
SDLC

 i

SDLC

 i

About the Tutorial

SDLC stands for Software Development Life Cycle. SDLC is a process that consists of a

series of planned activities to develop or alter the Software Products. This tutorial will give

you an overview of the SDLC basics, SDLC models available and their application in the

industry.

This tutorial also elaborates on other related methodologies like Agile, RAD and

Prototyping.

Audience

This tutorial is relevant to all those professionals contributing in any manner towards

Software Product Development and its release. It is a handy reference for the quality

stakeholders of a Software project and the program/project managers. By the end of this

tutorial, the readers will develop a comprehensive understanding of SDLC and its related

concepts and will be able to select and follow the right model for any given Software

project.

Prerequisites

There are no specific prerequisites for this SDLC tutorial and any software professional can

go through this tutorial to get a bigger picture of how the high-quality software applications

and products are designed. A good understanding of programming or testing or project

management will give you an added advantage and help you gain maximum from this

tutorial.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

SDLC

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. SDLC – OVERVIEW ... 1

What is SDLC? ... 1

SDLC Models ... 3

2. SDLC – WATERFALL MODEL ... 4

Waterfall Model ─ Design .. 4

Waterfall Model ─ Application .. 5

Waterfall Model ─ Advantages .. 6

Waterfall Model ─ Disadvantages ... 6

3. SDLC – ITERATIVE MODEL .. 7

Iterative Model ─ Design ... 7

Iterative Model ─ Application .. 8

Iterative Model ─ Pros and Cons ... 8

4. SDLC – SPIRAL MODEL ... 10

Spiral Model ─ Design .. 10

Spiral Model Application ... 11

Spiral Model ─ Pros and Cons .. 12

5. SDLC – V-MODEL ... 13

V-Model ─ Design .. 13

V-Model ─ Verification Phases .. 14

SDLC

 iii

Coding Phase ... 14

Validation Phases .. 15

V- Model ─ Application .. 15

V-Model ─ Pros and Cons .. 16

6. SDLC – BIG BANG MODEL .. 17

Big Bang Model ─ Design and Application ... 17

Big Bang Model ─ Pros and Cons ... 17

7. SDLC – AGILE MODEL .. 18

What is Agile? ... 18

Agile Vs Traditional SDLC Models .. 20

Agile Model ─ Pros and Cons ... 20

8. SDLC – RAD MODEL ... 22

What is RAD? .. 22

RAD Model Design .. 22

RAD Model Vs Traditional SDLC ... 24

RAD Model ─ Application .. 24

RAD Model ─ Pros and Cons .. 24

9. SDLC – SOFTWARE PROTOTYPE MODEL .. 26

What is Software Prototyping? ... 26

Software Prototyping ─ Types ... 27

Software Prototyping ─ Application .. 28

Software Prototyping ─ Pros and Cons .. 28

SDLC

 1

Software Development Life Cycle (SDLC) is a process used by the software industry to

design, develop and test high quality softwares. The SDLC aims to produce a high-quality

software that meets or exceeds customer expectations, reaches completion within times

and cost estimates.

 SDLC is the acronym of Software Development Life Cycle.

 It is also called as Software Development Process.

 SDLC is a framework defining tasks performed at each step in the software

development process.

 ISO/IEC 12207 is an international standard for software life-cycle processes. It

aims to be the standard that defines all the tasks required for developing and

maintaining software.

What is SDLC?

SDLC is a process followed for a software project, within a software organization. It

consists of a detailed plan describing how to develop, maintain, replace and alter or

enhance specific software. The life cycle defines a methodology for improving the quality

of software and the overall development process.

The following figure is a graphical representation of the various stages of a typical SDLC.

1. SDLC – Overview

SDLC

 2

A typical Software Development Life Cycle consists of the following stages:

Stage 1: Planning and Requirement Analysis

Requirement analysis is the most important and fundamental stage in SDLC. It is

performed by the senior members of the team with inputs from the customer, the sales

department, market surveys and domain experts in the industry. This information is then

used to plan the basic project approach and to conduct product feasibility study in the

economical, operational and technical areas.

Planning for the quality assurance requirements and identification of the risks associated

with the project is also done in the planning stage. The outcome of the technical feasibility

study is to define the various technical approaches that can be followed to implement the

project successfully with minimum risks.

Stage 2: Defining Requirements

Once the requirement analysis is done the next step is to clearly define and document the

product requirements and get them approved from the customer or the market analysts.

This is done through an SRS (Software Requirement Specification) document which

consists of all the product requirements to be designed and developed during the project

life cycle.

Stage 3: Designing the Product Architecture

SRS is the reference for product architects to come out with the best architecture for the

product to be developed. Based on the requirements specified in SRS, usually more than

one design approach for the product architecture is proposed and documented in a DDS -

Design Document Specification.

