlation between the Y;; does not imply
that Y has any optimality properties.

e To investigate this let 37_; 372, a;;Yj; be any linear unbiased estima-
tor of p.

e Then for unbiasedness we must have

(3 a%) =n—ESa-1

=1y =1y

e Since

(zz% ) - [var (ZZWAS)] var[ (Zzazﬂ%lsﬂ

=1y

we need to find the vales of the a;; which minimize this expression
subject to the unbiasedness condition.
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e Symmetry requires that a;; = a; for j = 1,2,...,p. Thus we need to
choose ay, as, . .., a, to minimize

1=1

P p
[Zl nia?} o + [Z n?a?] ol
1=

subject to the condition for unbiasedness i.e.

p
z n;a; = 1
i=1
e Using the method of Lagrange Multipliers we choose the a; to mini-
mize
< 2| 2 Y9l 2 <
h(a,\) = [d_nia;| o+ |d_nia;| o] —2X | D nja; — 1)
e Hence
Oh
e 2a;n;0° + 2am?a% — 2An;

Oh p
- _9 e —
X (E n;a; 1)

=1
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e Equating to 0 results in the following equations

ai(02—|—niaf) = A
p
Zniai =1
=1

e Thus
A

a;, = —F5—5

’ 0% + n;o?

1 p n; )

A B Z-:zl<02—|—ni0%
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o It follows that
1 1

S (i) 7 it

21
o‘+n;oy

a;

and the BLUE of y is thus given by

( 3

~ 1 P n; 1
Z e V(2 ( 72) Yy
(751 () | 57

( 3

1 P on;Yiy
= » . (Z 72 2
== (72) |\

o Ifny =ny =--- =n, =r [ reduces to Y., so that the condition
of balance leads to Y, as the BLUE even if correlation is present.
Note that the BLUE of u in the general case depends on o2 and o3.
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Maximum Likelihood Estimation

If we assume normality and the covariance structure in the preceeding
section the likelihood is

n n—p P _1
U, 0% 0t;y) = (2m)7%(0%) 77 (. 1(ff+nmf) 2
1=

exp {_% zp: %(yz'j — i)’ — ! Ep: il MZ’) }

2 .
0% i=1j=1 2,21 o°+nof

e Clearly the statistics ¢_; X724 (yij — Ui+ )?, and §14, Yoi, - - -, Ypi are
sufficient for p,o? and o3.

e Note that the dimensionality of the sufficient statistic is p+1 whereas
the dimensionality of the parameter space is 3.

o [fny =ng=---=n, =r we have

2 2

s i = )7 T E (e — )
= o2+ no? o2 4 ro?
r 1 (Uie — Gt )? + (Gt — 0)?
o2 + ro}

so that the sufficient statistics are, in the balanced case,

p P n;
Jrts 2 (Fir — F4)” and X0 (yij — Tiy)”
i=1 i=1j=1
and the dimensionality of the sufficient statistics and the dimension-
ality of the parameter space are the same in the balanced case.
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We now investigate properties of the variance component estimators
and p in the one way analysis of variance model under normality assump-

tions.

e For the sth treatment or group assume that we have realized values y;;
of random variables Y;; which have the following stochastic structure

o2 -l-U% i=7J
E’(Y}j) = and cov (Yéj,Y;'j’) - { o’% i

for 7 =1,2,...,n; and that the Y}; are jointly normal.
e Thus the distribution for Y; is MVN (1,4, V;) where
Vi =01, + o2,
(J,, is an n; X n; matrix with each element equal to 1).

e Using standard matrix results we have

det(V@) = (02)"i_1(02+niof)

e Considerable algebra shows that

(yi—w)'Vitlyi—p) =

where SSE = S0, Y74, (i — ¥it) .



4.1. ONE WAY ANALYSIS OF VARIANCE 185

e It follows that the likelihood for the ith group is given by

_1SSE;  1ni(giy—p)?
eXp{ 2 o2 2 oZ4n;o?

