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Abstract

Today, enterprises collect large amounts of data and
leverage the cloud to perform analytics over this data.
Since the data is often sensitive, enterprises would prefer
to keep it confidential and to hide it even from the cloud
operator. Systems such as CryptDB and Monomi can
accomplish this by operating mostly on encrypted data;
however, these systems rely on expensive cryptographic
techniques that limit performance in true “big data” sce-
narios that involve terabytes of data or more.

This paper presents Seabed, a system that enables ef-
ficient analytics over large encrypted datasets. In con-
trast to previous systems, which rely on asymmetric
encryption schemes, Seabed uses a novel, additively
symmetric homomorphic encryption scheme (ASHE) to
perform large-scale aggregations efficiently. Addition-
ally, Seabed introduces a novel randomized encryption
scheme called Splayed ASHE, or SPLASHE, that can, in
certain cases, prevent frequency attacks based on auxil-
iary data.

1 Introduction

Consider a retail business that has customer and sales
records from various store locations across the world.
The business may be interested in analyzing these
records — perhaps to better understand how revenue is
growing in various geographic locations, or which de-
mographic segments of the population its customers are
coming from. To answer these questions, the business
might rely on a Business Intelligence (BI) system, such
as PowerBI [5], Tableau [7], or Watson Analytics [8].
These systems can scale to large data sets, and their
turnaround times are low enough to answer interactive
queries from customers. Internally, they rely on the cloud
to provide the necessary resources at relatively low cost.

However, storing sensitive business data on the cloud
can raise privacy concerns, which is why many enter-
prises are reluctant to use cloud-based analytics solu-
tions. These concerns could be mitigated by keeping
the data in the cloud encrypted, so that a data leak (e.g.,
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due to a hacker attack or a rogue administrator) would
cause little or no damage. Systems like CryptDB [37]
and Monomi [41] can accomplish this by using a mix of
different encryption schemes, including deterministic en-
cryption schemes [12] and partially homomorphic cryp-
tosystems; this allows certain computations to be per-
formed directly on encrypted data. However, this ap-
proach has two important drawbacks. First, these cryp-
tosystems have a high computational cost. This cost is
low enough to allow interactive queries on medium-size
data sets with perhaps tens of gigabytes, but many busi-
nesses today collect terabytes of data [13, 29, 30, 40].
Our experimental results show that, at this scale, even on
a cluster with 100 cores, it would take hundreds of sec-
onds to process relatively simple queries, which is too
slow for interactive use. Second, deterministic encryp-
tion is vulnerable to frequency attacks [33], which can
cause some data leakage despite the use of encryption.

This paper makes two contributions towards address-
ing these concerns. First, we observe that existing solu-
tions typically use asymmetric homomorphic encryption
schemes, such as Paillier [35]. This is useful in scenarios
where the data is produced and analyzed by different par-
ties: Alice can encrypt the data with the public key and
upload it to the cloud, and Bob can then submit queries
and decrypt the results with the private key. However,
in the case of business data, the data producer and the
analyst typically have a trust relationship — for instance,
they may be employees of the same business. In this sce-
nario, it is sufficient to use symmetric encryption, which
is much faster. To exploit this, we construct a new ad-
ditively symmetric homomorphic encryption scheme (or,
briefly, ASHE), which is up to three orders of magnitude
more efficient than Paillier.

Our second contribution is a defense against frequency
attacks based on auxiliary information — a type of attack
that has recently been demonstrated in the context of de-
terministic encryption [33]. For instance, suppose the
data contains a column, such as gender, that can take
only a few discrete values and that has been encrypted
deterministically. If the attacker knows which gender oc-
curs more frequently in the data, she can trivially decode
this column based on which ciphertext is the most com-



mon. We introduce an encryption scheme called Splayed
ASHE (SPLASHE), that protects against such attacks by
splaying sensitive columns to multiple columns, where
each new column corresponds to data for each unique el-
ement in the original column. For columns with larger
cardinality, SPLASHE uses a combination of splaying
and deterministic encryption padded with spurious en-
tries to defeat frequency attacks while still limiting the
storage and computational overhead.

We also present a complete system called Seabed that
uses ASHE and SPLASHE to provide efficient analytics
over large encrypted datasets. Following the design pat-
tern in earlier systems, Seabed consists of a client-side
planner and a proxy. The planner is applied once to each
new data set; it transforms the plain-text schema into
an encrypted schema, and it chooses suitable encryption
schemes for each column, based on the kinds of queries
that the user wants to perform. The proxy transparently
rewrites queries for the encrypted schema, it decrypts re-
sults that arrive from the cloud, and it performs any com-
putations that cannot be performed directly on the cloud.
Seabed contains a number of optimizations that keep the
storage, bandwidth, and computation costs of ASHE low,
and that make it amenable to the hardware acceleration
that is available on modern CPUs.

We have built a Seabed prototype based on Apache
Spark [2]. We report results from an experimental eval-
uation that includes running both AmpLab’s Big Data
Benchmark [3] and a real, advertising-based analyt-
ics application on the Azure cloud. Our results show
that, compared to no encryption, Seabed increases the
query latency by only 8% to 45%; in contrast, state-
of-the-art solutions that are based on Paillier (such as
Monomi [41]) would cause an increase by one to two
orders of magnitude in query latency.

To summarize, we make the following four contribu-
tions in this paper:

e ASHE, an additive symmetric homomorphic en-
cryption scheme that is three orders of magnitude
faster than Paillier (Section 3.1);

e SPLASHE, an encryption scheme that protects
against frequency-based attacks for fields that re-
quire deterministic encryption (Sections 3.3+3.4);

e Seabed, a system that supports efficient analytics
over large-scale encrypted data sets (Section 4); and

e a prototype implementation and experimental eval-
uation of Seabed (Section 6).

2 Overview

Figure 1 shows the scenario we are considering in this
paper. A data collector gathers a large amount of data,
encrypts it, and uploads it to an untrusted cloud platform.
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Figure 1: Motivating scenario.

An analyst can issue queries to a query processor on the
cloud. The responses will be encrypted, but the analyst
can decrypt them with a secret key she shares with the
data collector.

The workload we wish to support consists of OLAP-
style queries on big data sets. As our analysis in Sec-
tion 5 will show, these queries mostly rely on just a few
simple operations (sum, sum-of-squares, etc.), so we fo-
cus on these in our server-side design. Our goal is to
answer typical BI queries on large data sets within a few
seconds — that is, quickly enough for interactive analysis.

2.1 Background

One common approach to solving the above problem is
to use homomorphic encryption. For instance, there are
cryptosystems with an additive homomorphism, such as
Paillier [35], which means that it is possible to “add”
two ciphertexts C'(x) and C(y) to obtain a ciphertext
C(z + y) that decrypts to the sum of the two encrypted
values. This feature allows the cloud to perform aggre-
gations directly on the encrypted data. There are other
systems with different homomorphisms, and even fully
homomorphic systems [23] that can be used to compute
arbitrary functions on encrypted data (Section 7).

Homomorphic encryption schemes are typically ran-
domized, that is, there are many different possible ci-
phertexts for each value. These schemes enjoy standard
semantic (or CPA) security, which informally means that
no adversary can learn any information about the plain-
text, even given the ciphertext.

