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Abstract 

Relativistic quantum field theory (QFT) describes fundamental interactions between elementary particles 

occurring in an energy range up to several hundreds GeV. Extending QFT beyond this range needs to 

account for the imbalance produced by unsuppressed quantum fluctuations and for the emergence of non-

equilibrium phase transitions. Our underlying premise is that fractal operators become mandatory tools 

when exploring evolution from low-energy physics to the non-equilibrium regime of QFT. Canonical 

quantization using fractal operators leads to the concept of “complexon”, a fractional extension of quantum 

excitations and a likely candidate for non-baryonic Dark Matter. A discussion on the duality between this 

new field-theoretic framework and General Relativity is included.  
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1. Introduction and motivation 

Quantum field theory (QFT) is an approximate description of particle phenomena 

occurring in an energy range below few hundreds GeV. For this reason, QFT is 

considered an effective field theory which deliberately ignores the substructure and the 

degrees of freedom observable above this upper bound [1]. A number of recent studies 

have suggested, from a variety of standpoints, that physics in the TeV regime of QFT 

may be a manifestation of complex dynamics [2-10 and related references 22-30]. For 

example, it has been argued that the onset of large and impulsive vacuum fluctuations, 
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along with strong-gravity effects emerging from the short-distance behavior of QFT, 

warrant the passage from the standard tools of classical calculus to fractional calculus [8-

10]. In general, use of conventional differential operators rests on the tacit assumption 

that a clear separation exists between the macroscopic and the microscopic levels of 

physical description. Implicit in this assumption is the condition that dynamical processes 

on the microscopic scale are stable. If this condition fails to be true, dynamical 

instabilities can develop on arbitrarily long time-scales and the macroscopic description 

of phenomena in terms of ordinary differential operators is no longer valid [13, 17]. Such 

a scenario may be typical for physics in the TeV regime where far-from equilibrium 

statistical processes are expected to dominate. Let us briefly elaborate on this point with 

the help of an idealized quantum-mechanical experiment. Consider an isolated two-state 

quantum system whose state vector ψ  at time 0t =  is given by [21] 

                                                         0 10 1c cψ = +                                                      (1) 

where 0  and 1  denote the two orthogonal states and 0c , 1c  are complex numbers.  

Assume that the quantum vacuum, acting as source of large and steady fluctuations, may 

be modeled as a two-state reservoir with vectors 0v  and 1v . Bring the quantum 

vacuum in contact with the system at some instant 0 0t >  and maintain the contact for an 

interval 0INTt t> . The coupling of the two objects through unitary evolution leads to a 

time-dependent state  

                                           0 0 1 1( ) 0 v 1 vt c cψ = ⊗ + ⊗                                           (2)   

where ⊗  stands for the tensor product and 0INTt t t≥ > . It is seen that the system and 

vacuum become entangled on a time-scale commensurate with INTt  and one can no 
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longer treat (1) as describing an object with a well-defined quantum identity. In contrast 

to the low-energy regime of quantum theory, the high-energy dynamics of the vacuum is 

characterized by a large number of time-scales that are not reducible to a single average 

through coarse-graining. Under the most general circumstances, the vacuum dynamics 

may be regarded as an exotic stochastic process that can be accordingly modeled as Levy 

noise [11-12]. A characteristic attribute of the Levy distribution is that it has infinite 

second moments and gives rise to long-range correlated dynamics. It follows from these 

considerations that the ensemble system + vacuum evolves on multiple scales. This line 

of reasoning reproduces, in essence, the statistical physics argument for replacing 

ordinary derivatives and integrals with fractal operators [13]. As noted, the primary 

motivation for assuming that quantum fluctuations follow Levy statistics lies on the 

continuous regime of impulsive excitations generated by the short-distance limit of QFT.  

To the best of our knowledge, this work represents the first attempt to build a field theory 

on the basis of fractional differential and integral operators. We caution that our 

contribution is meant to serve as an informal introduction and not as a rigorous and 

comprehensive treatment of the topic.  

The paper is organized in the following way: sections 3 and 4 develop canonical 

quantization for free scalar and Dirac fields using fractal operators. Section 5 is devoted 

to a brief discussion on the dual aspect of the new framework and General Relativity. 