This DDS is reviewed by all the important stakeholders and based on various parameters

as risk assessment, product robustness, design modularity, budget and time constraints,

the best design approach is selected for the product.

A design approach clearly defines all the architectural modules of the product along with

its communication and data flow representation with the external and third party modules

(if any). The internal design of all the modules of the proposed architecture should be

clearly defined with the minutest of the details in DDS.

Stage 4: Building or Developing the Product

In this stage of SDLC the actual development starts and the product is built. The

programming code is generated as per DDS during this stage. If the design is performed

in a detailed and organized manner, code generation can be accomplished without much

hassle.

Developers must follow the coding guidelines defined by their organization and

programming tools like compilers, interpreters, debuggers, etc. are used to generate the

code. Different high level programming languages such as C, C++, Pascal, Java and PHP

are used for coding. The programming language is chosen with respect to the type of

software being developed.

SDLC

 3

Stage 5: Testing the Product

This stage is usually a subset of all the stages as in the modern SDLC models, the testing

activities are mostly involved in all the stages of SDLC. However, this stage refers to the

testing only stage of the product where product defects are reported, tracked, fixed and

retested, until the product reaches the quality standards defined in the SRS.

Stage 6: Deployment in the Market and Maintenance

Once the product is tested and ready to be deployed it is released formally in the

appropriate market. Sometimes product deployment happens in stages as per the business

strategy of that organization. The product may first be released in a limited segment and

tested in the real business environment (UAT- User acceptance testing).

Then based on the feedback, the product may be released as it is or with suggested

enhancements in the targeting market segment. After the product is released in the

market, its maintenance is done for the existing customer base.

SDLC Models

There are various software development life cycle models defined and designed which are

followed during the software development process. These models are also referred as

"Software Development Process Models". Each process model follows a Series of steps

unique to its type to ensure success in the process of software development.

Following are the most important and popular SDLC models followed in the industry:

 Waterfall Model

 Iterative Model

 Spiral Model

 V-Model

 Big Bang Model

Other related methodologies are Agile Model, RAD Model, Rapid Application Development

and Prototyping Models.

SDLC

 4

The Waterfall Model was the first Process Model to be introduced. It is also referred to as

a linear-sequential life cycle model. It is very simple to understand and use. In a

waterfall model, each phase must be completed before the next phase can begin and there

is no overlapping in the phases. The Waterfall model is the earliest SDLC approach that

was used for software development.

The waterfall Model illustrates the software development process in a linear sequential

flow. This means that any phase in the development process begins only if the previous

phase is complete. In this waterfall model, the phases do not overlap.

Waterfall Model ─ Design

Waterfall approach was first SDLC Model to be used widely in Software Engineering to

ensure success of the project. In "The Waterfall" approach, the whole process of software

development is divided into separate phases. In this Waterfall model, typically, the

outcome of one phase acts as the input for the next phase sequentially.

The following illustration is a representation of the different phases of the Waterfall Model.

2. SDLC – Waterfall Model

SDLC

 5

The sequential phases in Waterfall model are:

 Requirement Gathering and analysis: All possible requirements of the system

to be developed are captured in this phase and documented in a requirement

specification document.

 System Design: The requirement specifications from first phase are studied in this

phase and the system design is prepared. This system design helps in specifying

hardware and system requirements and helps in defining the overall system

architecture.

 Implementation: With inputs from the system design, the system is first

developed in small programs called units, which are integrated in the next phase.

Each unit is developed and tested for its functionality, which is referred to as Unit

Testing.

 Integration and Testing: All the units developed in the implementation phase

are integrated into a system after testing of each unit. Post integration the entire

system is tested for any faults and failures.

 Deployment of system: Once the functional and non-functional testing is done;

the product is deployed in the customer environment or released into the market.

 Maintenance: There are some issues which come up in the client environment. To

fix those issues, patches are released. Also to enhance the product some better

versions are released. Maintenance is done to deliver these changes in the

customer environment.

All these phases are cascaded to each other in which progress is seen as flowing steadily

downwards (like a waterfall) through the phases. The next phase is started only after the

defined set of goals are achieved for previous phase and it is signed off, so the name

"Waterfall Model". In this model, phases do not overlap.

Waterfall Model ─ Application

Every software developed is different and requires a suitable SDLC approach to be followed

based on the internal and external factors. Some situations where the use of Waterfall

model is most appropriate are:

 Requirements are very well documented, clear and fixed.

 Product definition is stable.

 Technology is understood and is not dynamic.

 There are no ambiguous requirements.

 Ample resources with required expertise are available to support the product.

 The project is short.

SDLC

 6

Waterfall Model ─ Advantages

The advantages of waterfall development are that it allows for departmentalization and

control. A schedule can be set with deadlines for each stage of development and a product

can proceed through the development process model phases one by one.