However, there are situations where it is useful to
let the cloud see some property of the encrypted val-
ues (property-preserving encryption). For instance, to
compute a join, the cloud needs to be able to match up
encrypted values, which randomization would prevent.
In this case, one can use deterministic encryption [12],
where each value v is mapped to exactly one ciphertext
C(v). However, such schemes are susceptible to fre-
quency attacks [33]: if a column can only take a small
number of values (say, country), and the cloud knows
that some value (say, Canada) will be the most com-
mon in the data, it can look for the most common ci-
phertext and infer that this ciphertext must decrypt to



that value. Another example of an operation achievable
by a property-preserving encryption scheme is select-
ing rows based on a range of values (say, timestamps)
in an encrypted column. Here, one can use an order-
preserving encryption (OPE) [15], which can be used to
decide whether x < y, given only C(x) and C(y). Ob-
viously, if the cloud can perform the comparison, then so
can the adversary, so in these schemes, there is a tradeoff
between confidentiality, performance, and functionality.

2.2 Threat Model

In this paper, we resolve the above tradeoff in favor of
confidentiality and performance. We assume an adver-
sary who is honest but curious (HbC), that is, the adver-
sary will try to learn facts about the data but will not ac-
tively corrupt data or otherwise interfere with the system.
We do, however, assume that the adversary will attempt
to perform frequency attacks as discussed above; this is
motivated by recent work [33], and it is the reason we
developed SPLASHE.

We are aware that there are much stronger threat mod-
els that would prevent the adversary from learning any-
thing at all about the data. However, current solutions
for these models, such as using oblivious RAM [34, 26]
and fully homomorphic encryption, tend to have an enor-
mous runtime cost (fully homomorphic encryption [23]
causes a slowdown by nine orders of magnitude [24]).
Our goal is to provide a practical alternative to today’s
plaintext-based systems (which offer very little security),
and this requires keeping the runtime overhead low.

2.3 Alternative approaches

As discussed in Section 2.1, one possible approach to
this problem is to use homomorphic encryption. This
approach is taken by systems like CryptDB [37] and
Monomi [41], which use Paillier as an additive homo-
morphic scheme. While Paillier is much faster than fully
homomorphic encryption, it is still expensive. For ex-
ample, a single addition in Paillier on modern hardware
takes about 4 s (Section 4), so the latency for operations
on billions of rows can easily reach several minutes.

An alternative approach is to rely on trusted hardware,
such as Intel’s SGX [32] or ARM’s TrustZone [10]. This
approach has a much lower computational overhead, but
it introduces new trust assumptions that may not be suit-
able for all scenarios [19, 20]. It would be good to have
options available that offer a low overhead without rely-
ing on trusted hardware.

2.4 Our approach

In Seabed, we solve this problem by replacing Paillier
with a specially designed additively symmetric homo-

morphic encryption (ASHE) scheme. Since symmetric
encryption schemes tend to be much more efficient than
asymmetric schemes, this yields a big performance boost
(Section 4). Symmetric encryption imposes a restriction
that the encrypted data can only be uploaded by someone
who has the secret key but this is not a constraint for the
typical BI scenario. Thus, the additional protections of
asymmetric cryptography are actually superfluous, and
the performance gain is essentially “free”.

Additionally, in order to protect against frequency at-
tacks that occur when using deterministic or order pre-
serving encryption, we construct a randomized encryp-
tion scheme — SPLayed ASHE, or SPLASHE that can
still enable us to perform many queries on encrypted data
that in prior work required deterministic encryption, but
without leaking any information on frequency counts.
Finally, for those queries that SPLASHE cannot support
(e.g., joins), we support deterministic and OPE schemes
that leak (a small amount of) information about the un-
derlying plaintext values; we take this decision with the
performance of the system in mind.

3 Seabed Encryption Schemes

In this section, we describe the ASHE and SPLASHE
schemes in more detail. ASHE and the basic variant of
SPLASHE satisfy the standard notion of semantic secu-
rity (IND-CPA, that leaks no information about plaintext
values) while the enhanced variant of SPLASHE prov-
ably leaks no more information than the number of di-
mension values that occur frequently and infrequently in
the database. A formal security proof is available in our
technical report [36].

3.1 ASHE

ASHE assumes that plaintexts are from the additive
group Z, = {0,1,...,n — 1}. It also assumes that
the entities encrypting and decrypting a ciphertext (the
sender and the recipient, respectively) share a secret key
k, as well as a pseudo-random function (PRF) Fj, : [ —
Z,, that takes an identifier from a set I and returns a ran-
dom number from Z,,.

One possible choice for the PRF is Fy :=
H(i|| k) modn for i € I, where H is a cryptographic
hash function (when modeled as a random function), ||
denotes concatenation and the size of the range of H is
a multiple of n. Another choice is AES, when used as a
pseudo-random permutation.

Suppose Alice wants to send a value m € Z,, to Bob.
Then Alice can pick an arbitrary, unique, number 7 € [
— which we call the identifier — and encrypt the message
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Figure 2: Seabed components and the ASHE scheme.

by computing:
Enci(m, i) :== ((m — Fy(i) + F(i — 1)) mod n, {i})

In other words, the ciphertext is a tuple (¢, S), where ¢
is an element of the group Z,, and S is a multiset of iden-
tifiers. Note that the ciphertext ¢ consists of the plaintext
value m plus some pseudo-random component, hence it
appears to be random to anyone who does not know the
secret key k.

To create the additive homomorphism, we define a
special operation & for “adding” two ciphertexts:

(c1,51) @ (c2,52) := ((e1 + c2) mod n, 51 U S)
That is, the group elements are added together and the

multisets of identifiers are combined. To decrypt the ci-
phertext, Bob can simply compute

Deck(c, S) c+ Z (Fr(
€S
Thus, after the homomorphic operation,

— Fi(i —1))) modn

Decy (Ency(my,i1)PEnck(ma,i2)) = (m1+mso) modn
Figure 2 gives a high-level overview of ASHE in the
context of Seabed. We show that the above scheme sat-
isfies the standard notion of semantic (CPA) security in

our technical report [36].

3.2 Optimizations for ASHE

The reader may wonder why the first element of the ci-
phertext is computed as (m — Fj (i) + Fj(i — 1)) mod n
and not simply as (m — Fy (7)) modn. The reason is
that we have optimized ASHE for computing aggrega-
tions on large data sets. Suppose, for instance, that Al-
ice wants to give Charlie a large table of encrypted val-
ues, with the intention that Charlie will later add up a
range of these values and send them to Bob. Then Alice
can simply choose the identifiers to be the row of num-
bers (1,2,...,x). Later, if Bob receives an encrypted
sum (¢, S) with S = {i,...,7 + t} (i.e., the sum of
rows ¢ to ¢ + t), he can decrypt it simply by comput-
ing (¢ + Fy(i +t) — F(¢ — 1)) mod n, since the other
F, values will cancel out. Thus, it is possible to decrypt

Plaintext Schema Encrypted Schema

country salary sender salary
Male 1000 DET(Male) ASHE(1000)
Female 2000 DET(Female) | ASHE(2000)
Female 200 DET(Female) | ASHE(200)
Schema with Basic SPLASHE

genderMale genderFemale | salaryMale salaryFemale
ASHE(1) ASHE(0) ASHE(1000) | ASHE(0)
ASHE(0) ASHE(1) ASHE(0) ASHE(2000)
ASHE(0) ASHE(1) ASHE(0) ASHE(200)

Figure 3: SPLASHE instead of deterministic encryption.

the sum of a range of values by evaluating the PRF only
twice, regardless of the size of the range.

