CHAPTER 1

Logic and Proofs

Although mathematics is both a science and an art, special characteristics distinguish
mathematics from the humanities and from other sciences. Particularly important is
the kind of reasoning that typifies mathematics. The natural or social scientist gener-
ally makes observations of particular cases or phenomena and seeks a general theory
that describes or explains the observations. This approach is called inductive reason-
ing, and it is tested by making further observations. If the results are incompatible
with theoretical expectations, the scientist usually must reject or modify the theory.

Mathematicians, too, frequently use inductive reasoning as they attempt to de-
scribe patterns and relationships among quantities and structures. The characteristic
thinking of the mathematician, however, is deductive reasoning, in which one uses
logic to draw conclusions based on statements accepted as true. The conclusions of
a mathematician are proved to be true, provided that the assumptions are true. If the
results of a mathematical theory are deemed incompatible with some portion of re-
ality, the fault lies not in the theory but with the assumptions about reality that make
the theory inapplicable to that portion of reality. Indeed, the mathematician is not
restricted to the study of observable phenomena, even though one can trace the de-
velopment of mathematics back to the need to describe spatial relations (geometry)
and motion (calculus) or to solve financial problems (algebra). Using logic, the
mathematician can draw conclusions about any mathematical structure imaginable.

The goal of this chapter is to provide a working knowledge of the basics of
logic and the idea of proof, which are fundamental to deductive reasoning. This
knowledge is important in many areas other than mathematics. For example, the
thought processes used to construct an algorithm for a computer program are much
like those used to develop the proof of a theorem.

1.1

Propositions and Connectives

Natural languages such as English allow for many types of sentences. Some
sentences are interrogatory (Where is my sweater?), others exclamatory (Oh, no!),
and others have a definite sense of truth to them (Abe Lincoln was the first U.S. pres-
1
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ident). A proposition is a sentence that is either true or false. Thus a proposition has
exactly one truth value: true, which we denote by T, or false, which we denote by F.
Some examples of propositions are:

(@) |2 is irrational.

() 1+1=5

(©0 The elephant will become extinct on the planet Earth before the rhinoceros will.
(d) Julius Caesar had two eggs for breakfast on his tenth birthday.

We are not concerned here with the difficulty of establishing the actual truth
value of a proposition. We readily see that proposition (a) has the value T while (b)
has the value F. It may take many years to determine whether proposition (c)istrue
or false, but its truth value will certainly be established if either animal ever be-
comes extinct. If both species (and Earth) somehow survive forever, the statement
is false. There may be no way ever to determine what value proposition (d) has.
Nevertheless, each of the above is either true or false, hence is a proposition.

Here are some sentences that are not propositions:

() Whatdid you say?
(fH x*>=236.
(g) This sentence is false.

Sentence (€) is an interrogative statement that has no truth value. Sentence (f)
could be true or false depending on what value x is assigned. We shall study sen-
tences of this type in section 1.3.

Statement (g) is an example of a sentence that is neither true nor false, and it is re-
ferred to as a paradox. If (g) is true, then by its meaning (g) must be false. On the other
hand, if (g) is false, then what it purports is false, so (g) must be true. Thus, (g) can have
neither T nor F for truth value. The study of paradoxes such as this has played a key
role in the development of modern mathematical logic. A famous example of a para-
dox formulated by the English logician Bertrand Russell is discussed in section 2.1.

Propositions (a)—(d) are simple or atomic in the sense that they do not have any
other propositions as components. Compound propositions can be formed by using
logical connectives with simple propositions.

DEFINITIONS Given propositions P and Q,

The conjunction of P and O, denoted P A @, is the proposition “P and Q.”
P A Q is true exactly when both P and Q are true.

The disjunction of P and O, denoted P V Q, is the proposition “P or 0.
PV Qs true exactly when at least one of P or Q is true.

The negation of P, denoted ~P, is the proposition “not P.” ~P is true ex-
actly when P is false.

If Pis “1 # 3" and Q is “7 is odd,” then

PAQis“1 #3and7is odd.”
PV Qis“l #3or7is odd.”
~Q is “It is not the case that 7 is odd.”

Since in this example both P and Q are true, PAQand PV Qaretrue, while ~Qis false.
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All of the following are true propositions:

“It is not the case that ,/10 > 4.”

\/i < y/3 or chickens have lips.”

“Venus is smaller than Earthor 1 +4 = 5.
“‘6<7and7<8.”

All of the following are false:

“Mozart was born in Salzburg and 7 is rational.”
“It is not the case that 10 is divisible by 2.”
“2*=16anda quart is larger than a liter.”