Development moves from concept, through design, implementation, testing, installation,

troubleshooting, and ends up at operation and maintenance. Each phase of development

proceeds in strict order.

Some of the major advantages of the Waterfall Model are as follows:

 Simple and easy to understand and use

 Easy to manage due to the rigidity of the model. Each phase has specific

deliverables and a review process.

 Phases are processed and completed one at a time.

 Works well for smaller projects where requirements are very well understood.

 Clearly defined stages.

 Well understood milestones.

 Easy to arrange tasks.

 Process and results are well documented.

Waterfall Model ─ Disadvantages

The disadvantage of waterfall development is that it does not allow much reflection or

revision. Once an application is in the testing stage, it is very difficult to go back and

change something that was not well-documented or thought upon in the concept stage.

The major disadvantages of the Waterfall Model are as follows:

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of

changing. So, risk and uncertainty is high with this process model.

 It is difficult to measure progress within stages.

 Cannot accommodate changing requirements.

 Adjusting scope during the life cycle can end a project.

 Integration is done as a "big-bang. at the very end, which doesn't allow identifying

any technological or business bottleneck or challenges early.

SDLC

 7

In the Iterative model, iterative process starts with a simple implementation of a small set

of the software requirements and iteratively enhances the evolving versions until the

complete system is implemented and ready to be deployed.

An iterative life cycle model does not attempt to start with a full specification of

requirements. Instead, development begins by specifying and implementing just part of

the software, which is then reviewed to identify further requirements. This process is then

repeated, producing a new version of the software at the end of each iteration of the

model.

Iterative Model ─ Design

Iterative process starts with a simple implementation of a subset of the software

requirements and iteratively enhances the evolving versions until the full system is

implemented. At each iteration, design modifications are made and new functional

capabilities are added. The basic idea behind this method is to develop a system through

repeated cycles (iterative) and in smaller portions at a time (incremental).

The following illustration is a representation of the Iterative and Incremental model:

Iterative and Incremental development is a combination of both iterative design or

iterative method and incremental build model for development. "During software

development, more than one iteration of the software development cycle may be in

progress at the same time." This process may be described as an "evolutionary acquisition"

or "incremental build" approach."

In this incremental model, the whole requirement is divided into various builds. During

each iteration, the development module goes through the requirements, design,

implementation and testing phases. Each subsequent release of the module adds function

to the previous release. The process continues till the complete system is ready as per the

requirement.

3. SDLC – Iterative Model

SDLC

 8

The key to a successful use of an iterative software development lifecycle is rigorous

validation of requirements, and verification & testing of each version of the software

against those requirements within each cycle of the model. As the software evolves

through successive cycles, tests must be repeated and extended to verify each version of

the software.

Iterative Model ─ Application

Like other SDLC models, Iterative and incremental development has some specific

applications in the software industry. This model is most often used in the following

scenarios:

 Requirements of the complete system are clearly defined and understood.

 Major requirements must be defined; however, some functionalities or requested

enhancements may evolve with time.

 There is a time to the market constraint.

 A new technology is being used and is being learnt by the development team while

working on the project.

 Resources with needed skill sets are not available and are planned to be used on

contract basis for specific iterations.

 There are some high-risk features and goals which may change in the future.

Iterative Model ─ Pros and Cons

The advantage of this model is that there is a working model of the system at a very early

stage of development, which makes it easier to find functional or design flaws. Finding

issues at an early stage of development enables to take corrective measures in a limited

budget.

The disadvantage with this SDLC model is that it is applicable only to large and bulky

software development projects. This is because it is hard to break a small software system

into further small serviceable increments/modules.

The advantages of the Iterative and Incremental SDLC Model are as follows:

 Some working functionality can be developed quickly and early in the life cycle.

 Results are obtained early and periodically.

 Parallel development can be planned.

 Progress can be measured.

 Less costly to change the scope/requirements.

 Testing and debugging during smaller iteration is easy.

 Risks are identified and resolved during iteration; and each iteration is an easily

managed milestone.

SDLC

 9

 Easier to manage risk - High risk part is done first.

 With every increment, operational product is delivered.

 Issues, challenges and risks identified from each increment can be utilized/applied

to the next increment.

 Risk analysis is better.

 It supports changing requirements.

 Initial Operating time is less.

 Better suited for large and mission-critical projects.

 During the life cycle, software is produced early which facilitates customer

evaluation and feedback.

The disadvantages of the Iterative and Incremental SDLC Model are as follows:

 More resources may be required.

 Although cost of change is lesser, but it is not very suitable for changing

requirements.

 More management attention is required.

 System architecture or design issues may arise because not all requirements are

gathered in the beginning of the entire life cycle.

 Defining increments may require definition of the complete system.

 Not suitable for smaller projects.

