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2.9 Conclusions

The theory presented in this chapter shows that, although statistical
analysis cannot distinguish genuine causation from spurious covariation
in every conceivable case, in many cases it can. Under the assumptions
of model minimality (and/or stability), there are patterns of dependen-
cies that should be sufficient to uncover genuine causal relationships.
These relationships cannot be attributed to hidden causes lest we vio-
late one of the basic maxims of scientific methodology: the semantical
version of Occam’s razor. Adherence to this maxim may explain why
humans reach consensus regarding the directionality and nonspurious-
ness of causal relationships, in the face of opposing alternatives, that
are perfectly consistent with experience. Echoing Cartwright (1989),
we summarize our claim with the slogan “No causes in—no causes out;
Occam’s razor in—some causes out.”

How safe are the causal relationships inferred by the IC algorithm—
or by the TETRAD program of Spirtes et al. (1993) or the Bayesian
methods of Cooper and Herskovits (1991) or Heckerman et al. 1994)7

Recasting this question in the context of visual perception, we may
equally well ask: How safe are our predictions when we recognize three-
dimensional objects from their two-dimensional shadows, or from the
two-dimensional pictures that objects reflect on our retinas? The an-
swer is: Not absolutely safe, but good enough to tell a tree from a house
and good enough to make useful inferences without having to touch ev-
ery physical object that we see. Returning to causal inference, our
question then amounts to assessing whether there are enough discrimi-
nating clues in a typical learning environment (say, in skill acquisition
tasks or in epidemiological studies) to allow us to make reliable dis-
criminations between cause and effect. This can only be determined by
experiments—once we understand the logic behind the available clues
and once we learn to piece these clues together coherently in large pro-
grams that tackle real-life problems.

The model-theoretic semantics presented in this chapter provides a
conceptual and theoretical basis for such experiments. The IC* algo-
rithm and the algorithms developed by the TETRAD group (Spirtes
et al. 1993) demonstrate the computational feasibility of the approach.
Waldmann et al. (1995) described psychological experiments on how
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humans use the causal clues discussed in this chapter.

On the practical side, we have shown that the assumption of model
minimality, together with that of “stability” (no accidental indepen-
dencies) lead to an effective algorithm for structuring candidate causal
models capable of generating the data, transparent as well as latent.
Simulation studies conducted at our laboratory in 1990 showed that
networks containing tens of variables require fewer than 5,000 samples
to have their structure recovered by the algorithm. For example, 1,000
samples taken from (a binary version of) the process shown in (2.3),
each containing ten successive X, Y pairs, were sufficient to recover its
double-chain structure (and the correct direction of time). The greater
the noise, the quicker the recovery (up to a point). In testing this
modeling scheme on real-life data, we have examined the observations
reported in Sewal Wright’s seminal paper “Corn and Hog Correlations”
(Wright 1925). As expected, corn price (X) can clearly be identified
as a cause of hog price (Y), but not the other way around. The rea-
son lies in the existence of the variable corn crop (Z), which satisfies
the conditions of Definition 2.7.2 (with S = @)). Several applications of
the principles and algorithms discussed in this chapter are described in
Glymour and Cooper (1999, pp. 441-541).

It should be interesting to explore how the new criteria for causation
could benefit current research in machine learning and data-mining. In
some sense, our method resembles a standard, machine-learning search
through a space of hypotheses (Mitchell 1982) where each hypothesis
stands for a causal model. Unfortunately, this is where the resemblance
ends. The prevailing paradigm in the machine-learning literature has
been to define each hypothesis (or theory, or concept) as a subset of
observable instances; once we observe the entire extension of this sub-
set, the hypothesis is defined unambiguously. This is not the case in
causal modeling. Even if the training sample exhausts the hypothesis
subset (in our case, this corresponds to observing P precisely), we are
still left with a vast number of equivalent causal theories, each stipu-
lating a drastically different set of causal claims. Therefore, fitness to
data is an insufficient criterion for validating causal theories. Whereas
in traditional learning tasks we attempt to generalize from one set of
instances to another, the causal modeling task is to generalize from
behavior under one set of conditions to behavior under another set.
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Causal models should therefore be chosen by a criterion that challenges
their stability against changing conditions, and these show up in the
data in the form of virtual control variables. Thus, the dependence
patterns identified by Definitions 2.7.1-2.7.4 constitute islands of sta-
bility as well as virtual validation tests for causal models. It would be
interesting to examine whether these criteria, when incorporated into
existing machine-learning and data-mining programs, would improve
the stability of relationships discovered by such programs.

