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Abstract
This research demonstrates a solution for the DICE 2007 integrated assessment model in the 
continuous domain through the use of a Runge-Kutta sampling technique for solving differential 
transcendental equations. The use of a savings ratio helper constraint was not required. It is shown 
that the introduction of a savings ratio constraint leads to a 12% underestimation of maximum 
atmospheric temperature rise. In addition, evidence of a savings ratio within economic data was 
unable to be confirmed using the equivalent proxy of an investment ratio and model selection 
techniques for mixed Gaussian probabilistic graphical models. However, evidence of a dilute 
intertemporal relationship between investment and an increase in production was detected. The 
results of this research support the use of Runge-Kutta sampling differential transcendental solvers 
with Chebyshev function outputs for continuous solutions in integrated assessment models without 
the requirement for helper constraints.

 1. Background
It is often difficult to appreciate the sensitivity of complex social systems to changing constraints 
without simulating key interrelationships in the system. The DICE 2007 integrated assessment 
model was developed to understand the interrelationships between climate change, the social cost of 
carbon and efficient carbon abatement trajectories [1], [2], [3]. It has become a classic climate 
change policy simulation tool for evaluating the social and geophysical effects of global warming. 
An indicator of the success of models such as DICE2007 in policy formation is the embedding of 
results and recommendations within the national climate change policies of many countries. 

Although the ordinary differential transcendental equations describing the DICE 2007 model are 
elegant and concise, researchers have been thwarted in seeking a direct solution by the 
computational complexity of transcendental functions, conditional logic, intra-period equilibrium 
and intertemporal optimisation over a 
long time-frame of up to 1400 years. 
This has led to DICE 2007 being 
formulated as a discrete model with 
decade time intervals.

Single year time period solutions have 
been developed using alternative 
approaches such as dynamic 
programming, approximate dynamic 
programming and optimal control [4], 
[5], [6], [7].

Recent developments in the solution 
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Figure 1: Excerpts from DICE 2007 GAMS program for 
the Savings ratio. Source: Appendix B Basic GAMS 
Program for DICE-2007 Model [6]

C (T ) = Y (T ) − I (T )

S(T )= I (T )/(.001+Y (T ))

s.fx(t )=.22 Fix savings assumption for standardization if needed*

where :
C (T ) is Consumption trillions US dollars
I (T ) is Investment trillions US dollars
S(T ) is Gross savings rate as fraction of gross world product
Y (T ) is Gross world product net of abatement and damages
* The GAMS compiler does not distinguish between upper-and lowercase letters



of ordinary differential equations have facilitated a new approach to solving intractable systems of 
differential transcendental equations in continuous or near continuous time. The research detailed 
herein demonstrates a such a solution to the DICE 2007 model by globally optimising a complete 
Chebyshev polynomial as the function for the solution while at each step solving the differential 
transcendental equations using Runge-Kutta sampling techniques with Chebyshev function outputs 
[8].

This approach to obtaining a continuous solution is used to evaluate the necessity of setting savings 
to be a fixed proportion of production, which is a stabilising helper constraint in the DICE 2007 
model and included in most developments of the model [9].

Figure 1 provides DICE 2007 savings assumptions [10]. The introduction of a savings to production 
ratio, or equivalently the companion investment to production ratio, has the effect of eliminating the 
consumption variable to significantly simplify the system of equations.

Along with investigating the effect of removing a savings ratio constraint from the DICE 2007 
mode, the rationale for such a constraint needs to be considered. The relationship between capital, 
production and investment cycles has long been a topic of interest for economists of all persuasions. 
In the absence of government regulation there is no prima facie accounting relationship between 
investment and production.

However investment in productive capacity results from the careful commitment of resources by 
profit seeking decision makers. The decision to invest in productive capacity is typically based on a 
careful analysis of return on investment [11, pp. 367–374,653]. Pierre Samuel DuPont (1870-1954) 
demonstrated the benefits of systematically measuring return on investment for growth planning 
and forecasting to manage capital allocation and measure management efficiency across diversified 
business units at both E. I. du Pont de Nemours and Company and General Motors [12], [13, p. 
446], [14, pp. 140–8], [15]. DuPont's Return on Net Assets (RONA) analysis is based on the 
observation that Return on Net Assets is separable into the controllable performance indicators of 
Return on Sales (or net margin on sales) multiplied by Sales to Assets (asset turnover). Asset 
turnover ratios are usually stable for long periods and revert to a mean within a period of one to two 
years following major investment [11, p. 512]. Manufacturing asset turnover is typically one times, 
implying one dollar of infrastructure per dollar of sales.