Last section contains a short summary of results and future prospects.   

2. Notation, assumptions and conventions 

We introduce here the main notations and assumptions that underlie the remainder of the 

paper: 
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i) the summation convention is applied on repeated upper and lower indices and Planck’s 

constant is set to 1= .  

ii) motivated by the growing evidence for complexity in field theory, our focus is the 

behavior of fractional dynamical systems [14]. These systems are characterized by non-

integer powers of generalized coordinates and momenta  

                                                   q q αα = ,    p p αα =                                                     (3) 

in which 0α > . As stated, we study the dynamics of free fractional scalar and Dirac 

fields. To avoid cluttering the notation, the corresponding field variables are respectively 

designated as 

                                                       qαϕ = ,     qαψ =                                                       (4)  

iii) the hat symbol “^” is used to indicate operators. 

iv) analysis is limited to real or complex functions of the dimensionless field variable 

0q ≥  for which fractional derivatives and integrals exist. We adopt hereafter the 

regularized expression for fractional derivative [18-19, 25] 

                            
[ ( )] 1 ( )[ ( )]

(1 ) ( )

qf q f dD f q
q q

α
α

α α

ξ ξ
α ξ ξ−∞

∂ ∂
= =

∂ Γ − ∂ −∫                                     (5) 

where 0 1α< < . The fractional momentum operator is introduced in Appendix A by 

analogy with conventional formulation of quantum mechanics. It may be shown that 

fractional momentum is linear and hermitean. The latter property follows from an 

extended definition of the conjugate operator, as detailed in (A7) through (A10). 

v) the generalized Lagrangian for a classical fractional system depending on n  fields, 

their fractional derivatives of orders lω  and n  locally defined exponents 

( )l xα ( 1, 2,..., )l n=  is defined by 
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            1 2 1 2 1 1 2 2( ), ( )..., ( ) ( ) ( )( ) ( ) ( ) ( )
1 2 1 2( , ,..., ; , ,..., ; )n n n nx x x x xx x x x

G G n nL L q q q D q D q D q tα α α α ω αα α ω α ω α=      (6)   

vi) quantum field theory based on (6) is abbreviated throughout as c-QFT.      

vii) the commutator and anti-commutator for any pair of arbitrary operators (  ,f g ) are, 

respectively  

                                                               [ , ]f g f g g f= −                                                      (7)  
                                                                                                                                            

                                                              { , }f g f g g f= +                                                      (8) 

viii) state vectors and inner products are formulated using Dirac notation.  

ix) the vacuum state is considered empty and is labeled with the zero-particle ket 0 . 

x) dynamical processes described by c-QFT are Markovian and, as such, have no time 

memory.  

xi) greek letters , , 0,1, 2,3µ ν σ =  denote space-time indices whereas Latin letters 

, , 1, 2,3i j k =  label the set of three spatial coordinates.                                                           

3. Scalar bosons in c-QFT   

The classical Lagrangian for the free scalar field theory in 3+1 dimensions reads [16, 20, 

26-28]    

                                                        2 2L mµ
µϕ ϕ ϕ= ∂ ∂ −                                                    (9) 

and leads to the following expression for the field momentum  

                                                      
( )

L
t

t

ϕπ ϕ
∂ ∂

= =
∂ ∂∂
∂

                                                       (10) 

It is known that the standard technique of canonical quantization promotes a classical 

field theory to a quantum field theory by converting the field and momentum variables 
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into operators. To gain full physical insight with minimal complications in formalism, we 

work below in 0+1 dimensions. Define the field and momentum operators as 

ϕ ϕ ϕ→ =  
                                                                                                                                         (11) 

 i i D
αα α
απ π

ϕ
∂

→ = − ≡ −
∂

 

Without loss of generality, we set 1m =  in (9). The Hamiltonian becomes 

                                     22 2 21 1 1 ( )
2 2 2

H H D
α αα ϕ π ϕ→ = − + = +                                    (12)                                                           

The state of the field in the Schrödinger representation is described by a complex-valued 

wavefunction ( ) |ϕ ϕΨ = Ψ  whose conjugate-square is the probability density for ϕ . 

