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Lecture 2
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5329 Sennott Square

Propositional logic
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Course administration

Homework 1 

• First homework assignment is out today will be posted on 
the course web page

• Due next week on Thurday

Recitations:

• today at 4:00pm SENSQ 5313

• tomorrow at 11:00 SENSQ 5313

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/
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Propositional logic: review

• Propositional logic: a formal language for representing 
knowledge and for making logical inferences

• A proposition is a statement that is either true or false.

• A compound proposition can be created from other 
propositions using logical connectives 

• The truth of a compound proposition is defined by truth 
values of elementary propositions and the meaning of 
connectives.

• The truth table for a compound proposition: table with 
entries (rows) for all possible combinations of truth values of 
elementary propositions.

M. HauskrechtCS 441 Discrete mathematics for CS

Compound propositions

• Let   p: 2 is a prime …..   T

q: 6 is a prime …..   F

• Determine the truth value of the following statements:

¬ p:   F

p  q : F

p  ¬q:  T

p  q : T

p  q: T

p  q:  F

q  p:  T
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Constructing the truth table 

• Example: Construct the truth table for 
(p  q)  (¬p  q)
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Constructing the truth table 

• Example: Construct the truth table for 
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T

T F

F T

F F

Rows: all possible 
combinations of values 

for elementary 
propositions:

2n values
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Constructing the truth table 

• Example: Construct the truth table for 
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T

T F

F T

F F

Typically the target 
(unknown) compound 

proposition and its 
values

Auxiliary compound 
propositions and their 

values
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Constructing the truth table 

• Examples: Construct a truth table for 
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T F T F F

T F F F T F

F T T T T T

F F T T F F
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Computer representation of True and False 

We need to encode two values True and False: 
• Computers represents data and programs using 0s and 1s 
• Logical truth values – True and False 
• A bit is sufficient to represent two possible values:

– 0 (False) or 1(True)

• A variable that takes on values 0 or 1 is called a Boolean 
variable.

• Definition: A bit string is a sequence of zero or more bits.  
The length of this string is the number of bits in the string.
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Bitwise operations 

• T and F replaced with 1 and 0

p q p  q p  q

1 1 1 1

1 0 1 0

0 1 1 0

0 0 0 0

p ¬p

1
0

0
1
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Bitwise operations 

• Examples:

1011 0011 1011 0011 1011 0011
 0110 1010  0110 1010  0110 1010

1111 1011 0010 0010                   1101 1001

M. Hauskrecht

Applications of propositional logic

• Translation of English sentences

• Inference and reasoning:

– new true propositions are inferred from existing ones

– Used in Artificial Intelligence:

• Rule based (expert) systems

• Automatic theorem provers

• Design of logic circuit

CS 441 Discrete mathematics for CS
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Translation

Assume a sentence:
If you are older than 13 or you are with your parents then you can 

attend a PG-13 movie.

Parse:
• If  ( you are older than 13 or you are with your parents ) then

( you can attend a PG-13 movie)

Atomic (elementary) propositions: 
– A= you are older than 13
– B= you are with your parents
– C=you can attend a PG-13 movie

• Translation: A  B  C
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Translation 

• General rule for translation. 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 1 find logical connectives
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Translation 

• General rule for translation. 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 1 find logical connectives
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Translation 

• General rule for translation. 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 2 break the sentence into elementary propositions
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Translation 

• General rule for translation. 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 2 break the sentence into elementary propositions

a b c
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Translation 

• General rule for translation . 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 3 rewrite the sentence in propositional logic

a b c

b  c  a
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Translation 

• Assume two elementary statements:
– p: you drive over 65 mph ; q: you get a speeding ticket

• Translate each of these sentences to logic
– you do not drive over 65 mph. (¬p)
– you drive over 65 mph, but you don't get a speeding 

ticket. (p  ¬q)
– you will get a speeding ticket if you drive over 65 mph.

(p  q)
– if you do not drive over 65 mph then you will not get a 

speeding ticket.(¬p  ¬q)
– driving over 65 mph is sufficient for getting a speeding 

ticket. (p  q)
– you get a speeding ticket, but you do not drive over 65 

mph. (q  ¬p)
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Application: inference 

Assume we know the following sentences are true:
If you are older than 13 or you are with your parents then you 

can attend a PG-13 movie. You are older than 13. 
Translation:
• If  ( you are older than 13 or you are with your parents ) then

( you can attend a PG-13 movie) . (You are older than 13). 
– A= you are older than 13
– B= you are with your parents
– C=you can attend a PG-13 movie

• (A  B  C), A   
• (A  B  C)  A is true  
• With the help of the logic we can infer the following 

statement (proposition):
– You can attend a PG-13 movie  or C is True    
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Application: inference 

The field of Artificial Intelligence: 
• Builds programs that act intelligently
• Programs often rely on symbolic manipulations

Expert systems:
• Encode knowledge about the world in logic
• Support inferences where new facts are inferred from existing 

facts following the semantics of logic

Theorem provers:
• Encode existing knowledge (e.g. about math) using logic
• Show that some hypothesis is true 