Other optimizations including managing ciphertext
growth and use of AES encryption support in hardware
for efficient PRF computation are discussed in Section 4.

3.3 Basic SPLASHE

SPLASHE is motivated by frequency attacks on deter-
ministic encryption [33]. Recall that, unlike ASHE, in
deterministic encryption, there is only one possible ci-
phertext value for each plaintext value. This enables the
server to perform equality checks but also reveals fre-
quency of items. The attacker combines the frequency of
ciphertexts with auxiliary information to decode them.

We begin by describing a basic version of our ap-
proach. Consider a column C; that can take one of d
discrete values and let the value of Cy in row ¢ be C [t].
If we anticipate counting queries of the form SELECT
COUNT (C7) WHERE Cj=x, we can replace the col-
umn C; with a family of columns C} 1,...,C; 4. When
the value of Ci[t] is v, we set Cq,[t] = 1 and set
Cy w[t] = 0 for w # v. If the resulting columns are
encrypted using ASHE, the ciphertexts will look random
to the adversary, but it is nevertheless possible to com-
pute the count: we can simply rewrite the above query
to SELECT SUM(Ci,) and then compute the answer
using homomorphic addition.

A similar approach is possible for aggregations. Con-
sider a pair of columns C; and C5, where C again takes
one of d discrete values and C5 contains numbers that
we might later wish to sum up using a predicate on C
(and possibly other conditions). In other words, we antic-
ipate queries of the form SELECT SUM(C3) WHERE
Ci=x. In this case, we can split C; into d columns
0271, ey 02_’(1. When Cq [t] = v, we set 0271) [t] =y [t]
and set Co 4, [t] := 0 for w # v. C; and Cy can then
be omitted. Thus, the above query can be rewritten into
SELECT SUM (Cy z), which can be answered using ho-
momorphic addition. An example of SPLASHE is shown
in Figure 3 for C as Gender and C as Salary.



3.4 Enhanced SPLASHE

Basic SPLASHE increases a column’s storage consump-
tion by a factor of d, which is expensive if d is large.
Next, we describe an enhancement that addresses this.

Consider again a pair of columns C (say, country)
and C (say, salary), where C; takes one of d discrete
values and C5 contains numbers that we might later wish
to sum up using a predicate on C;. Suppose k of the d
values are common (e.g., a Canadian company with of-
fices worldwide but with most employees located in USA
or Canada; k = 2, d = 196). Then we can replace
Cs by k + 1 columns — one for each of the common
values (salaryUSA and salaryCanada) and a sin-
gle column for the uncommon values (salaryOther).
Figure 4 shows an example. As before, for each row,
we place the ASHE encrypted value of salary from Cy
in the appropriate salary column, while we fill the other
k salary columns with ASHE-encrypted zeros. We then
encrypt Cy deterministically for each of the uncommon
countries to enable equality checks against encrypted
values.

At this point it is possible to compute aggregations on
C for all values v of Cy: if the value v is common (USA
or Canada), we can compute a sum over the special
column for v; otherwise we can select the rows where
country in C; equals the deterministically encrypted
value of v and compute the sum over salaryOther.

However, C1 now is susceptible to frequency attacks.
To prevent this, in C7, we ensure that all ciphertexts oc-
cur at the same frequency. How is this possible? Note
that the cells corresponding to common countries in Cy
were so far unused. We can reuse these cells to normal-
ize the frequency count of the uncommon countries. For
these reused cells, since the corresponding values in the
salaryOther column are set to ASHE encrypted val-
ues of zero, this approach preserves correctness while
preventing frequency attacks.

When is this approach possible? Let ny > ny... >
ng be the number of occurrences of each of the d values.
Then the number of splayed columns should be chosen to
be the minimum k such that >>%_, n; > Zf:kﬂ (Mgg1—

n;) : this is because Y%, n, are enough unused cells in
column C that can be used to make the number of oc-
currences of all non-splayed values at least ny1. Such a
k will always exist; the more heavily skewed the distribu-
tion of values is, the smaller the k& will be, and the more
storage will be saved. This approach can be followed
even if the exact number of occurrences is unknown; we
do, however, need to know the distribution of the values.

Figure 4 shows an enhanced SPLASHE example with
k = 2and d = 9. Notice how the first six rows of
the deterministically encrypted column have been reused
to equalize the frequency of all elements in that col-

Plaintext Schema Schema with Enhanced SPLASHE

country salary country salaryUSA salaryCanada salaryOthers
USA 100000 DET(Chile) ASHE(100000) | ASHE(0) ASHE(0)
USA 100000 DET(Iraq) ASHE(100000) | ASHE(0) ASHE(0)
Canada | 200000 DET(China) | ASHE(0) ASHE(200000) | ASHE(0)
USA 300000 DET(Japan) | ASHE(300000) | ASHE(0) ASHE(0)
Canada 500000 DET(Israel) ASHE(0) ASHE(500000) | ASHE(0)
Canada 800000 DET(U.K.) ASHE(0) ASHE(800000) | ASHE(0)
India 100000 DET(India) | ASHE(0) ASHE(0) ASHE(100000)
India 100000 DET(India) | ASHE(0) ASHE(0) ASHE(100000)
Chile 200000 DET(Chile) ASHE(0) ASHE(0) ASHE(200000)
Iraq 300000 DET(Iraq) ASHE(0) ASHE(0) ASHE(300000)
China 500000 DET(China) | ASHE(0) ASHE(0) ASHE(500000)
Japan 800000 DET(Japan) | ASHE(0) ASHE(0) ASHE(800000)
Israel 130000 DET(Israel) ASHE(0) ASHE(0) ASHE(130000)
U.K. 210000 DET(U.K) ASHE(0) ASHE(0) ASHE(210000)

Figure 4: Enhanced SPLASHE example.

umn while still ensuring the correctness of aggregation
queries on any of the country predicates.

The reader can find a more detailed description of en-
hanced SPLASHE’s security properties in our techni-
cal report [36]. Briefly, enhanced SPLASHE satisfies
simulation-based security; the adversary learns only the
number of rows in the database, and the number of infre-
quently and frequently occurring values.

3.5 Limitations

ASHE: Homomorphic encryption schemes have tra-
ditionally been defined with a compactness require-
ment, which says that the ciphertext should not grow
with the number of operations that are performed on
it. This is done to rule out trivial schemes: for in-
stance, one could otherwise implement an additive “ho-
momorphism” by simply concatenating the ciphertexts
Enc(my) and Enc(msz) and then have the client do
the actual addition during decryption. ASHE does not
strictly satisfy compactness, but the evaluator (the cloud)
still does perform the bulk of the computation on cipher-
texts; also, the techniques in Section 4 ensure that the
length of ASHE’s ciphertexts does not grow too much.