This wavefunction evolves according to the time-dependent Schrödinger equation  

                                                   ( ) ( )ti H
α

ϕ ϕ− ∂ Ψ = Ψ                                                     (13) 

The commutation relations corresponding to (11) may be written as (per Appendix B) 

[ ], 0ϕ ϕ =  

                                                    , [ , ] 0D D
α α α απ π  = =  

                                              (14)  

   ( 1)
[ , ] i

α α
ϕ π απ

−
=  

By analogy with the standard treatment of harmonic oscillator in quantum mechanics, it 

is convenient to work with the destruction and creation operators defined through [20, 27-

28]   

  1 [ ]
2

a i
αα

ϕ π= +  

                                                                                                                                         (15) 
  1 [ ]

2
a i

αα
ϕ π

+
= −  
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Straightforward algebra shows that these operators satisfy the following commutation 

rules 

   [ , ] [ , ] 0a a a a
α α+ +

= =  
                                                                                                                                         (16)         

     ( 1)
[ , ] [ , ]a a i

α αα α
ϕ π απ

−+
= = −  

The second relation in (16) leads to  

                                                     ( 1)1
2

H a a
α αα α

απ
−+

= +                                                  (17)              

In the limit 1α =  we recover the quantum mechanics of the harmonic oscillator, namely 

                                                              1
2

H a a
+

= +                                                          (18)     

Next, consider the commutator  [ , ]N a
α +

, where   N a a
+

  designates the number operator. 

Making use of (16) and (17), we obtain: 

                                                       ( 1)
[ , ]N a a

α αα α
απ

−+ +
=                                                 (19) 

Thus 

                                    ( 1)
0 ( [ , ] ) 0 0N a a N N a a

α α α αα α α α
α π

−+ + + +
= + =                         (20)           

The eigenvalue equation corresponding to the above relation has the form 

                                                   ( 1) ( 1)0 0D a
αα αλ

+− −=                                                (21) 

and it is solved in Appendix C. Under the most general circumstances, ( 1) 0n
αλ − >  

( 1, 2,..)n =  form a set of real numbers. As a result, we are led to conclude that  0a
α+

 

represents an eigenvector of the number operator having fractional eigenvalues ( 1)
n
αλ − . 

Stated differently, the action of the creation operator a
α+

on the empty vacuum is to 
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produce a particle that carries a fractional quantum of energy. Following the general 

arguments of the Introduction, we may call these fractional excitations of the scalar field 

“complexons”. According to Appendix C, since ( 1)
n
αλ −  form a discrete set of eigenvalues, 

it is appropriate to regard the complexon as a fractional particle with a discrete energy 

spectrum. We close this section with the observation that, on account of (17) and (18), the 

term  ( 1)1
2

α
απ

−
plays the role of a zero-point operator. In contrast with conventional 

quantum theory, it is apparent that the dynamical contribution of the background vacuum 

in c-QFT amounts to more than a constant additive term to the Hamiltonian. 

4. Fermions in c-QFT 

The classical Dirac equation describing free fermion fields in 3+1 dimension is [16, 20, 

26-28] 

                                                       ( ) 0i mµ
µγ ψ∂ − =                                                      (22)     

where µγ  are 4 x 4 matrices given by  

                                           0 1 0
0 1

γ
 

=  − 
       

0
0

i
i

i

σ
γ

σ
 

=  
− 

                                      (23) 

and ψ  is a 4-component spinor which transforms under the spin ½ representation of the 

Lorentz group. The Dirac equation may be derived from the Lagrangian 

                                       [ ( ) ( ) ]
2D
iL mµ µ

µ µψγ ψ ψ γ ψ ψψ= ∂ − ∂ −                                   (24) 

in which the adjoint spinor is defined as 

                                                              0ψ ψ γ+=                                                            (25) 
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To simplify the formalism and capture the essentials of the argument, we choose to work 

again in 0+1 dimensions and set 1m = . Let the spinor field be expanded in a basis 

containing the eigenstates of 0γ  that is 

                                                      ψ ψ ψ+ −= + + −                                                    (26) 

where  

1
0
 

+ =  
 

      
0
1
 

− =  
 

 

(27) 
( )1 0+ =     ( )0 1− =  

The conjugate momentum of the spinor field is  

                                                      
( )

