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Abstract 

A robust and numerically-efficient method based on two moving average 

filters followed by a dynamic event duration threshold has been developed to 

detect P and T waves in ECG signals. Detection of P and T waves is affected 

by the quality of the ECG recordings and the abnormalities in the ECG 

signals. The proposed method detects P and T waves in Arrhythmia ECG 

Signals that suffer from: 1) non-stationary effects, 2) low signal-to-noise 

ratio, 3) premature atrial complexes 4) premature ventricular complexes, 5) 

left bundle blocks, and 6) right bundle blocks. Interestingly, the P and T 

waves detector obtained a a sensitivity of 98.05 per cent and a positive 

predictivity of 97.11 per cent for P waves and a sensitivity of 99.86 per cent 

and a positive predictivity of 99.65 per cent for T waves  over 10 records of 

MIT-BIH arrhythmia database with 21,702 beats. The P and T detection 

algorithm performed very well compared to traditional detection algorithms. 

 

Keywords: electrocardiogram, P detection, T detection, ECG analysis, P 

wave annotation, T wave annotation, arrhythmia 

 

 

1. Introduction 

 

According to the World Health Organization, cardiovascular diseases (CVD) are the 

number one cause of death globally, more people die annually from CVDs than from 

any other cause. An estimated 17.3 million people died from CVDs in 2008, 

representing 30% of all global deaths. Of these deaths, an estimated 7.3 million were 

due to coronary heart disease and 6.2 million were due to stroke. 

In Australia, CVD is the leading cause of death in Australia, and the second leading 

cause of disease burden [1]. Through 2007, CVD was the underlying cause of 34 per 

cent of all deaths in Australia (46,626 deaths [2]) and it is estimated that around 1.4 

million Australians experience a disability associated with the cardiovascular system. 

These rates are consistent with those of other western developed countries such as New 

Zealand, the United States (US), the United Kingdom (UK) and the Scandinavian 

nations [3]. 

CVD is the most expensive disease group in terms of direct health-care expenditure. 

In 2008, it cost Australia about $5.9 billion [4]. As a consequence of the direct and 

indirect costs of CVD, medical researchers have placed significant importance on cardiac 

health research. This has produced a strong focus on preventative, medicinal and 

technological advances, both in Australia and abroad. One such research pathway is leading 

researchers towards improving the conventional cardiovascular-diagnosis technologies used 

in hospitals/clinics.  



The most commonly performed cardiac test is ECG as it is a useful screening tool 

for a variety of cardiac abnormalities, simple, risk-free and inexpensive. The advances 

in technology have done much change to the way we collect, store and diagnose ECG 

signals, especially the advances in memory/storage technology have enabled us to store 

more ECG signals than ever before. 

Scientists are collecting more information in order to understand the mechanism of 

the cardiovascular diseases which will ultimately lead to effective treatments. 

However, analysing large ECG recordings, collected over one or more days, is a time 

consuming process. Therefore, a robust and numerically-efficient algorithm is highly 

required to analyse ECG signals. 

P and T waves are two of the three main waveforms in an ECG. The normal 

heartbeat (or cardiac cycle) consists of a P wave, a QRS complex, and a T wave. The 

P wave represents the wave of depolarisation that spreads from the sino-atrial node 

throughout the atria. The morphology of the P wave provides relevant information 

concerning intra-atrial conduction, hypertrophic conditions of the atria and atrio-

ventricular conduction, among others [5].  

The T wave corresponds to the ventricular repolarisation phase of the heart cycle. In 

some pathological conditions the morphology of the T wave may change from beat to 

beat [5]. Due to the low amplitude of P or T waves, distinguishing the morphology of 

P or T waves in noisy ECG signals is considered challenging.  

The purpose of this work is to develop an effective P and T wave detection 

algorithm and test it on MIT−BIH arrhythmia ECG signals. As mentioned in Section 

4.1.1, the database contains different types of arrhythmia with abnormal morphologies 

of P and T waves. Therefore, evaluating the P and T wave detection algorithm will 

reflect its robustness against arrhythmia P and T waves. 

A number of algorithms are found in the literature. Most of these algorithms 

delineate either P or T waves of the ECG, and a few approaches delineate both P and 

T waves. In 1990, Trahanias and Skordalakis [6] applied a syntactic approach to ECG 

pattern recognition and parameter measurement for the detection of P, QRS and T 

waves. Their approach has been evaluated using the CSE database [7] to compare the 

onsets and offsets of P, QRS, and T waves obtained by their program with those 

provided by the referenced library. Murthy and Prasad [8] used the discrete cosine 

transform (DCT) for delineation of P waves and applied it to a database of 500 beats. 

In about 0.5 per cent of the beats, the algorithm failed to model the P wave, usually 

when its amplitude was very small. Their method was applied to a few ECG segments 

from the MIT−BIH database and to their own data, consisting of 500 beats. Thakor 

and Zhu [9] used adaptive filters for delineation of P waves. They used their own data.  

Li et al. Proposed a method for detecting monophasic P and T waves based on 

quadratic spline wavelets with compact support and one vanishing moment was 

proposed by [10]. They did not mention whether they tested the algorithm on any 

ECG database. Carlson et al. [11] used a classification method for P wave morphology 

based on the impulse response analysis of the P wave and linear discrimination. They 

reported a sensitivity of 95 per cent, and a specificity of 90 per cent after using 37 

records out of 40 from their own collected data. De Azevedo et al. [12] used a neural 

network with asymmetric basis functions to extract the features of the P waves. They 

tested the algorithm on the MIT−BIH database but did not mention the detection rate. 

Vila et al. [13] proposed an algorithm for the detection and characterisation of the T 

waves based on mathematical modelling. Their approach has been evaluated using the 

PhysioNet QT database. 

Strumillo proposed a nonlinear signal decomposition method based on nested 

median filters for detecting the T wave offset in ECG signals [14]. Their approach has 

been evaluated using the PhysioNet QT Database without mentioning the detection 

rate. Martinez et al. presented a generalized method for the delineation of  P and T 

waves based on quadratic spline wavelets and the derivative of a Gaussian as a 

smoothing function [15]. They reported a sensitivity of 98.87 per cent for the P waves 



and a sensitivity of 99.77 per cent for the T waves using the PhysioNet QT database. 