The Global Trade Analysis Project (GTAP) 
collates, harmonises and provides a consistent set 
of economic data across 129 regions and 57 
sectors for the purpose of CGE models [16, pp. 3–
5], [17]. Figure 2 provides the sources and uses 
associated with Consumption and Investment in 
2004 and 2007. The ratios of Consumption and 
Investment to Production are also shown.

It may be noted that the ratio of Investment to 
Production is 0.11 in 2004 and 0.12 in 2007. 
Approximately equal amounts are contributed by 
Savings and Capital Depreciation. The ratios of 
investment to production may be contrasted to the 
DICE 2007 assumption of a savings ratio of 0.22, 
being the ratio of investment to production as 
shown in the DICE 2007 equations in Figure 1.

Broadly speaking the inclusion of a Savings Ratio 
constraint, or the equivalent Investment Ratio 
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Figure 2: Consumption & Investment in 
2004 & 2007, and ratios to Production
Source: GTAP 8.1 Social Accounting Matrix



constraint, in an intertemporal model may be supported by dynamic considerations.  This is because 
a change in capital (investment) translates to a change in production through the mean reverting 
asset turnover ratio in the period (as noted above).  Therefore a Saving Ratio proportionality of 
investment to mean production has meaning in a discrete model such as DICE 2007 where decade 
periods are settled both intra-period and inter-period.

This research investigates the effect of eliminating the Savings Ratio helper constraint utilising the 
ability to solve the DICE 2007 continuous model using Runge-Kutta sampling techniques with 
Chebyshev function outputs for solving differential transcendental equations. It also investigates 
whether evidence for the equivalent Investment Ratio can be empirically detected within GTAP 
economic data by mining the data using model selection techniques for mixed Gaussian 
probabilistic graphical models.

 2. Methodology

 2.1.Continuous time solution over 1400 years

While DICE 2007 is a model of 600 years (60 periods) with no terminal value, other researchers 
include a Chebyshev function for terminal value representing a further 800 years [18, p. 18]. Since 
an extension in the time period from 600 years to 1400 years is not onerous for a continuous model, 
the latter is demonstrated in this research. Figure 3 summarises a continuous 2007 DICE 
formulation utilising parameters fitted through dynamic programming [4], [9]. 
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Figure 3: Continuous Formulation of the DICE 2007 Model

Maximize:

utility per capita = 381000 +
1
194

∫
0

1400

e−0.015t lt (1−
lt

c t

)dt

where:
c t  is global consumption at time t
lt  is global population at time t
k t  is capital stock at time t
Tat t ,Tlot  are the global mean surface and lower ocean temperature rises at time t
Mat t , Mupt , Mlot  are the masses of carbon in the atmosphere, upper & lower oceans t

Subject to:

k t ' = −c t−0.1k t '−
269.4 e−9.2e−0.001t

k t
0.3 lt

0.7(0.00245981e2.43333e−0.003t

(1+e−0.005t)μt
2.8−1)

If [Tat t≤0, 1, 1+0.0028388Tat t
2]

Tat t ' = 0.22 (If [t≤100, 0.0036 t−0.06 ,0.03 ]+5.48224 log(Mat t)−36.7073)

−0.0644175 Tat t+0.0110022 Tlot

Tlot ' = 0.0048(Tat t−Tlot)

Mat t ' = −3.17177 e2.43333e−0.003t
−9.2e−0.001t

k t
0.3 lt

0.7(μt−1)−0.0190837 Mat t

+0.00980087 Mupt+1.1e−0.01t

Mupt ' = 0.0190837 Mat t+0.000336993 Mlot−0.0152039 Mupt

Mlot ' = 0.005403 Mupt−0.000336993 Mlot

lt = 6514 e−0.035t+8600(1−e−0.035t)

Tat t ≼ a maximum temperature rise level for all t
0 ≼ μt ≼ 1
c t , k t ≽ 0



Inspection of the above equations reveals the consumption functions ct and abatement/amelioration 
function μt as a set of independent functions. Prima facie these two functions need to be jointly 
optimised. The alternative used in DICE 2007 is to introduce a savings ratio that defines savings as 
a fixed proportion of the production function, which is equivalent to fixing the complement ratio of 
consumption to production. The overall effect is to eliminate the consumption function ct leaving μt 
as the sole independent function to be determined. 