Other connectives commonly used in English are but, while, and although,
each of which would normally be translated symbolically with the conjunction con-
nective. A variant of the connective or is discussed in the exercises.

Example. Let M be “Milk contains calcium” and I be “Italy is a continent.” Since
M has the value T and [ has the value F,

“Italy is a continent and milk contains calcium,” symbolized I A M, is false;
“Italy is a continent or milk contains calcium,” I V M, is true;
“It is not the case that Italy is a continent,” ~1, is true.

An important distinction must be made between a proposition and the form of a
proposition. In the previous example, “Italy is a continent and milk contains calcium”
is a proposition with a single truth value (F), while the propositional form P A Q.
which may be used to represent the sentence symbolically, has no truth value. The
form P A Q is an expression that obtains a value T or F after specific propositions are
designated for P and Q (when for instance, we let P be “Italy is a continent” and Q be
“Milk contains calcium”), or when the symbols P and Q are given truth values.

By the form of a compound proposition, we mean how the proposition is put
together using logical connectives. For components P and Q, PAQ and PV Q are
two different propositional forms. Informally, a propositional form is an ex-
pression involving finitely many logical symbols (such as A and ~) and letters.
Expressions that are single letters or are formed correctly from the definitions of
connectives are called well-formed formulas. For example, (P A(QV ~Q)) is
well-formed, whereas (P v Q~), (~P ~ Q), and VQ are not. A more precise defin-

ition and study of well-formed formulas may be found in Elliot Mendelson’s An In-
troduction to Mathematical Logic (Chapman & Hall/CRC, 1997).

The truth values of a compound propositional form are readily obtained by ex-
hibiting all possible combinations of the truth values for its components in a truth
table. Since the connectives A and V involve two components, their truth tables

must list the four possible combinations of the truth values of those components.
The truth tables for PAQand P Vv Q are

PAQ PvQ
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Since the value of ~P depends only on the two possible values for P, its truth table is

P ~P
T F
F T

Frequently you will encounter compound propositions with more than two
simple components. The propositional form (P AQ) V ~R has three simple compo-
nents P, 0. and R; it follows that there are 2} = 8 possible combinations of truth val-
ues. The two main components are P A Q and ~R. We make truth tables for these
and combine them by using the truth table for V.

Q ~R (PAQ)V~R
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The propositional form (~QV P)A(RV S) has 16 possible combinations of
values for P, O, R, S. Two main components are ~QVPand RV S. Its truth table
is shown here:

P Q R S ~Q ~QVP RVS (~QVPYARVS)
T T T T F T T T
F T T T F F T F
T F T T T T T T
F F T T T T T T
T T F T F T T T
F T F T F F T F
T F F T T T T T
F F F T T T T T
T T T F F T T T
F T T F F F T F
T F T F T T T T
F F T F T T T T
T T F F F T F F
F T F F F F F F
T F F F T T F F
F F F F T T F F

Two propositions P and Q are equivalent if and only if they have the same
truth value. The propositions “1 + 1 = 2" and “6 < 10” are equivalent (even though
they have nothing to do with each other) because both are true. The ability to write
equivalent statements from a given statement is an important skill in writing proofs.
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Of course, in a proof we expect some logical connection between such statements.
This connection may be based on the form of the propositions.

DEFINITION Two propositional forms are equivalent if and only if
they have the same truth tables.

For example, the propositional forms PV (Q A P) and P are equivalent. To
show this, we examine their truth tables.

QAP PV (QAP)

M1
S R R )
T T T -
=T 4

Since the P column and the P V (Q A P) column are identical, the propositional forms
are equivalent. This means that, whatever propositions we choose to use for P and for
O, the results will be equivalent. If we let P be “91 is prime” and Q be “1 + 1 = 2,”
then “91 is prime” is equivalent to the proposition “91 is prime, or 1 + 1 = 2 and 91
is prime.” With these propositions for P and Q, Q is true and both P and P vV (Q A P)
are false. Thus, we have an instance of the second line of the truth table.

Notice that “Two propositions are equivalent” has a different meaning from
“Two propositional forms are equivalent.” We don 't look at truth tables to decide the
equivalence of propositions, because a proposition has only one truth value. This
makes the question of equivalence of propositions rather easy: all true propositions
are equivalent to each other and all false propositions are equivalent to each other.
On the other hand, propositional forms are neither true nor false; generally they have
the value true for some assignments of truth values to their components and the value
false for other assignments. Thus to decide equivalence of propositional forms, we
must compare truth tables. Another example of equivalent propositional forms is P
and ~(~P). The truth tables for these two propositional forms are shown:

P ~P ~(~P)
T F T
F T F

DEFINITION A denial of a proposition S is any proposition equiva-
lent to ~S.