(27)% (02) "% (02 + njod) 2

hkl (/1'7 027 U%a Y) =

e If we assume the groups are independent the overall likelihood be-
comes ,
I1 liki(p, 0%, 01; )
i=1
so that the log likelihood is given by

1 SSE n;(y; 7
K(/,L,O'z,O'%;Y) - - 22 __Z ( - )
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e The partial derivatives with respect to u, 0% and o? are given by

9 _ 1§ (Dl —

8/1 - 2 i=1 2 + nm%

or 1 2, SSE; n 2
= _ = Z 1 + Z l(yl‘f‘ l;)Z

Oo 2= ot 25 (0% + no})

n—op 12 1
( 202 > 2;102—{—712-0%

ot _ 1 i n; (Gis — p)° 1 i ni

oo} 25 (62 +nio?)? 25 (02 +niod)



4.1. ONE WAY ANALYSIS OF VARIANCE 187

e These maximum likelihood equations have no closed form solution.
Large sample properties may be investigated, however by calculating
the information matrix. Thus

oU P
8—,u2 - zzl o2 —|— nzal
0%l _ i SSE; i ni(Tiv — p)?
6o~ A0 & (ot +mol)
n—op 12 1
+< 204 ) 2 21 (0 +nla%)2
0% P nd(7; ? n;
2o - & <a(y++m ; 3 T T
0% _ zp: ni(Jir — 1)
020 =1 (02 + n;o})?
G ()
dotou i21 (024 n;o7)?
0 Pond(Gi —p)® 12 n;
80’230,52 - i=1 (02 + nia%)g * 5 zzzl (02 + nza%)z
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e Taking expectations and simplifying yields Fisher’s information ma-

trix:
P w; 0 0
I(po}od)=| 0 5w} i,
2 2
0 Xt TR+
where
n; 1

Wi — — _
" o2+ nie? var (Vi)
e In the special case of balance where n; = ny = ... = n, = r the

likelihood equation for p becomes

so that 1 = ¢4 .
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e Also in the balanced case
p

;(QH — p)® = é(’gﬂ — )+ p(Jrs — 1)’

so that the likelihood equation for 0% is

lrzﬁl(ﬂw —9)° + r*p(Fr+ — 1) 1w
5 o2 + ro? 20% + ro}

e Thus »

—~~ — fr’ _ _
o+ 10t == (Fis — §)°
Pi=1

e The likelihood equation in the balanced case for o2 is

L ppait lip@erf%)—(”:p)—lpiA Lo
2i51 0 221 (02 + ro?)? 20 2iZ102 +ro?
so that

o2 — Si1 SSE; _ S X (v — Jiv)?
n—p n—op

e It follows that the maximum likelihood estimate of o3 is

o

[ Sa@ir — 5i)®  Tima X (vig — Gis)”
r p n—p

or 0 if this expression is negative.
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e The Fisher information matrix for this special case is given by

e 0
2 2 1 2 1
I (/‘L? 01,0 ) - 0 2 (02—1})—:“(7%)2 2 (UQf:Uf)Q
0 1 pr 1 pr2
2 (02+r02)2 2 (0%+ro?)?
which has inverse given by
2 4o 0 0
-1 2 2\ (0% +ro?)? ot 4
o= | 0" de gt s
0 -2 29
r(n—p) n—p
e Since
2 2
_ o o
var (Y++) = — 4+ -1
rp p

it follows that Y, is the minumum variance unbiased estimator of
L.

e We note that in the general case

d _ N2 P, P,
(Wij —Git)” = > > Yi; — > iy
i=1j=1 i=1j=1 i=1
p
= Y |lyiyi——vy; 11"y,
1=1 7
p
— Zlyier'LYZ
1=

where B; =1,,, — %11T.
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e Since V, = UQIn,- + a%llT we have

2
B:V: = o, +02117 — 211762117
)

1
= ¢? lIni — =117
n;

e It follows that #BiVi is idempotent. and since

1 1 1
—Bilpy=— [Im ——117{1u=0
o o n;
the distribution of % is chi square with n; — 1 degrees of freedom.