In terms of performance, growing ciphertexts can cre-
ate memory stress at the workers. In the case of a system
without encryption, the worker nodes only need enough
memory to hold the dataset. When using ASHE, the
workers need to have some extra memory to construct
the ID lists. This should not be a big problem in prac-
tice: as we will show in Section 6, the overhead is small
enough for real-world big data applications that involve
billions of rows. Nevertheless, this extra memory re-
quirement can become a problem if workers have very
limited memory, or if the dataset is very large (e.g., if it
has trillions of records).

SPLASHE: SPLASHE has three main drawbacks: (1)
its requirement for a-priori knowledge of query workload
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Figure 5: Seabed system design

or data distribution, (2) its difficulty in handling data with
rapidly changing distribution, and (3) its storage over-
head.

First, SPLASHE requires knowing what the expected
query workload is. This is because we need to confirm
that the splayed column will not participate in joins or in-
equality predicates — for such cases we need to fall back
to deterministic encryption (DET). In addition, to get the
storage reduction of enhanced SPLASHE, we need to
know the distribution of values that a column can take.
If this information is not available, only basic SPLASHE
can be used.

Second, enhanced SPLASHE is most appropriate for
columns whose distribution does not change dramati-
cally. For columns whose distribution fluctuates signifi-
cantly, data insertions will start skewing the distribution
of the DET column (C'; in our example) away from the
uniform distribution SPLASHE constructs. This hap-
pens because a significant change in distribution will re-
quire reusing more cells than those available in the rows
that were previously common. However, even in such
an extreme case, SPLASHE is still better than using
plain DET; DET reveals the exact distribution of values,
whereas SPLASHE reveals a noised version of it.

Finally, both basic and enhanced SPLASHE increase
storage needs. Section 6.6 shows that a real-world
ad analytics database can be supported with enhanced
SPLASHE at a storage overhead of about 10x.

4 Design

We now provide a functional overview of Seabed, and
then describe each system component in more detail. For
simplicity, we describe the design using the example of
only one data source and one client. In practice, multiple
data sources and users can share the same system as long
as they share trust.

4.1 Roadmap

Figure 5 shows the major components of Seabed. A
user interacts with the Seabed client proxy that runs in
a trusted environment. The proxy in turn interacts with
the untrusted Seabed server. As with previous systems,
Seabed is designed to hide all cryptographic operations
from users, so they interact with the system in the same
way as they would with a standard Spark system. The
user can issue three kinds of requests:

Create Plan: First, the user supplies a plaintext schema
and a sample query set to the Seabed planner. The plan-
ner uses these and the procedure specified in Section 4.2
to determine the encryption schemes for the columns.
Upload Data: Next, the user sends plaintext data to the
Seabed encryption module described in Section 4.3. The
data is encrypted with the required encryption scheme
and records are appended to the table stored in the Cloud.
This is a continuing process; database insertions are han-
dled in the same way.

Query Data: During analysis, the user sends a query
script to the Seabed query translator, which modifies
queries to run on encrypted data before sending them to
the server (Section 4.5). The server runs the queries and
responds to the proxy’s decryption module (Section 4.6).
After decryption and further processing (if any), the re-
sults are sent back to the user.

4.2 Data Planner

The data planner determines how to encrypt each column
in the schema, given a list of sensitive columns by the
user. The user also supplies a sample query set, which
is used by the planner to decide on the encryption algo-
rithms. In addition, to use enhanced SPLASHE, the user
provides the number of distinct values each column can
take and the frequency distribution of these values.

By parsing the sample query set, the planner first clas-
sifies each sensitive column as a dimension, a measure,
or both. A measure is a column (e.g., Salary) over
which a query computes aggregate functions, such as
sum, average and variance. A dimension is a column
(e.g., Country) that is used to filter rows based on a
specified predicate before computing aggregates. After
the classification, the planner uses the following strate-
gies to determine which encryption schemes to use.

ASHE: If a sensitive measure is aggregated using lin-
ear functions, such as sum and average, we encrypt it
using ASHE. If a sensitive measure is aggregated us-
ing quadratic functions (e.g., variance), we compute the
square of the values on the client side and add it to the
database as a separate column, so it can be used in com-
putations on the server side. Whenever we use ASHE on
a column, we give a unique ID to each row, which is used
in the encryption as discussed in Section 3.1; to enable



Operation Time (nanoseconds)
AES counter mode 47
Paillier encryption 5,100,000
ASHE encryption/decryption 12-24
Plain addition 1
Paillier addition 3800
Paillier decryption 3,400,000

Table 1: Cost of operations on a 2.2 GHz Xeon core.

compression, we assign consecutive row IDs. We choose
a different secret key k for each new column we encrypt.

SPLASHE: If a sensitive dimension is used in filters,
and if no query uses joins on this dimension, then
the dimension is a candidate for SPLASHE. However,
given the storage costs, we determine whether to use
SPLASHE for the dimension as follows. First, we deter-
mine the measure columns that are used in conjunction
with this dimension in the queries: only these measure
columns need to be SPLASHE-encrypted. Based on this
subset of measure columns, the planner uses the algo-
rithm described in 3.4 to compute the storage overhead.
Then, if a user specifies a maximum storage overhead,
the planner prioritizes the dimensions that use SPLASHE
based on their cardinality (lowest cardinal dimension
first, in order to maximize protection against frequency
attacks). We show how this approach works with a real
dataset in Section 6.6.

DET or OPE: If a sensitive dimension cannot use
SPLASHE - say, because it is used as part of a join —
we warn the user and then use deterministic encryption
(DET). If the dimension requires range queries in query
filters, then we use order-preserving encryption (OPE).
We require an OPE scheme that works on dynamic data
and hence the OPE scheme of CryptDB [37] is not suit-
able in our case. We use the recent scheme from [18],
which is efficient (based on any PRF) and has low leak-
age: for any two ciphertexts, in addition to the order of
the two underlying plaintexts, it reveals the first bit where
the two plaintexts differ and nothing more. For more de-
tails, please refer to our technical report [36].

Note that some queries (such as averages) cannot be
directly executed on the server because they are not
supported by Seabed’s encryption schemes. In such
cases, the Seabed planner borrows techniques from prior
work [41] to divide the query into a part the server can
compute (e.g., a sum and a count), and a part that the
client/proxy will need to compute after decryption (e.g.,
the final division).

4.3 Encryption Module

The Encryption Module encrypts plaintext records into
the encrypted schema. Note that ASHE encryption and
decryption are quite lightweight compared to Paillier op-
erations. As shown in Table 1, one AES counter oper-

ation (implemented using hardware support on a Intel
Xeon 2.2GHz processor) takes 47 ns whereas one Pail-
lier encryption takes 5.1 ms, a difference of five orders
of magnitude. Hence, by using ASHE instead of Paillier,
we reduce the encryption load on the client significantly.

We optimize ASHE encryption and decryption further
by using a single AES operation to generate multiple ci-
phertexts. Each AES operation works on 128-bit vectors.
Numeric data types are typically much smaller: 32-bit
or 64-bit integers are common. One AES operation can
therefore generate two or four pseudo-random numbers
for 64-bit or 32-bit data types, respectively.

Also, note that unlike conventional cryptographic
techniques, ASHE encryption and decryption are inher-
ently parallelizable because multiple AES operations can
be computed simultaneously in a multi-core environ-
ment. We therefore run a multi-threaded version of the
encryption and decryption algorithm, and this further re-
duces latency.