The Biorthogonal WT was applied by Sovilj et al. to detect P waves. They reported a 

sensitivity of 98.5 per cent without mentioning the source of their data [16]. The first 

derivative with adaptive quantised thresholds was used by Chouhan et al.  [17], who 

reported a P wave detection rate of 96.95 per cent with false positive and false 

negative percentages of 2.62 per cent and 3.01 per cent respectively. Similarly, a T 

wave detection rate of 98.01 per cent with false positive and false negative 

percentages of 3.08 per cent and 1.93 per cent was reported after using 125 files from 

the CSE Database [7]. They did not apply their algorithm to the MIT−BIH Arrhythmia 

Database. 

The detection of P and T waves has been investigated in the past two decades. 

Many attempts have been made to find a satisfying universal solution for P and T 

waves’ detection. Difficulties arise mainly because of the diversity of the P and T 

waveforms, abnormalities, low SNR and the artifacts accompanying the ECG signals. 

Moreover, producing P and T waves detection performance with high rates after 

excluding some segments or beats from the used records. 

The performance of the existing P and T wave detection algorithms is still 

inefficient and needs to be tested on long recordings rather than short ECG segments, 

such the well-known MIT-BIH database. Therefore, the main focus of this study is to 

develop a robust and numerically-efficient algorithm tested over MIT-BIH arrhythmia 

database after being annotated. Moreover, compare the developed algorithm against 

the existing P and T detection methods. 

This paper is structured as follows. The next section discusses the ECG database 

and the annotation of P and T waves. Section 3 demonstrates the different types of 

noise in ECG, while Section 4 elaborates on the new methodology of detecting P and 

T waves. Section 5 elaborates on the results and discussion respectively. Finally 

discussion and conclusion covered in Section 6. 

 

2. Data 

Several standard ECG databases are available for the evaluation of QRS detection 

algorithms for ECG signals. Most of these databases contain annotated files for R 

peaks but not for P and T waves. The MIT−BIH Arrhythmia Database [18] will be 

used in this study for the following reasons:  

 The MIT−BIH Database contains 30-minute recordings for each patient which 

is considerably longer than the records in many other databases, such as the 

Common Standards for Electrocardiography (CSE) database, which contains 

10-second recordings [7].  

 The MIT−BIH Arrhythmia Database contains records of normal ECG signals 

and records of ECG signals that are affected by non-stationary effects, low 

signal-to-noise ratio (SNR), premature atrial complexes, premature ventricular 

complexes, left bundle blocks, and right bundle blocks. This provides an 

opportunity to test the robustness of QRS, P and T wave detection methods. 

 The database contains 23 records (the ‘100 series’) that were chosen at random 

from a set of more than 4,000 24-hour Holter tapes, and 25 records (the ‘200 

series’) that were selected from the same set, including a variety of rare and 

clinically important ECG segments [19]. Several records in the 200 series have 

abnormal rhythms and QRS morphologies, and they suffer from a low SNR. 

These issues are expected to present significant difficulties for any ECG signal 

analysis algorithms [19]. Table 1 provides an overview of the different beat 

types in the MIT−BIH database. 

 

 

 

 



Table 1 ECG database. A statistical overview of different beat types in the MIT−BIH Arrhythmia 

Database [18].  
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101 1860 - - 3 - - - - - - - - - - - - 2 

102 99 - - - - - - 4 - - - - - 2028 56 - - 

103 2082 - - 2 - - - - - - - - - - - - - 

104 163 - - - - - - 2 - - - - - 1380 666 - 18 

105 2526 - - - - - - 41 - - - - - - - - 5 

106 1507 - - - - - - 520 - - - - - - - - - 

107 - - - - - - - 59 - - - - - 2078 - - - 

108 1739 - - 4 - - - 17 2 - - 1 - - - 11 - 

109 - 2492 - - - - - 38 2 - - - - - - - - 

111 - 2123 - - - - - 1 - - - - - - - - - 

112 2537 - - 2 - - - - - - - - - - - - - 

113 1789 - - - 6 - - - - - - - - - - - - 

114 1820 - - 10 - 2 - 43 4 - - - - - - - - 

115 1953 - - - - - - - - - - - - - - - - 

116 2302 - - 1 - - - 109 - - - - - - - - - 

117 1534 - - 1 - - - - - - - - - - - - - 

118 - - 2166 96 - - - 16 - - - - - - - 10 - 

119 1543 - - - - - - 444 - - - - - - - - - 
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214 - 2003 - - - - - 256 1 - - - - - - - 2 

215 3195 - - 3 - - - 164 1 - - - - - - - - 

217 244 - - - - - - 162 - - - - - 1542 260 - - 

219 2082 - - 7 - - - 64 1 - - - - - - 133 - 

220 1954 - - 94 - - - - - - - - - - - - - 

221 2031 - - - - - - 396 - - - - - - - - - 

222 2062 - - 208 - 1 - - - - - 212 - - - - - 

223 2029 - - 72 1 - - 473 14 - 16 - - - - - - 

228 1688 - - 3 - - - 362 - - - - - - - - - 

230 2255 - - - - - - 1 - - - - - - - - - 

231 314 - 1254 1 - - - 2 - - - - - - - 2 - 

232 - - 397 1382 - - - - - - - 1 - - - - - 

233 2230 - - 7 - - - 831 11 - - - - - - - - 

234 2700 - - - - 50 - 3 - - - - - - - - - 

 

 

 

 

 

 

 

 

 



 
Figure 1 Annotation of P and T waves in normal beats. Determining the normality of the beats is 

based on the annotation provided by the MIT-BIH database and described in Table 1. ‘+’ 

represents the P wave and ‘*’ represents the T wave. 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 2 Annotation of P and T waves in PVC beats. Determining the abnormality of the beats is based 

on the annotation provided by the MIT-BIH database and described in Table 1. ‘+’ 

represents the P wave and ‘*’ represents the T wave, while the circle with asterisk 

represents merged P and T waves. 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 3 Annotation of P and T waves in different types of beats. Determining the abnormality of the 

beats is based on the annotation provided by the MIT-BIH database and described in 

Table 1. (a-b) atrial premature beats, (c-f) paced beat, (g) left bundle branch block beat, 

(h) isolated-like QRS beat .‘+’ represents the P wave and ‘*’ represents the T wave, 

while the circle with asterisk represents merged P and T waves. 
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Figure 4 Annotation of P and T waves in controversial beats. Determining the controversial beats is 

based on the annotation provided by the MIT-BIH database and described in Table 1. (a-

b) normal beats where P wave is not salient, (c) Fusion of paced and normal beat, (d) 

Fusion of ventricular and normal beat.‘+’ represents the P wave and ‘*’ represents the T 

wave, while the circle with asterisk represents merged P and T waves. 