® Thus Y7B;Y; SSE
» YTB.Y,;
> — 2Z : 2

i=1 o

o

is chi-square with n — p degrees of freedom and

p
E (z Y! BiYi) = (n—p)o?
1=1

P
var( Y?BA@) = 2(n—p)o*
i=1

o [t follows that

“ > YIBY;
n—p

is the minimum variance unbiased estimator of o2
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Recall that

p T2 G2
SST = Y 4+ — —
i=1 T n
has expectation
2 P n; 2 2
(p—1)o" + Z; o = (p—1)0” + fro7
z:

so that an unbiased estimator for o7 is

SST — (p — 1)o?
fi
e Note that we can write
P T2 yTllTy
e
i=1 T i=1 n;
= y'By
G? 1
— = —y'11'y
n
= y'Cy

where
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o It follows that
SST =y’ (B - Q)y

and
B-Cu=(B-C)lp=0

e However, there is clearly no divisor of B — C which will make (B —
C)V idempotent so that in the general case

SST
E(MST)
is not distributed as a chi square.
o If ny =ny=---=mn,=r we get quite a different result since in this
case
1 1
(B-C)V = |diag-1,1F — —1rp1rp] (0”1, + diag (071,1])]
r rp
2 o[ 1o p 1 N R
= (0”4 ro7) |diag ;1,.1T — T—plrplrp diag ;1r1r

which is idempotent.
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* Thus SST B_C
_ P01 yT (4) v
o? + ra% o + rof

is chi square with p — 1 degrees of freedom.
e Conclusion:

o Balance in one way analysis of variance models with random
effects leads to simple sufficient statistics and strong optimality
properties for the estimators.

o Lack of balance results in estimators which have no closed form
expressions and very few small sample optimality properties.
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4.1.4 Treatment Structure III: Analysis of Covariance
Consider p groups or treatments which are to be compared.

e If there are n; observations on the ith group a one way analysis of
variance gives the variability within groups as

b

> (w5 — Fiv)

i=1j5=1
which is compared with the variability among or between groups
P

_Zlni(yH — ?3++)2
1=

e Differences between groups are estimated by ;. — 7. with estimated

( 1 4 i) 1 Zi (Yig — Git)’

n;  n n—op

variance
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Suppose now that we have available another measurement x;; for each
response y;; which we expect to be linearly predictive of the response in
the sense that

E(Yij) = i + By

e Thus we have a model of the form

0'2 ’[:, ) = fl:’ )
E(Y;j) = o; + Bz;; and cov (Y5, Yij) :{ ] ils]ev)vhese 7)

which is called a one way analysis of covariance model.

e In order to compare the groups it is necessary to take into account
the effect of = i.e. we need to “adjust for the effect of the covariate”.

e The hypothesis for equality of the groups is now

Hg:alzagz---:ap
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We thus set up the model as:

o
1’I’Ll OTLl 0n1 e 0n1 Xl a2
E(Y)= | O e One o On X2
. 0 0 - . . a
0,, 0, O, 1, X ﬂp
e The least squares equations are then
n1 0 0 cee 0 n1T1+ 11T a] [ T
0 n2 0 <o 0 NoTo+ as T
0 0 0 KRR NpTp+ ap T,
_ _ _ _ D n; 2 P Yz
| miZ1y NeZay M3Tzy - MpTpy i iy | [ b | | o XLy @iy |

e A solution to the least squares equations is

_ Yo S5y (i — Zig) (Yi5 — Tit)
Yo St (zj — it )?

b

and a; = gi1 — bT;y
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e The corresponding error sum of squares is
p ny 9 9 P n; 9
> 2 (i — ¥is)” — 0722 > (mij — Tiy)
i=1j=1 i=1j=1
with n — p — 1 degrees of freedom.

o If
Hy:o1=ag=---=0p=p

is true then the model is given by

0 elsewhere

2 N (s
E(Y;;) = p+ Bz;; and cov (Y, Yijr) { o (7'5") = (1,7

e In this case we have estimates
She1 Xiiy (@i — Tog) (Yij — Uss)

m=q and by = :
. ’ P (2 — T4q)?

e The error sum of squares is

b n; n;
S Wi — ) =5 X Y (@i — Toy)?