M. HauskrechtCS 441 

Example: MYCIN

• MYCIN: an expert system for diagnosis of bacterial infections

• It represents

– Facts about a specific patient case 

– Rules describing relations between entities in the bacterial 
infection domain

• Inferences: 

– manipulates the facts and known relations to answer 
diagnostic queries (consistent with findings and rules)

1. The stain of the organism is gram-positive, and
2. The morphology of the organism is coccus, and
3. The growth conformation of the organism is chains
the identity of the organism is streptococcus

If

Then
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Tautology and Contradiction 
• Some propositions are interesting since their values in the truth 

table are always the same
Definitions:
• A compound proposition that is always true for all possible 

truth values of the propositions is called a tautology.  
• A compound proposition that is always false is called a 

contradiction.
• A proposition that is neither a tautology nor contradiction is 

called a contingency.
Example: p  ¬p is a tautology.

p ¬p p  ¬p

T
F

F
T

T
T
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Tautology and Contradiction 
• Some propositions are interesting since their values in the truth 

table are always the same

Definitions:

• A compound proposition that is always true for all possible 
truth values of the propositions is called a tautology.  

• A compound proposition that is always false is called a 
contradiction. 

• A proposition that is neither a tautology nor contradiction is 
called a contingency.

Example:   p  ¬p is a contradiction.

p ¬p p  ¬p

T
F

F
T

F
F
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Equivalence 
• We have seen that some of the propositions are equivalent. 

Their truth values in the truth table are the same. 

• Example: p  q  is  equivalent to  ¬q  ¬p  (contrapositive)

• Equivalent statements are important for logical reasoning 
since they can be substituted and can help us to:

(1) make a logical argument and (2) infer new propositions 

p q p  q ¬q  ¬p

T T T T

T F F F

F T T T

F F T T
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Logical equivalence 
Definition: The propositions p and q are called logically 

equivalent if p  q is a tautology (alternately, if they have the 
same truth table). The notation p <=> q denotes p and q are 
logically equivalent.

Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

Example: Negate "The summer in Mexico is cold and sunny" 
with DeMorgan's Laws

Solution: ?
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Equivalence 
• Definition: The propositions p and q are called logically 

equivalent if p  q is a tautology (alternately, if they have the 
same truth table). The notation p <=> q denotes p and q are 
logically equivalent.

Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

Example: Negate "The summer in Mexico is cold and sunny" 
with DeMorgan's Laws

Solution: "The summer in Mexico is not cold or not sunny."
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Equivalence 
Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

To convince us that two propositions are logically equivalent 
use the truth table

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F

T F F T

F T T F

F F T T



15

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence 
Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

To convince us that two propositions are logically equivalent 
use the truth table

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F F

T F F T F

F T T F F

F F T T T
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Equivalence 
Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

To convince us that two propositions are logically equivalent 
use the truth table

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F F F

T F F T F F

F T T F F F

F F T T T T
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Equivalence 
Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

To convince us that two propositions are logically equivalent 
use the truth table

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F F F

T F F T F F

F T T F F F

F F T T T T
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Important logical equivalences 

• Identity

– p  T  <=>  p

– p  F  <=>  p

• Domination

– p  T  <=>  T

– p  F  <=>  F

• Idempotent

– p  p  <=> p

– p  p  <=> p
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Important logical equivalences 

• Double negation

– ¬(¬p)  <=> p

• Commutative

– p  q  <=>  q  p

– p  q  <=>  q  p 

• Associative

– (p  q)  r  <=>  p  (q  r)

– (p  q)  r  <=>  p  (q  r) 
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Important logical equivalences 

• Distributive

– p  (q  r)  <=>  (p  q)  (p  r)

– p  (q  r)  <=>  (p  q)  (p  r) 

• De Morgan

– ¬( p  q )  <=> ¬p  ¬q

– ( p  q )  <=> ¬p  ¬q 

• Other useful equivalences

– p  ¬p <=> T

– p  ¬p <=> F

– p  q  <=> (¬p  q)
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Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example: Show (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p  <=>  T)

(p  q)  p  <=>  ¬(p  q)  p Useful

• <=>  [¬p  ¬q]  p DeMorgan

• <=>  [¬q  ¬p]  p         Commutative

• <=>  ¬q  [ ¬p  p ]        Associative

• <=>  ¬q  [ T ] Useful

• <=>   T Domination
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Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example: Show (p  q)  p is a tautology.

• Alternate proof: 

p q p  q (p  q)p

T T T T

T F F T

F T F T

F F F T
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Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>    ?
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Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>  ¬(¬q)  (¬p) Useful

• <=>    ?
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Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>  ¬(¬q)  (¬p) Useful

• <=>    q  (¬p) Double negation

• <=>    ?
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Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>  ¬(¬q)  (¬p) Useful

• <=>    q  (¬p) Double negation

• <=>    ¬p  q Commutative

• <=>    ?
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Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>  ¬(¬q)  (¬p) Useful

• <=>    q  (¬p) Double negation

• <=>    ¬p  q Commutative

• <=>    p  q Useful

End of proof