It is a considerable task to co-jointly, intertemporally and globally optimise unknown and fully 
flexible functions for ct and μt. As regards the shape of the amelioration and abatement function μt , 
it might be reasonable surmised that the function is likely to be a sigmoid rising at some rate 
through the current level 0.05, as assumed in DICE 2007, to asymptotically approach the proportion 
of 1.0. While in reality this sigmoid might include steps and interim delays, policy makers 
interested in safeguarding risks would appreciate the implications of a smooth sigmoid function as 
compared to synthetic piecewise functions. Furthermore, prudence suggests that policy makers 
would not implement interregnums in amelioration and abatement in order to maintain atmospheric 
temperature rise at its maximum and most damaging level for decades or longer. Therefore a 
smooth sigmoid is appropriate for the amelioration and abatement 
function μt .

The amelioration and abatement function μt is assumed to be a sigmoid 
characterised by an acceleration constant as defined by the differential 
equation in Figure 4.  There are two underlying assumptions in this 
equation. The first is that current amelioration and abatement is already 
on the sigmoid trajectory at the point {2005,0.05}  defined by DICE 
2007. The second assumption is that amelioration and abatement will 
continue to pass smoothly and completely through the sigmoid.

It is not possible to simplify the conjoint, intertemporal, global optimisation by assuming a shape 
for the consumption function ct. While a generic consumption curve might be exponential in the 
absence of climate change constraints, very little is known about the shape of the consumption 
function in the presence of atmospheric temperature rise constraints. This research assumes the 
shape of the consumption function ct to be a complete Chebyshev polynomial defined through 
convenient time handles over the 1400 year simulation period. This function must be optimised 
with a global solver as there are many local maxima. The initial consumption (notionally 2005) is 
set to the average consumption in Figure 2 of US$ 38.1 million million, which is 40.5% of average 
production.

With the differential equation for amelioration and abatement in Figure 4 and the consumption 
function defined for the complete Chebyshev polynomial, only a small number of parameters to be 
optimised. These are the acceleration constant of the amelioration and abatement function and 
eleven consumption function handles.

 2.2.Data Mining for Evidence of Savings to Production Ratio

 a) Data

GTAP's Aggregated Social Accounting Matrix (ASAM) is an integrated presentation of data that 
facilitates testing of hypotheses at the lowest level, without aggregation by commodity or by 
country. Commodity variables by country were prepared using crosstab queries across the 2004 and 
2007 flexagg8 databases [16].

Two files of data were prepared for analysis. The first was a “static” period dataset for a single 
generic year. In this case crosstab results for each country in both 2004 and 2007 were normalised 
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Figure 4: Differential 
Equation for 
Amelioration and 
Abatement Function

μt ' = const (1−μt) μt

where:
μ0 = 0.05



by dividing all data for each country by the aggregate of all commodity production in that country 
in the respective year and multiplying by 104. The number of observations was maximised by 
assembling the normalised 2004 and 2007 data into a vertical set. The country identifier is retained, 
thereby creating two observations per country.

The second data file is a “chain” of the 2004 and 2007 years. The crosstab query results for each 
country in 2004 and 2007 are normalised in the same way as for the static dataset, except that both 
2004 and 2007 results are divided by the aggregate of all commodities produced in that country in 
the 2004 year. The chain dataset is completed by horizontally augmenting the 2004 rows for each 
country with respective 2007 rows. Variable names relating to 2004 are identified with a “y4” suffix 
and those for 2007 with a “y7” suffix.

 b) Static Mixed Directed Gaussian Graphical Model

Methodological Background

A Directed Gaussian Graphical Model (DGGM) is appropriate for 
continuous data. This can be modelled with a product of factors 
probability distribution, where the factors are conditional models 
according to the d-separation property and Markov condition [19, p. 
13]. Figure 6 shows this distribution. Each factor is associated with the 
distribution of a local node xv , which depends only upon the joint 
distribution of the local node's parent nodes x pa(v) .