 Management complexity is more.

 End of project may not be known which is a risk.

 Highly skilled resources are required for risk analysis.

 Projects progress is highly dependent upon the risk analysis phase.

SDLC

 10

The spiral model combines the idea of iterative development with the systematic,

controlled aspects of the waterfall model. This Spiral model is a combination of iterative

development process model and sequential linear development model i.e. the waterfall

model with a very high emphasis on risk analysis. It allows incremental releases of the

product or incremental refinement through each iteration around the spiral.

Spiral Model ─ Design

The spiral model has four phases. A software project repeatedly passes through these

phases in iterations called Spirals.

Identification

This phase starts with gathering the business requirements in the baseline spiral. In the

subsequent spirals as the product matures, identification of system requirements,

subsystem requirements and unit requirements are all done in this phase.

This phase also includes understanding the system requirements by continuous

communication between the customer and the system analyst. At the end of the spiral,

the product is deployed in the identified market.

Design

The Design phase starts with the conceptual design in the baseline spiral and involves

architectural design, logical design of modules, physical product design and the final design

in the subsequent spirals.

Construct or Build

The Construct phase refers to production of the actual software product at every spiral. In

the baseline spiral, when the product is just thought of and the design is being developed

a POC (Proof of Concept) is developed in this phase to get customer feedback.

Then in the subsequent spirals with higher clarity on requirements and design details a

working model of the software called build is produced with a version number. These builds

are sent to the customer for feedback.

Evaluation and Risk Analysis

Risk Analysis includes identifying, estimating and monitoring the technical feasibility and

management risks, such as schedule slippage and cost overrun. After testing the build, at

the end of first iteration, the customer evaluates the software and provides feedback.

The following illustration is a representation of the Spiral Model, listing the activities in

each phase.

4. SDLC – Spiral Model

SDLC

 11

Based on the customer evaluation, the software development process enters the next

iteration and subsequently follows the linear approach to implement the feedback

suggested by the customer. The process of iterations along the spiral continues throughout

the life of the software.

Spiral Model Application

The Spiral Model is widely used in the software industry as it is in sync with the natural

development process of any product, i.e. learning with maturity which involves minimum

risk for the customer as well as the development firms.

The following pointers explain the typical uses of a Spiral Model:

 When there is a budget constraint and risk evaluation is important.

 For medium to high-risk projects.

 Long-term project commitment because of potential changes to economic priorities

as the requirements change with time.

 Customer is not sure of their requirements which is usually the case.

 Requirements are complex and need evaluation to get clarity.

 New product line which should be released in phases to get enough customer

feedback.

 Significant changes are expected in the product during the development cycle.

SDLC

 12

Spiral Model ─ Pros and Cons

The advantage of spiral lifecycle model is that it allows elements of the product to be

added in, when they become available or known. This assures that there is no conflict with

previous requirements and design.

This method is consistent with approaches that have multiple software builds and releases

which allows making an orderly transition to a maintenance activity. Another positive

aspect of this method is that the spiral model forces an early user involvement in the

system development effort.

On the other side, it takes a very strict management to complete such products and there

is a risk of running the spiral in an indefinite loop. So, the discipline of change and the

extent of taking change requests is very important to develop and deploy the product

successfully.

The advantages of the Spiral SDLC Model are as follows:

 Changing requirements can be accommodated.

 Allows extensive use of prototypes.

 Requirements can be captured more accurately.

 Users see the system early.

 Development can be divided into smaller parts and the risky parts can be developed

earlier which helps in better risk management.

The disadvantages of the Spiral SDLC Model are as follows:

 Management is more complex.

 End of the project may not be known early.

 Not suitable for small or low risk projects and could be expensive for small projects.

 Process is complex

 Spiral may go on indefinitely.

 Large number of intermediate stages requires excessive documentation.

SDLC

 13

The V-model is an SDLC model where execution of processes happens in a sequential

manner in a V-shape. It is also known as Verification and Validation model.

The V-Model is an extension of the waterfall model and is based on the association of a

testing phase for each corresponding development stage. This means that for every single

phase in the development cycle, there is a directly associated testing phase. This is a

highly-disciplined model and the next phase starts only after completion of the previous

phase.

V-Model ─ Design

Under the V-Model, the corresponding testing phase of the development phase is planned

in parallel. So, there are Verification phases on one side of the ‘V’ and Validation phases

on the other side. The Coding Phase joins the two sides of the V-Model.

The following illustration depicts the different phases in a V-Model of the SDLC.

5. SDLC – V-Model

SDLC

 14

V-Model ─ Verification Phases

There are several Verification phases in the V-Model, each of these are explained in detail

below.