 

 

 

The MIT−BIH Arrhythmia Database contains 48 ECG recordings with total of 

110,007 beats. These 30-minute recordings were sampled at 360 Hz with an 11-bit rate 

resolution over a 10 mV range. Lead I from each record is used here because the 

quality of the ECG signals was higher in Lead I compared to Lead II. No episodes 

(measurements) were excluded. 

The MIT−BIH Arrhythmia Database is annotated. R peaks are fully annotated; 

therefore, the QRS detection algorithm has been tested automatically. Unfortunately, 

the P and T waves are not annotated; thus, two independent annotators annotated the P 

and T waves in 10 records of MIT-BIH arrhythmia database, specifically records 100 

to 109. The symbols used for annotation are as follows: 

a. ‘+’ shows the detected P waves 

b. ‘*’ shows the detected T waves 

c. circle with asterisk shows the detected P and T waves 

 

Annotation is a difficult task due to inter-annotator discrepancy, as the two 

annotators will never agree completely on what and how to annotate the P and T 

waves in each record. Figures 1, 2, 3, 4 show how the annotated P and T waves after 

the discrepancies were adjudicated. 

 

  

  

(a) (b) 

(c) (d) 



0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1000

1200

Frequency [Hz]

V
o
lt
s

2
/H

z

 
Figure 5 Power spectrum of the ECG signal. The spectrum illustrates peaks at the fundamental 

frequency of 60 Hz as well as the second and third harmonics at 120 Hz and 180 Hz, 

respectively. 

 

 

3. Sources of Noise in ECG 

 

ECG signals can be contaminated with several types of noise which may affect the 

accuracy of the main events detection and overall diagnosis. The noise could be 

physiological, caused by the instrumentation used or the experiment’s environment of. 

Removing the various types of noise that corrupt the ECG without degrading the 

signal of interest is challenging. The main sources of noise, which are relevant for the 

detection of P and T waves are discussed below. 

3.1 Powerline Interference 

Powerline interference noise is caused by interference from mains power sources 

being induced onto the recording leads of the ECG which introduces a sinusoidal 

component into the recording. The ECG database used for this research was collected 

in the United States (US). Therefore, ECG signals used for this thesis have a 

frequency component of 60 Hz. The periodic interference is clearly displayed as a 

spike in Figure 5, not only at its fundamental frequency of 60 Hz, but also on its 

harmonics (e.g. 120 Hz, 180 Hz). Its amplitude can be up to 50 percent of the peak-to-

peak ECG amplitude [20]. 

3.2 Physiological Interference  

The human body is a complex accumulation of systems and processes. Several 

physiological processes could be active at a given moment, each one producing many 

signals of different types [21]. The appearance of signals from systems or processes 

other than those related to the heart may be termed as physiological interference, as 

discussed below. 

3.2.1 Muscle Noise 

Muscles other than the heart produce electrical impulses in the body; these impulses 

can also be detected by the ECG leads. Unlike cardiac muscles, other muscles do not 

have a regulated cycle; therefore, the generated impulses will not be represented as 

characteristic waveforms. The noise is usually of a low amplitude and high frequency, 

and it can be sporadic or consistent throughout the recording as shown in Figure 6. 
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Figure 6 Muscle noise. Coughing, tensing of muscles and movement of limbs cause the corresponding 

electromyogram (EMG) signal to appear as undesired noise. 

 

3.2.2 Motion Artifact 

Low-frequency artifacts and baseline drift may be caused by poor contact of the chest 

leads. A small arm or leg movement may cause a simple baseline wander as shown in 

Figure 7. Variations in temperature can occasionally cause baseline drift. In general, 

baseline wander makes it difficult to detect P, QRS and T waves. To remove the baseline 

wandering, a low pass filter can be implemented.  

Contact between the skin and the electrode is important to obtain an ECG signal of 

good quality. The loss of contact can be permanent, or can be intermittent, as would be 

the case when a loose electrode is brought in and out of contact with the skin as a 

result of movements and vibration. Large movement can cause a rapid baseline 

transition (step) which decays exponentially to the baseline value, as shown in Figure 

8. Chang Yong et al. [22] proposed to use conductive yarn rubber electrodes to reduce 

the motion artifact. Moreover, loss of contact associated with movement may generate 

isolated QRS-like artifacts as shown in Figure 9. 
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Figure 7 Baseline wandering. The usual cause of motion artifacts is assumed to be vibrations or 

movement of the subject. The shape of the baseline disturbance caused by motion 

artifacts is assumed to be a biphasic signal resembling one cycle of a sine wave. 
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Figure 8 Large movement of the chest. The low frequency noise is generated by bad contact between 

skin and electrode. 

 



 
Figure 9 Large movement with isolated QRS-like artifacts. This segment starts with isolated QRS-like 

artifacts followed by low frequency followed by high frequency 

 

 

 

4. Methodology 

In economics, moving average is a common analysis tool used by traders to identify 

trend directions. More than one moving average can be used to generate buy and sell 

signs [23]. Two moving averages have been used together to generate crossover signs 

[24,25]. These crossovers are the buy and sell indicators. A crossover occurs when a 

faster (shorter) moving average crosses a slower (longer) moving average [26].  

The use of two moving averages succeeds in detecting the critical events in trading. 

Moreover, in ECG signal analysis, two moving averages have been used as a bandpass 

filter to extract the QRS features in [27,28]. In addition, the implementation of the 

moving average can be highly numerically efficient (simple, fast and fewer 

calculations required). Therefore, the idea of using two moving averages is promising. 

In this section, a new, numerically-efficient and robust algorithm is proposed to 

detect QRS complexes in ECG signals based on two moving-average filters. The first 

moving average is used to extract the QRS features while the second moving average 

works as a threshold to the first one. This creates blocks of interests followed by a 

QRS complex duration threshold to detect QRS complexes. 

The introduced algorithm is a generic algorithm based on the characteristics of the 

ECG features; that is, the average duration of the QRS complex and heart beat in 

healthy subjects. The thresholds used in this algorithm are adaptive signal-dependent. 