Assumptions underlying the application of graphical models have been concisely summarised [20, 
pp. 8–10]. Two important assumptions are that there are no hidden (latent) variables and variables 
are conditionally independent, which is the sole relationship between variables. The latter implies 
that the global and local distributions of discrete or categorical variables follow a multinomial 
distribution, the global distributions of continuous variables follow a multivariate Gaussian 
distribution Nd(μ ,Σ)  and the local distributions of continuous variables follow a univariate or 
multivariate Gaussian distribution.

Methods to infer the structure of a joint graphical model generally fall into one of low order 
conditional independence tests of edge likelihood or log-likelihood, heuristic search through score 
optimisation such as the hill-climbing algorithm and Bayesian Markov Chain Monte Carlo sampling 
[19, p. 42].

In this investigation two directed acyclic graph (DAG) selection methods are applied, consistent 
with the approach of previous researchers [19, p. 62]. The first selection method for the Static 
model is the R pcalg() PC function, which is an example of low order conditional independence 
tests of edge log-likelihood [21], [22]. A skeleton of undirected edges is detected based on a 
threshold p-value for local edges of 0.05. Various models that are Markov equivalent have the same 
undirected graph skeleton and same immoralities and so cannot be 
distinguished in model selection [23], [24]. The PC algorithm orients 
edges to determine a complete partially directed acyclic graph (cpDAG) 
equivalence class rather than a specific Directed Gaussian Graphical 
Model. In addition to causal edges in the cpDAG, there are undirected 
edges and bidirectional edges that have one orientation in one directed 
acyclic graph of the equivalence class and the reverse orientation in 
another.

The likelihood of an edge between two variables in the PC algorithm is a 
function of the empirical mutual information between the variables and thereby to the extent to 
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Figure 6: Partial 
correlation between 
variables as a 
function of 
concentration matrix

puv∣V / {u , v }=
−kuv

√k uuk vv

Figure 5: DGGM 
factor probability 
distribution

f (x)=∏v∈V
f ( xv∣x pa(v))



which the variables are correlated. The partial correlations between random variables are calculated 
from the concentration matrix Κ , which is the inverse of the covariance matrix Κ=Σ

−1 . A 
weighted covariance matrix Σ  is calculated with the R stats package cov.wgt(), using the S-Plus 
“ML” method. As the covariance matrix Σ  is nearly singular, the concentration matrix Κ  is 
calculated from Σ  using the R corpcor package pseudoinverse() function. The partial correlation 
matrix is then derived using the gRbase conc2pcor() function, which calculates the partial 
correlation between variables u and v as shown in Figure 6.

The PC algorithm is vulnerable to overfitting and measures are implemented to explicitly penalising 
complexity by regulation and restricting the hypothesis space [25]. Overfitting arises because the 
sampled u and v may have mutual information greater than zero some of the time, notwithstanding 
that u and v may be independent in the empirical distribution. As more edges increase the likelihood 
score, additional edges may be added up to the point where the likelihood score is maximised 
because the network is fully connected.

The second model selection method in the Static case is heuristic search through score optimisation 
using the R bnlearn mmhc() function [26], [27]. This function optimises a Bayesian Information 
Criterion (BIC) goodness-of-fit score across all possible network structures generated from the 
current DAG using perturbations that add, remove and reverse edges. Underfitting data is unlikely 
because of the asymptotic consistency of BIC scoring, and overfitting is minimised by forcing a 
trade-off between fit and complexity that penalises spurious edges.

The “max-min parents and children” hill-climbing mmhc() function was developed as a hybrid to 
the basic hill-climbing algorithm, due to the propensity of the latter to become trapped in one of the 
multiple local equivalence classes neighbouring the I-minimum where the BIC score doesn't change 
with perturbations [28]. The mmhc() algorithm restricts the hypothesis space using a forward 
selection of the skeleton based on maximisation of the minimum association measure observed with 
any subset of the nodes selected in the previous iterations [29]. Markov blankets of variables are 
then detected by restricting the search space using conditional independence tests using a default 
significance level of 0.05. The second part of the procedure is a traditional hill-climbing algorithm 
that finds the optimal network structure in the restricted space using BIC network scores.

 c) Chain Mixed Directed Gaussian Graphical Model

Methodological Background

A chain graph is similar to a directed acyclic graph in having directed and undirected edges. The R 
gRapHD minForest() function optimises the network BIC score to find a BIC minimum forest using 
the extended Chow-Liu algorithm [30], [31], [32], [33]. This BIC minimum forest is an undirected 
maximum likelihood tree or forest structure closest to the true one in the probability space, under 
the special constraint that each parent has just one parent.