Business Requirement Analysis

This is the first phase in the development cycle where the product requirements are

understood from the customer’s perspective. This phase involves detailed communication

with the customer to understand his expectations and exact requirement. This is a very

important activity and needs to be managed well, as most of the customers are not sure

about what exactly they need. The acceptance test design planning is done at this

stage as business requirements can be used as an input for acceptance testing.

System Design

Once you have the clear and detailed product requirements, it is time to design the

complete system. The system design will have the understanding and detailing the

complete hardware and communication setup for the product under development. The

system test plan is developed based on the system design. Doing this at an earlier stage

leaves more time for the actual test execution later.

Architectural Design

Architectural specifications are understood and designed in this phase. Usually more than

one technical approach is proposed and based on the technical and financial feasibility the

final decision is taken. The system design is broken down further into modules taking up

different functionality. This is also referred to as High Level Design (HLD).

The data transfer and communication between the internal modules and with the outside

world (other systems) is clearly understood and defined in this stage. With this

information, integration tests can be designed and documented during this stage.

Module Design

In this phase, the detailed internal design for all the system modules is specified, referred

to as Low Level Design (LLD). It is important that the design is compatible with the

other modules in the system architecture and the other external systems. The unit tests

are an essential part of any development process and helps eliminate the maximum faults

and errors at a very early stage. These unit tests can be designed at this stage based on

the internal module designs.

Coding Phase

The actual coding of the system modules designed in the design phase is taken up in the

Coding phase. The best suitable programming language is decided based on the system

and architectural requirements.

The coding is performed based on the coding guidelines and standards. The code goes

through numerous code reviews and is optimized for best performance before the final

build is checked into the repository.

SDLC

 15

Validation Phases

The different Validation Phases in a V-Model are explained in detail below.

Unit Testing

Unit tests designed in the module design phase are executed on the code during this

validation phase. Unit testing is the testing at code level and helps eliminate bugs at an

early stage, though all defects cannot be uncovered by unit testing.

Integration Testing

Integration testing is associated with the architectural design phase. Integration tests are

performed to test the coexistence and communication of the internal modules within the

system.

System Testing

System testing is directly associated with the system design phase. System tests check

the entire system functionality and the communication of the system under development

with external systems. Most of the software and hardware compatibility issues can be

uncovered during this system test execution.

Acceptance Testing

Acceptance testing is associated with the business requirement analysis phase and

involves testing the product in user environment. Acceptance tests uncover the

compatibility issues with the other systems available in the user environment. It also

discovers the non-functional issues such as load and performance defects in the actual

user environment.

V- Model ─ Application

V- Model application is almost the same as the waterfall model, as both the models are of

sequential type. Requirements have to be very clear before the project starts, because it

is usually expensive to go back and make changes. This model is used in the medical

development field, as it is strictly a disciplined domain.

The following pointers are some of the most suitable scenarios to use the V-Model

application.

 Requirements are well defined, clearly documented and fixed.

 Product definition is stable.

 Technology is not dynamic and is well understood by the project team.

 There are no ambiguous or undefined requirements.

 The project is short.

SDLC

 16

V-Model ─ Pros and Cons

The advantage of the V-Model method is that it is very easy to understand and apply. The

simplicity of this model also makes it easier to manage. The disadvantage is that the model

is not flexible to changes and just in case there is a requirement change, which is very

common in today’s dynamic world, it becomes very expensive to make the change.

The advantages of the V-Model method are as follows:

 This is a highly-disciplined model and Phases are completed one at a time.

 Works well for smaller projects where requirements are very well understood.

 Simple and easy to understand and use.

 Easy to manage due to the rigidity of the model. Each phase has specific

deliverables and a review process.

The disadvantages of the V-Model method are as follows:

 High risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of

changing.

 Once an application is in the testing stage, it is difficult to go back and change a

functionality.

 No working software is produced until late during the life cycle.

SDLC

 17

The Big Bang model is an SDLC model where we do not follow any specific process. The

development just starts with the required money and efforts as the input, and the output

is the software developed which may or may not be as per customer requirement. This

Big Bang Model does not follow a and there is very little planning required. Even the

customer is not sure about what exactly he wants and the requirements are implemented

on the fly without much analysis.

Usually this model is followed for small projects where the development teams are very

small.

Big Bang Model ─ Design and Application

The Big Bang Model comprises of focusing all the possible resources in the software

development and coding, with very little or no planning. The requirements are understood

and implemented as they come. Any changes required may or may not need to revamp

the complete software.

This model is ideal for small projects with one or two developers working together and is

also useful for academic or practice projects. It is an ideal model for the product where

requirements are not well understood and the final release date is not given.

Big Bang Model ─ Pros and Cons

The advantage of this Big Bang Model is that it is very simple and requires very little or no

planning. Easy to manage and no formal procedure are required.