The ECG signal passes successively through a sequence of processing steps, including 

bandpass filtering, differentiating, squaring, generating blocks of interest and applying 

dynamic thresholding, to distinguish the QRS complexes, as shown in Figure 10. The 

maximum absolute values within the considered QRS blocks are considered R peaks 
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Figure 10 Flowchart for new P and T waves detection algorithm. This P and T detection algorithm is 

a time-domain algorithm that consists of three main stages: pre-processing, feature 

extraction and classification. 
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Bandpass Filter 

As discussed, a recommended bandpass filter is typically a bidirectional 

Butterworth implementation. These filters offer good transition-band characteristics at 

low coefficient orders, which make them efficient to implement [29]. 

The main frequencies of the P and the T wave lie in the range of 0.5 Hz to 10 Hz 

[30]. In this thesis, the baseline wander and high frequencies that do not contribute to 

P and T wave detection are removed using a second-order Butterworth filter with 

passband 0.5−10 Hz. 

 
Figure 11 Demonstrating the zero-phase filtering in ECG signals 

 

The phase lag effect of the Butterworth filter can be cancelled by following the 

process shown in Figure 11. The ][nx output will be a filtered version of ][nECG  

with no phase distortion. The same Butterworth filter is used twice in this scheme: the 

time reversal step is a straight left-right flipping of the time domain sequence, as 

follows:  
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QRS Removal 
To make the P and T waves the dominant feature of the signal, the QRS complex is 

removed. Therefore, R peaks must be detected before applying the P and T waves 

algorithm. Fourtunately, R peaks are annotated in the MIT−BIH Arrhythmia Database. 
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Figure 12 Pre-processing stage of the algorithm structure. (a ) Original ECG signal, (b) filtered ECG 

signal with bidirectional Butterworth bandpass filter, (c) QRS removal. 
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Figure 13 Features extraction and classification stages of the algorithm structure. (a) Generating 

blocks of interest using two moving averages, (b) the final result of the proposed 

algorithm to detect P and T waves. ‘+’ represents the P wave and ‘*’ represents the T 

wave, while the ‘circle with asterisk’ represents merged P and T waves. 

 

 

Removing the QRS complex duration is performed by setting the signal to zero for 

the duration of the QRS complex [31]. The duration’s 0.083 ms before R peak and 

0.166 ms after R peak are set to zeros in all beats. 
 

n])Removal(x[ QRSy[n]      Eq. 3 

 

Figure 12 (c) shows the result of removing QRS complexes from the filtered signal 

of Figure 12 (b).  

 

Select Potential Blocks  
The onset and offset of the potential P and T waves in the ECG signals will be 

demarcated using two moving averages based on the normal duration of the ECG 

features. The normal limit of the P wave duration for a healthy adult is 110±20 ms at a 

heart rate of 60 beats per minute [32]. The normal limit of the corrected QT interval is 

400±40 ms. 

The average duration of the event is the suitable window size to detect the event. 

The average window size corresponding to the P wave duration approximately 110 
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ms, and the average window size corresponding to the QTc duration is approximately 

400ms. As the P and T waves will be detected simultaneously, and the expected 

duration of the P wave is smaller than the T wave, the window size of the two moving 

averages will be adjusted related to the P wave duration.  

In healthy subjects (P and T waves exist in the ECG signal), the moving average 

that can demarcate the P wave can also demarcate the T wave.  

The detection of P and T waves will depend on two moving averages. The first 

moving average will be used to demarcate the P and T waves, while the second 

moving average (with a larger window size) will be used as the threshold for the first 

moving average, as discussed below. 

i) First moving average: The first moving-average integration is used to demarcate 

the P and T waves with a sharp wave, shown as the dotted line in Figure 13 (a). 

 

)1)/2-(Wny....ny....1)/2-(W-n(y
W

1
nMA 11

1

Peak ][][][][           Eq. 4 

 

where SFW1 *ms55  which is half the window width of the P interval. Its value 

is rounded to the nearest odd integer. A smaller window size is chosen than the 

expected healthy duration in order to demarcate small P and T duration in cases of 

severe arrhythmia. 

ii) Second moving average: The purpose of the second moving average ( PwaveMA ) 

is to be used as a threshold for the first moving average PeakMA  integration, shown as 

the solid line in Figure 13 (a): 
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Pwave ][][][][              Eq. 5 

 

where SFW2 *ms110  is the window width of the P interval. Its value is rounded 

to the nearest odd integer. 

As discussed above, the window size of the first moving average should be less than 

the average healthy duration for the P wave (which is half of the P wave duration) 

while the window size of the second moving average equals the average healthy P 

wave duration. The first moving average will demarcate the P and T waves (especially 

in cases of arrhythmia with smaller durations), and the second moving average then 

works as a threshold for the first moving average. It has been observed that when the 

window 2W  is less than 110ms, false negative will increase. Conversely, if the 

window size 2W  is greater than 110 ms, the FNs will decrease and the FPs will 

increase.  

When the amplitude of the first moving-average filter ( PeakMA ) is greater than the 

amplitude of the second moving-average filter ( PwaveMA ), that part of the signal is 

selected as a block of interest, as follows: 

   
Figure 13 (a) shows the result of applying the two moving averages.  

IF  [n]MAPeak > [n]MAPwave     THEN 

Blocks[n] =0.25 

ELSE   

 Blocks[n]  =0 

END 

 



 
Figure 14 Demonstrating the effectiveness of using two moving averages to detect P and T waves. 

(a) Filtered RR ECG signal with Butterworth bandpass filter, (b) generating blocks of 

interest after using two moving averages: the dotted line is the first moving average and 

the solid line is the second moving average, (c) the detected P and T waves after applying 

the thresholds. 

 

 

If the interest is the sinus activity for heart rate variability, then the PP interval 

should be considered a better measure compared to the RR interval [33]. However, in 

this research, the main interest is the pump function and the blood volume; thus, QRS, 

and consequently the RR interval are more important. One RR interval shown in 

Figure 14 (b) demonstrates the idea of using two moving averages to generate blocks 

of interest. It can be seen that not all of the generated blocks of interest are potential P 

or T waves. The blocks will be considered according to their relative positions and 

widths of P and T waves to R peaks (for healthy subjects), as shown in Figure 15. 
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Reject noisy blocks: The blocks associated with small width are considered as 

blocks caused by noise. Blocks which are smaller than half of the expected size for P 

waves are rejected. Because the T waves are wider than the P waves, potential T 

waves are still present. The expected size for the P wave is based on the statistics for 

healthy adults, as described in [32] which varies from 90 ms to 130 ms. Blocks that 

are smaller than half of the width W1 that is expected for the P wave are rejected.  