A decomposable graph is extracted from the BIC minimum forest using the R gRapHD package 
forward selection function stepw(). This function selects edges to be added to a triangulated graph 
that maximises the overall score, which by default is BIC. This leads to one or more disconnected 
trees, perhaps with undirected edges. Identifying decomposable graphs from undirected graphs is an 
NP hard problem in the same way as identifying Bayesian Networks [19, p. 166], [34].

LWF Markov properties [23], [35] specify that chain graphs factorise similarly to a directed acyclic 
graph, where conditional independence is represented by d-separation. In addition, chain graphs 
have the property that each factor (or conditional density) further factorises according to an 
undirected graph where conditional independence is represented by c-separation. Mixed interaction 
models may comprise log-linear models for discrete variables, such as country classifiers, and 
Gaussian models for continuous variables.
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A structure that can be represented by a mixed-interaction chain model has many advantages 
including elegant mathematics, efficient optimisation for high dimensional problems, such as 
exploiting decomposability and sparse parameterisation. Being tree structures, mixed-interaction 
chain models have a natural resistance to overfitting, which means that models can be generalised 
from a small number of samples [25].

Components of a chain graph G are the connected components of the graph after directed edges 
have been removed [36, p. 68]. The components represent distributions over the variables of the 
component, conditioned on the parental components. The conditional distribution is itself a product 
over the cliques of the undirected  component and moralised parental components.

The joint distribution p(x)  of chain graph G is shown in Figure 7 
where Ci is the union of the cliques in component i, together with the 
moralised parental components of i, and Φ  are the associated 
functions defined on each clique.

The dependence graph of the Gaussian graphical model is 
decomposable and model selection can exploit the closed form 
expressions for factor graphs. Chain graphs can be more expressive 
than directed acyclic graphs for marginal distributions such as undirected 4-cycles [36, p. 69]. 

Structure learning or model selection in chain analysis requires that the search space be restricted to 
the edges of a conditional model between blocks of variables. It is an appropriate technique when it 
is clear that variables can be classed a priori into meaningful blocks. This research approach has 
two steps. First, a model similar to the static case is developed solely for 2004 variables specifying 
the country classifier as a prior. Following this, a model is developed for the whole of the data (both 
2004 and 2007 variables), specifying the 2004 model as a prior.

Model selection does not assume any order within blocks but respects the mutual order of the 
blocks. Thus the only causal edges derived in this analysis are the directed edges between the 2004 
and 2007 blocks.

In the investigation of two accounting periods separated by a period of time, it is likely that the 
strength of any causal edges between the blocks will be impacted by a number of factors. The most 
obvious adverse factor is that in this research, GTAP data for the intervening periods (2005 and 
2006) is unavailable, which imposes a significant intervening time period between the 2004 and 
2007 class variables. Intertemporal linkages over the period 2004 to 2007 are subject to many 
exogenous influences in the intervening periods, particularly considering that these exogenous 
factors affect different countries across the globe in different ways. Therefore the relationship 
between the normal accounting sequence of 2004 investment and 2007 production might at best be 
very weak.

Technical issues also mitigate against the chain method. Statistically valid relationships will be 
correspondingly more difficult to identify than in the static case because chain analysis data has 
only half the number of observations. Furthermore, chain models cannot explicitly guarantee a 
minimal forest of undirected edges.

In this research, two scoring methods are used with the R gRapHD minForest() function. The first is 
default Chow-Liu BIC scoring. The second is Bayes Dirichlet scoring, which sometimes results in a 
significantly sparser graph than default BIC scoring [19, pp. 171–4]. In contrast to these two scoring 
methods, the traditional technique of minimising edge log-likelihoods is not used as it constrains 
edges weights to be non-negative, resulting in a single tree.