2.9.1 On Minimality, Markov, and Stability

The idea of inferring causation from association cannot be expected to
go unchallenged by scientists trained along the lines of traditional doc-
trines. Naturally, the assumptions underlying the theory described in
this chapter—minimality and stability—come under attack from statis-
ticians and philosophers. This section contains additional thoughts in
defense of these assumptions.

Although few have challenged the principle of minimality (to do
so would amount to challenging scientific induction), objections have
been voiced against the way we defined the objects of minimization—
namely, causal models. Definition 2.2.2 assumes that the stochastic
terms u; are mutually independent, an assumption that endows each
model with the Markov property: conditioned on its parents (direct
causes), each variable is independent of its nondescendants. This im-
plies, among the other ramifications of d-separation, several familiar
relationships between causation and association that are usually asso-
ciated with Reichenbach’s (1956) principle of common cause—for exam-
ple, “no correlation without causation,” “causes screen off their effects,”
“no action at a distance.”

The Markovian assumption, as explained in our discussion of Defi-
nition 2.2.2, is a matter of convention, and it has been adopted here as
a useful abstraction of the underlying physical processes because such
processes are too detailed to be of practical use. After all, investigators
are free to decide what level of abstraction is useful for a given purpose,
and Markovian models have been selected as targets of pursuit because
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Figure 2.6: (a) Interactive fork. (b) Latent structure equivalent to (a).

of their usefulness in both prediction and decision making.!* By build-
ing the Markovian assumption into the definition of complete causal
models (Definition 2.2.2) and then relaxing the assumption through la-
tent structures (Definition 2.3.2), we confess our preparedness to miss
the discovery of non-Markovian causal models that cannot be described
as latent structures. I do not consider this loss to be very serious, be-
cause such models—even if any exist in the macroscopic world—would
have limited utility as guides to decisions. For example, it is not clear
how one would predict the effects of interventions from such a model,
save for explicitly listing the effect of every conceivable intervention in
advance.

It is not surprising, therefore, that criticsism of the Markov assump-
tion, most notably those of Cartwright (1995a, 1997), and Lemmer
(1993), have two characteristics in common:

1. they present macroscopic non-Markovian counterexamples that
are reducible to Markovian latent structures of the type consid-
ered by Salmon (1984), that is, interactive forks; and

2. they propose no alternative, non-Markovian models from which
one could predict the effects of actions and action combinations.

The interactive fork model is shown in Figure 2.6(a). If the inter-
mediate node d is unobserved (or unnamed), then one is tempted to
conclude that the Markov assumption is violated, since the observed
cause (a) does not screen off its effects (b and ¢). The latent structure

4Discovery algorithms for certain non-Markovian models, involving cycles and
selection bias, have been reported in Spirtes et al. (1995) and Richardson (1996).
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of Figure 2.6(b) can emulate the one of Figure 2.6(a) in all respects; the
two can be indistinguishable both observationally and experimentally.

Only quantum-mechanical phenomena exhibit associations that
cannot be attributed to latent variables, and it would be considered
a scientific miracle if anyone were to discover such peculiar associations
in the macroscopic world. Still, critics of the Markov condition insist
that certain alleged counterexamples must be modeled as P(bc|a) and
not as Y4 P(b|d, a) P(c|d, a)—assuming, perhaps, that some insight or
generality would be gained by leaving the dependency between b and
c unexplained. The former model, in addition to being observationally
indistinguishable from the latter, also leaves the causal effect P,.(b)
unspecified. In contrast, the latent model predicts P,.(b) = P,(b) and
thus fulfills its role as a predictor of (experimentally testable) causal
effects.