However, the Big Bang Model is a very high risk model and changes in the requirements

or misunderstood requirements may even lead to complete reversal or scraping of the

project. It is ideal for repetitive or small projects with minimum risks.

The advantages of the Big Bang Model are as follows:

 This is a very simple model

 Little or no planning required

 Easy to manage

 Very few resources required

 Gives flexibility to developers

 It is a good learning aid for new comers or students.

The disadvantages of the Big Bang Model are as follows:

 Very High risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Can turn out to be very expensive if requirements are misunderstood.

6. SDLC – Big Bang Model

SDLC

 18

Agile SDLC model is a combination of iterative and incremental process models with focus

on process adaptability and customer satisfaction by rapid delivery of working software

product. Agile Methods break the product into small incremental builds. These builds are

provided in iterations. Each iteration typically lasts from about one to three weeks. Every

iteration involves cross functional teams working simultaneously on various areas like –

 Planning

 Requirements Analysis

 Design

 Coding

 Unit Testing and

 Acceptance Testing.

At the end of the iteration, a working product is displayed to the customer and important

stakeholders.

What is Agile?

Agile model believes that every project needs to be handled differently and the existing

methods need to be tailored to best suit the project requirements. In Agile, the tasks are

divided to time boxes (small time frames) to deliver specific features for a release.

Iterative approach is taken and working software build is delivered after each iteration.

Each build is incremental in terms of features; the final build holds all the features required

by the customer.

Here is a graphical illustration of the Agile Model:

7. SDLC – Agile Model

SDLC

 19

The Agile thought process had started early in the software development and started

becoming popular with time due to its flexibility and adaptability.

The most popular Agile methods include Rational Unified Process (1994), Scrum (1995),

Crystal Clear, Extreme Programming (1996), Adaptive Software Development, Feature

Driven Development, and Dynamic Systems Development Method (DSDM) (1995). These

are now collectively referred to as Agile Methodologies, after the Agile Manifesto was

published in 2001.

Following are the Agile Manifesto principles:

 Individuals and interactions – In Agile development, self-organization and

motivation are important, as are interactions like co-location and pair

programming.

 Working software – Demo working software is considered the best means of

communication with the customers to understand their requirements, instead of

just depending on documentation.

 Customer collaboration – As the requirements cannot be gathered completely in

the beginning of the project due to various factors, continuous customer interaction

is very important to get proper product requirements.

 Responding to change – Agile Development is focused on quick responses to

change and continuous development.

SDLC

 20

Agile Vs Traditional SDLC Models

Agile is based on the adaptive software development methods, whereas the

traditional SDLC models like the waterfall model is based on a predictive approach.

Predictive teams in the traditional SDLC models usually work with detailed planning and

have a complete forecast of the exact tasks and features to be delivered in the next few

months or during the product life cycle.

Predictive methods entirely depend on the requirement analysis and planning done in

the beginning of cycle. Any changes to be incorporated go through a strict change control

management and prioritization.

Agile uses an adaptive approach where there is no detailed planning and there is clarity

on future tasks only in respect of what features need to be developed. There is feature

driven development and the team adapts to the changing product requirements

dynamically. The product is tested very frequently, through the release iterations,

minimizing the risk of any major failures in future.

Customer Interaction is the backbone of this Agile methodology, and open

communication with minimum documentation are the typical features of Agile

development environment. The agile teams work in close collaboration with each other

and are most often located in the same geographical location.

Agile Model ─ Pros and Cons

Agile methods are being widely accepted in the software world recently. However, this

method may not always be suitable for all products. Here are some pros and cons of the

Agile model.

The advantages of the Agile Model are as follows:

 Is a very realistic approach to software development.

 Promotes teamwork and cross training.

 Functionality can be developed rapidly and demonstrated.

 Resource requirements are minimum.

 Suitable for fixed or changing requirements

 Delivers early partial working solutions.

 Good model for environments that change steadily.

 Minimal rules, documentation easily employed.

 Enables concurrent development and delivery within an overall planned context.

 Little or no planning required.

 Easy to manage.

 Gives flexibility to developers.

SDLC

 21

The disadvantages of the Agile Model are as follows:

 Not suitable for handling complex dependencies.

 More risk of sustainability, maintainability and extensibility.

 An overall plan, an agile leader and agile PM practice is a must without which it will

not work.

 Strict delivery management dictates the scope, functionality to be delivered, and

adjustments to meet the deadlines.

 Depends heavily on customer interaction, so if customer is not clear, team can be

driven in the wrong direction.

 There is a very high individual dependency, since there is minimum documentation

generated.

 Transfer of technology to new team members may be quite challenging due to lack

of documentation.

SDLC

 22

The RAD (Rapid Application Development) model is based on prototyping and iterative

development with no specific planning involved. The process of writing the software itself

involves the planning required for developing the product.