Bayes Dirichlet scoring Bayes Dirichlet scoring provides a maximum a posteriori (MAP) estimate 
using the hyper-Dirichlet distribution for conjugate priors of the decomposable graphical model and 
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Figure 7: Joint 
probability distribution 
in a chain graph

p(x)=∏i
p(Χi∣paG(Χ i))

p (x)∝∏i ∏c∈C i

Φ(ΧC i
)



the logarithm of Bayesian independence factors for edge weights [37], [38], [39], [40], [19, pp. 
171–4]. As the Dirichlet distribution is conjugate to the multinomial distribution, the posterior can 
be updated in closed form using sufficient statistics. This Bayesian scoring approach has sufficient 
statistics both from the data and from additional alpha-hyperparameters. Given a small amount of 
data, the sufficient statistics from the hyperparameter determine the prior beliefs and the strengths 
of these beliefs, which helps to smooth out random fluctuations in the data that can affect maximum 
likelihood estimates [25]. Real data sufficient statistics dominate at the asymptotic limit ensuring 
that the same result is observed for both BIC scoring and Bayes Dirichlet scoring.

 3. Results

 3.1.Continuous time solution over 1400 years

Discounted utility per capita over the 
standard 1,400 year evaluation period is 
shown in Figure 8,  both including and 
excluding the Savings Ratio assumption. 

While differences appear to be small given 
the scale, there are two issues that need to be 
taken into account. The first is discounting, 
which leads to a reduced impact from later 
differences while applying far less dilution 
to early differences. The second issue is 
utility offset and scale factors that reduce 
importance of the absolute scale. 

Figure 9 illustrates the time lag between 
abatement measures and corresponding 
increase in atmospheric 
temperature rise with the savings 
ratio excluded. This figure 
demonstrates that just two to 
three decades delay in 
amelioration and abatement 
effectiveness causes temperature 
maxima to rise from 2°C to 6°C.

The temperature profiles 
eliminate an initial decline and 
rise in temperature in the few 
years of the first decade, which 
is considered to be an artifact of 
equation fitting and initial 
parameters.

Figure 10 illustrates the relationship profiles between economic and geophysical factors over the 
first 100 years of the 1400 year projection, including and excluding the savings ratio, for the best 
utility outcome given no constraint is placed on atmospheric temperature rise. The worst case 
atmospheric temperature rise is approximately 2.85ºC. It may be noted that the best utility outcome 
profile requires approximately 50% amelioration and abatement within about 30 years, approaching 
100% within 40 years, which are respectively 2035 and 2045 given the commencement year of 
2005.
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Figure 8: Discounted utility per capita as function 
of atmospheric temperature rise and savings ratio

Figure 9: Relationship between atmospheric temperature rise 
(Tat) and the proportion of amelioration & abatement (µ)



While the 
profiles for 
consumption 
and abatement 
both including 
and excluding 
the savings 
ratio are 
similar in each 
of these cases, 
two there are 
two significant 
differences are 
apparent. 
Firstly, while 
capital profiles 
converge 
toward the end of the 100 year period, the profiles are quite different in earlier years.

More importantly, allowing the best outcome to be sought in the absence of a temperature 
constraint, the maximum atmospheric temperature with savings ratio included of 2.55°C is 12% less 
than 2.85°C with savings ratio excluded. In each case an amelioration and abatement proportion of 
approximately 15% needs to be achieved by year 10 and 85% by year 20.

 3.2.Mining GTAP data for evidence of Savings Ratio

 a) Static Mixed Directed Gaussian Graphical Model

The number of causal 
edges involving 
investment in Figure 11 
for the two algorithms 
pcalg() and mmhc().  It 
may be noted that the 
mmhc algorithm with BIC 
scoring is significantly 
more parsimonious than 
the PC algorithm.

In general, selected 
models with fewer edges 
are preferred, which 
indicates that BIC scoring 
is favoured. This is 
consistent with the well 
known disadvantage of the 
PC algorithm in overfitting 
data.

Although there are 57 
sectors in the analysis, it 
may be noted that the 
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Figure 11: Causal Edges for Static Model by PC algorithm pcalg() 
with p<0.05 & bnlearn algorithm mmhc() with edge strength > 0.85 
& direction ≥ 0.5

Figure 10: Relationships between economic and geophysical factors over the 
first 100 years of a 1400 year projection with Savings Ratio included and 
excluded (for the best utility outcome given no constraint on temperature rise)



pcalg() algorithm detected associations between investment and production  in the Construction and 
Electronic Equipment sectors. In contrast, the BIC scored mmhc() algorithm detected only the 
Construction sector.