By definition, the negation ~P is a denial of the proposition P, but a denial
need not be the negation. A proposition has only one negation but many different
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denials. The ability to rewrite the negation of a proposition into a useful denial will
be very important for writing indirect proofs (see section 1.5).

Example. The proposition P: “z is rational” has negation ~P: “It is not the case
that 7 is rational.” Some useful denials are

“7 is irrational.”
“7 is not the quotient of two integers.”
“The decimal expansion of 7 is not repeating or terminating.”

Note that since P is false, all denials of P are true.

Example. The proposition “The water is cold and the soap is not here” has two
components, C: “The water is cold” and H: “The soap is here.” The negation,
~(C A ~H), is “It is not the case that the water is cold and the soap is not here.”
Some other denials are

“Fither the water is not cold or the soap is here.”
“It is not the case that the water is cold and the soap is not here and the water is
cold.”

It may be verified by truth tables that the propositional forms (~C)V H and
~[(C A ~H) A C] are equivalent to ~(C A ~H).

Note that the negation in the last example is ambiguous when written in Eng-
lish. Does the “It is not the case” refer to the entire sentence or just to the compo-
nent “The water is cold”? Ambiguities such as this are allowable in conversational
English but can cause trouble in mathematics. To avoid ambiguities, we introduce
delimiters such as parentheses ( ), square brackets [ ], and braces { }. The negation
above may be written symbolically as ~(C A ~H).

To avoid writing large numbers of parentheses, we use the rule that, first, ~ ap-
plies to the smallest proposition following it, then A connects the smallest proposi-
tions surrounding it, and, finally, V connects the smallest propositions surrounding
it. Thus, ~P V Q is an abbreviation for (~P) V Q. The negation of the disjunction
PV Q must be written with parentheses ~(PV Q). The propositional form
P A~QV R abbreviates [P A(~Q)] V R. As further examples,

PV Q AR abbreviates PV [Q AR].

P A~QV ~R abbreviates [P A (~Q)] V (~R).

~P v ~Q abbreviates (~P) V (~Q).

~P A~RV ~P AR abbreviates [(~P) A(~R)] V [(~P) AR].

When the same connective is used several times in succession, parentheses
may also be omitted. We reinsert parentheses from the left, so that PVQVRis
really (P V Q) V R. For example, RAPA~P AQ abbreviates [(R AP) A(~P)] AQ,
whereas R V P A ~P V Q, which does not use the same connective consecutively, ab-
breviates (R V [P A (~P)]) V Q. Leaving out parentheses is not required; some propo-
sitional forms are easier to read with a few well-chosen “unnecessary” parentheses.

Some compound propositional forms always yield the value true just be-
cause of the nature of their form. Tautologies are propositional forms that are
true for every assignment of truth values to their components. Thus a tautology

Ex¢
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will will have the value true regardless of what proposition(s) we select for the com-
ponents. For example, the Law of Excluded Middle, PV ~P, is a tautology. Its
truth table is
N
P ~p  PV~P
T F T
F T T
i
We know that “the ball is red or the ball is not red” is true because it has the form of i
the Law of Excluded Middle. ’
two Example. Show that (PV Q) V (~P A~(Q) is a tautology. We see that the truth % ; -
ton. table for the propositional form is 11
are. g
P 0 PvVQ ~P ~Q ~PA~Q (PVQ)V(~PA~Q) g |
. T T T F F F T
teris F T T T F F T 4
T F T F T F T
) F F F T T T T
and i
Thus (P V Q) V (~P A ~() is a tautology. 4
Eng-
mpo- A contradiction is the negation of a tautology. Thus ~(P V ~P) is a contra- 4
tional diction. The negation of a contradiction is, of course, a tautology. 4
yduce Conjunction, disjunction, and negation are very important in mathematics. Two
yation other important connectives, the conditional and biconditional, will be studied in the ]
next section. Other connectives having two components are not as useful in mathe- ]
~ ap- matics, but some are extremely important in digital computer circuit design. '
Jposi-
.nding
nction
form Exercises 1.1
1. Which of the following are propositions?
(a) Where are my car keys?
(b) Christopher Columbus wore red boots at least once.
% (c) The national debt of Poland in 1938 was $2,473,596.38.
d x*=20
jtheses % (e) Between January 1,2205 and January 1, 2215, the population of the world
VR is will double.
MNAQ, (f) There are no zeros in the decimal expansion of 7.
ely, ab- * (g) She works in New York City.
propo- (h) Keep your elbows off the table!
1eses. (i) There are more than 3 false statements in this book and this statement is
ust be- one of them.
hat are (j) There are more than 3 false statements in this book and this statement is
tology not one of them.
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Make truth tables for each of the following propositional forms.