DL i

t

ψψ
+∂

Π = =
∂

∂
∂

                                                      (28)  

Consider now the coordinate Schrödinger representation for Dirac fields, whereby an arbitrary 

state Φ  is represented by the wavefunction ( ) |ψ ψΦ = Φ . By analogy with the previous 

section, we cast Dirac field theory in the operator language. Let us take the state ψ  to be an 

eigenstate of the field operator ψ  with eigenvalue ψ  

                                                                ψ ψ ψ ψ=                                                              (29) 

The field conjugate momentum is then  

                                                         i iψ
ψ

+ ∂
Π = =

∂
                                                       (30)   

Creation and destruction operators are introduced as follows [27-28] 

 b cψ
+

= + + −   

                                                          b cψ
+ +
= + + −                                                     (31)  
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 b cψ
+

= + − −   

Here, b  and c  are the fermion and antifermion destruction operators, whereas b
+ and 

c
+ denote the fermion and antifermion creation operators. It is known that, to ensure that 

the total fermion energy is positive-definite, Dirac field theory is formulated using 

anticommutators rather than commutators [16, 26-28]. On account of (31) and of the fact 

that fermions and antifermions are always produced or annihilated in pairs, the field-

momentum anti-commutator is given by 

                                             { , } { , } { , } { , }i b b c cψ ψ ψ
+ + +

Π ≡ = +                                          (32)                      

Here, according to (8) 

                                                          { , }ψ ψ ψΠ Π+Π                                                    (33)                                     

The Hamiltonian is proportional to the total number of particles  ( )ψψ  and assumes the 

form [27-28] 

                                                    ( 1)DH b b c cψψ
+ +

= = + −                                                 (34)    

Moreover, a new operator may be introduced in the theory as being proportional to the 

difference of the number of fermions and number of antifermions. This is known as the 

charge operator and is represented by  

                                                0 ( 1)Q e e b b c cψγ ψ
+ +

= − +                                               (35) 

where e  is the electron charge. Proceeding in a way similar to the previous section, the 

conjugate momentum for Dirac c-QFT may be defined as  

                                                 i i iD
αα α α
αψ

ψ

+ ∂
Π = = =

∂
                                             (36)    
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From (33) and (36), the corresponding field momentum anti-commutator reads  

                                                      ( 1 )
{ , } 2

α α α
ψ ψ α

−
Π = Π + Π                                             (37) 

Let us assume, for the sake of simplicity, that the contribution of the second term in (37) 

outweighs the contribution of the first term, i.e. 
( 1)

( 1)

α α

α αψ α
ψ ψ

−

−

∂ Φ ∂ Φ
∂ ∂

 . In addition, 

according to (32), there is a symmetric contribution of the fermion and anti-fermion 

number operators in the structure of  { , }ψ Π . Thus we set  

                                                ( 1)1{ , } { , }
2

b b c c
αα α

α
−+ +

= = Π                                             (38) 

A logical way to proceed from here is by writing down the anti-commutation relations 

involving the number and creation operators for fermions and anti-fermions. Retracing 

the sequence of steps (19) to (21), we arrive at the equation  

                                                  ( 1) ( 1)0 0D b
αα αη

+− −=                                                  (39) 

whose eigenvalues ( 1)αη −  form a set of positive and fractional numbers.  Considering the 

same arguments that lead to (21), fermion field excitations generated by  ( 1)αη −  may be 

also interpreted as “complexons”. Moreover, it follows from (35) and (39) that Q  

generates fractional fermion charges. The emergence of complexons and fractional Dirac 

charges may be seen as a dynamic manifestation of the high-energy regime that do not 

have a counterpart in conventional QFT. 