 

 

 
Figure 15 Demonstrating P and T wave time occurrence with respect to the current R peak and 

next the R peak. Where miniTR  represents the minimum interval between the T wave 

and current the R peak, while maxiTR  represents the maximum interval between the T 

wave and the current the R peak. 1iminRP   represents the minimum interval between 

the P wave and next the R peak, and 1imaxRP   represents the maximum interval  the P 

wave and next the R peak. 

 

 

In Arrhythmia ECG signals, P wave duration is smaller than in healthy adults. 

Therefore, the 75 per cent ratio has been set in order to consider these P waves that 

suffer from arrhythmia. This corresponds to:  

)360/(**75.0 SFW sizeP_Block 1    Eq. 6 

where 1iiRR   is the RR interval that contains the blocks of interest and SF is the 

sampling frequency. Similarly, T waves in arrhythmia ECG signals is smaller than in 

healthy people. Therefore, the block size of T wave will be double the P block size to 

detect small T wave durations as 

)(SF/*W sizeT_Block 1 360*25.1    Eq. 7 

If   sizeP_Block  and  sizeT_Block have been set equal to 1W  , the results will be 

close to the reported ones. Given the fact the P wave duration is smaller than T wave 

duration, support the idea of decreasing the expected P wave compared to the T wave. 

 

Thresholding 

To determine whether the detected blocks contain P or T waves, the number of 

blocks in each consecutive RR interval is counted. A threshold based on the distance 

of the maximum point within a block to the R peak is applied to distinguish P waves 

from T waves and noise.  

There are three possibilities for the number of detected blocks: 

1. Zero: the algorithm failed to detect a P or T wave in the current RR interval. 

2. One: the P and T waves are most likely merged within one block, which is 

marked as an asterisk (see Figure 13 (b)). 

T 

R R 

P 

1iiRR   

1iminRP   
miniTR  

maxiTR  1imaxRP   



3. More than one: The distance of the maximum point within a block to the 

nearest R peak will be used as a measure for selecting the blocks that 

contain potential P or T waves. This consists of two steps:  

a. Detect potential T waves. as shown in Figure 16, a block is considered to 

contain a T wave if the distance of the maximum point of the block to the 

nearest R peak is within a certain range.  

 

 
 

Figure 16 Flow chart for selection of T waves. If the block lies within the expected segment miniTR  

and maxiTR , the block is considered to contain a T wave. The maximum absolute value 

within this block is considered as the peak of the T wave. 

 

 

 

 

Figure 17 Flow chart for selection of P waves. If the block lies within the expected segment 1iminRP   

and 1imaxRP  , the block is considered to contain a P wave. The maximum absolute 

value within this block is considered as the peak of the  P wave. 

 

 

 

 

SFRP 1imin *055.0  

SFRP 1imax *47.0  

1imin RPmax(BLOCK)   

1imaxRPmax(BLOCK)   

P wave Block Ignore Block 

NO YES 

 

111.0*1iimini RRTR   

maxi

mini

TR max(BLOCK)

and  TRmax(BLOCK)




 

T wave Block Ignore Block 

NO YES 

583.0*1iimaxi RRTR   



 

 

 

 

 

 

 

 

134 135 136 137 138 139

-0.5

0

0.5

1

1.5

time(sec)

m
V

 

86 88 90 92 94 96 98 100

-1

-0.5

0

0.5

1

1.5

2

time(sec)

m
V

 
Figure 18 Demonstrating the performance of the proposed P and T detection algorithm. The 

algorithm succeeds to detect P and T waves in ECG signals that contain. (a) high-

frequency noise, (b) baseline wander. ‘+’ represents the P wave and ‘O‘ represents the T 

wave. 
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Figure 19 Demonstrating the performance of the proposed P and T detection algorithm. The 

algorithm succeeds in detecting P and T waves in ECG signals that contain (a) normal 

sinus rhythm without U waves, (b) normal sinus rhythm with U waves, (c) normal sinus 

rhythm with negative polarisation. ‘+’ represents the P wave and ‘O’ represents the T 

wave. 
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Figure 20 Demonstrating the performance of the proposed P and T detection algorithm. The 

algorithm succeeds in detecting P and T waves in ECG signals that contain a) LBBB 

beats with merged P and T waves, (b) LBBB beats. ‘+’ represents the P wave and ‘O’ 

represents the T wave while the asterisk represents merged P and T waves. 
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Figure 21 Demonstrating the performance of the proposed P and T detection algorithm. The 

algorithm succeeds in detecting P and T waves in ECG signals that contain (a) RBBB 

beat (record 118), (b) PVC beat (record 200), (c) PAC beat (record 209). ‘+’ sign 

represents the P wave and ‘O’ represents the T wave, while the circle with asterisk 

represents merged P and T waves. 

 
 
 

a. Detect potential P waves. As shown in Figure 17, consider a block as 

containing P wave if the distance of the maximum point of the block to 

the nearest R peak is within a certain range.  

In some cases there is more than one block within the acceptable range for a P or a 

T wave. In these cases the block which contains the wave with the maximum 

amplitude is selected.  

 

(b) 

(c) 

(a) 



5. Results 

The algorithm was evaluated using MIT−BIH database. The P and T waves were 

detected successfully even the merged P and T waves in arrhythmia ECG signals that 

are affected by: high-frequency, noise baseline wander, NSR, LBBB, RBBB, PVC, 

and PAC. All of the reasons for detection failure are described below. 

1) High-frequency noise. high-frequency noise results from the instrumentation 

amplifiers, recording system and ambient electromagnetic signals received by the 

cables. The signal shown in Figure 18 (a) has been corrupted by power-line 

interference at 60 Hz and its harmonics and other high frequencies. As Figure 18 

(a) illustrates, the proposed algorithm is very robust to noise. 

2) Baseline wander. as shown in Figure 18 (b), the proposed algorithm is not 

sensitive to baseline wander and detected the P and T waves correctly. 

3) NSR. is a normal ECG cycle is initiated by the sinoatrial node and consists of a P 

wave followed, after a brief pause, by a QRS complex, and then a T wave [5]. The 

proposed algorithms correctly detected P and T waves in three types of normal 

beats: 1) Normal sinus rhythm without U waves (record 100 of the MIT−BIH 

database) as shown in Figure 19 (a). 2) Normal sinus rhythm with U waves 

(record 103) as shown Figure 19 (b). 3) Normal sinus rhythm with negative 

polarization (record 108) as shown Figure 19 (c). 