If the system needs a way to revoke the access privi-
leges of individual users, the proxy can additionally im-
plement an access control mechanism, analogous to the
approach in CryptDB. Typically, revocation is difficult
when symmetric encryption schemes are used: once a
symmetric key is shared, the only way to invalidate it is
to re-encrypt the data. However, since the proxy handles
all queries, it does not need to share the secret keys with
the clients, so it can revoke or limit their access without
re-encryption.

4.4 Query Translator

The goal of the Query Translator is to intercept the
client’s unmodified queries, and rewrite them in a way
appropriate for the schema of the encrypted dataset. Our
design follows the principles introduced by CryptDB
and Monomi: we encrypt constants with the appropri-
ate encryption scheme, and we replace operators with
the custom functions that implement ASHE aggrega-
tion, or DET/OPE checks. One technical difference to
the previous systems is that these operated on relational
databases, so both the source and target language of the
translator was SQL. However, Seabed works on Spark,
so the target language is Scala and the Spark APIL.

The Seabed Query Translator makes three additions to
the query rewriting process to accommodate the new en-
cryption schemes it uses; we show examples for all three
in Table 2. First, the schema of the encrypted dataset
in Seabed includes an additional ID column. This col-
umn is necessary for ASHE aggregation, so the Query
Translator preserves it even if the client has not explicitly
done so in the projection fields of the original SQL query.
That way, Seabed can support aggregation on the result
of sub-queries. Second, for columns that use SPLASHE,
Seabed follows the rules outlined in Section 3 to rewrite



[ Query type [ Query
SQL SELECT sum(tmp.a) FROM (SELECT a FROM table WHERE b > 10) tmp
D Spark API | table.filter (x => x(2) > 10) .map(x =>x (1)) .reduce((x,y) => xty)
preservation Seabed table.filter(x => OPE.leq(x(2),Encopr (10)) .
map (x =>(x(id), x(1))) .reduce((x,vy) => ASHE (x,V))
SQL SELECT count (x) FROM table WHERE a = 10
SPLASHE Spark API | table.filter (x=>x (1) == 10) .count ()
Seabed table.map (x=>(x(id),x(3))) .reduce ((x,y)=>ASHE (x,VY))
Group-by SQL SELECT a, sum(b) FROM table GROUP BY a
optimization Spark API | table.map (x=>(x(1),x(2)) .reduceByKey ((x,Vy)=>x+y)
(and ID Seabed table.map (x=>(x (1) +":"+r.nextInt%10, (x(id),x(2))) .
preservation) reduceByKey ( (x,v)=>ASHE (x,V))

Table 2: Examples of query translation. (1) corresponds to table column a, z(2) to b, z(3) to splayed a for value 10,

and z(id) to the identifier column used by ASHE.

. Example
Technique Integer/List : Encoding
Range encoding | [2...14,19...23] [2-14,19-23]
Diff. encoding [2,3,4,9,23] [2,1,1,5,14]
Combination [2...14,19...23] [2-12,5-4]
VB-encoding Encoded with minimum #bytes

Table 3: ID list encoding techniques used in Seabed.

queries. This implies that the client has to maintain a
small data structure with information about the splayed
fields. Finally, if the client enables our group-by opti-
mization, which is described in Section 4.5, the Query
Translator may also modify the group-by fields of the
query. This requires that the client maintains some state
about the expected number of groups in a query result.

4.5 Seabed Server

Performing aggregations using ASHE requires the server
to manage growing ciphertexts. This can result in need
for large in-memory data structures and high bandwidth.
We now describe how we optimize these overheads.

Reducing ID list size: To keep the size of the ID list
small, we evaluated several integer list encoding tech-
niques [31], including bitmaps [17], for good compres-
sion rates, low memory usage and high encoding speed.
We eventually decided that a combination of the tech-
niques listed in Table 3 were the most appropriate for
Seabed. We begin with range encoding, which com-
presses contiguous sequences of integers by specifying
the lower and upper bound. Next, we apply differential
(Diff) encoding, which replaces the (potentially large) in-
dividual numbers with the (hopefully small) difference
to the previous number; the result of this second step
is labeled “Combination” in Table 3. Finally, we apply
variable-byte (VB) encoding, which uses fewer bytes to
represent smaller numbers.

Variable-byte (VB) and differential encoding (Diff)
strike a nice balance between performance and com-
pression and can be efficiently implemented in software.

Range encoding, i.e. describing contiguous integers by
specifying the bounds of their range, is not widely used
in the literature because it can bloat up lists of non-
contiguous integers. In Seabed, though, data is uploaded
to the server with contiguous IDs, so range encoding can
provide great benefits, especially for queries that select a
large portion of a dataset. In Section 6.4, we show how
combining VB, Diff, and range encoding reduces the size
of the ID list and speeds up aggregation.

Reducing server-to-client traffic:  Every Spark job
consists of one driver node and several worker nodes.
The workers send their partial results to the driver which
then aggregates and sends the combined result to the
client. To further reduce the size of ID lists, we applied
standard compression. However, there are two options
here: applying compression at the worker nodes or ap-
plying compression after aggregation at the driver node.
The latter can lead to higher compression rates, but we
found that this caused a bottleneck at the driver. In-
stead, we found that applying compression at each of the
worker nodes benefits from parallelization and results in
lower overall latency.

Handling group-by queries: Group-by queries are in
general challenging for ASHE, because all row IDs are
included in the final result, which can grow quite large.
Moreover, using range encoding seems to incur unnec-
essary costs for group-by queries: when the result of
a group-by query contains many groups, the ID lists of
each group tend to be very sparse. As we noted earlier,
range encoding is wasteful for sparse ID lists, so we de-
cided to use only VB and Diff encoding for group-by
queries.

Group-by queries lead to one more complication:
when the number of groups in the result is small, the
traffic between mapper and reducer workers becomes a
bottleneck. There are two underlying reasons for this.
First, with few groups, the ID list of each group be-
comes denser, and not using range encoding starts to
show up. Second, when the number of groups is less than



H Query set Total Purely on Server | Client Pre-processing | Client Post-processing | Two Round-trips H
Ad Analytics | 168,352 134,298 0 34,054 0
TPC-DS 99 69 2 25 3
MDX 38 17 12 4 5
Table 4: Different categories of queries that Seabed supports.
Dimen- Measu- Disk size (GB) Memory size (GB)
Dataset Rows sions res NoEnc Seabed Paillier | NoEnc Seabed Paillier
Synthetic - Large 1.75B - 1 35.4 70.4 521.1 84.7 121.9 638.6
Synthetic - Small 250M - 1 5 9.8 74.2 12.1 17.7 914
BDB - Rankings 90M 1 2 7.9 12 58.3 18.6 28.1 80.4
BDB - User Visits 775M 8 2 194.9 2817.5 673.6 581 8325 1269.4
BDB - Query 4, Phase 2 | 194M 2 1 35 38.3 88.3 73.5 86.5 140
Ad Analytics 759M 33 18 1323 14245 1763 1004 1027.3 12544

Table 5: Characteristics of our synthetic dataset, the Big Data Benchmark (BDB) and the Ad Analytics dataset (AdA).

the available workers, some reducers will remain idle in
the reduce phase. This means that more data (because of
denser ID lists) is shuffled between fewer workers (be-
cause of idle workers). This can create a bottleneck for
very large datasets where ID lists are large.