5. Classical limit of c-QFT and General Relativity 

Given the topological roots of exponent α  [8, 29] and its dynamical role in the 

development of our model, it is of interest to explore how fractal attributes encoded by α  

may be mapped onto the underlying metric of the space-time manifold. To this end, 
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consider the Lagrangian of the classical scalar field theory (9) in four-dimensional space-

time  

                                        2 2 2 2( ) ( )k
k

L t x mϕ ϕ ϕ= ∂ ∂ − ∂ ∂ −∑                                      (40)  

The generalized Lagrangian built from (40) assumes the form 

                                            2 2 2 2( )
kG xk

L t D mα αϕ ϕ ϕ= ∂ ∂ − −∑                                        (41) 

An alternate expression for the fractional derivative 
kxDαϕ  is [18] 

                             
0

(0) 1( ) ( ) ( )
(1 ) (1 )

k

k

x
k

x k k
k

xD x x d
x

α
α αϕ ϕϕ ξ ξ ξ

α α

−
− ∂

= + −
Γ − Γ − ∂∫                        (42) 

Let the coordinate of point kξ  ( 0 k kxξ< ≤ ) be defined as an arbitrary fraction of the 

endpoint coordinate 1kx  , that is, k ksxξ = , with 1s ≤ . Assuming, for the sake of 

simplicity, that the first term in (42) is negligible in comparison with the second term, we 

derive the following approximation 

                                     (1 )
1

(1 )( ) ( )
(1 )k

k
x k k

k

sD
s s x

α
αα

α

ξ ϕϕ ξ ξ
α

−
−

−

− ∂
≈

Γ − ∂
                                      (43) 

and 

                                        2 ( ) ( )[ ( )][ ( )]
kx k ik k i kk

i

D g
x x

α α ϕ ϕϕ ξ ξ ξ ξ∂ ∂
≈

∂ ∂
                                   (44) 

Up to a product of multiplicative factors independent of kξ , the metric ( )ik kgα ξ is given by 

                                              2(1 )( ) ( )ik k ik kk k ik kg gα α αξ η ξ η ξ −=                                            (45) 

where ikη  is the Minkowski metric of Special Relativity. 

On account of (44) and (45), we are led to conclude that the classical limit of c-QFT for 

free scalar bosons may be formally interpreted as a classical field theory in curved space-
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time. It can be seen that (45) reduces to the metric of Special Relativity when the fractal 

topology of space-time makes the transition to a smooth topology, i.e. in the classical 

limit 1α → . The equivalent metric (45) is subject to the constraint briefly discussed in 

Appendix D. 

6. Concluding remarks 

We have laid out the groundwork for complex-Quantum Field Theory using the 

methodology of fractal differential and integral operators. Our framework has been 

developed with emphasis on canonical quantization and has led to the following 

conclusions: i) the Fock space of c-QFT includes fractional numbers of particles and 

antiparticles per state, and ii) classical limit of c-QFT is equivalent to field theory in 

curved space-time. The last finding suggests that c-QFT may be regarded as a natural 

bridge between conventional Quantum Field Theory and General Relativity. Future 

research efforts may be directed towards developing the complexon algebra, 

understanding the connection between fractional statistics [15, 20], non-commutative 

field theory and c-QFT, as well as formulating predictions that can be tracked and tested 

at the Large Hadron Collider and future accelerators.    

Appendix A 

Fractional derivative of order 0 1α< <  described by (5) may be alternatively expressed 

as a convolution, i.e. 

                                                  ( ) ( ) ( )D f q f q qα
α
+

> = ∗Λ                                                 (A1)                                

where 

                                                 ( )
(1 )
qq

α

α α

−
+Λ =

Γ −
  ( 0q > )                                            (A2)          
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Similarly we can introduce 

                                                  ( ) ( ) ( )D f q f q qα
α
−

< = ∗Λ                                                (A3) 

with 

                                       ( ) ( )
(1 )
qq q

α

α α α

−
− +Λ = Λ − =

Γ −
   ( 0q < )                                     (A4)      

Let  

                                                       ( ) ( )p q iD q
α αψ ψ>= −                                                  (A5)  

stand for the fractional momentum operator working on the wavefunction ( )qψ . In 

accordance with the standard formalism of quantum mechanics, its average is given by 

                                             ( ) ( ) ( )p q iD q dq
α αψ ψ

∞
∗

>
−∞

= −∫                                           (A6)     

To keep the notation simple, we omit throughout the text the subscript “>”. Hence we set 

                                                               D Dα α
> =                                                           (A7) 

Fractional momentum is a linear operator since it satisfies  


1 2p

α
ψ ψ=  

                                                 
1 2 1 2( )p p p

α α α
ψ ψ ψ ψ+ = +                                              (A8) 