These results suggest that a strong relationship between investment and production in a single time 
period is unable to be established.

 b) Chain Mixed Directed Gaussian Graphical Model

Chain graph 
causal edges 
associated with 
investment 
across the time 
period 2004 to 
2007 are 
shown in 
Figure 12.

It may be 
noted that BIC 
scoring 
detected seven 
associations 
between 2004 
Investment and 
2007 
Production 
(Electricity, 
Fishing, 
Forestry, Raw 
Milk, 
Transport 
equipment, 
Water and 
Wheat).

These seven 
cases represent 
12% of the 57 
sectors in the 
analysis, 
which is 
approaching a 
significant 
proportion of 
sectors.

Dirichlet-
Bayes scoring 
is consistent in 
detecting six 
associations, with 5 sectors in common with BIC scoring (Electricity, Forestry, Raw Milk, Transport 
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Figure 12:Causal Edges  2004→2007 for a Chain Model using gRapHD 
ChowLiu Algorithm using BIC scoring and Dirichlet scoring



equipment and Wheat).

As 2007 data is normalised by 2004 production, the normalised 2007 production values represent 
growth. Therefore these findings results are consistent with the expectation of a relationship, albeit 
somewhat dilute, between investment in 2004 and production growth from 2004 to 2007.

 4. Discussion
The results of the continuous time solution of the DICE 2007 model show that removal of the 
savings ratio constraint increases potential rise by 12% to 2.85°C when no constraint is imposed on 
atmospheric temperature rise allowing the best utility outcome to be sought. This implies that 
models employing a savings ratio understate potential atmospheric temperature rise.

In the absence of governments imposing a savings ratio constraint, the issue arises as to whether 
any evidence exists for the presence of a savings ratio in economic data. Analysis of GTAP data 
shows that the ratio between savings (or investment) and production is approximately 0.11 or 0.12, 
compared to the DICE 2007 constraint of value of 0.22.

Furthermore, data mining of GTAP data showed that a relationship between savings and production 
within a single year existed in only one or two of 57 commodity sectors.

The main sector exhibiting a causal edge is Construction, which is an industry where a single 
relationship between investment and production might be expected.

Similarly, the number of sectors having causal relationships across the three years between 2004 
and 2007 increased to six or seven, which is a marginally significant proportion of the 57 sectors 
analysed. Furthermore the detection of residual causal edges connecting investment and production 
in significant sectors such as Electricity, Fishing, Forestry, Raw Milk, Transport equipment, Water 
and Wheat does confirm the potential for an intertemporal relationship. The importance of model 
selection techniques determining relationships in these sectors is underlined by the difficulty in 
detecting such relationships given the dilution in the accounting chain by intervening events.

 5. Conclusion
The use of a savings ratio constraint in the DICE 2007 model has been investigated in the 
continuous domain using a novel Runge-Kutta sampling technique for solving differential 
transcendental equations. It is found that the introduction of a savings ratio constraint leads to a 
12% understatement in the ensuing maximum atmospheric temperature rise, in the important case 
where a best utility outcome is sought in the absence of a constraint on temperature rise.

Evidence for the presence of a relationship between savings and output was sought in unaggregated 
GTAP 8.1 economic data, using investment as a proxy for savings and model selection techniques 
for mixed Gaussian probabilistic graphical models.

A relationship between investment and production within a single generic annual period comprising 
the normalised 2004 and 2007 years was established in only one of 57 sectors, the Construction 
sector. However, using a 2004 graphical model as the Bayesian prior for a 2007 graphical model an 
intertemporal relationship between investment in 2004 and the increased production in 2007 was 
established within seven sectors (Electricity, Fishing, Forestry, Raw Milk, Transport equipment, 
Water and Wheat) suggesting the relationship is marginally significant.

These data mining outcomes are consistent with prima facie expectations of an absence of any 
direct relationship between savings (or investment) and production within a single time period but a 
dilute relationship between investment and a consequent increase in production across time periods. 

The results of this research show that the DICE 2007 model is solvable in the continuous domain 

11 of 14



without the use of a savings ratio constraint and suggest deprecation of such a constraint in discrete 
implementations.
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