
0 

 

  



i 

 

About the Tutorial 

CICS stands for Customer Information Control System. CICS was developed in 

1968 by IBM. CICS allows users to develop and execute online application in an 

MVS environment. CICS has become the most commonly used server for Internet 

applications. 

CICS is a transaction processing system which is also called as Online Transaction 

Processing (OLTP) Software. CICS is a data communication system that can 

support a network containing hundreds of terminals.  

Audience 

This tutorial is designed for software programmers who would like to understand 

the concepts of CICS starting from scratch. This tutorial will give you enough 

understanding on CICS from where you can take yourself to higher levels of 

expertise.  

Prerequisites 

Before proceeding with this tutorial, you should have a basic understanding of 

COBOL programming. A basic knowledge of MVS and TSO/ISPF subsystem will 

help you grasp the concepts of CICS better.   

Disclaimer & Copyright 

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials 

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, 

distribute, or republish any contents or a part of contents of this e-book in any 

manner without written consent of the publisher. We strive to update the contents 

of our website and tutorials as timely and as precisely as possible, however, the 

contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides 

no guarantee regarding the accuracy, timeliness, or completeness of our website 

or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 

 

 

 

 

 

 

mailto:contact@tutorialspoint.com


ii 

 

Table of Contents 

About the Tutorial .................................................................................................................................. i 

Audience ................................................................................................................................................ i 

Prerequisites .......................................................................................................................................... i 

Disclaimer & Copyright ........................................................................................................................... i 

Table of Contents .................................................................................................................................. ii 

1. CICS – OVERVIEW ................................................................................................................... 1 

Functions of CICS ................................................................................................................................... 1 

Features of CICS ..................................................................................................................................... 2 

2. CICS – ENVIRONMENT .......................................................................................................... 3 

CICS Environment .................................................................................................................................. 3 

Data Communication Services ............................................................................................................... 4 

Data Handling Services .......................................................................................................................... 4 

Application Programming Services ........................................................................................................ 4 

Monitoring Services ............................................................................................................................... 5 

3. CICS – BASIC TERMS .............................................................................................................. 6 

IBM 3270 Terminal ................................................................................................................................ 6 
CRT Monitor .......................................................................................................................................... 6 
Keyboard ............................................................................................................................................... 7 

Transaction ............................................................................................................................................ 8 

Task ....................................................................................................................................................... 8 

LUW....................................................................................................................................................... 9 

Application ............................................................................................................................................ 9 

4. CICS – NUCLEUS .................................................................................................................... 10 

Control Programs ................................................................................................................................ 10 
TCP ...................................................................................................................................................... 10 
KCP ...................................................................................................................................................... 10 



iii 

 

PCP ...................................................................................................................................................... 10 
FCP ...................................................................................................................................................... 10 
SCP ...................................................................................................................................................... 11 

Control Tables ..................................................................................................................................... 11 
TCT ...................................................................................................................................................... 11 
PCT ...................................................................................................................................................... 11 
PPT ...................................................................................................................................................... 11 
FCT ...................................................................................................................................................... 12 

Transaction .......................................................................................................................................... 12 

Transaction Life Cycle .......................................................................................................................... 13 

5. CICS – TRANSACTIONS ....................................................................................................... 16 

CESN .................................................................................................................................................... 16 

CEDA ................................................................................................................................................... 16 

CEMT ................................................................................................................................................... 16 

CECI ..................................................................................................................................................... 17 

CEDF .................................................................................................................................................... 18 

CMAC .................................................................................................................................................. 18 

CESF ..................................................................................................................................................... 18 

CEBR .................................................................................................................................................... 18 

CICS Concepts ...................................................................................................................................... 19 
Multitasking ........................................................................................................................................ 19 
Multi-threading ................................................................................................................................... 19 
Re-entrancy......................................................................................................................................... 19 
Quasi-reentrancy ................................................................................................................................ 19 

6. CICS – COBOL BASICS .......................................................................................................... 20 

CICS Program ....................................................................................................................................... 20 

Program Compilation .......................................................................................................................... 22 

7. CICS – BMS .............................................................................................................................. 24 

Formatted Screen ................................................................................................................................ 24 

BMS Basic Terms ................................................................................................................................. 25 
Map ..................................................................................................................................................... 25 



iv 

 

Mapset ................................................................................................................................................ 25 
BMS Macros ........................................................................................................................................ 25 

8. CICS – MAP .............................................................................................................................. 31 

Physical Map ....................................................................................................................................... 31 

Symbolic Map ...................................................................................................................................... 32 

Skipper and Stopper Field .................................................................................................................... 32 
Skipper Field ....................................................................................................................................... 32 
Stopper Field ....................................................................................................................................... 33 

Attribute Byte...................................................................................................................................... 33 

Modified Data Tag ............................................................................................................................... 34 

Send Map ............................................................................................................................................ 34 

Receive Map ........................................................................................................................................ 36 

Mapset Execution ................................................................................................................................ 36 

9. CICS – INTERFACE BLOCK ................................................................................................. 38 

Restricted COBOL Verbs ...................................................................................................................... 38 

Execute Interface Block ....................................................................................................................... 38 

EIB Fields ............................................................................................................................................. 39 

CICS Programs Classification ................................................................................................................ 39 
Non Conversion Programs .................................................................................................................. 39 

Conversion Program ............................................................................................................................ 40 

10. CICS – PSEUDO PROGRAMMING ...................................................................................... 43 

Pseudo-Conversion Program ............................................................................................................... 43 

Pseudo Conversion Techniques ........................................................................................................... 44 
COMMAREA ........................................................................................................................................ 44 
DFHCOMMAREA ................................................................................................................................. 45 

Pseudo Code ........................................................................................................................................ 45 

Advantages of Pseudo Conversion ....................................................................................................... 48 

Return Statements .............................................................................................................................. 48 
Return-1 .............................................................................................................................................. 48 



v 

 

Return-2 .............................................................................................................................................. 48 

11. CICS – AID KEYS .................................................................................................................... 49 

Validating AID keys .............................................................................................................................. 49 

DFHAID ................................................................................................................................................ 49 

Cursor Positioning ............................................................................................................................... 51 

Dynamically Modifying Attributes ....................................................................................................... 51 

12. CICS – FILE HANDLING ....................................................................................................... 54 

Random Access .................................................................................................................................... 54 

Read .................................................................................................................................................... 54 
Read Command Options ..................................................................................................................... 56 
Read Command Exceptions ................................................................................................................ 57 

Write ................................................................................................................................................... 57 
Write Command Exceptions ............................................................................................................... 58 

Rewrite ................................................................................................................................................ 59 
Rewrite Command Exceptions ............................................................................................................ 60 

Delete .................................................................................................................................................. 60 
Delete Command Exceptions .............................................................................................................. 62 

Sequential Access ................................................................................................................................ 62 

STARTBR .............................................................................................................................................. 62 

READNEXT / READPREV ....................................................................................................................... 63 

RESETBR .............................................................................................................................................. 63 

ENDBR ................................................................................................................................................. 64 

13. CICS – ERROR HANDLING .................................................................................................. 65 

CICS Errors ........................................................................................................................................... 65 

Error Handling Commands ................................................................................................................... 65 

Handle Condition ................................................................................................................................. 65 

Handle Abend ...................................................................................................................................... 66 

Abend .................................................................................................................................................. 67 



vi 

 

Ignore Condition .................................................................................................................................. 68 

Nohandle ............................................................................................................................................. 68 

14. CICS – CONTROL OPERATIONS ........................................................................................ 70 

Program Logical Levels ........................................................................................................................ 70 

XCTL .................................................................................................................................................... 71 

Link ...................................................................................................................................................... 72 

Load .................................................................................................................................................... 72 

Release ................................................................................................................................................ 73 

Return ................................................................................................................................................. 73 

Interval Control Operations ................................................................................................................. 73 
ASKTIME .............................................................................................................................................. 73 
FORMATTIME ...................................................................................................................................... 73 

15. CICS – TEMPORARY STORAGE ......................................................................................... 75 

COMMAREA ........................................................................................................................................ 75 

Common Work Area ............................................................................................................................ 75 

Transaction Work Area ........................................................................................................................ 75 

Temporary Storage Queue .................................................................................................................. 75 

WRITEQ TS ........................................................................................................................................... 76 

READQ TS ............................................................................................................................................ 76 

DELETEQ TS ......................................................................................................................................... 77 

Transient Data Queue .......................................................................................................................... 77 

WRITEQ TD .......................................................................................................................................... 77 

READQ TD ............................................................................................................................................ 77 

DELETEQ TD ......................................................................................................................................... 78 

16. CICS – INTERCOMMUNICATION ...................................................................................... 79 

Benefits of Intercommunication .......................................................................................................... 79 



vii 

 

Basic Terminologies ............................................................................................................................. 79 

Intercommunication Methods ............................................................................................................. 80 

17. CICS – STATUS CODES ......................................................................................................... 81 

18. CICS – INTERVIEW QUESTIONS ....................................................................................... 82 



1 

 

CICS is a DB/DC system which is used in online applications. CICS was developed 

because batch operating system can execute only batch programs. CICS programs 

can be written in COBOL, C, C++, Java, etc. These days, users want information 

within seconds and in real time. To provide such quick service, we need a system 

which can process information online. CICS allows users to communicate with the 

back-end system to get the desired information. Examples of online programs 

include online banking system, flight reservation, etc. Following image shows the 

components of CICS and how they are inter-related:  

 

Functions of CICS 

The main functions performed by CICS in an application are as follows: 

 CICS manages requests from concurrent users in an application. 

 

 Although, multiple users are working on CICS system but it gives a feel to 

user that he is the single user only. 

 

 CICS gives the access to data files for reading or updating them in an 

application. 

 

 

 

1. CICS – OVERVIEW 



2 

 

Features of CICS 

The features of CICS are as follows: 

 CICS is an operating system in itself, as it manages its own processor 

storage, has its own task manager which handles execution of multiple 

programs, and provides its own file management functions. 

 

 CICS provides online environment in batch operating system. Jobs 

submitted are executed immediately. 

 

 CICS is a generalized transaction processing interface. 

 

 It is possible to have two or more CICS regions at the same time, as CICS 

runs as a batch job in the operating system at the back-end. 
 



3 

 

CICS itself acts as an operating system. Its job is to provide an environment for 

online execution of application programs. CICS runs in one region or partition or 

address space. CICS handles scheduling for programs running under it. CICS runs 

as a batch job and we can view it in the spool by issuing the command PREFIX 

CICS*. There are five major services which are provided by CICS. All these 

services together perform a task. 

CICS Environment 

Following are the services which we will be discussing in detail step by step: 

 System Services 

 

 Data Communication Services 

 

 Data Handling Services 

 

 Application Programming Services 

 

 Monitoring Services 

 

 System Services 

CICS maintains control functions to manage the allocation or de-allocation of 

resources within the system which are as follows: 

 Task Control – Task control provides task scheduling and multitasking 

features. It takes care of the status of all CICS tasks. Task Control allocates 

the processor time among concurrent CICS tasks. This is called 

multitasking. CICS tries to prioritize the response time to the most 

important task. 

 

 Program Control – Program Control manages loading and releasing of 

application programs. As soon as a task begins, it becomes necessary to 

associate the task with the appropriate application program. Although many 

tasks may need to use the same application program, CICS loads only one 

copy of the code into memory. Each task threads its way through this code 

independently, so many users can all be running transactions that are 

concurrently using the same physical copy of an application program. 