To make use of more worker nodes in the reduce phase
and to mitigate the above effect, we artificially increase
the number of returned groups. We accomplish this
by appending a random identifier to each value of the
group-by column. For example (table 2), if a query re-
turns 10 groups {¢g1,. .., 910}, and there are 100 work-
ers available, then we can append a random identifier to
the group-by column, which takes values from 0 to 9.
This means that the result will contain 10 * 10 = 100
groups {g1:0,...,61:9,...,910:0,...,910:9}, the com-
putation will utilize all available workers in the reduce
phase, and we will avoid the bandwidth bottleneck. Of
course, the client has to perform the remaining aggre-
gations to compute the sum of the actual groups (e.g.,
add results for groups {g1:0,...,¢1:9} to get the result
for group g;). As a heuristic, we inflate the number of
groups to the number of available workers when we ex-
pect fewer groups than workers.

4.6 Decryption Module

The Decryption Module uncompresses the ID lists, uses
the techniques from Section 4.3 to calculate the pseudo-
random numbers to add to the encrypted value, and re-
turns the result to the user. If the query has some part that
cannot be computed at the server, the Decryption Mod-
ule can additionally perform that part before presenting
the final answer to the user. Since we have assumed that
the adversary is honest but curious, the Decryption Mod-
ule performs no integrity checks; thus, an active adver-
sary could return bogus data without being detected by

Seabed itself.

The decryption cost of ASHE depends on the num-
ber of aggregated elements; this is different from Pail-
lier, which requires only one decryption for each aggre-
gate result. However, Paillier decryption is five orders
of magnitude slower than ASHE decryption (Table 1),
and the overall client decryption costs for Seabed remain
smaller than Paillier (Section 6).

S Applications

An important question is whether Seabed supports a wide
range of big data analytics applications. To understand
this, we performed three studies. First, we systematically
analyzed two common interfaces that BI applications use
at the back-end: MDX (the industry standard) and Spark.
Second, we evaluated a month-long query log made on a
custom-designed advertising analytics OLAP platform to
determine how effectively Seabed can support the func-
tionality of these systems. Finally, we analyzed the TPC-
DS query set. Detailed results of our MDX/Spark anal-
ysis can be found in our technical report [36]. Briefly,
the analysis revealed that Seabed’s functionality support
falls into four categories:

Support fully on the server: Seabed’s encryption tech-
niques can fully support operations with no client sup-
port. Examples of such operations are computing the
sum, average, count, and min.

Support with client pre-processing: Seabed can sup-
port quadratic computation necessary for more complex
analytics such as anomaly detection, linear regression in
one dimension, and decision trees that are supported by
Watson Analytics [8] and Tableau [7]. To support this,
the Seabed client has to compute squared values of the
necessary columns, and encrypt them with ASHE.




Support with client post-processing: All applications
and APIs we studied allow users to specify arbitrary
functions of data. When these functions are complex,
Seabed cannot perform them at the server and data has
to be post-processed at the client. This is similar to how
Monomi splits queries into server- and client-side com-
ponents.

Support with two client round-trips: Some queries
require the client to compute an intermediate result, re-
encrypt it and send it back to the server for further pro-
cessing.

Table 4 shows the numbers of queries that fall into
these categories for the three query sets we analyzed.
We analyzed the MDX API/TPC-DS query set manu-
ally; for the ad analytics query set, we used heuristics
based on the query structure. For Ad Analytics and TPC-
DS, about 75-80% of the queries can be supported purely
on the server. This implies that these query sets mostly
use simple aggregation functions. About 20-25% need
client-side support. The TPC-DS query set and MDX
API have a few queries (5-15%) that require two round-
trips.

6 Evaluation

In this section, we report results from our experimental
evaluation of Seabed. Table 5 summarizes the datasets
used in our experiments. We evaluate the system with
microbenchmarks (Synthetic), an advertising analytics
data workload and query set (AdA), and the AmpLab Big
Data Benchmark (BDB).

Our evaluation has two high-level goals. First, we
evaluate the performance benefits of Seabed over sys-
tems that use the Paillier cryptosystem. Second, we
quantify the performance and storage overhead incurred
by Seabed as compared to a system with no encryption.

6.1 Implementation and Setup

We built a prototype implementation of Seabed on the
Apache/Spark platform [2] (version 1.6.0). We chose
Spark because of its growing user-base and performant
memory-centric approach to data processing. The server-
side Seabed library was written in Scala using the Spark
API. The Seabed client uses Scala combined with a
C++ cryptography module for hardware accelerated AES
(with Intel AES-NI instructions). We implemented Pail-
lier in Scala using the BigInt class. Data tables are
stored in HDFS using Google Protobuf [4] serialization.
In total, our Seabed prototype consists of 3,298 lines of
Scala and 2,730 lines of C++.

Our experiments were conducted on an Azure HDIn-
sight Linux cluster. The cluster consists of tens of nodes,
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each equipped with a 16-core Intel Xeon E5 2.4 GHz
processor and 112 GB of memory. Machines were run-
ning Ubuntu (14.04.4 LTS) and job scheduling was done
through Yarn. In our experiments, we compare the fol-
lowing system setups:

NoEnc: Original Spark queries over unencrypted data,
Paillier: Modified Spark queries over encrypted data;
measures are encrypted using Paillier, and dimensions
with DET and/or OPE, and

Seabed: Modified Spark queries over encrypted data;
measures are encrypted using ASHE, and dimensions
with DET and/or OPE.

For our microbenchmarks, we generated a synthetic
dataset (see Table 5). The NoEnc and Paillier datasets
consist of one column of plaintext integers and 2048-bit
ciphertexts, respectively. The ASHE dataset consists of
two columns: an ID and an integer value encrypted with
ASHE (IDs are contiguous). In order to model predicates
that choose selected rows of a table, we use a parameter
called selectivity that varies between 0 and 1 and use it to
choose each row randomly with the corresponding prob-
ability. Note that this random selection model allows us
to study the various system trade-offs in these schemes,
e.g., the total length of ID lists, and it also enables us
to understand the worst-case behavior. (At first glance,
a query that selects all even or odd rows may appear to
be the worst case for Seabed, since range encoding with
such a non-contiguous set of IDs will double the size of
the resulting ID list. However, in this case, the ID list is
in fact highly compressible because the differences be-
tween consecutive IDs is always two, so stock compres-
sion techniques work very well.)

All experiments, unless otherwise mentioned, used
100 cores and 1.75 billion rows of input data. For end-
to-end results, we place the client in one of the nodes
in the same cluster as the server. Thus, by default, the
client is connected by a high-speed, low-latency link to
the server (TCP throughput of 2 Gbps). However, we
also perform experiments by varying this bandwidth (us-
ing the t ¢ command).

6.2 Microbenchmark: End to End Latency

We first compare end-to-end latency for the three ap-
proaches with varying input sizes (250 million to 1.75
billion rows). In Figure 6, we show the median latency
after running 10 queries for each input size. For Seabed,
we show two lines: one with selectivity 100% and the
other with selectivity 50%. We shall show in Section 6.4
that the former gives best-case latency while the latter
gives worst-case latency for Seabed. For NoEnc and
Paillier, we use a selectivity of 100% (their performance
is linear with respect to selectivity).