4) LBBB. results from conduction delays or blocks at any site in the intraventricular 

conduction system, including the main LBBB and the bundle of His. The result of 

an LBBB is extensive reorganisation of the activation pattern of the left ventricles 

[5]. The proposed algorithms successfully detected normal and merged P and T 

waves in two types of LBBBs: 1) LBBB beats with merged P and T waves (record 

109), as shown in Figure 20 (a), and 2) LBBB beats with normal P and T waves 

(record 111), as shown in Figure 20 (b). 

5) RBBB. is a result of conduction delay in a portion of the right-sided intra-

ventricular conduction system. The delay can occur in the main RBBB itself, in 

the bundle of His, or in the distal right ventricular conduction system. RBBBs may 

be caused by a minor trauma such as right ventricular catheterisation [5]. As 

shown in Figure 21 (a), the proposed algorithms succeeded in detecting the P and 

T waves in ECG signals of RBBB (record 118).  

6) PVCs. are characterised by the premature occurrence of a QRS complex that is 

abnormal in shape that has a longer duration than normal QRS complexes, 

generally exceeding 120 ms. The T wave is commonly large and opposite in 

direction to the major deflection of the QRS. The QRS complex is generally not 

preceded by a P wave, but it can be preceded by a non-conducted sinus P wave 

occurring at the expected time [5]. In Figure 21 (b), a special case of PVC is 

shown, called bigeminy, where the premature ventricular beats occur after every 

normal beat in an alternating pattern. The proposed algorithm succeeded in 

detecting the P and T waves in the normal beats and the T waves in the premature 

ventricular beats (record 200).  

7) PACs. are among the most common causes of irregular pulses and can originate 

from any area in the heart [5]. The impulse is discharged prematurely by an 

irritable focus in the atria giving rise to a distorted P wave, usually superimposed 

on the preceding T wave. The P wave may be inverted. As shown in Figure 21 (c), 

the proposed algorithms detected the merged P and T waves in PACs (record 209).  

 

 

 

 

 

 

 

 



 

 
Table 2 P wave detection performance over 10 records from the MIT−BIH Database 

 

 

Table 3 T wave detection performance over 10 records from the MIT−BIH Database 

Record 
No of 

beats 
TP FP FN 

SE (per 

cent) 

+P (per 

cent) 

100 2274 2274 0 0 100.00 100.00 

101 1866 1863 3 0 100.00 99.84 

102 2187 2187 0 0 100.00 100.00 

103 2084 2084 0 0 100.00 100.00 

104 2229 2228 1 0 100.00 99.96 

105 2602 2579 15 8 99.69 99.42 

106 2026 2013 13 0 100.00 99.36 

107 2136 2136 0 0 100.00 100.00 

108 1765 1710 36 19 98.91 97.95 

109 2533 2532 1 0 100.00 99.96 

 21702 21606 69 27 99.86 99.65 

 

 

As illustrated in Figures 18-21, the proposed method successfully detected P and T 

waves in ECG signals with a low SNR, baseline wander and various arrhythmias. 

However, the restults are reported in Tables 2 and 3 for just 10 annotated records of 

the MIT−BIH database, as discussed in section 2. The algorithm detects and evaluates 

the detected P and T waves automatically based on the following statistical parameters 

that are used to evaluate the algorithm:  

 
P/TP/T

P/T
P/T

FNTP

TP
Se


    Eq. 8 

 
P/TP/T

P/T
P/T

FPTP

TP
P


    Eq. 9 

 

True positive (TPP/T): P/T wave has been classified as P/T wave. 

Record 
No of 

beats 
TP FP FN SE +P 

100 2274 2274 0 0 100.00 100.00 

101 1866 1866 0 0 100.00 100.00 

102 2187 2021 87 79 96.37 96.02 

103 2084 2076 4 4 99.81 99.81 

104 2229 2071 82 76 96.58 96.32 

105 2602 2557 33 12 99.53 98.72 

106 2026 2013 12 1 99.95 99.41 

107 2136 2136 0 0 100.00 100.00 

108 1765 1363 244 158 90.56 86.13 

109 2533 2342 135 56 97.72 94.67 

 21702 20719 597 386 98.05 97.11 



False negative (FNP/T): P/T wave has not been classified as P/T wave. 

False positive (FPP/T): non-P/T wave has been classified as P/T wave. 

 

The sensitivity P/TSe is the percentage of true P/T waves that are correctly detected 

by the algorithm. The positive predictivity P/TP is the percentage of detected P/T 

waves that are real P/T waves. Table 2 shows the result of P wave detection in 10 

different records of the MIT−BIH database. P wave detection is affected by the quality 

of the ECG recordings and the abnormalities in the ECG signals. Records that have a 

relatively large proportion of very poor quality signals, such as 108 and 109, contain a 

larger number of FN than the other records.  The arrhythmia P and T waves caused a 

large number of FP compared to the false negatives. False positives for P waves were 

often caused by a low signal to noise ratio. Ventricular premature beats and atrial 

arrhythmias occasionally caused false positives. The largest number of false positives 

was found in record 108. The sensitivity for P waves was 98.05 per cent and the 

positive predictivity was 97.11 per cent. 

Table 3 shows the result of T wave detection in the same 10 records of the 

MIT−BIH database. The number of FNs was smaller than the number of FPs, as for P 

waves. FN were mainly caused by noise. FPs for T waves were often caused by PVC, 

as in record 108, and LBBB as in record 109. The algorithm achieved a sensitivity of 

99.86 per cent and a positive predictivity of 99.65 per cent for T waves. 

 

 
Table 4 P waves detection performance comparison. Several P wave algorithms have been compared 

on the MIT−BIH Arrhythmia Database (N/R: not reported). 