 

2. CICS – ENVIRONMENT 



4 

 

 Storage Control – Storage Control manages acquiring and releasing of 

main storage. Storage control acquires, controls, and frees dynamic 

storage. Dynamic storage is used for input/output areas, programs, etc. 

 

 Interval Control – Interval Control offers timer services. 

Data Communication Services 

Data Communication Services interface with telecommunication access methods 

such as BTAM, VTAM, and TCAM for handling data communication requests from 

application programs. 

 CICS releases application programs from the burden of dealing with 

terminal hardware issues through the use of Basic Mapping Support (BMS). 

 

 CICS provides Multi Region Operation (MRO) through which more than one 

CICS region in the same system can communicate. 

 

 CICS provides Inter System Communication (ISC) through which a CICS 

region in a system can communicate with the CICS region on another 

system. 

Data Handling Services 

Data Handling Services interface with data access methods such as BDAM, VSAM, 

etc. 

 CICS facilitates servicing of data handling requests from application 

programs. CICS provides application programmers a set of commands for 

dealing with data set and database access and related operations. 

 

 Data Handling Services interfaces with database access methods such as 

IMS/DB, DB2, etc. and facilitate servicing of database requests from 

application programs. 

 

 CICS facilitates management of data integrity by control of simultaneous 

record updates, protection of data as task ABENDs and protection of data 

at system failures. 

Application Programming Services 

Application Programming Services interface with application programs. The 

application programming services of CICS provide features such as command level 

translation, CEDF (the debug facility) and CECI (the command interpreter facility). 

We will be discussing more in detail in upcoming modules. 



5 

 

Monitoring Services 

Monitoring Services monitor various events within CICS address space. It provides 

series of statistical information that can be used for system tuning. 

 



6 

 

We must have knowledge of the basic terms used in CICS to get a better 

understanding of how it works. Application programs use CICS for communication 

with remote and local terminals and subsystems. 

IBM 3270 Terminal 

The 3270 Information Display System is a family of display and printer terminals. 

3270 terminals were being used to connect to the mainframe via IBM controllers. 

Today, 3270 emulation software is available which means that even normal PCs 

can be used as 3270 terminals. 3270 terminals are dumb terminals and do not do 

any processing themselves. All processing needs to be done by the application 

program. IBM terminals consist of the following components: 

CRT Monitor 

The CRT monitor displays the output or the input fields of the application program. 

A screenshot of a 3278 Model of CRT monitor is shown below. It has the following 

characteristics: 

 It is capable of displaying 1920 characters. 

 Each of these 1920 character positions is individually addressable. 

 A COBOL application program can send data to all the positions on the 

screen. 

 The display characteristics like intensity, protected, non-protected of the 

field can be set using BMS which we will be discussing in detail in upcoming 

modules. 

3. CICS – BASIC TERMS 



7 

 

 

Keyboard 

IBM keyboard keys are divided into following two categories: 

 Non-AID Keys – All other keys for alphabets, numeric, punctuation etc. 

are Non-Aid keys. When the user types text or numbers using non-aid keys, 

CICS will not even know if the user is typing anything or not. 

 AID Keys – AID keys are known as Attention Identifier Keys. CICS can 

detect only AID keys. After typing all the input, only when the user presses 

one of the AID keys, CICS takes control. AID Keys : ENTER, PF1 to PF24, 

PA1 to PA3, CLEAR. AID keys are further divided into two categories: 

o PF Keys – PF keys are known as function keys. PF keys allow transfer 

of data from terminal to CICS. PF Keys are ENTER and PF1 to PF24. 

 

o PA Keys – PA keys are known as Program Access keys. PA keys do 

not allow transfer of data between terminal and CICS. PA Keys are PA1 

to PA3 and CLEAR. 



8 

 

 

Transaction 

A CICS program is invoked through a transaction. A CICS transaction is a collection 

of logically related programs in an application. The whole application could be 

logically divided into several transactions. 

 Transaction identifiers which are 1 to 4 characters long are used to identify 

the transactions which the users want to do. 

 A programmer links one program to the transaction identifier which is used 

to invoke all the application programs for that particular transaction. 

Task 

A Task is a unit of work which is specific to a user. 

 Users invoke an application by using one of the transaction identifiers. CICS 

looks up for the transaction identifier to find out which program to invoke 

first to do the work requested. It creates a task to do the work, and transfers 

control to the mentioned program. 

 A transaction can be completed through several tasks. 

 A task can receive data from and send data to the terminal that started it. 

It can read and write files and can start other tasks also. 

Task vs. Transaction 
The difference between a transaction and a task is that several users can invoke 

a transaction but each user initiates his own task. 



9 

 

LUW 

LUW stands for Logical Unit of Work. LUW states that a piece of work should be 

done completely or not done at all. A task can contain several Logical Unit of Works 

in CICS. We will discuss more about it in upcoming modules. 

Application 

An application is a series of logically grouped programs to form several 

transactions which is used to complete a specific task for the end-user. 

 



10 

 

The five CICS system components described earlier are a convenient grouping of 

CICS system programs, each of which performs its own specialized functions. The 

core of CICS known as the CICS Nucleus which consists of IBM-supplied CICS 

Control Programs and Control Tables. 

Control Programs 

CICS nucleus is constructed by the control programs and corresponding control 

tables. It provides unique advantages. It makes the CICS system highly flexible 

and thus easy to maintain. Following are the important control programs of CICS: 

TCP 

TCP is known as Terminal Control Program. 

 TCP is used to receive messages from the terminal. 

 It maintains hardware communication requirements. 

 It requests CICS to initiate the tasks. 

KCP 

KCP is known as Task Control Program. 

 KCP is used to simultaneously control the execution of tasks and its related 

properties. 

 It handles all the issues related to multi-tasking. 

PCP 

PCP is known as Program Control Program. 

 PCP is used to locate and load programs for execution. 

 It transfers the control between programs and in the end, it returns the 

control back to the CICS. 

FCP 

FCP is known as File Control Program. 

4. CICS – NUCLEUS 



11 

 

 FCP is used to provide application programs with services like read, insert, 

update or delete records in a file. 

 It keeps exclusive control over the records in order to maintain data 

integrity during record updates. 

SCP 

SCP is known as Storage Control Program. It is used to control allocation and de-

allocation of storage within a CICS region. 

Control Tables 

CICS consists of IBM-supplied CICS control programs and tables. These tables 

need to be updated accordingly with the application information for successful 

execution of CICS application programs. Following are the important Control 

Tables: 

TCT 

TCT is known as Terminal Control Table. 

 When we login to a CICS terminal, an entry is made in the TCT table. 

 TCT contains the terminal ID's that are connected to current CICS region. 

 Terminal Control Program along with terminal control table recognize the 

incoming data from the terminal. 

PCT 

PCT is known as Program Control Table. 

 It contains the Transaction IDs (TRANSID) and the corresponding program 

names or program IDs. 

 TRANSID is unique in PCT table. 

PPT 

PPT is known as Processing Program Table. PPT contains Program name or Mapset 

name, Task Use Counter, Language, Size, Main storage address, Load library 

address, etc. 

 Program or Mapset name is unique in a PPT table. 

 CICS receives the transaction and a corresponding program name is 

allocated to the transaction from the PCT. It checks if the program is loaded 

or not. If it is loaded, then the task use counter is increased by 1. If the 



12 

 

program is not loaded, then the program is first loaded and the task use 

counter is set to 1. It gets the load library address from the PPT table. 

FCT 

FCT is known as File Control Table.  

 It contains File names, File type, record length, etc. 

 All the files used in a CICS program must be declared in FCT and they are 

opened and closed by CICS itself. 

Transaction 

When a transaction identifier TP02 is entered on the CICS terminal, first it checks 

if there is a program associated with this Transaction identifier in the PCT table. If 

it finds one, then it checks in the PPT table to find the location of the Program to 

execute it.  

If the program is already available in the memory, it starts executing that 

particular program; if not, it loads the program to the memory from the secondary 

storage and then starts executing it. 

 



13 

 

Transaction Life Cycle 

The transaction life cycle has the following steps: 

 

Step 1 
The terminal operator initiates the transaction by typing a 1 to 4 character 

transaction-id and pressing the ENTER key. 

Step 2 

The TCP periodically checks all the terminals for input. When a message is 

received, it does the following: 

 Instructs the SCP to create a TIOA. 

 Places the message in the TIOA. 

 Passes the control to the KCP. 

Step 3 
The KCP takes control from the TCP and does the following: 



14 

 

 Validates the transaction-id and security. 

 Instructs the SCP to create a task control area. 

 Assigns priority to the task based on Terminal priority (Set in TCT), Operator 

priority (Set in SNT), and Transaction priority (Set in PCT). 

 Adds the task to the queue of waiting programs. 

 Dispatches waiting programs in the order of priority. 

 Passes the control to the PCP. 

Step 4 
The PCP takes control from the KCP and does the following: 

 Locates the program and loads it, if necessary. 

 Transfers the control to the Application program. 

Step 5 
The Application program takes control from the PCP and does the following: 

 Requests the TCP to place the message into the program’s WORKING 

STORAGE area. 

 Requests the FCP to retrieve records from the files. 

Step 6 
The FCP takes control from the Application program and does the following: 

 Requests a File work area from the SCP. 

 Informs the KCP that this task can wait until the I/O is complete. 

Step 7 
The KCP does the following: 

 Dispatches the next task in the queue. 

 Re-dispatches the old task when I/O is complete. 

 Transfers the control to the FCP. 

Step 8 
The FCP returns control to the Application program. 

Step 9 
The Application program does the following: 

 Processes the file data. 



15 

 

 Requests TCP to send an I/O message. 

 Returns control to the PCP. 

Step 10 
The PCP returns the control back to the KCP requesting it to end the task. 

Step 11 
The KCP instructs the SCP to free all the storage allocated to the task (except 

TIOA). 

Step 12 

The TCP does the following: 

 Sends the output to the terminal. 

 Requests the SCP to release the TIOA. 



16 

 

CICS transactions are used to perform multiple operations in the CICS region. We 

will be discussing the important CICS transactions supplied by IBM in detail. 

CESN 

CESN is known as CICS Execute Sign On. 

 CESN is used to Sign on to the CICS region. 

 We need to provide the User-Id and Password given by the CICS 

administrator to log on to CICS. The following screenshot shows how the 

sign-on screen looks like: 

 

CEDA 

CEDA is known as CICS Execute Definition and Administration. It is used by CICS 

System Administrators to define CICS table entries and other administration 

activities. 

CEMT 

CEMT is known as CICS Execute Master Terminal. It is used to inquire and update 

the status of CICS environments and also for other system operations. 

5. CICS – TRANSACTIONS 



17 

 

 Using CEMT command, we can manage transactions, tasks, files, programs, 

etc. 

 To get all the possible options, type CEMT and press ENTER. It will display 

all the options. 

 CEMT is basically used for loading a new program into the CICS or for 

loading a new copy of the program into the CICS after the program or 

mapset is changed. 

Example 
One can overwrite the status of the file displayed to change it. Following example 

shows how to close a file: 

CEMT  

 

** Press ENTER & Following Screen is displayed ** 

 

STATUS: ENTER ONE OF THE FOLLOWING 

Inquire 

Perform 

Set 

 

** Command to close a file ** 

 

CEMT SET FILE (file-name) 

CEMT I FILE (file-name) 

CECI 

CECI is known as CICS Execute Command Interpreter. Many CICS commands can 

be executed using CECI. 

 CECI is used to check the syntax of the command. It executes the 

command, only if the syntax is correct. 

 Type the CECI option on the empty CICS screen after having logged in. It 

gives you the list of options available. 