Rapid Application Development focuses on gathering customer requirements through

workshops or focus groups, early testing of the prototypes by the customer using iterative

concept, reuse of the existing prototypes (components), continuous integration and rapid

delivery.

What is RAD?

Rapid application development is a software development methodology that uses minimal

planning in favor of rapid prototyping. A prototype is a working model that is functionally

equivalent to a component of the product.

In the RAD model, the functional modules are developed in parallel as prototypes and are

integrated to make the complete product for faster product delivery. Since there is no

detailed preplanning, it makes it easier to incorporate the changes within the development

process.

RAD projects follow iterative and incremental model and have small teams comprising of

developers, domain experts, customer representatives and other IT resources working

progressively on their component or prototype.

The most important aspect for this model to be successful is to make sure that the

prototypes developed are reusable.

RAD Model Design

RAD model distributes the analysis, design, build and test phases into a series of short,

iterative development cycles.

Following are the various phases of the RAD Model:

Business Modeling

The business model for the product under development is designed in terms of flow of

information and the distribution of information between various business channels. A

complete business analysis is performed to find the vital information for business, how it

can be obtained, how and when is the information processed and what are the factors

driving successful flow of information.

Data Modeling

The information gathered in the Business Modeling phase is reviewed and analyzed to form

sets of data objects vital for the business. The attributes of all data sets is identified and

defined. The relation between these data objects are established and defined in detail in

relevance to the business model.

8. SDLC – RAD Model

SDLC

 23

Process Modeling

The data object sets defined in the Data Modeling phase are converted to establish the

business information flow needed to achieve specific business objectives as per the

business model. The process model for any changes or enhancements to the data object

sets is defined in this phase. Process descriptions for adding, deleting, retrieving or

modifying a data object are given.

Application Generation

The actual system is built and coding is done by using automation tools to convert process

and data models into actual prototypes.

Testing and Turnover

The overall testing time is reduced in the RAD model as the prototypes are independently

tested during every iteration. However, the data flow and the interfaces between all the

components need to be thoroughly tested with complete test coverage. Since most of the

programming components have already been tested, it reduces the risk of any major

issues.

The following illustration describes the RAD Model in detail.

SDLC

 24

RAD Model Vs Traditional SDLC

The traditional SDLC follows a rigid process models with high emphasis on requirement

analysis and gathering before the coding starts. It puts pressure on the customer to sign

off the requirements before the project starts and the customer doesn’t get the feel of the

product as there is no working build available for a long time.

The customer may need some changes after he gets to see the software. However, the

change process is quite rigid and it may not be feasible to incorporate major changes in

the product in the traditional SDLC.

The RAD model focuses on iterative and incremental delivery of working models to the

customer. This results in rapid delivery to the customer and customer involvement during

the complete development cycle of product reducing the risk of non-conformance with the

actual user requirements.

RAD Model ─ Application

RAD model can be applied successfully to the projects in which clear modularization is

possible. If the project cannot be broken into modules, RAD may fail.

The following pointers describe the typical scenarios where RAD can be used:

 RAD should be used only when a system can be modularized to be delivered in an

incremental manner.

 It should be used if there is a high availability of designers for modeling.

 It should be used only if the budget permits use of automated code generating

tools.

 RAD SDLC model should be chosen only if domain experts are available with

relevant business knowledge.

 Should be used where the requirements change during the project and working

prototypes are to be presented to customer in small iterations of 2-3 months.

RAD Model ─ Pros and Cons

RAD model enables rapid delivery as it reduces the overall development time due to the

reusability of the components and parallel development. RAD works well only if high skilled

engineers are available and the customer is also committed to achieve the targeted

prototype in the given time frame. If there is commitment lacking on either side the model

may fail.

The advantages of the RAD Model are as follows:

 Changing requirements can be accommodated.

 Progress can be measured.

 Iteration time can be short with use of powerful RAD tools.

 Productivity with fewer people in a short time.

 Reduced development time.

SDLC

 25

 Increases reusability of components.

 Quick initial reviews occur.

 Encourages customer feedback.

 Integration from very beginning solves a lot of integration issues.

The disadvantages of the RAD Model are as follows:

 Dependency on technically strong team members for identifying business

requirements.

 Only system that can be modularized can be built using RAD.

 Requires highly skilled developers/designers.

 High dependency on modeling skills.

 Inapplicable to cheaper projects as cost of modeling and automated code

generation is very high.

 Management complexity is more.

 Suitable for systems that are component based and scalable.

 Requires user involvement throughout the life cycle.

 Suitable for project requiring shorter development times.

SDLC

 26

The Software Prototyping refers to building software application prototypes which displays

the functionality of the product under development, but may not actually hold the exact

logic of the original software.

Software prototyping is becoming very popular as a software development model, as it

enables to understand customer requirements at an early stage of development. It helps

get valuable feedback from the customer and helps software designers and developers

understand about what exactly is expected from the product under development.