Year  Algorithm  Method  Data used  
Se 

(%) 

+P 

(%) 

2009 
Proposed 

algorithm 

Blocks of 

Interest 

 10 records, 

 30 minutes each 
98.05 97.11 

2009 Arafat et al. [34] EMD 

10000 normal ECG 

beats selected from 

the MIT−BIH 

database 

N/R N/R 

2008 Diery [35] WT 

 39 records, 

 10 seconds each, 

from the MIT−BIH 

database 

N/R N/R 

2007 
Mahmoodabadi 

et al. [36] 
WT 

Segments from the 

MIT−BIH database 
51.69 53.64 

2006 Ktata et al. [37] WT 
Segments from the 

MIT−BIH database 
N/R N/R 

2005 Sun et al. [38] 

Multiscale 

morphologica

l derivative 

Segments from the 

MIT−BIH database 
N/R N/R 

2005 Goutas et al. [39] 

Fractional 

order 

differentiation 

Segments from 

MIT−BIH database 

that are suitable for 

just monophasic P 

and T waves 

N/R N/R 

2004 Martínez [15] WT Applied to QTDB N/R N/R 

 

 

Comparison of performance on MIT−BIH arrhythmia dataset  

The detection performance on the MIT−BIH database obtained by the proposed P 

and T waves detector record by record performance (see Table 2, Table 3) and 

comparisons to other published detectors are provided in Tables 4 and 5. The P and T 

wave detection algorithm was evaluated using two statistical parameters: sensitivity 



and positive predictivity.  The data used to calculate these performance parameters are 

shown in the fourth columns of Tables 4 and 5. However, while the total number of 

records in the MIT−BIH aarhythmia Database is 48, most of the published P and T 

detection algorithms used few records or segments of the ECG signals, as shown in 

Tables 4 and 5. As shown, the algorithms published in the literature about detecting P 

and T waves in MIT−BIH database have limitations, which can be summarised as 

incomplete usage of the recorded ECG signals, detecting either P or T waves, and 

detecting particular morphologies of either P or T waves.  

As shown in Table 4, the P wave detection algorithms in literature have been 

applied to few ECG segments. The proposed algorithm succeeds in handling long 

ECG recordings with high performance compared to the most recent and well-known 

publications in the P wave detection field. 

A robust P and T wave detection algorithm is introduced against all challenges in 

Section 3. The algorithm succeeds in handling the non-stationary effects, low SNR, 

PACs, PVCs, LBBBs and RBBBs. The advantage of the proposed method is that it is 

numerically-efficient, robust, and it detects P and T waves simultaneously. 

  

 
Table 5 T waves detection performance comparison. Several T wave algorithms have been compared 

on the MIT−BIH Arrhythmia Database (N/R: not reported). 

Year  Algorithm  Method  Data used  
Se 
(%) 

+P 
(%) 

2011 
Proposed 

algorithm 

Blocks of 

Interest 

 10 records, 

 30 minutes each, from 

the MIT−BIH database 

99.86 99.65 

2009 
Arafat et al. 

[34]  
EMD 

10000 normal ECG beats 

selected from the 

MIT−BIH 

N/R N/R 

2006 Ktata et al. [37] WT 
Segments from the 

MIT−BIH database 
N/R N/R 

2006 Krimi et al. [40] WT 

Records from the 

MIT−BIH arrhythmia 

database 

93 N/R 

2005 Sun et al. [38] 

multiscale 

morphological 

derivative 

Segments from MIT−BIH 

database 
N/R N/R 

2005 
Goutas et al. 

[39] 

Fractional 

order 

differentiation 

Segments from the 

MIT−BIH database that 

are suitable for just 

monophasic P and T 

waves 

N/R N/R 

2005 Sun et al. [38] 

Multi-scale 

morphological 

derivative 

False detections in 

biphasic T waves 
N/R N/R 

 

 

As shown in Table 5, the T wave detection algorithms in literature have been 

applied to few ECG segments. The proposed algorithm succeeds in handling long 

ECG recordings with high performance compared to the most recent and well-known 

publications in the T wave detection field. 

 

6. Discussion and conclusion 

 
There is a limitation when evaluating P and T wave detection algorithms, as 

finding datasets with annotated P and T waves is quite difficult. Consequently, 



comparing the existing algorithms becomes even more difficult. The devloped 

algorithm was evaluated using 10 records from the MIT−BIH database, containing a 

total of 21,702 heart beats annotated by two independed annotators, after runing the 

program, whether the P and T waves have been detected or not.  

The algorithm successfully detected P and T waves in ECG signals with a low 

signal to noise ratio, baseline wander, and various arrhythmias. It achieved a 

sensitivity of 98.05 per cent and a positive predictivity of 97.11 per cent for P waves 

and a sensitivity of 99.86 per cent and a positive predictivity of 99.65 per cent for T 

waves. Moreover, the proposed algorithm succeeds to score the highest overall 

performance among the most recent and well-known publications in the P and T wave 

detection field. 

It is clear from Tables 4 and 5 that the proposed algorithm is by far less complex 

compared to existing algorithms. The new algorithm has the advantage of being 

simple, fast and numerically-efficient. It is based on two moving average filters. The 

second moving-average window size equals the average P wave duration and the first 

moving-average window size equals half of the P wave. The second moving average 

works as a threshold to the first one. This creates blocks of interests followed by P and 

T wave duration thresholds to detect P and T waves 

The assessment of the P and T detector has been reliably done over the existing 

standard databases. Moreover, the number of annotated beats used in testing the new 

algorithm is considered sufficient as it is a good representation of the possible 

morphologies found in ECG signals. 

Unfortunately, the P and T waves in the MIT−BIH Arrhythmia Database are not yet 

fully annotated; this makes testing and evaluating developed algorithms quite difficult. 

However, a preliminary annotation for the used ECG signals will be uploaded to 

Physionet to allow validation by the clinicians and researchers. Moreover, further 

research should compare the performance of the proposed P and T detectors with more 

algorithms. 

 

Acknowledgement 

 

Mohamed Elgendi would like to gratefully acknowledge the Australian government 

and Charles Darwin University whose generous scholarships facilitated this research. 

He would like also to thank Prof. Friso De Boer and Mrs. Mirjam Jonkman for their 

valuable comments and annotation of the used dataset. He also would like to thank Dr 

Gari Clifford for helpful discussions. 
 

 

References 

 
1. Australian Institute of Health and Welfare 2008 (2008) Australia's Health 2008. In: Australian Institute 

of Health and Welfare, editor. Canberra. 

2. Australian Bureau of Statistics 2009 Causes of Death. In: Australian Bureau of Statistics 2009, editor. 

Canberra. 

3. Global Cardiovascular Infobase. Ottawa, Canda: WHO Collaborating Centre on Surveillance of 

Cardiovascular Diseases, Surveillance and Risk Assessment Division, CCDPC, Public Health 

Agency of Canada and The Ottawa Hospital, University of Ottawa. 