Example 
Following example shows how to send mapped output data to terminal. We will be 

discussing about MAPS in the upcoming modules. 



18 

 

CECI SEND MAP (map-name) MAPSET (mapset-name) ERASE 

CEDF 

CEDF is known as CICS Execute Debug Facility. It is used for debugging the 

program step by step, which helps in finding the errors. 

Type CEDF and press enter in the CICS region. The terminal is in EDF mode 

message will be displayed. Now type the transaction id and press the enter key. 

After initiation, with each enter key, a line is executed. Before executing any CICS 

command, it shows the screen in which we can modify the values before 

proceeding further. 

CMAC 

CMAC is known as CICS Messages for Abend Codes. It is used to find the 

explanation and reasons for CICS Abend Codes. 

Example 
Following example shows how to check details for an Abend code: 

CMAC abend-code 

CESF 

CESF is known as CICS Execute Sign Off. It is used to Sign Off from the CICS 

region. 

Example 
Following example shows how to log off from the CICS region: 

CESF LOGOFF 

CEBR 

CEBR is known as CICS Execute Temporary storage Browse. It is used to display 

contents of a temporary storage queue or TSQ. 

CEBR is used while debugging to check if the items of the queue are being written 

and retrieved properly. We will discuss more about TSQ in the upcoming modules. 

 

 



19 

 

Example 
Following example shows how to invoke the CEBR command: 

CEBR queue-id 

CICS Concepts 

Each command could be achieved by executing a series of CICS macros. We will 

discuss some basic features which will help us understand the concepts better: 

Multitasking 

This feature of operating system allows more than one task to be executed 

concurrently. The task may be sharing the same program or using different 

programs. The CICS schedules the task in its own region. 

Multi-threading 

This feature of the operating system allows more than one task to be executed 

concurrently sharing the same program. For multi-threading to be possible, an 

application program should be a re-entrant program under the operating system 

or a quasi-reentrant under the CICS. 

Re-entrancy 

A re-entrant program is one which does not modify itself and can re-enter in itself 

and continue processing after an interruption by the operating system. 

Quasi-reentrancy 

A quasi-reentrant program is a re-entrant program under CICS environment. CICS 

ensures re-entrancy by acquiring a unique storage area for each task. Between 

CICS commands, the CICS has the exclusive right to use the CPU resources and 

it can execute other CICS commands of other tasks.  

There are times when many users are concurrently using the same program; this 

is what we call multi-threading. For example, let’s suppose 50 users are using 

a program A. Here the CICS will provide 50 working storage for that program but 

one Procedure Division. And this technique is known as quasi-reentrancy. 



20 

 

CICS programs are written in COBOL language in Mainframes. We will be 

discussing about writing a simple COBOL-CICS program, compiling it, and then 

executing it. 

CICS Program 

We will be writing a simple COBOL-CICS program which displays some message 

on the CICS output screen. This program is to demonstrate the steps involved in 

executing a COBOL-CICS program. Following are the steps to code a simple 

program: 

Step 1 
Login to Mainframes and open a TSO Session. 

Step 2 
Create a new PDS in which we will be coding our program. 

Step 3 
Create a new member inside the PDS and code the following program: 

IDENTIFICATION DIVISION. 

PROGRAM-ID. HELLO. 

DATA DIVISION. 

FILE SECTION. 

WORKING-STORAGE SECTION. 

01 WS-MESSAGE PIC X(40). 

01 WS-LENGTH  PIC S9(4) COMP. 

PROCEDURE DIVISION. 

A000-MAIN-PARA. 

     MOVE 'Hello World' TO WS-MESSAGE 

     MOVE '+12' TO WS-LENGTH 

     EXEC CICS SEND TEXT  

         FROM (WS-MESSAGE) 

         LENGHT(WS-LENGTH)   

6. CICS – COBOL BASICS 



21 

 

     END-EXEC 

     EXEC CICS RETURN 

     END-EXEC.   

Step 4 

After coding the program, we need to compile it. We can compile the program 

using the following JCL: 

//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C   

//CICSCOB  EXEC CICSCOB,                                                 

//             COPYLIB=ABC.XYZ.COPYLIB,                             

//             LOADLIB=ABC.XYZ.LOADLIB  

//LIB        JCLLIB ORDER=CICSXXX.CICS.XXXPROC                 

//CPLSTP     EXEC DFHEITVL                                 

//TRN.SYSIN  DD DSN=ABC.XYZ.PDS(HELLO),DISP=SHR      

//LKED.SYSIN DD *                                         

   NAME HELLO(R)                                           

// 

Step 5 
Open a CICS session. 

Step 6 
We will now install the program using the following command: 

CEMT SET PROG(HELLO) NEW. 

Step 7 

Execute the program using the associated transaction-id. Transaction-id is 

provided by the Administrator. It will show the following output: 



22 

 

 

Program Compilation 

The following flowchart shows the steps used in compiling a COBOL-CICS 

program: 

 



23 

 

Translator 
The function of a translator is to check for syntax errors in CICS commands. It 

translates them into equivalent COBOL statements. 

Compiler 
The function of a compiler is to expand the COBOL copy books. It compiles the 

code after checking the source code for syntax errors. 

Linkage Editor 
The function of a Linkage Editor is to link different object modules to create a 

single load module. 

 



24 

 

BMS is known as Basic Mapping Support. An application consists of formatted 

screens which act as a bridge between the terminal and the CICS programs. For 

communication to occur between the terminal and the CICS programs, we use 

CICS terminal input/output services. We use BMS to create screen designs with 

proper positions and attributes. Following are the functions of BMS: 

 BMS acts as an interface between the terminal and the CICS programs. 

 The design and format of the screen is separate from the logic of 

application. 

 BMS makes the application hardware independent. 

Formatted Screen 

The screen shown below is a Menu Screen and can be designed using BMS. Its 

key points are as follows:  

 The screen could have a Title, date, and any other information that is to be 

displayed. 

 The Option 1, 2, and 3 are the Unnamed fields which are the titles of the 

screen. 

 In the Selection field, we need to provide the input. This input is then sent 

to the CICS program for further processing. 

 At the bottom of the screen, Action keys are displayed. 

 All the fields and the screen itself is defined with BMS macros. When the 

whole map is defined, we can use JCL to assemble it.  

7. CICS – BMS 



25 

 

 

BMS Basic Terms 

Following are the basic terms which we will be using in the upcoming modules: 

Map 

Map is a single screen format which can be designed using BMS macros. It can 

have names containing 1 to 7 chars. 

Mapset 

Mapset is a collection of maps which are linked together to form a load module. It 

should have a PPT entry. It can have names from 1 to 7 chars. 

BMS Macros 

BMS map is a program which is written in Assembly language to manage screens. 

The three macros that are used to define the screen are DFHMSD, DFHMDI, and 

DFHMDF. 

DFHMSD 

DFHMSD macro generates Mapset definition. It is macro identifier which shows 

that we are starting a mapset. The mapset name is the load module name and an 

entry in PPT table must be present. The following table shows the list of 

parameters which can be used in DFHMSD: 

 



26 

 

Parameter Description 

TYPE TYPE is used to define the map type. If TYPE=  

MAP - Physical map is created 

DSECT - Symbolic map is created 

&&SYSPARM - Physical & Symbolic, both are created 

FINAL - To indicate the end of a mapset coding 

MODE MODE is used to indicate input/output operations. IF MODE= 

IN - For an input map only 

OUT - For an output map only 

INOUT For both input & output map 

LANG LANG=ASM/COBOL/PL1 

It decides the language of the DSECT structure, for copying into 

the application program. 

STORAGE If STORAGE= 

AUTO - To acquire a separate symbolic map area for each 

mapset 

 

BASE - To have the same storage base for the symbolic maps of 

from more than one mapset 

CTRL CRTL is used to define the device control requests. If CTRL= 

FREEKB - To unlock the keyboard 

FRSET - To reset MDT to zero status 

ALARM - To set an alarm at screen display time 

PRINT - To indicate the mapset to be sent to the printer 

TERM TERM=type ensures device independence,required if other than 

3270 terminal is being used 

TIOAPFX TIOAPFX=YES/NO 

YES - To reserve the prefix space (12 bytes) for BMS commands 

to access TIOA properly. Required for the CICS command level. 

 

 

 



27 

 

Example 
The following example shows how to code a mapset definition: 

MPST01  DFHMSD TYPE=&SYSPARM,                       X 

               CTRL=(FREEKB,FRSET),                 X 

               LANG=COBOL,                          X  

               STORAGE=AUTO,                        X 

               TIOAPFX=YES,                         X 

               MODE=INOUT,                          X 

               TERM=3270 

 

        DFHMSD TYPE=FINAL  

               END 

DFHMDI 

DFHMDI macro generates map definitions. It shows that we are starting a new 

map. Mapname is followed by the DFHMDI macro. Mapname is used to send or 

receive maps. The following table shows the parameters which we use inside a 

DFHMDI macro: 

Parameter Description 

SIZE SIZE=(Line,Column) 

This parameter gives the size of the map. BMS allows us to build 

a screen using several maps, and this parameter becomes 

important when we are using more than one maps in a single 

mapset. 

LINE It indicates the starting line number of the map. 

COLUMN It indicates the starting column number of the map. 

JUSTIFY It is used to specify the entire map or the map fields to be left or 

right justified. 

CTRL CRTL is used to define the device control requests. If CTRL= 

FREEKB - To unlock the keyboard 

FRSET - To reset MDT to zero status 



28 

 

ALARM - To set an alarm at screen display time 

PRINT - To indicate the map to be sent to the printer 

TIOAPFX TIOAPFX=YES/NO 

YES - To reserve the prefix space (12 bytes) for BMS commands 

to access TIOA properly. Required for the CICS command level. 

Example 
The following example shows how to code a map definition: 

MAPSTD   DFHMDI     SIZE=(20,80),                   X 

                    LINE=01,                        X 

                    COLUMN=01,                      X 

                    CTRL=(FREEKB,FRSET) 

DFHMDF 

DFHMDF macro is used to define field names. The field name is mentioned against 

which DFHMDF macro is coded. This field name is used inside the program. We do 

not write field name against constant field which we do not want to use inside the 

program. The following table shows the list of parameters which can be used inside 

a DFHMDF macro: 

Parameter Description 

POS This is the position on the screen where the field should appear. 

A field starts with its attribute byte, so if you code POS=(1,1), 

the attribute byte for that field is on line 1 in column 1, and the 

actual data starts in column 2. 

LENGTH This is the length of the field, not counting the attribute byte. 

INITIAL This is the character data for an output field. We use this to 

specify labels and titles for the screen and keep them 

independent of the program. For the first field in the menu 

screen, for example, we will code: INITIAL='MENU'. 

JUSTIFY It is used to specify the entire map or the map fields to be left or 

right justified. 



29 

 

ATTRB ATTRB=(ASKIP/PROT/UNPROT, NUM, BRT/NORM/DRK, IC, FSET) 

It describes the attributes of the field. 

 

ASKIP - Autoskip. Data cannot be entered in this field. The 

cursor skips to the next field. 

 

PROT - Protected field. Data cannot be entered into this field. If 

data is entered, it will cause the input-inhibit status. 

 

UNPROT - Unprotected field. Data can be entered and this is 

used for all input fields. 

 

NUM - Numeric field. Only numbers (0 to 9) and special 

characters('.' and '-') are allowed. 

 

BRT - Bright display of a field (highlight). 

 

NORM - Normal display. 

 

DRK - Dark display. 