What is Software Prototyping?

Prototype is a working model of software with some limited functionality. The prototype

does not always hold the exact logic used in the actual software application and is an extra

effort to be considered under effort estimation.

Prototyping is used to allow the users evaluate developer proposals and try them out

before implementation. It also helps understand the requirements which are user specific

and may not have been considered by the developer during product design.

Following is a stepwise approach explained to design a software prototype.

Basic Requirement Identification

This step involves understanding the very basics product requirements especially in terms

of user interface. The more intricate details of the internal design and external aspects like

performance and security can be ignored at this stage.

Developing the initial Prototype

The initial Prototype is developed in this stage, where the very basic requirements are

showcased and user interfaces are provided. These features may not exactly work in the

same manner internally in the actual software developed. While, the workarounds are used

to give the same look and feel to the customer in the prototype developed.

Review of the Prototype

The prototype developed is then presented to the customer and the other important

stakeholders in the project. The feedback is collected in an organized manner and used

for further enhancements in the product under development.

Revise and Enhance the Prototype

The feedback and the review comments are discussed during this stage and some

negotiations happen with the customer based on factors like – time and budget constraints

and technical feasibility of the actual implementation. The changes accepted are again

incorporated in the new Prototype developed and the cycle repeats until the customer

expectations are met.

9. SDLC – Software Prototype Model

SDLC

 27

Prototypes can have horizontal or vertical dimensions. A Horizontal prototype displays the

user interface for the product and gives a broader view of the entire system, without

concentrating on internal functions. A Vertical prototype on the other side is a detailed

elaboration of a specific function or a sub system in the product.

The purpose of both horizontal and vertical prototype is different. Horizontal prototypes

are used to get more information on the user interface level and the business

requirements. It can even be presented in the sales demos to get business in the market.

Vertical prototypes are technical in nature and are used to get details of the exact

functioning of the sub systems. For example, database requirements, interaction and data

processing loads in a given sub system.

Software Prototyping ─ Types

There are different types of software prototypes used in the industry. Following are the

major software prototyping types used widely:

Throwaway/Rapid Prototyping

Throwaway prototyping is also called as rapid or close ended prototyping. This type of

prototyping uses very little efforts with minimum requirement analysis to build a

prototype. Once the actual requirements are understood, the prototype is discarded and

the actual system is developed with a much clear understanding of user requirements.

Evolutionary Prototyping

Evolutionary prototyping also called as breadboard prototyping is based on building actual

functional prototypes with minimal functionality in the beginning. The prototype developed

forms the heart of the future prototypes on top of which the entire system is built. By

using evolutionary prototyping, the well-understood requirements are included in the

prototype and the requirements are added as and when they are understood.

Incremental Prototyping

Incremental prototyping refers to building multiple functional prototypes of the various

sub-systems and then integrating all the available prototypes to form a complete system.

Extreme Prototyping

Extreme prototyping is used in the web development domain. It consists of three

sequential phases. First, a basic prototype with all the existing pages is presented in the

HTML format. Then the data processing is simulated using a prototype services layer.

Finally, the services are implemented and integrated to the final prototype. This process

is called Extreme Prototyping used to draw attention to the second phase of the process,

where a fully functional UI is developed with very little regard to the actual services.

SDLC

 28

Software Prototyping ─ Application

Software Prototyping is most useful in development of systems having high level of user

interactions such as online systems. Systems which need users to fill out forms or go

through various screens before data is processed can use prototyping very effectively to

give the exact look and feel even before the actual software is developed.

Software that involves too much of data processing and most of the functionality is internal

with very little user interface does not usually benefit from prototyping. Prototype

development could be an extra overhead in such projects and may need lot of extra efforts.

Software Prototyping ─ Pros and Cons

Software prototyping is used in typical cases and the decision should be taken very

carefully so that the efforts spent in building the prototype add considerable value to the

final software developed. The model has its own pros and cons discussed as follows.

The advantages of the Prototyping Model are as follows:

 Increased user involvement in the product even before its implementation.

 Since a working model of the system is displayed, the users get a better

understanding of the system being developed.

 Reduces time and cost as the defects can be detected much earlier.

 Quicker user feedback is available leading to better solutions.

 Missing functionality can be identified easily.

 Confusing or difficult functions can be identified.

The advantages of the Prototyping Model are as follows:

 Risk of insufficient requirement analysis owing to too much dependency on the

prototype.

 Users may get confused in the prototypes and actual systems.

 Practically, this methodology may increase the complexity of the system as scope

of the system may expand beyond original plans.

 Developers may try to reuse the existing prototypes to build the actual system,

even when it is not technically feasible.

 The effort invested in building prototypes may be too much if it is not monitored

properly.