  ( )C p p C
α α
ψ ψ=  

where C is an arbitrary constant. The integration by parts formula [19, 25] 

                               ( )( ) ( ) ( )( ) ( )q iD q dq q iD q dqα αψ ψ ψ ψ
∞ ∞

∗ ∗
> <

−∞ −∞

− = −∫ ∫                             (A9)          

implies that the fractional momentum operator is hermitean if (and only if) we adopt the 

following definition 
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                                                ( ) ( )iD iD i Dα α α∗ ∗
< > >− = − =                                              (A10)  

Appendix B: Derivation of the commutator    ( 1)
[ , ] i

α α
ϕ π απ

−
=  

Start from (11) and the formal commutator definition 

                                        [ , ] ( )[ ( )]i D D
α α αϕ π ϕ ϕ ϕ ϕ ϕ= − − ⋅                                     (B1) 

and apply the generalized Leibniz rule [13, 18] 

                      ( 1)

0
( )

1
m m

m
D D D D D

m
α α α αα α
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∞
− −

=

   
⋅ = = +   

   
∑                   (B2)  

in which 

                                               ( 1)
( 1 ) (1 )m m m

α α
α

  Γ +
=  Γ + − Γ + 

                                            (B3)             

Therefore 

                                                     ( 1)
1 ( )
α α α

α
  Γ +

= =  Γ 
                                                   (B4)           

From (B1) to (B4) we derive 

                                                            ( 1)
[ , ] i

α α
ϕ π απ

−
=                                                    (B5) 

Appendix C:  Fractional eigenvalue equation   ( 1)
0 0a a

α α αλπ
α

− + +
=  

Consider 

                                                  ( 1) ( 1)0 0D a a
α αα αλ

+ +− −=                                            (C1) 

where 

                                                             ( 1) iα λλ
α

− =                                                          (C2)                  

Here, we have employed the notation 
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                                                              ( )a a
α α

ϕ
+ +
=                                                        (C3) 

The general solution of the above fractional eigenvalue equation subject to the boundary 

condition [18]  

                                               ( 2)
1( )D a a

α αα + +− =   as 0ϕ →                                            (C4)                                        

is represented by 

                                             2 ( 1) ( 1)
1 1, 1( ) [ ]a a E

α α α α α
α αϕ λ ϕ

+ + − − −
− −=                                     (C5)                                                                    

in which , ( )E xα β  denotes the Mittag-Lefler function of order ,α β . To determine the 

eigenvalue spectrum ( 1)
n
αλ − , we use a boundary condition that fixes the behavior of 

a
α+

and 
1( )a

α+
 as the scalar field ϕ  approaches its upper limit 0ϕ ϕ→ , namely 

                                                   0 0( ) 0 ( ) 0a A
α αϕ ϕ

+ +=                                               (C6) 

On the other hand we have, starting from the boundary condition definition (C4),  

                                          
1 1( ) ( ) 0 ( ) 0a A
α αϕ ϕ

+ +=  as 0ϕ →                                      (C7) 

where it is assumed that 

                                                        1 1 0(0) ( )A Aα α ϕ+ +=                                                    (C8) 

This ansatz leads to the following implicit equation for ( 1)
n
αλ −  

                                      2 ( 1) 1
0 1 0 1, 1 0( ) (0) [ ]A A Eα α α α α

α αϕ ϕ λ ϕ+ + − − −
− −=                                  (C9)                    

Appendix D 

The equivalent metric must transform in a way that maintains invariance of the space-

time interval under arbitrary coordinate changes ( )x x x→ . Hence, in general 

                                 ( )( ) ( ) ( )( ) ( )g x d x d x g x dx dx
α λ σα α α µ α ν α

µνλσ =                                 (D1)      
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where α  labels the exponent corresponding to the reference frame x . On account of (5), 

the partial derivative ( ) ( )x x
λα µ α α∂ ∂  may be defined as 

                                     ( ) 1 ( )
(1 )( ) ( )

xx x d
x x x

λ
α µ α µ α

λ λ λα α

ξ
α ξ−∞

∂ ∂
=
Γ −∂ ∂ −

∫                                    (D2) 

The formal connection between ( )g x
α

λσ  and ( )g xα
µν  may be consequently obtained upon 

replacing (D2) in (D1). 
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