 

IC - Insert cursor. The cursor will be positioned in this field. In 

case, IC is specified more than once, the cursor is placed in the 

last field. 

 

FSET - Field set. MDT is set on so that the field data is to be sent 

from the terminal to the host computer regardless of whether 

the field is actually modified by the user. 

PICIN PICIN applies to the data field which is used as input like PICIN 

= 9(8). 

PICOUT PICIN applies to the data field which is used as output like 

PICOUT = Z(8). 

 

 

 



30 

 

Example 
The following example shows how to code a field definition: 

        DFHMDF       POS=(01,01),                   X 

                     LENGTH=7,                      X 

                     INITIAL=‘SCREEN1’,             X 

                     ATTRB=(PROT,NORM)  

STDID   DFHMDF       POS=(01,70),                   X 

                     LENGTH=08,                     X 

                     ATTRB=(PROT,NORM) 

 

 

 



31 

 

BMS receives the data entered by the user and then formats it into a symbolic 

map area. The application program has access only to the data present in the 

symbolic map. The application program processes the data and the output is sent 

to the symbolic map. BMS will merge the output of the symbolic data with the 

physical map. 

 

Physical Map 

Physical Map is a load module in the load library which contains information about 

how the map should be displayed. 

 It contains the details about the attributes of all the fields in the map and 

their positions. 

 It contains the display format of the map for a given terminal. 

 It is coded using BMS macros. It is assembled separately and link edited 

into the CICS library. 

8. CICS – MAP 



32 

 

Symbolic Map 

A Symbolic Map is a Copy book in the library. The Copy book is used by the CICS 

application program to send and receive data from the terminal. 

 It contains all the variable data which is copied into program's WORKING-

STORAGE section. 

 It has all the named fields. The application programmer uses these fields to 

read and write data into the map. 

Skipper and Stopper Field 

For an unprotected named field, in a map, if we have specified a length of 10, this 

means that the name field can take values whose length cannot exceed 10. But 

when you display this map using CICS and start entering values for this field on 

the screen, we can enter more than 10 Characters, i.e., till the end of the screen 

and we can enter even in the next line. To prevent this, we use Skipper field or 

stopper field. A Skipper field would generally be an Unnamed field of length 1, 

specified after a named field. 

 

Skipper Field 

If we place a skipper field after the named unprotected field, then while entering 

the value, once the specified length is reached, the cursor will automatically 

position to the next unprotected field. The following example shows how to add a 

skipper field: 



33 

 

NUMBER  DFHMDF POS=(01,01),              X 

               LENGTH=5,                 X 

               ATTRB=(UNPROT,IC) 

        DFHMDF POS=(01,07),              X  

               LENGTH=1,                 X 

               ATTRB=(ASKIP) 

Stopper Field 

If we place a stopper field after the named unprotected field, then while entering 

the value, once the specified length is reached, the cursor will stop its positioning. 

The following example shows how to add a stopper field: 

NUMBER  DFHMDF POS=(01,01),              X 

               LENGTH=5,                 X 

               ATTRB=(UNPROT,IC) 

        DFHMDF POS=(01,07),              X  

               LENGTH=1,                 X 

               ATTRB=(PROT) 

Attribute Byte 

The attribute byte of any field stores information about the physical properties of 

the field. The following diagram and the table explain the significance of each bit. 

 

 

 

 

 



34 

 

Bit Position Description Bit Settings 

0 & 1  Determined by contents of bit 2 to 7 

2 & 3 Protection & Shift 00 - Unprotected Alphanumeric 

01 - Unprotected Numeric 

10 - Protected Stop 

11 - Protected Skip 

4 & 5 Intensity 00 - Normal 

01 - Normal 

10 - Bright 

11 - No-display ( Dark ) 

6  Must be Zero Always 

7 Modified Data Tag 0 - Field has not been modified 

1 - Field has been modified 

Modified Data Tag 

Modified Data Tag (MDT) is the last bit in the attribute byte. 

 MDT is a flag which holds a single bit. It specifies whether the value is to 

be transferred to the system or not. 

 Its default value is 1, when the field value is changed. 

 If MDT is 0, then data cannot be transferred; and if MDT is 1, then data can 

be transferred. 

Send Map 

The send map command writes formatted output to the terminal. It is used to 

send the map to the terminal from the application program. The following code 

segment shows how to send a map to the terminal: 

EXEC CICS SEND  

    MAP('map-name') 

    MAPSET('mapset-name') 

    [FROM(data-area)] 



35 

 

    [LENGTH(data_value)] 

    [DATAONLY] 

    [MAPONLY] 

    [CURSOR] 

    [ERASE/ERASEAUP] 

    [FREEKB]  

    [FRSET] 

END-EXEC    

The following table lists the parameters used in a send map command along with 

their significance. 

Parameter Description 

Map-name It is the name of the map which we want to send. It is mandatory. 

Mapset-

name 

It is the name of the map set that contains the mapname. The 

mapset name is needed unless it is the same as the map name. 

FROM It is used if we have decided to use a different DSECT name, we 

must use the option FROM (dsect-name) along with SEND MAP 

command. 

MAPONLY It means that no data from your program is to be merged into 

the map and only the information in the map is transmitted. 

DATAONLY It is the logical opposite of MAPONLY. We use it to modify the 

variable data in a display that has already been created. Only the 

data from your program is sent to the screen. The constants in 

the map are not sent. 

ERASE It causes the entire screen to be erased before what we are 

sending is shown. 

ERASEUP It causes only unprotected fields to be erased. 



36 

 

FRSET Flag Reset turns off the modified data tag in the attribute byte for 

all the fields on the screen before what you are sending is placed 

there. 

CURSOR It can be used to position the cursor on the terminal screen. 

Cursor can be set by moving -1 to the L part of the field and then 

sending the map. 

ALARM It causes the audible alarm to be sounded. 

FREEKB The keyboard is unlocked if we specify FREEKB in either the map 

or the SEND command. 

PRINT It allows the output of a SEND command to be printed on a 

printer. 

FORMFEED It causes the printer to restore the paper to the top of the next 

page before the output is printed. 

Receive Map 

When we want to receive input from a terminal, we use the RECEIVE MAP 

command. The MAP and MAPSET parameters have exactly the same meaning as 

for the SEND MAP command. The following code segment shows how to receive a 

map: 

EXEC CICS RECEIVE  

       MAP('map-name') 

       MAPSET('mapset-name') 

       [INTO(data-area)] 

       [FROM(data-area)] 

       [LENGTH(data_value)] 

END-EXEC 

Mapset Execution 

The following steps are necessary to develop and execute a mapset:  

 Step 1 - Open a TSO session. 



37 

 

 Step 2 - Create a new PDS. 

 Step 3 - Code a mapset in a new member according to the requirement. 

 Step 4 - Assemble the mapset using the JCL provided by the CICS 

administrator. 

 Step 5 - Open a CICS Session. 

 Step 6 - Install the program using the command: 

CEMT SET PROG(mapset-name) NEW 

 Step 7 - Type the following command to send the Map to the terminal: 

CECI SEND MAP(map-name) MAPSET(mapset-name) ERASE FREEKB 

 



38 

 

Any application program would require an interface to interact with the CICS. EIB 

(Execute Interface Block) acts as an interface to allow application programs 

communicate with the CICS. EIB contains the information required during the 

execution of a program. 

Restricted COBOL Verbs 

While coding a CICS program, we cannot use the commands which return the 

control directly to the MVS. If we code these COBOL verbs, it will not give any 

compilation error, but we may get unpredictable results. Following are the COBOL 

verbs which should not be used in a CICS program: 

 File I/O statements like Open, Read, Write, Rewrite, Close, Delete, and 

Start. All file I/O in CICS is handled by the file control module and they have 

their own set of statements like READ, WRITE, REWRITE, and DELETE which 

we will be discussing in the upcoming modules. 

 File Section and Environment Division is not required. 

 COBOL statements that invoke operating system functions like Accept, 

Date/Time cannot be used. 

 Do not use DISPLAY, MERGE, STOP RUN, and GO BACK. 

Execute Interface Block 

Execute Interface Block (EIB) is a control block which is loaded automatically by 

the CICS for every program. 

 The EIB is unique to a task and it exists for the duration of the task. It 

contains a set of system related information corresponding to the task. 

 It contains information about transaction identifier, time, date, etc., which 

is used by the CICS during the execution of an application program. 

 Every program that executes as a part of the task has access to the same 

EIB. 

 The data in EIB at runtime can be viewed by executing the program in CEDF 

mode. 

 

9. CICS – INTERFACE BLOCK 



39 

 

EIB Fields 

The following table provides a list of fields which are present in EIB: 

EIB Field PIC Clause Description 

EIBAID X(1) Aid key Pressed 

EIBCALEN S9(4) COMP It contains length of DFHCOMMAREA 

EIBDATE S9(7) COMP-3 It contains Current System Date 

EIBRCODE X(6) It contains Return code of the last transaction 

EIBTASKN S9(7) COMP-3 It contains Task number 

EIBTIME S9(7) COMP-3 It contains Current System Time 

EIBTRMID X(4) Terminal Identifier 

EIBTRNID X(4) Transaction Identifier 

CICS Programs Classification 

CICS Programs are classified in the following three categories which we will discuss 

one by one: 

 Non-Conversion Programs 

 Conversion Programs 

 Pseudo-conversion Programs – We will discuss in the next module 

Non Conversion Programs 

While executing non-conversion programs, no human intervention is required. All 

the necessary inputs are provided when the program is started. 

 They are similar to batch programs that run in the batch mode. So in CICS, 

they are rarely developed. 

 We can say they are used just for displaying a sequence of screens at 

regular intervals of time. 



40 

 

Example 
The following example shows a non-conversion program which will simply display 

"HELLO WORLD" on the CICS terminal as output: 

IDENTIFICATION DIVISION.                                 

PROGRAM-ID. HELLO.                                       

DATA DIVISION.                                           

WORKING-STORAGE SECTION.                                 

01 WS-MESSAGE          PIC X(30).                        

PROCEDURE DIVISION.                                      

******************************************************** 

* SENDING DATA TO SCREEN                               *  

******************************************************** 

        MOVE 'HELLO WORLD' TO WS-MESSAGE                 

        EXEC CICS SEND TEXT                              

             FROM (WS-MESSAGE)                           

        END-EXEC                                         

******************************************************** 

* TASK TERMINATES WITHOUT ANY INTERACTION FROM THE USER*  

******************************************************** 

        EXEC CICS RETURN                                 

        END-EXEC. 

Conversion Program 

Sending a message to the terminal and receiving a response from the user is 

called a conversation. An online application achieves a conversation between the 

user and the application program by a pair of SEND and RECEIVE command. The 

key points of a conversion program are as follows: 

 The system sends a message to the screen and waits for the user’s 

response. 

 The time taken by user to respond is known as Think Time. This time is 

considerably high, which is a major drawback of conversion programs. 

 The user provides the necessary input and presses an AID key. 

 The application processes the user’s input and sends the output. 



41 

 

 The program is loaded into the main storage at the beginning and is 

retained till the task ends. 

 

Example 
The following example shows a conversion program which takes input from the 

user and then simply displays the same input on the CICS terminal as output: 

IDENTIFICATION DIVISION.                                

PROGRAM-ID. HELLO.                                      

DATA DIVISION.                                          

WORKING-STORAGE SECTION.                                

01 WS-MESSAGE          PIC X(30) VALUE SPACES.          

PROCEDURE DIVISION.                                     