Figure 6(a) shows the results for NoEnc and Seabed.
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Figure 6: Median latency for aggregation vs data size.

NoEnc has a constant latency of approximately 0.6s.
This is because addition is a simple operation and the
overall latency is dominated by task creation costs.
Seabed’s aggregation is more complex, so latency for
both Seabed selectivity 50% and 100% increases linearly
with the dataset size. Nevertheless, the cost of aggrega-
tion in Seabed is still small even for large datasets, vary-
ing between 1.8s to 11s in the worst-case as the number
of rows increase. On the contrary, Paillier results in a la-
tency of over 1000s when aggregating 1.75 billion rows.

For Seabed selectivity 100%, about 80% of time is due
to server-side compute, 20% is due to client-side decryp-
tion, and network latency is minimal. For Seabed se-
lectivity 50%, the server-side contributes 55% of the la-
tency, the decryption contributes 35% and network trans-
fer contributes the remaining 10%.

We observed occasional stragglers, i.e., tasks that took
longer to complete and delayed the entire job, for all
three systems. The underlying cause of these stragglers
was usually garbage collection being triggered at some
node in the cluster. Paillier jobs took several hundreds of
seconds to complete, so the comparative effect of strag-
glers was small. However, NoEnc and Seabed jobs took
only few seconds at the server, so whenever there was a
straggler task, the delay was more pronounced.

6.3 Microbenchmark: Server Scalability

One important aspect of big data systems is how they
scale with larger clusters. Since using a larger cluster
can only speed up the server side, we consider server-
side latency as we evaluate Seabed’s scalability. Fixing
the dataset at 1.75 billion rows, we varied the number
of cores from 10 to 100. Figure 7 shows how Seabed,
NoEnc and Paillier scaled with the number of cores.
NoEnc reached its best latency, which is approximately
1s, with 20 cores. Both Seabed selectivity 100% and
Seabed selectivity 50% achieved their best latency of
1.35s and 8.0s respectively with only 50 cores. Even
with 100 cores, Paillier’s server latency was close to
1000s, which is more two orders of magnitude higher

(b) End-to-end response time (s)
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Figure 7: Median latency for aggregation vs cores.

than Seabed’s. This implies that, for large datasets, Pail-
lier would require increasing the number of cores by or-
ders of magnitude in order to achieve latencies that are
comparable to Seabed. Seabed’s overhead over NoEnc
primarily comes from managing the ID lists. Next, we
look into this in more detail.

6.4 Microbenchmark: Seabed Overhead

In this section we examine the server-side overheads in-
curred by Seabed’s ASHE and the use of OPE.

ASHE list construction: For ASHE, the server man-
ages ID lists using a variety of compression techniques
(Section 4). In this experiment, we show how these com-
pression techniques perform. The bitmap algorithms per-
formed poorly, so we omit them here for brevity. We var-
ied selectivity from 10% to 100%, and we measured the
size of the ID list and the server-side response time of the
query. We report the results in Figure 8(a) and (b).

Figure 8(a) suggests that range encoding is very ef-
fective in bounding the length of the ID list: without it,
the size of ID list would keep increasing as the selec-
tivity of a query increases, whereas with ranges the list
size starts decreasing after selectivity 50%. After this,
IDs start to become more dense and therefore more con-
secutive, leading to best-case compression at selectivity
100%. We can also see that the combination of VB and
Diff-encoding is very effective in reducing the size of the
ID list, and Deflate compression [6] further reduces the
size of the list.

The performance hit incurred by each encoding
method is depicted in Figure 8(b). To our advantage,
we found that, in all cases except with Deflate optimized
for high compression ratio, the better-performing algo-
rithms also provided more compressed ID lists. Based
on the above, we picked the following combination of en-
codings as the ID list construction algorithm in Seabed:
Range-encoding, VB encoding, Diff-encoding, and De-
flate compression (optimized for speed). This is what we
used for all the other experiments.

OPE: The OPE scheme we use introduces some over-
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Figure 8: Result size and response time vs selectivity over 1.75 billion rows.
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Figure 9: (a) Microbenchmark results for group-by queries. (b-c) Response time for the Big Data Benchmark queries.

head because comparison between OPE ciphertexts is
not as fast as comparing two plaintext integers. This is
because OPE comparison involves searching for the first
bit position where two 64-bit integers differ.

To measure the cost of OPE, we used the same syn-
thetic dataset as for ASHE with 1.75 billion rows, but
we added one more integer column encrypted with OPE.
We repeat the selectivity experiment above, but with the
query performing an OPE comparison. Figure 8(c) in-
dicates that OPE introduces more overhead, of about a
factor of 5s, compared to the ASHE ID list construction.

6.5 Microbenchmark: Group-by

So far, we have evaluated only simple aggregation
queries that involved minimal network communication:
each Spark worker computes a sum and a compressed ID
list per partition, and the reducers concatenate the lists
into the final result. While aggregation is a major com-
ponent of analytical query workloads, many queries also
use the group-by operation, which causes more data to
be shuffled across workers. In this section, we examine
how Seabed performs for queries that involve group-by.

For this experiment, we used the synthetic dataset
from the previous sections, but we added one more inte-
ger column. We then aggregated the value field while do-
ing a group-by on the new column. We varied the num-
ber of groups from 10 to 1 million; Figure 9(a) shows the
results.

The Seabed line shows the performance we get when
we use VB and Diff-encoding for group-by queries. A
very small number of groups in the result (10 in Fig. 9(a))
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leads to increased latency because of the bandwidth bot-
tleneck described in Section 4.5. The Seabed-optimized
line shows that we can effectively deal with this ineffi-
ciency by artificially increasing the number of groups to
100 (Section 4.5).

Since all IDs are included in the result, Seabed group-
by queries involve a significant amount of data shuffling.
As a consequence, the benefits Seabed enjoys when com-
pared to Paillier are lower. Yet, Seabed (optimized) does
seem to be faster than Paillier by 5x to 10x. As the num-
ber of groups increases, Seabed’s gain over Paillier drops
from 10x to 5x. This is because the network shuffle time
becomes a more significant part of the server response
time. This indicates that Seabed will be less effective for
group-by queries with a huge number of groups (hun-
dreds of millions), something we observe in Section 6.6.

6.6 Ad-Analytics Workload

To assess the performance of Seabed on real-world data
and queries, we evaluated it using the AmpLab Big Data
Benchmark [1] and using a real-world large-scale adver-
tising analytics application. We begin with a discussion
of the latter.

For this series of experiments, we used data from an
advertising analytics application deployed at an enter-
prise. This application is used by a team of experts for
analytical tasks such as determining behavioral trends of
advertisers, understanding ad revenue growth, and flag-
ging anomalous trends in measures such as revenue and
number of clicks. The data characteristics are shown in
Table 5. We also obtained a set of queries that were per-
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Figure 10: Seabed on the Ad Analytics workload: (a)
query response-time CDF and (b) storage overhead due
to SPLASHE.

formed for this application; this set consists of 168,352
queries issued between Feb 1, 2016 and Feb 25, 2016.
The queries are all aggregations that calculate sums of
various measures while grouping by timestamp (hour-of-
day). The number of groups in a typical query is quite
small, varying between 1 and 12 in most cases.