@ PA~P (b) Pv~P

(© PAQVR (d PAQV(PAR)

(& PA~Q (f) PAQV~Q

(® PAQV~Q (h)y ~(PAQ

@ (PV~OAR i) ~PA~Q

(k) PAP D PAQVRA~S)
Which of the following pairs of propositional forms are equivalent?
(@) PAPP () PVPP

(©0 PAQ, QAP (@ PvQQv~P

(& (PAQARPAQAR) (f) ~(PAQ),~PA~Q
(8 ~PA~Q~PA~Q) (h) (PVQVRPV(QVR)
i (PAQVRPAQVER (H ~PVO,~PIA~Q
k) ~PAQD,(~P)V(~Q) H (PAQVRPV(QAR)

(m) PA(QVR), PAQVPAR) m) (~P)V(~Q),~(PV~0)
If P, Q, and R are true while S and T are false, which of the following are true?

@ QARAS) (b) QV(RAS)

() PYQOARVS) @ ((~PVE=O)V(~RV(~S))
(&) (~=P)V@A~0Q) () ~PV(~Q

® (~QVHAWQVS) (h) SARV(SAT)

i) PVSHAPVD () (THYAP)V(TAP)

k) (~P)A(QV~Q) M RACS)

Give a useful denial of each statement.

(a) xis a positive integer. (Assume that x is some fixed integer.)

(b) We will win the first game or the second one.

(¢ 5=3

(d) 641,371 is a composite integer.

(e) Roses are red and violets are blue.

(f) x<yor m? < 1 (Assume that x, y, and m are fixed real numbers.)

(g) Tisnot green or T is yellow.

(h) Sue will choose yogurt but will not choose ice cream.

(i) niseven and n is not a multiple of 5. (Assume that » is a fixed integer.)

P, O, and R are propositional forms, and P is equivalent to @, and Q is equiv-
alent to R. Prove that

(a) Qisequivalentto P. (b) PisequivalenttoR.

(¢) ~Qisequivalentto ~P. (d) P AQisequivalentto QAR.

(e) PV Qisequivalentto QVR.

Use A: “Horses have four legs,” B: “17 is prime,” and C: “Three quarters equal
one dollar” to write the propositional form of each of the following. Decide
which are true.

(a) Either horses have four legs or 17 is not prime.

(b) Neither do three quarters equal a dollar nor do horses have four legs.
(¢) 17 is prime and three quarters do not equal one dollar.

(d) Horses have four legs but three quarters do not equal one dollar.

Let P be the sentence “Q is true” and Q be the sentence “P is false.” Is P a
proposition? Explain.
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9. The word or is used in two different ways in English. We have presented the
truth table for v, the inclusive or, whose meaning is “one or the other or
both.” The exclusive or, meaning ““one or the other but not both” and denoted
@, has its uses in English, as in “She will marry Heckle or she will marry
Jeckle.” The “inclusive or” is much more useful in mathematics and is the ac-
cepted meaning unless there is a statement to the contrary.

* (a) Make a truth table for the “exclusive or” connective, @
(b) Show that A® B is equivalent to (A V B) A ~(A A B).
10. Restore parentheses to these abbreviated propositional forms.
(a ~~PV~0QA~S
() QA~SV~(=PAQ)
(€0 PA~QV~PA~RV~PAS
11. Determine whether each of the following is a tautology, a contradiction, or
neither. Prove your answers.
@ (PAQDV(~P)A(~0Q)
' (b) ~PA~P)
*x () PAQVU~P)V(~0Q)
(d) (AAB)V(AA~B)V((~A)AB)V ((~A) A(~B))
(&) (QA~P)A~(PAR)
(f) PV((~Q)AP)ARV Q)
1.2 Conditionals and Biconditionals

The most important kind of proposition in mathematics is a sentence of the form “If
P, then Q.” Examples include “If a natural number is written in two ways as a prod-
uct of primes, then the two factorizations are identical except for the order in which
the prime factors are written”; “If two lines in a plane have the same slope, then they
are parallel”; and “If f is differentiable at xq and f (x,) 1s a relative minimum for f,
then f'(xg) = 0.”

DEFINITIONS Given propositions P and , the conditional sentence
P = Q (read “P implies Q") is the proposition “If P, then Q.” The propo-
sition P is the antecedent and Q is the consequent.