        MOVE 'ENTER MESSAGE' TO WS-MESSAGE            

******************************************************** 

* SENDING DATA FROM PROGRAM TO SCREEN                  *  

******************************************************** 

        EXEC CICS SEND TEXT                             



42 

 

             FROM (WS-MESSAGE)                          

        END-EXEC                                        

******************************************************** 

* GETTING INPUT FROM USER                              *  

******************************************************** 

        EXEC CICS RECEIVE                               

             INTO(WS-MESSAGE)                           

        END-EXEC                                        

        EXEC CICS SEND TEXT                             

             FROM (WS-MESSAGE)                          

        END-EXEC                                        

******************************************************** 

* COMMAND TO TERMINATE THE TRANSACTION                 *  

******************************************************** 

        EXEC CICS RETURN                                

        END-EXEC.                                        

 

 



43 

 

As of now, we have covered non-conversion and conversion programs. Conversion 

programs have a major drawback as their think time is considerably high. To 

overcome this problem, pseudo-conversion programming came into the picture. 

We will now discuss more about pseudo-conversion programs. 

Pseudo-Conversion Program 

Following is the sequence of events which take place in a pseudo-conversion 

program: 

1. The system sends a message to the screen and terminates the transaction, 

specifying the transaction to be started when the user input is received. 

2. The system allocates the resources used by this transaction to other 

transactions running in the system. So we can utilize the resources in a 

pseudo-conversion program till the user gives the input. 

3. The system polls the terminal input at regular intervals of time. When the 

input is received, it is processed and the output is displayed. 

4. The application program is loaded into the main storage when needed and 

released when not in use. 

10. CICS – PSEUDO PROGRAMMING 



44 

 

 

Pseudo Conversion Techniques 

The important point to note in pseudo-conversation is passing of data between 

every task. We will discuss about the techniques for passing data. 

COMMAREA 

COMMAREA is known as communication area. COMMAREA is used to pass data 

between tasks. The following example shows how to pass COMMAREA where WS-

COMMAREA and WS-COMMAREA-LENGTH are declared in Working Storage 

Section: 

EXEC CICS RETURN 

        TRANSID ('transaction-id') 

        COMMAREA (WS-COMMAREA) 

        LENGTH  (WS-COMMAREA-LENGTH) 

END-EXEC. 

 



45 

 

DFHCOMMAREA 

DFHCOMMAREA is a special memory area which is provided by CICS to every task. 

 It is used to pass data from one program to another program. The programs 

can exist in the same transaction or in different transaction also. 

 It is declared in the Linkage Section of the program at 01 level. 

 It should have the same picture clause as WS-COMMAREA. 

 Data can be moved back from DFHCOMMAREA to WS-COMMAREA using a 

MOVE statement. 

MOVE DFHCOMMAREA TO WS-COMMAREA. 

Example 

After sending the map, the task ends and waits for the user response. At this 

stage, the data needs to be saved, because though the task has ended, the 

transaction has not. When this transaction is to be resumed, it would require the 

prior status of the task. User enters the input. This now has to be received by the 

RECEIVE MAP command and then validated. The following example shows how to 

declare COMMAREA and DFHCOMMAREA: 

WORKING-STORAGE SECTION. 

01 WS-COMMAREA. 

   05 WS-DATA PIC X(10). 

    

LINKAGE SECTION. 

01 DFHCOMMAREA. 

   05 LK-DATA PIC X(10). 

Pseudo Code 

Given below is the logic of pseudo code which we use in pseudo programming: 

MOVE DFHCOMMAREA TO WS-COMMAREA 

IF EIBCALEN = 0 

    STEP1: SEND MAP 

    STEP2: MOVE  to WS-COMMAREA 

    STEP3: ISSUE CONDITIONAL RETURN 

ELSE 



46 

 

  IF WS-COMMAREA =   

    STEP4: RECEIVE MAP 

    STEP5: PROCESS DATA 

    STEP6: SEND OUTPUT MAP 

    STEP7: MOVE  to WS-COMMAREA 

    STEP8: ISSUE CONDITIONAL RETURN  

  END-IF 

END-IF       

STEP9: REPEAT STEP3 TO STEP7 UNTIL EXIT 

Example 
The following example shows a pseudo-conversion program: 

****************************************************************** 

* PROGRAM TO DEMONSTRATE PSEUDO-CONVERSATION                     * 

****************************************************************** 

 IDENTIFICATION DIVISION.                                          

 PROGRAM-ID. HELLO.                                                

 DATA DIVISION.                                                    

 WORKING-STORAGE SECTION.                                          

 01 WS-MESSAGE          PIC X(30).                                 

 01 WS-COMMAREA         PIC X(10) VALUE SPACES.                     

 LINKAGE SECTION.                                                  

 01 DFHCOMMAREA         PIC X(10).                                  

 PROCEDURE DIVISION.                                               

     MOVE DFHCOMMAREA TO WS-COMMAREA                               

     IF  WS-COMMAREA  =  SPACES                                    

****************************************************************** 

* TRANSACTION GETTING EXECUTED FOR THE FIRST TIME                * 

****************************************************************** 

         MOVE 'HELLO' TO WS-MESSAGE                                

         EXEC CICS SEND TEXT                                       

              FROM (WS-MESSAGE)                                    

         END-EXEC                                                  



47 

 

         MOVE 'FIRST' TO WS-COMMAREA                               

****************************************************************** 

* TASK ENDS AS A RESULT OF RETURN. IF AID KEY PRESSED, NEXT      * 

* TRANSACTION SHOULD BE TP002. DATA PASSED FROM WS-COMMAREA TO   * 

* DFHCOMMAREA                                                    * 

****************************************************************** 

         EXEC CICS RETURN                                          

             TRANSID('TP002')                                       

             COMMAREA(WS-COMMAREA)                                 

         END-EXEC                                                  

****************************************************************** 

* IF  COMMAREA IS NOT EMPTY , THEN TP002 HAS BEEN EXECUTED ONCE  * 

* ALREADY, USER INTERACTION IS FACILITATED BY RECEIVE            * 

****************************************************************** 

     ELSE                                                          

         EXEC CICS RECEIVE                                         

              INTO(WS-MESSAGE)                                     

         END-EXEC 

         EXEC CICS SEND TEXT                                       

              FROM (WS-MESSAGE)                                    

         END-EXEC                                                  

****************************************************************** 

* TASK ENDS AS A RESULT OF RETURN, NO NEXT TRANSACTION SPECIFIED * 

* TO BE EXECUTED                                                 * 

****************************************************************** 

         EXEC CICS RETURN                                          

         END-EXEC                                                  

     END-IF.        

 

 



48 

 

Advantages of Pseudo Conversion 

Following are the advantages of pseudo conversion: 

 The resources are best utilized. Resources are released as soon as the 

program is suspended temporarily. 

 It looks as if it is in conversational mode. 

 It has better response time. 

Return Statements 

Following are the two types of return statements which are used in CICS: 

Return-1 

When the following unconditional return statement is issued, the task and the 

transaction (program) is terminated. 

EXEC CICS RETURN 

END-EXEC. 

Return-2 

When the following conditional return, i.e., return with TRANSID statement is 

issued, the control returns to the CICS with the next transid to be executed. The 

next transaction starts when the user presses an AID key. 

EXEC CICS RETURN 

       TRANSID ('trans-id') 

       [COMMAREA(WS-COMMAREA)] 

END-EXEC. 

 

 



49 

 

As we have discussed in earlier modules, AID keys are known as Attention 

Identifier Keys. CICS can detect only AID keys. After typing all the input, only 

when the user presses one of the AID keys, the CICS takes control. AID Keys 

include ENTER, PF1 to PF24, PA1 to PA3, and CLEAR. 

Validating AID keys 

The key pressed by the user is checked by using EIBAID. 

 EIBAID is one byte long and holds the actual attention identifier value used 

in the 3270 input stream. 

 CICS provides us with a pre-coded set of variables which can be used in the 

application program by writing the following statement: 

COPY DFHAID 

DFHAID 

DFHAID is a copybook which is used in application programs to include CICS pre-

coded set of variables. The following content is present in the DFHAID copybook: 

01    DFHAID.                              

  02  DFHNULL   PIC  X  VALUE IS ' '.      

  02  DFHENTER  PIC  X  VALUE IS ''''.     

  02  DFHCLEAR  PIC  X  VALUE IS '_'.      

  02  DFHCLRP   PIC  X  VALUE IS '¦'.      

  02  DFHPEN    PIC  X  VALUE IS '='.      

  02  DFHOPID   PIC  X  VALUE IS 'W'.      

  02  DFHMSRE   PIC  X  VALUE IS 'X'.      

  02  DFHSTRF   PIC  X  VALUE IS 'h'.      

  02  DFHTRIG   PIC  X  VALUE IS '"'.      

  02  DFHPA1    PIC  X  VALUE IS '%'.      

  02  DFHPA2    PIC  X  VALUE IS '>'.      

  02  DFHPA3    PIC  X  VALUE IS ','.      

  02  DFHPF1    PIC  X  VALUE IS '1'.      

11. CICS – AID KEYS 



50 

 

  02  DFHPF2    PIC  X  VALUE IS '2'.      

  02  DFHPF3    PIC  X  VALUE IS '3'.      

  02  DFHPF4    PIC  X  VALUE IS '4'.      

  02  DFHPF5    PIC  X  VALUE IS '5'.      

  02  DFHPF6    PIC  X  VALUE IS '6'.      

  02  DFHPF7    PIC  X  VALUE IS '7'.      

  02  DFHPF8    PIC  X  VALUE IS '8'.      

  02  DFHPF9    PIC  X  VALUE IS '9'.      

  02  DFHPF10   PIC  X  VALUE IS ':'.      

  02  DFHPF11   PIC  X  VALUE IS '#'.      

  02  DFHPF12   PIC  X  VALUE IS '@'.      

  02  DFHPF13   PIC  X  VALUE IS 'A'.      

  02  DFHPF14   PIC  X  VALUE IS 'B'.      

  02  DFHPF15   PIC  X  VALUE IS 'C'.    

  02  DFHPF16   PIC  X  VALUE IS 'D'.    

  02  DFHPF17   PIC  X  VALUE IS 'E'.    

  02  DFHPF18   PIC  X  VALUE IS 'F'.    

  02  DFHPF19   PIC  X  VALUE IS 'G'.    

  02  DFHPF20   PIC  X  VALUE IS 'H'.    

  02  DFHPF21   PIC  X  VALUE IS 'I'.    

  02  DFHPF22   PIC  X  VALUE IS '¢'.    

  02  DFHPF23   PIC  X  VALUE IS '.'.    

  02  DFHPF24   PIC  X  VALUE IS '<'.    

Example 

The following example shows how to use DFHAID copybook in an application 

program: 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

DATA DIVISION.    

WORKING-STORAGE SECTION. 

COPY DFHAID. 

PROCEDURE DIVISION. 



51 

 

A000-AIDKEY-PARA. 

    EVALUATE EIBAID 

        WHEN DFHAID 

           PERFORM A000-PROCES-PARA 

        WHEN DFHPF1 

           PERFORM A001-HELP-PARA 

        WHEN DFHPF3 

           PERFORM A001-EXIT-PARA 

    END-EVALUATE. 

Cursor Positioning 

There are two ways to override the position specified in the map definition. 

 One way is to specify the screen position relative to line and column number 

in the CURSOR option on the send map command. 

 Other way is to move -1 to the symbolic map variable suffixed with L. Then, 

send the map with a CURSOR option in the SEND MAP. 

Example 

The following example shows how to override the cursor position for the NAME 

field: 

MOVE -1 TO NAMEL 

    EXEC CICS SEND  

        MAP ('map-name') 

        MAPSET ('name-field') 

        ERASE 

        FREEKB 

        CURSOR 

    END-EXEC. 