Performance: We first evaluated Seabed’s performance
on this dataset. We pick a set of 15 queries: five queries
each for groups of size 1, 4, and 8. We ran each query
ten times, and we calculated the median response time
per query. All experiments were run with 100 cores.

Figure 10(a) shows the cumulative distribution func-
tion of response times for NoEnc, Seabed and Paillier.
Seabed’s response time ranges from 1.08 to 1.45 times
that of NoEnc. The median response time for Seabed
is 17.8s, whereas for NoEnc it is 13.8s. Thus Seabed’s
response time is only 27% higher than NoEnc’s. On
the other hand, the median response time for Paillier is
6.7x that of Seabed. To understand this result in more
detail, we looked at the characteristics of the query re-
sponses. The average number of rows aggregated for a
query across all groups was 210 million, the average size
of the ID list was only 163.5KB, and the average number
of AES operations required for decryption was roughly
26,000. This shows that there is a lot of contiguity of IDs
in the ASHE ciphertext lists. Therefore, while queries
could theoretically choose rows at random and thus cre-
ate huge ID lists, our real-world dataset shows that this
does not necessarily happen in practice: the data is stored
in a certain order, and Seabed benefits from that order.

In all our experiments, the Seabed client used a high-
bandwidth link to connect to the server. To measure
the effect of lower-bandwidth and higher-latency links,
we artificially changed the network bandwidth/latency
between server and client to 100Mbps/10ms and
10Mbps/100ms. This increased the median response
time by only 1% in the former case and 12% in the latter
case, as the ID lists that need to be transferred are quite
small.
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Storage: We also used this dataset to quantify
SPLASHE’s overall storage overhead. Through conver-
sations with operators, we determined that 10 out of 33
dimensions and 10 out of 18 measures require encryp-
tion. We used the procedure outlined in Section 3.4 to
calculate the storage overhead for these 10 dimensions.
Figure 10(b) shows the cumulative storage overhead
for each of the 10 dimensions in our dataset, sorted by
the number of unique values in the dimension. The graph
shows that if we restrict the storage overhead to a fac-
tor of two, we can encrypt only one dimension with Ba-
sic SPLASHE, whereas we can encrypt two dimensions
with Enhanced SPLASHE. With a storage overhead of
three, we can encrypt only three dimensions with Ba-
sic SPLASHE, whereas we can encrypt 6 with Enhanced
SPLASHE. In this case, roughly 92% of all queries in-
volve at least one column that uses enhanced SPLASHE.

6.7 AmpLab Big Data Benchmark

The AmpLab benchmark includes four types of queries
(scan, aggregation, join and external script). Some of
them come in different variants based on the result/join
size, so there are ten queries in total. For this experi-
ment we used 32 cores and loaded the entire Big Data
Benchmark dataset (table 5) into the workers’ memory.
We measured the time to perform the query and store
the results back into cache memory. Since the Big Data
Benchmark is not designed for interactive queries, most
of the result sets are huge and cannot fit into one ma-
chine’s memory. Hence, for this section we do not mea-
sure the client-side cost of any of the compared systems.

We had to make a few simplifications to the query set
in order to support it. Queries 2 and 4 require substring-
search over a column and a text file, respectively. Exist-
ing searchable encryption techniques do not efficiently
support this operation. Hence we simplified query 2 by
matching over deterministically encrypted prefixes, and
we simplified query 4 by keeping the text file as plain-
text. Query 3 involves sorting based on aggregated val-
ues; since this can only be done on the client, and given
that we measured only server-side overhead in this ex-
periment, we omitted the sorting step.

Figure 9(b) shows the results. Query 1 does not use
group-by or aggregation, so all tested systems had much
faster response times. Both Seabed and Paillier were
slower than NoEnc because of OPE overheads. On the
remaining queries Seabed was consistently faster than
Paillier, though not as much as we had shown in Sec-
tions 6.2 and with the Ad Analytics workload. This is
because the queries results contained millions of groups
and, as we saw in Section 6.5, Seabed is slower on result
sets with a very small or a very large number of groups.
Nevertheless, the results show that Seabed is better than



Paillier even for these workloads and is close to NoEnc
performance for most queries.

7 Related Work

Homomorphic Encryption. Homomorphic encryption
allows computations to be performed on encrypted data
such that the computed result, when decrypted, matches
the result of the equivalent computation performed on
unencrypted data. The first construction of a fully homo-
morphic scheme that allows arbitrary computations on
encrypted data was shown in [23]. However, fully ho-
momorphic schemes are far from practical even today.
For example, the amortized cost of performing AES en-
cryption homomorphically is about 2s [25] but this is still
108 times slower than AES over plain text (Section 4).

There are also partially homomorphic schemes that al-
low selected computations on encrypted data. For exam-
ple, Paillier [35] allows addition of encrypted data while
BGN [16] supports one multiplication and several ad-
ditions. However, these schemes incur significant cost
in terms of both computation and storage space. Algo-
rithms to reduce storage overhead by packing multiple
integer values into a single Paillier encrypted value are
proposed in [22] and implemented in [41].

Encrypted databases. CryptDB [37] leverages par-
tially homomorphic encryption schemes to support SQL
queries efficiently over encrypted data, and Monomi [37]
introduced a split client-server computation model to
extend support for most of the TPC-H queries over
encrypted data. However, as we show in this paper,
the partially homomorphic encryption schemes used in
CryptDB and Monomi are not efficient enough to sup-
port interactive queries when applied to large datasets.

Trusted hardware. Hardware support for trusted com-
puting primitives, such as Intel SGX [32], secure co-
processors [27], and FPGA-based solutions [9], are avail-
able today. These solutions allow client software to ex-
ecute in the cloud without providing visibility of client
data to the cloud OS. Several prior systems — such as Ci-
pherbase [9], TrustedDB [11], M2R [21] and VC3 [38]
— rely on secure trusted hardware to provide privacy-
preserving database or MapReduce operations in the
cloud.

The use of trusted hardware has the potential to pro-
vide secure computations at minimal performance over-
head. However the client has to trust that the hardware is
free of errors, bugs, or backdoors. It is difficult to con-
firm that this is indeed the case, since errors can be intro-
duced in both the design of the hardware and in the fab-
rication process, which is frequently outsourced [28]. In
fact, hardware backdoors have been found in real-world
military-grade hardware chips [39], and hardware trojan
detection is an active research field in the hardware com-
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munity [14]. We believe that it is useful to develop alter-
natives that rely only on cryptographic primitives.

Frequency attacks on property-preserving encryp-
tion. Property-preserving encryption schemes by defini-
tion leak a particular property of the encrypted data. For
example, deterministic encryption [12] leaks whether
two ciphertexts are equal, and order-preserving encryp-
tion [15] leaks the order between the ciphertexts. Naveed
et al. [33] used auxiliary information and frequency anal-
ysis to show that one can infer the plain text from ci-
phertexts that have been encrypted using such property-
preserving encryption schemes.

8 Conclusion

We have described Seabed, a system for performing Big
Data Analytics over Encrypted Data. We have introduced
two novel encryption schemes: ASHE for fast aggre-
gations over encrypted data, and SPLASHE to protect
against frequency attacks. Our evaluation on real-world
datasets shows that ASHE is about an order of magni-
tude faster than existing techniques, and that its overhead
compared to a plaintext system is within 45%.
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