The conditional sentence P = () is true whenever the antecedent is
false or the consequent is true. Thus, P = Q is defined to be equivalent to

(~P)V Q.

al
ie ‘

The truth table for P = Q is

* P (antecedent) @ (consequent) P
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This table gives P => Q the value F only when P is true and Q is false, and thus it
agrees with the meaning of “if . . ., then . . .” in promises. For example, the person
who promises, “If Lincoln was the second U.S. president, I'll give you a dollar”
would not be a liar for failing to give you a dollar. In fact, he could give you a dol-
lar and still not be a liar. In both cases we say the statement is true because the an-
tecedent is false.

One curious consequence of the truth table for P => Q is that conditional sen-
tences may be true even when there is no connection between the antecedent and the
consequent. The reason for this is that the truth value of P = Q depends only upon
the truth value of components P and Q, not on their interpretation. For this reason
all of the following are true:

sin30°=i=1+1=2
Mars has ten moons = 1 + 1 =2,
Mars has ten moons = Paul Revere made plastic spoons.

and both of the following are false:

1+2=3=1<0.
Ducks have webbed feet = Canada lies south of the equator.

Our truth table definition of = is not really unfamiliar; it captures the same
meaning for “if . . ., then ... ” that you have always used in mathematics. We all
agree that “If x is odd, then x + 1 is even” is a true statement about any integer x. It
would be hopeless to protest that in the case where x is 6, then x + 1 is 7, which is
not even. After all, the claim is only that if x is odd, then x + 1 is even.

We know that “If (1, 3) and (2, 5) are points on a line L, then the line L has slope
2” is true because (5 — 3) / (2 — 1) = 2. The truth values of the antecedent and con-
sequent depend on what line L we are talking about, but in all cases the value of the
conditional sentence is true:

In the case that the line Lis y = 2x + 1, the antecedent and consequent are both
true. This matches the first line of the truth table for P = Q, where P= Q
is true.

In some cases, such as the line y = 2x + 4, the antecedent is false and the con-
sequent is true. This matches the second line of the truth table, where
P = Qis also true.

In other cases, such as y = 3x + 1, we find instances of the fourth line of
the truth table, since both the antecedent and consequent are false. Again,
P = Qis true.

There is no example of the third line of the truth table for P = Q for this sentence;
that is why “If (1, 3) and (2, 5) are points on a line L, then the line L has slope 2” is
true.

Note that in the truth table of P = Q the only line in which both P and P = Q
are true is the first line, in which case Q is also true. In other words, if we know that

The
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both P and P = Q) are true, then we know that Q must be true. This deduction, called
modus ponens, is one of several we will discuss in section 1.4.

Two propositions closely related to the conditional sentence P = (J are its con-
verse and its contrapositive.

DEFINITIONS  For propositions P and Q, the converse of P== Q is
Q = P, and the contrapositive of P = Q is (~Q) = (~P).

For the conditional sentence “If a function f is differentiable at x,, then f is
continuous at xg,” its converse is “If f is continuous at x,, then f is differentiable at
xg,” whereas the contrapositive is “If f is not continuous at x, then f is not differ-
entiable at x,.”” Calculus students know that the converse is a false statement.

If P is the proposition “It is raining here” and Q is “It is cloudy overhead,” then
P = Q is true. Its contrapositive is “If it is not cloudy overhead, then it is not rain-
ing here,” which is also true. However, the converse “If it is cloudy overhead, then
it is raining here” is not a true proposition. We describe the relationships between a
conditional sentence and its contrapositive and converse in the following theorem.

(a)  The propositional form P = @ is equivalent to its contrapositive
(~Q)=(~P).

(b)  The propositional form P = @ is not equivalent to its converse, Q = P.

Proof. A proof requires examining the truth tables:

P Q P=Q ~Q ~P (~Q)=(~P) Q=P
T T T F F T T
F T T F T T F
T F F T F F T
F F T T T T T

Comparing the third and sixth columns, we conclude that P = Q is equivalent to
(~Q) = (~P). Comparing the third and seventh columns, we see they differ in the
second and third lines. Thus, P = Q and Q = P are not equivalent. "

The equivalence of a conditional sentence and its contrapositive will be the basis for
an important proof technique developed in section 1.5 (proof by contraposition).
However, no proof technique will be developed using the converse because the
truth of a conditional sentence cannot be inferred from the truth of its converse. The
converse cannot be used to prove a conditional sentence.