Dynamically Modifying Attributes 

While sending a map, if we want to have different attributes for a field other than 

that is specified in the map, then we can override that by setting the field in the 

program. Following is the explanation to override attributes of a field: 



52 

 

 To override the attributes of a field, we must include DFHATTR in the 

application program. It is provided by CICS. 

 The attribute required can be chosen from the list and moved to the 

symbolic field variable suffixed with 'A'. 

DFHATTR holds the following content:  

01  CICS-ATTRIBUTES. 

    05  ATTR-UXN            PIC X(01) VALUE SPACE. 

    05  ATTR-UXMN           PIC X(01) VALUE 'A'. 

    05  ATTR-UXNL           PIC X(01) VALUE 'D'. 

    05  ATTR-UXMNL          PIC X(01) VALUE 'E'. 

    05  ATTR-UXBL           PIC X(01) VALUE 'H'. 

    05  ATTR-UXMBL          PIC X(01) VALUE 'I'. 

    05  ATTR-UXD            PIC X(01) VALUE '<'. 

    05  ATTR-UXMD           PIC X(01) VALUE '('. 

    05  ATTR-U9N            PIC X(01) VALUE '&'. 

    05  ATTR-U9MN           PIC X(01) VALUE 'J'. 

    05  ATTR-U9NL           PIC X(01) VALUE 'M'. 

    05  ATTR-U9MNL          PIC X(01) VALUE 'N'. 

    05  ATTR-U9BL           PIC X(01) VALUE 'Q'. 

    05  ATTR-U9MBL          PIC X(01) VALUE 'R'. 

    05  ATTR-U9D            PIC X(01) VALUE '*'. 

    05  ATTR-U9MD           PIC X(01) VALUE ')'. 

    05  ATTR-PXN            PIC X(01) VALUE '-'. 

    05  ATTR-PXMN           PIC X(01) VALUE '/'. 

    05  ATTR-PXNL           PIC X(01) VALUE 'U'. 

    05  ATTR-PXMNL          PIC X(01) VALUE 'V'. 

    05  ATTR-PXBL           PIC X(01) VALUE 'Y'. 

    05  ATTR-PXMBL          PIC X(01) VALUE 'Z'. 

    05  ATTR-PXD            PIC X(01) VALUE '%'. 

    05  ATTR-PSN            PIC X(01) VALUE '0'. 

    05  ATTR-PSMN           PIC X(01) VALUE '1'. 

    05  ATTR-PSNL           PIC X(01) VALUE '4'. 

    05  ATTR-PSMNL          PIC X(01) VALUE '5'. 



53 

 

    05  ATTR-PSBL           PIC X(01) VALUE '8'. 

    05  ATTR-PSMBL          PIC X(01) VALUE '9'. 

    05  ATTR-PSD            PIC X(01) VALUE '@'. 

    05  ATTR-PSMD           PIC X(01) VALUE "'". 

 



54 

 

CICS allows us to access file data in many ways. Most file accesses are random in 

online system as the transactions to be processed are not batched and sorted into 

any kind of order. Therefore CICS supports the usual direct access methods: VSAM 

and DAM (Direct Access Method). It also allows us to access data using database 

managers. 

Random Access 

Following are the commands which are used for random processing: 

 READ 

 WRITE 

 REWRITE 

 DELETE 

Read 

READ command reads data from a file using primary key. Following is the syntax 

of the READ command: 

EXEC CICS READ 

    FILE('name') 

    INTO(data-area) 

    RIDFLD(data-area) 

    LENGTH(data-value) 

    KEYLENGTH(data-value) 

END-EXEC. 

The following table lists the parameters used in the READ command: 

Parameter Description 

FILE File name is the name of the file which we want to read. This is 

the CICS symbolic file name which identifies the FCT entry for the 

12. CICS – FILE HANDLING 



55 

 

file. File names can be up to 8 characters long and should be 

enclosed in quotes if they are literals. 

INTO Data area is the variable into which the record is to be read, 

usually a structure in working storage. The INTO is required for 

the uses of the READ command. 

RIDFLD It has the name of the data area containing the key of the record 

which we want to read. 

LENGTH It specifies the maximum number of characters that may be read 

into the data area specified. It must be a halfword binary value 

(PIC S9(4) COMP). After the READ command is completed, CICS 

replaces the maximum value we specify with the true length of 

the record. For this reason, we must specify LENGTH as the name 

of a data area rather than a literal and must re-initialize this data 

area if we use it for LENGTH more than once in the program. An 

longer record will raise an error condition. 

KEYLENGTH It specifies the length of the key. 

Example 

The following example shows how to read a record from 'FL001' file where 

Student-id is the primary key: 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

DATA DIVISION.  

WORKING-STORAGE SECTION. 

01 WS-STD-REC-LEN    PIC S9(4) COMP. 

01 WS-STD-KEY-LEN    PIC S9(4) COMP. 

01 WS-STD-REC-KEY    PIC 9(3). 

01 WS-STD-REC        PIC X(70). 

PROCEDURE DIVISION. 

MOVE +70           TO WS-STD-REC-LEN. 

MOVE ‘100’         TO WS-STD-REC-KEY. 

MOVE 3             TO WS-STD-KEY-LEN. 



56 

 

EXEC CICS READ 

    FILE ('FL001') 

    INTO (WS-STD-REC) 

    LENGTH (WS-STD-REC-LEN) 

    RIDFLD (WS-STD-REC-KEY) 

    KEYLENGTH (WS-STD-KEY-LEN) 

END-EXEC. 

Read Command Options 

Following options can be used with READ command: 

 GENERIC - It is used when we do not know the complete key value. For 

example, we want a record whose primary key starts with ‘10’ and the rest 

of the key can be anything. Although the key length is 3 characters, we are 

mentioning only 2. It is important to mention the key-length which gives 

the length for which it needs to do the matching. The first record that 

satisfies the criteria will get picked up. 

 UPDATE - It specifies that we intend to update the record in the current 

transaction. Specifying UPDATE gives your transaction exclusive control of 

the requested record. It should be used when we want to rewrite the record. 

 EQUAL - It specifies that we want only the record whose key exactly 

matches with what is specified by RIDFLD. 

 GTEQ - It specifies that we want the first record whose key is greater than 

or equal to the key specified. 

EXEC CICS READ 

    FILE('name') 

    INTO(data-area) 

    RIDFLD(data-area) 

    LENGTH(data-value) 

    KEYLENGTH(data-value) 

    GENERIC 

    UPDATE 

    EQUAL 

    GTEQ 

END-EXEC. 



57 

 

Read Command Exceptions 

The following table shows the list of exceptions that arise during READ statement: 

Exception Description 

NOTOPEN File is not open. 

NOTFND Record that is being searched does not exist in the dataset. 

FILENOTFOUND File entry is not made in FCT. 

LENGERR Mismatch between the length specified in command and 

actual length of the record. 

NOTAUTH If the user does not have enough permissions to use the file. 

DUPKEY If more than 1 record satisfy the condition on the alternate 

key. 

Write 

Write command is used to add new records to a file. The parameters used in Write 

command are same as we had described before. Data is picked from the data area 

mentioned in the FROM clause. Following is the syntax for Write command: 

EXEC CICS WRITE 

    FILE(name) 

    FROM(data-area) 

    RIDFLD(data-area) 

    LENGTH(data-value) 

    KEYLENGTH(data-value) 

END-EXEC. 

Example 

Following is the example to write a record in 'FL001' file where Student-id is the 

primary key and a new record with 101 student id will be written in the file: 

 



58 

 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

DATA DIVISION.  

WORKING-STORAGE SECTION. 

01 WS-STD-REC-LEN    PIC S9(4) COMP. 

01 WS-STD-KEY-LEN    PIC S9(4) COMP. 

01 WS-STD-REC-KEY    PIC 9(3). 

01 WS-STD-REC        PIC X(70). 

PROCEDURE DIVISION. 

MOVE +70           TO WS-STD-REC-LEN. 

MOVE ‘101’         TO WS-STD-REC-KEY. 

MOVE 3             TO WS-STD-KEY-LEN. 

MOVE '101Mohtahim M TutorialsPoint' TO WS-STD-REC. 

EXEC CICS WRITE 

    FILE ('FL001') 

    FROM (WS-STD-REC) 

    LENGTH (WS-STD-REC-LEN) 

    RIDFLD (WS-STD-REC-KEY) 

    KEYLENGTH (WS-STD-KEY-LEN) 

END-EXEC. 

Write Command Exceptions 

The following table shows the list of exceptions that arise during a WRITE 

statement: 

Exception Description 

NOTOPEN File is not open. 

FILENOTFOUND File entry is not made in FCT. 

LENGERR Mismatch between the length specified in command and 

actual length of the record. 



59 

 

NOTAUTH If the user does not have enough permissions to use the file. 

DUPKEY If more than 1 record satisfy the condition on the alternate 

key. 

NOSPACE There is not enough space in the dataset. 

Rewrite 

REWRITE command is used to modify a record that is already present in a file. 

Prior to this command, the record must be read with a READ UPDATE command. 

The parameters are same as described before. The syntax for the Rewrite 

command is as follows: 

EXEC CICS REWRITE 

    FILE (name) 

    FROM (data-area)  

    LENGTH (data-value) 

END-EXEC. 

Example 

The following example shows how to write a record in 'FL001' file where Student-

id is the primary key. A new record with 101 student id will be written in the file: 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

DATA DIVISION.  

WORKING-STORAGE SECTION. 

01 WS-STD-REC-LEN    PIC S9(4) COMP. 

01 WS-STD-KEY-LEN    PIC S9(4) COMP. 

01 WS-STD-REC-KEY    PIC 9(3). 

01 WS-STD-REC        PIC X(70). 

PROCEDURE DIVISION. 

MOVE +70           TO WS-STD-REC-LEN. 

MOVE ‘101’         TO WS-STD-REC-KEY. 

MOVE 3             TO WS-STD-KEY-LEN. 



60 

 

EXEC CICS READ 

    FILE ('FL001') 

    INTO (WS-STD-REC) 

    LENGTH (WS-STD-REC-LEN) 

    RIDFLD (WS-STD-REC-KEY) 

    KEYLENGTH (WS-STD-KEY-LEN) 

    UPDATE 

END-EXEC. 

MOVE '100Mohtahim M TutorialsPnt' TO WS-STD-REC. 

EXEC CICS REWRITE 

    FILE ('FL001') 

    FROM (WS-STD-REC) 

    LENGTH (WS-STD-REC-LEN) 

END-EXEC. 

Rewrite Command Exceptions 

The following table lists the exceptions that arise during a REWRITE statement: 

Exception Description 

NOTOPEN File is not open. 

LENGERR Mismatch between the length specified in command and actual 

length of the record. 

NOTAUTH If the user does not have enough permissions to use the file. 

INVREQ Rewrite without prior READ with UPDATE. 

NOSPACE There is not enough space in the dataset. 

Delete 

DELETE command is used to delete a record that is present in a file. Prior to this 

command, the record must be read with a READ UPDATE command. The 



61 

 

parameters are same as described before. The syntax of Delete command is as 

follows: 

EXEC CICS DELETE 

    FILE('name') 

END-EXEC. 

Following is the syntax to delete a record directly without reading it with Update 

option: 

EXEC CICS DELETE 

    FILE('name') 

    RIDFLD(data-value) 

END-EXEC. 