Ironically, perhaps the strongest evidence for the ubiquity of the
Markov condition can be found in the philosophical program known
as “probabilistic causality” (see Section 7.5), of which Cartwright is a
leading proponent. In this program, causal dependence is defined as a
probabilistic dependence that persists after conditioning on some set of
relevant factors (Good 1961; Suppes, 1970; Skyrms, 1980; Cartwright,
1983; Eells, 1991). This definition rests on the assumption that condi-
tioning on the right set of factors enables one to suppress all spurious
associations—an assumption equivalent to the Markov condition. The
intellectual survival of probabilistic causality as an active philosophical
program for the past 30 years attests to the fact that counterexamples
to the Markov condition are relatively rare and can be explained away
through latent variables.

I now address the assumption of stability. The argument usually
advanced to justify stability (Spirtes et al. 1993) appeals to the fact
that strict equalities among products of parameters have zero Lebesgue
measure in any probability space in which parameters can vary indepen-
dently of one another. For example, the equality o = — (7 in the model
of (2.2) has zero probability if we consider any continuous joint density
over the parameters o, (3, and 7, unless that density somehow embod-
ies the constraint @« = — (7 on a priori grounds. Freedman (1997), in
contrast, claimed that there is no reason to assume that parameters are
not in fact tied together by constraints of this sort, which would render
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the resulting distribution unstable (using Definition 2.4.1).

Freedman’s critique receives unexpected support from the practice
of structural modeling itself, where equality constraints are common-
place. Indeed, the conditional independencies that a causal model ad-
vertises amount to none other than equality constraints on the joint
distribution. The chain model Y — X — Z, for example, entails the
equality

PYyz = PXz " PYX,

where pxy is the correlation coefficient between X and Y'; this equality
constraint ties the three correlation coefficients in a permanent bond.
What, then, gives equalities among correlation coefficients a privileged
status over equalities among another set of parameters—say, «, 3, and
v? Why do we consider the equality pyz = pxz - pyx “substantive”
and the equality a = —fv “accidental,” and why do we tie the notion
of stability to the absence of the latter, not the former?

The answer, I believe, rests again on the notion of autonomy
(Aldrich 1989), a notion at the heart of all causal concepts (see Sections
1.3 and 1.4). A causal model is not just another scheme of encoding
probability distribution through a set of parameters. When we come
to define mathematical objects such as causal models, we must ensure
that the definition captures the distinct ways in which these objects
are being used and conceptualized. The distinctive feature of causal
models is that each variable is determined by a set of other variables
through a relationship (called “mechanism”) that remains invariant
when those other variables are subjected to external influences. Only
by virtue of this invariance do causal models allow us to predict the
effect of changes and interventions, capitalizing on the locality of such
changes. This invariance means that mechanisms can vary indepen-
dently of one another, which in turns implies that the set of structural
coefficients (e.g., a, (3, v in our example of (2.2))—rather than other
types of parameters (e.g., pyz, pxz, pyx)—can and will vary indepen-
dently when experimental conditions change. Consequently, equality
constraints of the form o = —fv are contrary to the idea of autonomy
and thus should not be considered part of the model.

For this reason, it has been suggested that causal modeling methods
based solely on associations, like those embodied in the IC* algorithm
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or the TETRAD-II program, will find their greatest potential in lon-
gitudinal studies conducted under slightly varying conditions, where
accidental independencies are destroyed and only structural indepen-
dencies are preserved. This assumes that, under such varying condi-
tions, the parameters of the model will be perturbed while its structure
remains intact—a delicate balance that might be hard to verify. Still,
considering the alternative of depending only on controlled, randomized
experiments, such longitudinal studies are an exciting opportunity.

Relation to the Bayesian Approach

It is important to stress that elements of the principles of minimality
and stability also underlie causal discovery in the Bayesian approach.
In this approach, one assigns prior probabilities to a set of candidate
causal networks, based on their structures and parameters, and then
uses Bayes’s rule to score the degree to which a given network fits the
data (Cooper and Herskovits 1991; Heckerman et al. 1999). A search is
then conducted over the space of possible structures to seek the one(s)
with the highest posterior score. Methods based on this approach have
the advantage of operating well under small-sample conditions, but they
encounter difficulties in coping with hidden variables. The assumption
of parameter independence, which is made in all practical implemen-
tations of the Bayesian approach, induces preferences toward models
with fewer parameters and hence toward minimality. Likewise, param-
eter independence can be justified only when the parameters represent
mechanisms that are free to change independently of one another—that
is, when the system is autonomous and hence stable.