Closely related to the conditional sentence is the biconditional sentence P < Q.
The double arrow <> reminds one of both <= and =, and this is no accident, for
P & Qisequivalentto (P= Q) A(Q= P).
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DEFINITION  For propositions P and Q, the biconditional sentence
P < Q is the proposition “P if and only if Q.” The sentence P < Qistrue
exactly when P and Q have the same truth values.

The truth table for P < Q is

P Q PeQ
T T T
F T F
T F F
F F T

As a form of shorthand, the words “if and only if” are frequently abbreviated to
“iff” in mathematics. The statements

“A rectangle is a square iff the rectangle’s diagonals are perpendicular”

and

“1 +7=6iffﬁ+ﬁ=ﬁ”
are both true biconditional sentences, while

«Lake Erie is in Peru iff 7 is an irrational number”

is a false biconditional sentence.

Any properly stated definition is an example of a biconditional sentence. Al-
though a definition might not include the iff wording, biconditionality does provide
a good test of whether a statement could serve as a definition or just a description.
The sentence “A diameter of a circle is a chord of maximum length” is a correct de-
finition of diameter because “A chord is a diameter iff the chord has maximum
length” is a true proposition. However, the sentences “A sundial is an instrument for
measuring time” and “A square is a quadrilateral whose interior angles are right an-
gles” can be recognized as descriptions rather than definitions.

Because the biconditional sentence P < Q has the value T exactly when the
values of P and Q are the same, we can use the biconditional connective to restate
the meaning of equivalent propositional forms. That is,

The propositional forms P and Q are equivalent precisely when P & Qisa
tautology.

One key to success in mathematics is the ability to replace a statement by a
more useful or enlightening one. This is precisely what you do to “solve” the equa-
tion x2 — 7x = — 12 by the method of factoring:

2—Tx=—-12ex}-Tx+12=0
au—au—®=0
asx—3=0 or x—4=0
ox=3 or x=4

The
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Each statement is simply an equivalent of its predecessor but is more illuminating
as to the solution. The ability to write equivalents is crucial in writing proofs. The
next theorem contains seven important pairs of equivalent propositional forms.
They should be memorized.

For propositions P, Q. and R,

(a) P = Qisequivalentto (~P)V Q.

(b) P Qisequivalentto (P= QN AQ=P).
(c) ~(P A Q) is equivalent to (~P) V (~Q).

(d) ~(PV Q)isequivalent to (~P) A(~0).

(e) ~(P=> Q) is equivalentto P A ~(Q.

(f) ~(P AQ)is equivalent to P => ~Q.

(g0 P A(QVR) isequivalent to (PAQYVI(PAR).
(h) PV (QAR)isequivalentto (PV Q)A(PVR).

You will be asked to give a proof of this theorem in exercise 7. Before plung-
ing into the truth table computations, you should think about the meaning behind
each equivalence. For example, parts (c) and (d), later referred to as De Morgan’s
Laws, are quite similar in form. They distribute negation over conjunction (c) and
over disjunction (d). In (¢), ~(P A Q) is true precisely when P A Q is false. This
happens when one of P or Q is false, or, in other words, when one of ~P or ~Q is
true. Thus, ~(P A Q) is equivalent to (~P) V (~Q). Another way to say this is, “If
you do not have both P and Q, then either you do not have P or you do not have
Q7

Your reasoning for part (e) should be something like this: If ~(P = Q) is true,
then P => Q is false, which forces P to be true and Q to be false. But this means that
both P and ~Q are true, and so P A ~(Q is true. This reasoning can be reversed to
show that it P A ~Q is true, then ~(P = Q) is true. We conclude that ~(P = Q) is
true precisely when P A~Q is true, and thus they are equivalent. For example,
given any fixed triangle ABC, the statement It is not the case that if triangle ABC
has a right angle, then it is equilateral” is equivalent to “Triangle ABC has a right
angle and is not equilateral.”

Recognizing the structure of a sentence and translating the sentence into sym-
bolic form using logical connectives is an aid in determining its truth or falsity. The
translation of sentences into propositional symbols is sometimes very complicated
because English is such a rich and powerful language, with many nuances, and be-
cause the ambiguities we tolerate in English would destroy structure and usefulness
if we allowed them in mathematics. ’