Example 

Following is the example for Group Delete. This can be done 

using Generic option, where all the records that satisfy the generic criteria will be 

deleted. NUMREC will hold the number of records deleted. The field mentioned 

here should be a S9(4) comp. 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

DATA DIVISION.  

WORKING-STORAGE SECTION. 

01 WS-STD-REC-LEN    PIC S9(4) COMP. 

01 WS-STD-KEY-LEN    PIC S9(4) COMP. 

01 WS-STD-REC-KEY    PIC 9(3). 

01 WS-STD-REC        PIC X(70). 

01 WS-NUM-REC-DEL    PIC S9(4). 

PROCEDURE DIVISION. 

MOVE '11'       TO WS-STD-REC-KEY. 

MOVE 2          TO WS-STD-KEY-LEN. 

EXEC CICS READ 

    FILE ('FL001') 

    RIDFLD (WS-STD-REC-KEY) 

    KEYLENGTH (WS-STD-KEY-LEN) 



62 

 

    GENERIC 

    NUMREC (WS-NUM-REC-DEL) 

END-EXEC. 

Delete Command Exceptions 

The following table shows the list of exceptions that arise during a DELETE 

statement: 

Exception Description 

NOTOPEN File is not open. 

NOTFND Record that is being searched doesn't exist in the dataset 

(DELETE with RIDFLD). 

NOTAUTH If the user does not have enough permissions to use the file. 

INVREQ Rewrite without prior READ with UPDATE. 

FILENOTFOUND File entry is not made in FCT. 

Sequential Access 

Following are the commands which are used for sequential processing: 

 STARTBR 

 READNEXT / READPREV 

 RESETBR 

 ENDBR 

STARTBR 

STARTBR is known as start browse. The STARTBR command gets the process 

started. It tells the CICS from where to start reading the file. 

 The FILE and RIDFLD parameters are the same as in a READ command. 

 The options allowed are GTEQ and EQUAL. 

 UPDATE is not allowed and file browsing is strictly a read-only operation. 



63 

 

Syntax 
Following is the syntax of STARTBR command: 

EXEC CICS STARTBR 

    FILE ('name') 

    RIDFLD (data-value) 

    KEYLENGTH(data-value) 

    GTEQ/EQUAL/GENERIC 

END-EXEC. 

READNEXT / READPREV 

When we issue a STARTBR command, it does not make the records available. It 

just tells from where to start reading the file. To get the first record and sequence 

after that, we need to use the READNEXT command. 

 The FILE, INTO, and LENGTH parameters are defined in the same way as 

they are in the READ command. We only need the FILE parameter because 

CICS allows us to browse several files at once and this tells which one we 

want to read next. 

 RIDFLD points to a data area into which the CICS will "feed back" the key 

of the record it just read. 

 The READPREV command is almost like READNEXT, except that it lets us 

proceed backward through a data set instead of forward. 

Syntax 
Following is the syntax of READNEXT / READPREV command: 

EXEC CICS READNEXT/READPREV 

    FILE ('name') 

    INTO (data-value) 

    LENGTH (data-value) 

    RIDFLD (data-value) 

END-EXEC 

RESETBR 

The RESETBR command allows us to reset our starting point in the middle of a 

browse. It establishes a new browsing point. 



64 

 

Syntax 
Following is the syntax of RESETBR command: 

EXEC CICS RESETBR 

    FILE ('name') 

    RIDFLD (data-value) 

    GTEQ 

END-EXEC. 

ENDBR 

When we have finished reading a file sequentially, we terminate the browse using 

the ENDBR command. It tells the CICS that the browse is being terminated. 

Syntax 
Following is the syntax of the ENDBR command: 

EXEC CICS ENDBR 

    FILE ('name') 

END-EXEC. 

 



65 

 

There are many types of abends and errors which one can face while using a 

CICS application. Errors can arise due to both hardware of software issues. We 

will be discussing about errors and error handling in this module. 

CICS Errors 

Following are the CICS errors which can arise during the execution of CICS 

applications: 

 Some expected CICS errors arise when the conditions are not normal in the 

CICS system. For example, if we are reading a particular record and the 

record is not found, then we get the "Not Found" error. Mapfail is a similar 

error. Errors in this category are handled by explicit logic in the program. 

 Logical errors arise due to some reasons like division by zero, illegal 

character in numeric field, or transaction id error. 

 Errors that are related to hardware or other system conditions are beyond 

the control of an application program. For example, getting input/output 

error while accessing a file. 

Error Handling Commands 

CICS provides several mechanisms to identify the errors and to handle them in 

our programs. Following are the commands which are used to handle the expected 

CICS errors: 

 Handle condition 

 Handle Abend 

 Abend 

 Ignore Condition 

 Nohandle 

We will discuss each of them in detail now. 

Handle Condition 

Handle condition is used to transfer the control of the program to a paragraph or 

a procedure label. If the condition name specified in the exception block arises, 

the particular para will be given control and then we can handle that condition. 

13. CICS – ERROR HANDLING 



66 

 

HANDLE CONDITION can handle only conditions related to CICS, not the ordinary 

program Abends like as data exceptions. It can handle conditions that are related 

only to CICS. It cannot handle the ordinary program Abends like as data 

exceptions. The syntax of Handle Condition is as follows: 

EXEC CICS HANDLE CONDITION 

    CONDITION(Label) 

    CONDITION(Label) 

    ERROR(LABEL) 

END-EXEC. 

Example 
Following is the example of Handle condition: 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

PROCEDURE DIVISION. 

EXEC CICS HANDLE CONDITION 

    DUPKEY(X0000-DUPKEY-ERR-PARA) 

    NOTFND(X000-NOT-FOUND-PARA) 

    ERROR(X0000-GEN-ERR-PARA) 

END-EXEC. 

X0000-DUPKEY-ERR-PARA. 

DISPALY 'Duplicate Key Found'. 

X0000-NOT-FOUND-PARA. 

DISPLAY 'Record Not Found'. 

X0000-GEN-ERR-PARA. 

DISPLAY 'General Error'. 

Handle Abend 

If a program abends due to some reasons like input-output error, then it can be 

handled using Handle Abend CICS command. Following is the syntax of Handle 

Abend command: 

 EXEC CICS HANDLE ABEND 

    PROGRAM(name)  



67 

 

    LABEL(Label)    

    CANCEL          

    RESET 

END-EXEC 

Program name or label name is used to transfer the control to the program or 

paragraph if abend occurs. CANCEL is used to cancel previous HANDLE 

CONDITIONS. RESET is used to re-activate the previously cancelled HANDLE 

ABEND. 

Example 
Following is the example of Handle Abend: 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

PROCEDURE DIVISION. 

EXEC CICS HANDLE ABEND 

    LABEL (X0000-HANDLE-ABEND-PARA) 

END-EXEC. 

X0000-HANDLE-ABEND-PARA. 

DISPLAY 'Program Abended'. 

Abend 

Abend command is used to terminate the task intentionally. Using Abend 

command, we can set a user-defined abend code. Following is the syntax of Abend 

command: 

EXEC CICS ABEND 

    ABCODE(name) 

END-EXEC. 

Example 

The following example shows how to use the Abend command in a program. It will 

abend when the program reaches this paragraph with the user-defined abend 

code. In the following example, it will abend with abend code D100: 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                



68 

 

PROCEDURE DIVISION. 

EXEC CICS ABEND 

    ABCODE(D100)  

END-EXEC. 

Ignore Condition 

Ignore condition is used when we want no action to be taken if a particular abend 

or error happens which is mentioned inside the Ignore Condition. Following is the 

syntax of Ignore Condition: 

EXEC CICS IGNORE CONDITION 

    CONDITION(Label) 

END-EXEC. 

Example 

The following example shows how to use Ignore Condition in a program. It will not 

abend the program even if the program throws length error as we have mentioned 

LENGERR inside the Ignore condition. 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

PROCEDURE DIVISION. 

EXEC CICS IGNORE CONDITION 

    LENGERR 

END-EXEC. 

Nohandle 

Nohandle can be specified for any CICS command. It will cause no action to be 

taken for any exceptional conditions that may occur during the execution of the 

CICS command. This command temporarily deactivates all the other handle 

conditions. If an exception arises during the execution of the command, the 

control will be transferred to the next statement after the Command. It can be 

used with Read, Write, Delete, etc. The syntax of Nohandle is as follows: 

 

 



69 

 

EXEC CICS 

    program statements 

    NOHANDLE     

END-EXEC. 

Example 

Following is the example of Nohandle command. We are using it with a Read 

statement. If Read statement fails, it will not abend the program. 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. HELLO.                                                

PROCEDURE DIVISION. 

EXEC CICS READ    

    FILE('FILE1')                 

    INTO(WS-FILE-REC)              

    RIDFLD(WS-STDID)              

    NOHANDLE                           

END-EXEC.  

 



70 

 

CICS Program Control Program (PCP) manages the flow of application programs. 

All the application programs must have an entry in the Processing Program Table. 

Following are the commands which are used for program control services: 

 XCTL 

 Link 

 Load 

 Release 

 Return 

Program Logical Levels 

The application programs which execute under CICS have various logical levels. 

The first program which receives the control directly is at highest logical level, i.e., 

Level 1. The Linked program is at the next logical level from the linking program. 

The XCTL programs run at the same level. It will be clear when we will go through 

Link and XCTL, later in this module. The following image shows the logical levels: 

14. CICS – CONTROL OPERATIONS 



71 

 

 

XCTL 

The fundamental explanation of XCTL is as follows: 

 XCTL command is used to pass the control from one program to another at 

the same level. 

 It does not expect the control back. 

 It is similar to GO TO statement. 

 An XCTL program can be a pseudo-conversational. 

Example 
The following example shows how to use XCTL command to pass the control to 

another program: 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. PROG1.   

WORKING-STORAGE SECTION. 

01 WS-COMMAREA    PIC X(100).                                              

PROCEDURE DIVISION. 



72 

 

EXEC CICS XCTL 

    PROGRAM ('PROG2') 

    COMMAREA (WS-COMMAREA) 

    LENGTH (100) 

END-EXEC. 

This command transfers the control to be passed to program 'PROG2' with 100 

bytes of data. COMMAREA is an optional parameter and is the name of the area 

containing the data to be passed or the area to which results are to be returned. 

Link 

Link command is used to transfer the control to another program at lower level. 

It expects the control back. A Linked program cannot be pseudo-conversational. 

Example 

The following example shows how to use Link command to pass the control to 

another program: 

IDENTIFICATION DIVISION.                                          

PROGRAM-ID. PROG1.   

WORKING-STORAGE SECTION. 

01 WS-COMMAREA    PIC X(100).                                              

PROCEDURE DIVISION. 

EXEC CICS LINK 

    PROGRAM ('PROG2') 

    COMMAREA (WS-COMMAREA) 

    LENGTH (100) 

END-EXEC. 

Load 

Load command is used to load a program or a table. Following is the syntax of 

Load command: 

EXEC CICS LOAD 

    PROGRAM ('name') 

END-EXEC. 



73 

 

Release 

Release command is used to release a program or a table. Following is the syntax 

of Release command: 

EXEC CICS RELEASE 

    PROGRAM ('name') 

END-EXEC. 

Return 

Return command is used to return the control to the next higher logical level. 

Following is the syntax of Return command: 

EXEC CICS RETURN 

    PROGRAM ('name') 

    COMMAREA (data-value) 

    LENGTH (data-value) 

END-EXEC. 

Interval Control Operations 

The interval control operations are of the following two types: 

ASKTIME 

ASKTIME is used to request for current time and date or timestamp. We then 

move this value to the working storage variable inside the program. Following is 

the syntax of ASKTIME command: 

EXEC CICS ASKTIME 

    [ABSTIME(WS-TIMESTAMP)] 

END-EXEC. 