4. Australian Institute of Health and Welfare 2008 Australia's Health. In: Australian Institute of Health 

and Welfare, editor. Canberra. 

5. Braunwald E, Zipes D, Libby P, Bonow R (2004) Braunwald's Heart Disease: A Textbook of 

Cardiovascular Medicine. Philadelphia: Saunders. 

6. Trahanias P, Skordalakis E (1990) Syntactic pattern recognition of the ECG. IEEE Transactions on 

Pattern Analysis and Machine Intelligence 12: 648-657. 

7. Willems JL (1988) Common Standard for Quantitative Electrocardiography Multilead Atlas – 

Measurements results Data Set 3 Commission of the European Communities – Medical and 

Public Health Research, Leuven. 



8. Murthy ISN, Prasad GSSD (1992) Analysis of ECG from pole-zero models. Biomedical Engineering, 

IEEE Transactions on 39: 741-751. 

9. Thakor N, Zhu Y (1991) Applications of adaptive filtering to ECG analysis: noise cancellation and 

arrhythmia detection. IEEE Transactions on Biomedical Engineering 38: 785-794. 

10. Li C, Zheng C, Tai C (1995) Detection of ECG characteristic points using wavelet transforms. IEEE 

Transactions on Biomedical Engineering 42: 21-28. 

11. Carlson J, Johansson R, Olsson SB (2001) Classification of electrocardiographic P-wave morphology. 

IEEE Transactions on Biomedical Engineering 48: 401-405. 

12. de Azevedo Botter E, Nascimento CL, Jr., Yoneyama T (2001) A neural network with asymmetric 

basis functions for feature extraction of ECG P waves. IEEE Transactions on Neural Networks 

12: 1252-1255. 

13. Vila JA, Yi G, Presedo JMR, Fernandez-Delgado M, Barro S, et al. (2000) A new approach for TU 

complex characterization. IEEE Transactions on Biomedical Engineering 47: 764-772. 

14. Strumillo P (2002) Nested median filtering for detecting T-wave offset in ECGs. Electronics Letters 

38: 682-683. 

15. Martinez JP, Almeida R, Olmos S, Rocha AP, Laguna P (2004) A wavelet-based ECG delineator: 

evaluation on standard databases. IEEE Transactions on Biomedical Engineering 51: 570-581. 

16. Sovilj S, Jeras M, Magjarevic R (2004) Real time P-wave detector based on wavelet analysis. 

Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference 1: 403-406 Vol.401. 

17. Chouhan V, Mehta S (2008) Threshold-based Detection of P and T-wave in ECG using New Feature 

Signal. International Journal of Computer Science and Network Security 8. 

18. PhysioBank Archive Index. Boston, USA: Physionet, Massachusetts Institute of Technology. 

19. Moody GB, Mark RG. The MIT-BIH Arrhythmia Database on CD-ROM and software for use with it; 

1990. pp. 185-188, open source available from:www.physionet.org. 

20. Friesen GM, Jannett TC, Jadallah MA, Yates SL, Quint SR, et al. (1990) A comparison of the noise 

sensitivity of nine QRS detection algorithms. Biomedical Engineering, IEEE Transactions on 

37: 85-98. 

21. Rangayyan RM (2002) Biomedical Signal Analysis-A Case-Study Approach; Akay M, editor. New 

York, U.S.A,: John Wiley & Sons. 516 p. 

22. Chang Yong R, Seung Hoon N, Seunghwan K. Conductive rubber electrode for wearable health 

monitoring; 2005. pp. 3479-3481. 

23. Chen J (2010) Essentials of Technical Analysis for Financial Markets: Wiely. 

24. Fong W, Yong L (2005) Chasing trends: recursive moving average trading rules and internet stocks. 

Journal of Empirical Finance 12: 43-76. 

25. Gunasekarage A, Power D (2001) The profitability of moving average trading rules in South Asian 

stock markets. Emerging Markets Review 2. 

26. Online Trading Concepts (2007). 

27. Chen S, H.C. Chen, and H.L. Chan, (2006) A real-time QRS detection method based on moving-

averaging incorporating with wavelet denoising. Computer Methods and Programs in 

Biomedicine 82: 187-195. 

28. Thakor NV, Webster JG, Tompkins WJ (1983) Optimal QRS detector. Medical and Biological 

Engineering 21: 343-350. 

29. Oppenheim A, Shafer R (1989) Discrete-time Signal Processing. NJ: Prentice Hall. 411-425 p. 

30. Sahambi JS, Tandon SN, Bhatt RKP (1997) Using wavelet transforms for ECG characterization. An 

on-line digital signal processing system. Engineering in Medicine and Biology Magazine, IEEE 

16: 77-83. 

31. Elgendi M, Jonkman M, De Boer F. Premature atrial complexes detection using the Fisher Linear 

Discriminant; 2008. pp. 83-88. 

32. Clifford GD, Azuaje F, McSharry P (2006) Advanced Methods And Tools for ECG Data Analysis. 

Artech House Publishers 1st edition. 

33. Laguna P, Caminal P, Jane R, Rix H. Evaluation of HRV by PP and RR interval analysis using a new 

time delay estimate; 1990. pp. 63-66. 

34. Arafat A, Hasan K. Automatic detection of ECG wave boundaries using empirical mode 

decomposition; 2009. pp. 461-464. 

35. Diery A (2008) Novel Applications of the Wavelet Transform For Analysis of P Waves in Clinical 

ECG Recordings [PhD]. Australia: Griffith University. 

36. Mahmoodabadi SZ, Alirezaie J, Babyn P. Bio-signal Characteristics Detection Utilizing Frequency 

Ordered Wavelet Packets; 2007. pp. 748-753. 

37. Ktata S, Ouni K, Ellouze N. ECG Signal Maxima Detection Using Wavelet Transform; 2006 9-13 

July 2006. pp. 700-703. 

38. Sun Y, Chan KL, Krishnan SM (2005) Characteristic wave detection in ECG signal using 

morphological transform. BMC Cardiovascular Disorders 5. 

39. Goutas A, Ferdi Y, Herbeuval J, Boudraa M, Boucheham B (2005) Digital fractional order 

differentiation-based algorithm for P and T-waves detection and delineation. ITBM-RBM 26: 

127-132  

40. Krimi S, Ouni K, Ellouze N. An Approach Combining Wavelet Transform and Hidden Markov 

Models for ECG Segmentation; 2008. pp. 1-6.  

http://www.physionet.org/