Connectives in English that may be translated symbolically using the condi-
tional or biconditional logical connectives present special problems. The word un-
less is variously used to mean a conditional or its converse or a biconditional. For
example, consider the sentence “The Dolphins will not make the play-offs unless
the Bears win all the rest of their games.” In conversation an explanation can clar-
ify the meaning. Lacking that explanation, here are three of the nonequivalent ways
people translate the sentence, using the symbols D: “The Dolphins make the play-
offs” and B: “The Bears win all the rest of their games.” Dictionaries indicate that
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the conditional meaning of unless is preferred (the first translation), but the speaker
may have meant any of the three:
(~B)=(~D)
(~D)=(~B)
(~B) = (~D)
Sometimes a sentence in English explicitly uses a conditional connective but
the converse is understood, so that the meaning is biconditional. For example, “I
will pay you if you fix my car” and “I will pay you only if you fix my car” both
mean “I will pay you if, but only if, you fix my car.” Contrast this with the situation
in mathematics: “If x = 2, then x is a solution to x2 = 2x” is not to be understood as
a biconditional, because “x is a solution to x2 = 2x” does not imply “x = 2.”
Shown below are some phrases in English that are ordinarily translated by
using the connectives = and ¢, and an example of each.

Use P = ( to translate: Examples:

If P, then Q. Ifa>5,thena > 3.

P implies Q. a> 5 implies a > 3.

P is sufficient for Q. a > § is sufficient for a > 3.

P only if Q. a>5onlyifa>3.

Q, if P. a>3,ifa>3.

Q whenever P. a > 3 whenever a > 5.

Q is necessary for P. a > 3 is necessary fora > 5.

Q, when P. a>3,whena>35.

Use P < Q to translate: Examples.

P if and only if Q. lt] = 2if and only if t* = 4.

P if, but only if, Q. l¢t] = 2 if, but only if, 1> = 4.

P is equivalent to Q. 1] = 2 is equivalent to t> = 4.

P is necessary and sufficient |t| =2 is necessary and sufficient
for Q. fort? = 4.

In the following examples of sentence translations, it is not essential to know
the meaning of all the words because the logical connectives are what concern us.

Examples. Assume that S and G have been specified. The sentence
“§ is compact is sufficient for S to be bounded”
is translated
S is compact = S is bounded.
The sentence
“A necessary condition for a group G to be cyclic is that G is abelian”

is translated

G is cyclic = G is abelian.
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The sentence

“A set S is infinite if S has an uncountable subset”

is translated

S has an uncountable subset = S is infinite.

If we let P denote the proposition “Roses are red” and Q denote the proposition
“Violets are blue,” we can translate the sentence “It is not the case that roses are red,
nor that violets are blue” in at least two ways: ~(P V Q) or (~P) A(~Q). Fortu-
nately, these are equivalent by Theorem 1.2(d). Note that the proposition “Violets
are purple” requires a new symbol, say R, since it expresses a new idea that cannot
be formed from the components P and Q.

The sentence “17 and 35 have no common divisors” shows that the meaning,
and not just the form of the sentence, must be considered in translating; it cannot be
broken up into the two propositions: “17 has no common divisors” and “35 has no
common divisors.” Compare this with the proposition “17 and 35 have digits total-
ing 8,” which can be written as a conjunction.

Example. Suppose b is a real number. “If b is an integer, then b is either even or
odd” may be translated into P = (Q V R), where P is “b is an integer,” @ is “b is
even,” and R is “b is odd.”

Example. Suppose a, b, and p are integers. “If p is a prime number that divides ab,
then p divides a or b” becomes (P A Q)= (RVS),when Pis “pis prime,” Q is “p
divides ab,” R is “p divides a,” and § is “p divides b.”

The convention governing use of parentheses, adopted at the end of section 1.1,
can be extended to the connectives => and < . The connectives ~, A, V, =, and &
are applied in the order listed. That is, ~ applies to the smallest possible proposi-
tion, and so forth, and otherwise parentheses are added left to right. For example,
P=~QV RS is an abbreviation for (P = [(~OVR]) e S, while PV ~Q &
R=S abbreviates [PV (~0)] = (R=1S), and P=Q0=R abbreviates (P = Q)
=R.

Exercises 1.2

1. Identify the antecedent and the consequent for each of the following condi-
tional sentences. Assume that g, b, and f represent some fixed sequence, inte-
ger, or function, respectively.

* (a) If squares have three sides, then triangles have four sides.

(b) If the moon is made of cheese, then 8 is an irrational number.

(¢) b divides 3 only if b divides 9.
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* (d)
(e)
* (f)
(g)

(h)
(@

The differentiability of f is sufficient for f to be continuous.

A sequence a is bounded whenever a is convergent.

A function fis bounded if f is integrable.

1 + 2 = 3is necessary for | + 1 =2.

The fish bite only when the moon is full.

A grade point average of 3.0 is sufficient to graduate with honors.