FORMATTIME 

FORMATTIME formats the timestamp into the required format based on the 

options, which can be YYDDD, YYMMDD, or YYDDMM for date. DATESEP indicates 

the separator for the DATE as does the TIMESEP variable for TIME. Following is 

the syntax of FORMATTIME command: 



74 

 

EXEC CICS FORMATTIME 

    ABSTIME(WS-TIMESTAMP) 

    [YYDDD(WS-DATE)] 

    [YYMMDD(WS-DATE)] 

    [YYDDMM(WS-DATE)] 

    [DATESEP(WS-DATE-SEP)] 

    [TIME(WS-TIME)] 

    [TIMESEP(WS-TIME-SEP)] 

END-EXEC. 

 



75 

 

There are different scratch pads which are available in CICS for saving data or to 

transfer the data between transactions. There are five storage areas which are 

provided by CICS, which we will be discussing in this module. 

COMMAREA 

The COMMAREA behaves like a scratch pad that can be used to pass data from 

one program to another program, either within the same transaction or from 

different transactions. It should be defined in the LINKAGE SECTION using 

DFHCOMMAREA name. 

Common Work Area 

Any transaction in the CICS region can access Common Work Area and hence the 

format and use of it must be agreed upon by all transactions in the system that 

decides to use it. There is only one CWA in the entire CICS region. 

Transaction Work Area 

Transaction Work Area is used to pass data between the application programs that 

are executed with in the same transaction. TWA exists only for the duration of 

transaction. Its size is defined in the Program Control Table. 

Temporary Storage Queue 

Temporary Storage Queue (TSQ) is a feature that is provided by the Temporary 

Storage Control Program (TSP). 

 A TSQ is a queue of records that can be created, read and deleted by 

different tasks or programs in the same CICS region. 

 A queue identifier is used to identify TSQ. 

 A record within a TSQ is identified by the relative position known as the 

item number. 

 The records in TSQ, remains accessible until the entire TSQ is explicitly 

deleted. 

 The records in TSQ can be read sequentially or directly. 

15. CICS – TEMPORARY STORAGE 



76 

 

 TSQs may be written in the main storage or the auxiliary storage in the 

DASD. 

WRITEQ TS 

This command is used to add items to an existing TSQ. Also, we can create a new 

TSQ using this command. Following is the syntax of WRITEQ TS command: 

EXEC CICS WRITEQ TS 

    QUEUE ('queue-name') 

    FROM (queue-record) 

    [LENGTH (queue-record-length)] 

    [ITEM (item-number)] 

    [REWRITE] 

    [MAIN /AUXILIARY] 

END-EXEC. 

Following are the details of parameters used in the WRITEQ TS command: 

 The QUEUE is identified by the name which is mentioned in this parameter. 

 FROM and LENGTH options are used to specify the record that is to be 

written to the queue and its length. 

 If the ITEM option is specified, CICS assigns an item number to the record 

in the queue, and sets the data area supplied in that option to the item 

number. If the record starts a new queue, the item number assigned is 1 

and subsequent item numbers follow on sequentially. 

 The REWRITE option is used to update a record already present in the 

queue. 

 MAIN / AUXILIARY option is used to store records in main or auxiliary 

storage. Default is AUXILIARY. 

READQ TS 

This command is used read the Temporary Storage Queue. Following is the syntax 

of READQ TS: 

EXEC CICS READQ TS 

    QUEUE ('queue-name') 

    INTO (queue-record) 



77 

 

    [LENGTH (queue-record-length)] 

    [ITEM (item-number)] 

    [NEXT] 

END-EXEC. 

DELETEQ TS 

This command is used delete the Temporary Storage Queue. Following is the 

syntax of DELETEQ TS: 

EXEC CICS DELETEQ TS 

    QUEUE ('queue-name') 

END-EXEC. 

Transient Data Queue 

Transient Data Queue is transient in nature as it can be created and deleted 

quickly. It allows only sequential access. 

 The contents of the queue can be read only once as it gets destroyed once 

a read is performed and hence the name Transient. 

 It cannot be updated. 

 It requires an entry in DCT. 

WRITEQ TD 

This command is used to write Transient data queues and they are always written 

to a file. Following is the syntax of WRITEQ TD command: 

EXEC CICS WRITEQ TD 

    QUEUE ('queue-name') 

    FROM (queue-record) 

    [LENGTH (queue-record-length)] 

END-EXEC. 

READQ TD 

This command is used read the Transient data queue. Following is the syntax of 

READQ TD: 



78 

 

EXEC CICS READQ TD 

    QUEUE ('queue-name') 

    INTO (queue-record) 

    [LENGTH (queue-record-length)] 

END-EXEC. 

DELETEQ TD 

This command is used delete the Transient data queue. Following is the syntax of 

DELETEQ TD: 

EXEC CICS DELETEQ TD 

    QUEUE ('queue-name') 

END-EXEC. 

 



79 

 

The mutual communication that takes place between two or more systems is 

known as intercommunication. 

Benefits of Intercommunication 

The important benefits of intercommunication are as follows: 

 We do not need to replicate the data on all the systems. 

 Users need not hold connections to multiple systems for accessing the data 

stored on them. 

 It improves the performance of the application. 

Basic Terminologies 

One must have a knowledge of basic terminologies used in the CICS system. 

Following are the basic terms: 

Local System 
A local system is a system that initiates a request for intercommunication. 

Local Resource 
A local resource is a resource that lies on the local system. 

Remote System 

A remote system is a system that is initiated as a result of an intercommunication 

request. 

Remote Resource 
A remote resource is a resource that lies on the remote system. 

MVS Sysplex 
MVS Sysplex is a configuration of multiple MVS operating systems. They work as 

a single system by sharing functions and programs. 

CICSPlex 
CICSPlex is commonly described as a set of interconnected CICS regions that 

process customer workload. A CICSPlex is a set of interconnected CICS regions 

that own Terminals, Applications, Resources, etc. 

16. CICS – INTERCOMMUNICATION 



80 

 

Intercommunication Methods 

There are two ways in which CICS can communicate with other systems: 

 MRO – Multi Region Operation is used when two CICS regions within the 

same MVSPLEX needs to communicate with each other. 

 ISC – Inter System Communication is used when a CICS region in a LOCAL 

server has to communicate with a CICS region in the REMOTE server. 



81 

 

While working with CICS, you may encounter abends. Following are the common 

abend codes with their description which will help you to resolve the issues: 

Code Description 

ASRA Program Check Exception 

AEI0 Program ID Error 

AEI9 Map Fail condition 

AEIO Duplicate Key 

AEIN Duplicate Record 

AEID End of file reached 

AEIS File is not open 

AEIP Invalid request condition 

AEY7 Not authorized to use the resource 

APCT Program not found 

AFCA Dataset not found 

AKCT Time out error 

ABM0 Specified map not found 

AICA Program in infinite loop 

AAOW Internal logic error 

 

17. CICS – STATUS CODES 



82 

 

These CICS Interview Questions have been designed especially to get you 

acquainted with the nature of questions you may encounter during your interview 

for the subject of CICS. As per our experience, good interviewers hardly plan to 

ask any particular question during an interview – normally questions start with 

some basic concept of the subject and later, they continue based on further 

discussion and how you answer: 

 

Q: What’s the CICS command used to access current date and time? 

A: ASKTIME command is used to access the current date and time. 

 

Q: How do you dynamically set the CURSOR position to a specific field? 

A: MOVE -1 to FIELD + L field. Mention CURSOR option in the SEND command. 

 

Q: Which command is used to release a record on which exclusive control 

is gained? 

A: EXEC CICS UNLOCK END-EXEC. 

 

Q: What are the attribute values of Skipper and Stopper fields? 

A: For Skipper field, use ASKIP and for stopper field use PROT. 

 

Q: How do you set the MDT option to ‘ON’ status, even if data is not 

entered? 

A: Mention FSET option in DFHMDF or set it dynamically in the program using 

FIELD+A attribute field. 

 

Q: Which CICS service transaction is used to gain accessibility to CICS 

control tables? 

A: CEDA transaction is used to gain accessibility to control tables. 

 

 

18. CICS – INTERVIEW QUESTIONS 



83 

 

Q: Into which table is the terminal id registered? 

A: Terminal Control Table. 

 

Q: What is a mapset? 

A: Mapset is a collection of maps which are linked edited together to form a load 

module. It should have a PPT entry. It can have names from 1 to 7 chars. 

 

Q: What is the function of the CICS translator? 

A: The CICS translator converts the EXEC CICS commands into call statements 

for a specific programming language. 

 

Q: What are the differences between an EXEC CICS XCTL and an EXEC 

CICS LINK command? 

A: The XCTL command transfers the control to an application program at the same 

logical level and it does not expect the control back, while the LINK command 

passes the control to an application program at the next logical level and expects 

the control back. 

 

Q: What is EIB? How it can be used? 

A: CICS automatically provides some system-related information to each task in 

a form of EXEC Interface Block (EIB), which is unique to the CICS command level. 

We can use all the fields of EIB in our application programs right away. 

 

Q: What information can be obtained from the EIBRCODE? 

A: The EIBRCODE tells the application program if the last CICS command was 

executed successfully or not. 

 

Q: What is the effect of including the TRANSID in the EXEC CICS RETURN 

command? 

A: The next time the end-user presses an attention key, CICS will start the 

transaction specified in the TRANSID option. 

 

 

 



84 

 

Q: What is the function of the EXEC CICS HANDLE CONDITION command? 

A: To specify the paragraph or program label to which the control is to be passed 

if the “handle condition” occurs. 

 

Q: What is the difference between the INTO and the SET option in the 

EXEC CICS RECEIVE MAP command? 

A: The INTO option moves the information in the TIOA into the reserved specified 

area, while the SET option simply returns the address of the TIOA to the specified 

BLL cell or “address-of” a linkage section. 

 

Q: What is the function of DFHMDF BMS macro? 

A: The DFHMDF macro defines fields, literal, and characteristics of a field. 

 

Q: What is the difference between getting the system time with EIBTIME 

and ASKTIME command? 

A: The ASKTIME command is used to request the current date and time. Whereas, 

the EIBTIME field has the value at the task initiation time. 

 

Q: What is the function of the Terminal Control Table? 

A: The TCT defines the characteristics of each terminal with which CICS can 

communicate. 

 

Q: What is a deadlock? 

A: A deadlock occurs when a task is waiting for a resource held by another task 

which, in turn, is waiting for a resources held by the first task. 

 

Q: Explain the term Multi Region Operation. 

A: MRO is the mechanism by which different CICS address spaces within the same 

CPU can communicate and share resources. 

 

Q: What is meant by program reentrance? 

A: A program is considered reentrant if more than one task can execute the code 

without interfering with the other tasks execution. 



85 

 

Q: What is the common work area? 

A: The common work area is a storage area that can be accessed by any task in 

a CICS system. 

 

Q: What is the meaning and use of the EIBAID field? 

A: EIBAID is a key field in the execute interface block; it indicates which attention 

key the user pressed to initiate the task. 

 

Q: What is BMS? 

A: BMS stands for Basic Map Support. It allows you to code assembler level 

programs to define screens. 

What is Next? 
Further, you can go through the examples which you have practiced with the 

subject and make sure you are able to speak confidently on them. If you are a 

fresher, then the interviewer does not expect you to answer very complex 

questions. Hence you should have a strong hold over the fundamental concepts 

of the subject.  

 

 

 