1=1j=1 i1=1j=1

with n — 2 degrees of freedom.
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e Thus the sum of squares for testing H is

{E€=1 Z;'L;lb(yij —Jy)? - BTN Z?i:;(ﬂfz‘j — ﬂ73++)2}
- {Efﬂ (T gi+)? — b2 T Sita (@i — 3_3i+)2}

which reduces to
s 2 28 ¥ 2 12 % 2
22 (Ui = )" 0720 Do (@i — Ziw)” — 05 20 Do (@i — Ts)
i=1j=1 i=1j=1 i=1j=1

with (n —2) — (n — p — 1) = p — 1 degrees of freedom.

Under this model, it can be shown that the expected value of the
sum of squares for groups in the presence of the covariate z is

2

4 [Zho1 ni( @it — Ty) il 2
Zn.a._@z_ = — +(p—1)o
i=1 i(os ) o1 (Tij — Tys)? ( )

where & = %Zle n;Q;

Thus under Hy : oy = ap = --- = o) we have the expected value

equal to (p — 1)o?.

One important assumption in the above models is that 3 is constant
from group to group.

This should be tested before performing the above covariance anal-
ysis.
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If the parameter § is not constant the appropriate model is

o2 (i) = (i, ]
E(Yij) = i + Bizij and cov (Y, Yij1) = { 0 ((elsezvher(e )

e The estimates for a; and ; are in this case

Yl (mi — iy ) (Yi5 — Uiv)
Siii(Tij — Tig)?

a; = Yi+ — bz and b; =

e The error sum of squares for this model is

U2

P, 2o, . — N2
Zl Zlyw - Zl"wH = > | b > (i — Tiy)
i=1j=

i=1 j=1

with n — 2p degrees of freedom.

e Thus the appropriate sum of squares for testing Hy: 1 =0 = -+ =
Bp is

2 & 2 2 e & 2

5 (1 5 o - a00) - 5 3 -

i=1 j=1 i=1j=1

with (n —p—1) — (n — 2p) = p — 1 degrees of freedom.
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If we asume the covariance model is appropriate, we note that to com-
pare two groups ¢ and 7' at the value z leads to

E(Y;;) = ai+bz
= Yi+ — bZiy + bz
= Yir +b(z —z;4)
E(/Y\;/j) = ay+ bx
= Y+ — bTyry + bz
= Gy +b(z — Zyry)

e The difference between these two estimates is the appropriate esti-
mate of the difference between the two groups and is

(Uit — Giry) — b(Tiy — Tiry)

o a; and a; are called “adjusted means” since in the absence of the
covariate the estimate would be

Yi+ — Yir+



202 CHAPTER 4. ANALYSIS OF VARIANCE

e Note that the comparison is the same for any value of z and depends
only on the difference between the two means and the difference
between the covariate means for the groups being compared.

e If the parameter (3 is not constant from group to group the compar-
ison would be
(@i + biz) — (ai + byx) = (Yir + bi(x — Tiv)) — (Firs + bir(T — Tiry))
= (Fi+ — Yiry) + (bi — bir)z — (biZi — bpTyry)

and depends on the value of x even if the groups are balanced with
respect to the covariate i.e. ;. = z;,.
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4.1.5 Treatment Structure 4: Finite Population of Treatments

In some contexts we may assume that the groups are selected at random
from a finite population of possible groups.

e Thus the model is

0'2 i,)j, - ?’7]
E(YMS) = u; and cov (Yb‘,Y;’j’|S) :{ 0 élsew)here( )

where S is defined by

1
P
1

P = v, pr = w) = m

where v,w € P, v # w and
P ={u1,p2,...,up}

e We note that under this model for the group means

v
E(pi) = >
UEPP
= p
P—-1
) = ol
2
o
cov (i) = 1



204 CHAPTER 4. ANALYSIS OF VARIANCE

where )
2 iz (kg — )
L= P_1

e Under this struture we can show that

E(SSE) = (n—p)o

(p—1)02—|-(
E(g> = o'+’ + (Epj

n i=1

E(SST) =

e In the case of balance n; = ny =

- = n, the ANOVA table becomes

Source d.f. Deviance Expected Mean Square
Gz
Mean 1 o o? +rpp? +r(1—5)o?
p T} G? 2 2
Treatments p—1 Yi=1,E — - o° +roj
P2 T?
Error p(’f‘ T 1) Zf 1 En 1 yzg Z:€)=1 n; 02

e The term 1 — % is called a finite population correction factor.