% 2. Write the converse and contrapositive of each conditional sentence in exer-

cise 1.

3. Identify the antecedent and consequent for each conditional sentence in the
following statements from this book.

(a)
(0
(e)
(g)

Theorem 1.3(a), section 1.3 (b) Exercise 5(a), section 1.5
Theorem 2.4, section 2.1 (d) Theorem 2.12, section 2.5
Theorem 2.20, section 2.6 (f) Theorem 3.8, section 3.4
Theorem 4.3, section 4.2 (h) Corollary 5.7(a), section 5.1

4. Which of the following conditional sentences are true?

* (a)
(b)
* (c)
(d)
* (e)

)
(2
(h)
{®

If triangles have three sides, then squares have four sides.

If a hexagon has six sides, then the moon is made of cheese.
If7+6=14,then 5 + 5 = 10.

If 5 <2,then 10 < 7.

If one interior angle of a right triangle is 92°, then the other interior angle
is 88°.

If Euclid’s birthday was April 2, then rectangles have four sides.

5 is prime if \/5 is not irrational.

1 + 1 = 2 is sufficient for 3 > 6.

Horses have four legs whenever September 15 falls on a Saturday.

5.  Which of the following are true?

* (a)
(b)
* (c)
@)
(e)
(f)

@

Triangles have three sides iff squares have four sides.

7+5=12iff L +1=2. 4

bis even iff b + 1 is odd. (Assume that b is some fixed integer.)
5+6=6+5iff 7+ 1=10.

A parallelogram has three sides iff 27 is prime.

The Eiffel Tower is in Paris if and only if the chemical symbol for he-
lium is H.

6. Make truth tables for these propositional forms.

(a)
* (b)
* ()
(@
(e
(f)

P=(QAP).

(~P)=Q)V({@=P).

(~Q)=(Q=P).

PVQA=(PAQ).
(PAQ)V(QAR)=PVR.
(Q=HAQ@=R]=[PVQ)=(SVR)]

Prove Theorem 1.2 by constructing truth tables for each equivalence.

Rewrite each of the following sentences using logical connectives. Assume
that each symbol £, n, x, S, B represents some fixed object.
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10.

11.

12.

13.
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(a) If f has a relative minimum at xq and if f is differentiable at x,, then
f'xg) = 0.

(b) If nis prime, then n = 2 or n is odd.

(¢) A number x is real and not rational whenever x is irrational.

(d Ifx=1lorx=—1,then|x| =1.

(e) f has acritical point at x iff f'(xo) = O or f'(x,) does not exist.

(f) S is compact iff § is closed and bounded.

(g) Bisinvertible is a necessary and sufficient condition for det B # 0.

(h) 6=n—3onlyifn>4orn>1i0.

(i) xis Cauchy implies x is convergent.

Show that the following pairs of statements are equivalent.
(a (PvQ@)=Rand ~R=(~PA~Q)

Md) (PAQ=Rand(PA~R)=~Q

(¢ P=(QARand(~QV~R)=~P §
(d P=(QVRand(PA~R)=Q |
&) P=0Q)=Rand(PA~Q)VR ] |
(f) Pe2Qand(~PVOA(~QVP) e

4
Give, if possible, an example of a true conditional sentence for which ? i
(a) the converse is true. (b) the converse is false. e ':i
(c) the contrapositive is false. (d) the contrapositive is true.
Give, if possible, an example of a false conditional sentence for which
(a) the converse is true. (b) the converse is false.
(¢) the contrapositive is true. (d) the contrapositive is false. [t

Give the converse and contrapositive of each sentence of exercise 8(a), (b),
(¢), and (d). Tell whether each converse and contrapositive is true or false.

The inverse, or opposite, of the conditional sentence P = Q is ~P = ~().

(a) Show that P => Q and its inverse are not equivalent forms.

(b) For what values of the propositions P and Q are P = Q and its inverse
both true?

(¢) Which is equivalent to the converse of a conditional sentence, the con-
trapositive of its inverse, or the inverse of its contrapositive?

Determine whether each of the following is a tautology, a contradiction, or
neither.

(@ [(P=Q)=P]=P.

(b) P2PAPVQ).

(¢) P=Q0=PA~0.

d P=[P=(P=0Q)]

(&) PA(QV~Q)=P.

(f) [QAP=Q)]=P.

g PeQde~(~PVOV(~PAQ).
(h) [P=(QVR]=2=R)VR=P).
i) PAPeDA~Q

J) PVQ=Q=P

(k) [P=(QAR]=[R=F=Q)]

1) [P=(QAR]=R=>CF=0Q).




