
1

M. HauskrechtCS 441 Discrete mathematics for CS

CS 441 Discrete Mathematics for CS
Lecture 2

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Propositional logic

M. HauskrechtCS 441 Discrete mathematics for CS

Course administration

Homework 1 

• First homework assignment is out today will be posted on 
the course web page

• Due next week on Thurday

Recitations:

• today at 4:00pm SENSQ 5313

• tomorrow at 11:00 SENSQ 5313

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/



2

M. HauskrechtCS 441 Discrete mathematics for CS

Propositional logic: review

• Propositional logic: a formal language for representing 
knowledge and for making logical inferences

• A proposition is a statement that is either true or false.

• A compound proposition can be created from other 
propositions using logical connectives 

• The truth of a compound proposition is defined by truth 
values of elementary propositions and the meaning of 
connectives.

• The truth table for a compound proposition: table with 
entries (rows) for all possible combinations of truth values of 
elementary propositions.

M. HauskrechtCS 441 Discrete mathematics for CS

Compound propositions

• Let   p: 2 is a prime …..   T

q: 6 is a prime …..   F

• Determine the truth value of the following statements:

¬ p:   F

p  q : F

p  ¬q:  T

p  q : T

p  q: T

p  q:  F

q  p:  T



3

M. HauskrechtCS 441 Discrete mathematics for CS

Constructing the truth table 

• Example: Construct the truth table for 
(p  q)  (¬p  q)

M. HauskrechtCS 441 Discrete mathematics for CS

Constructing the truth table 

• Example: Construct the truth table for 
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T

T F

F T

F F

Rows: all possible 
combinations of values 

for elementary 
propositions:

2n values



4

M. HauskrechtCS 441 Discrete mathematics for CS

Constructing the truth table 

• Example: Construct the truth table for 
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T

T F

F T

F F

Typically the target 
(unknown) compound 

proposition and its 
values

Auxiliary compound 
propositions and their 

values

M. HauskrechtCS 441 Discrete mathematics for CS

Constructing the truth table 

• Examples: Construct a truth table for 
(p  q)  (¬p  q)

p q ¬p p  q ¬p  q (pq)
(¬pq)

T T F T F F

T F F F T F

F T T T T T

F F T T F F



5

M. HauskrechtCS 441 Discrete mathematics for CS

Computer representation of True and False 

We need to encode two values True and False: 
• Computers represents data and programs using 0s and 1s 
• Logical truth values – True and False 
• A bit is sufficient to represent two possible values:

– 0 (False) or 1(True)

• A variable that takes on values 0 or 1 is called a Boolean 
variable.

• Definition: A bit string is a sequence of zero or more bits.  
The length of this string is the number of bits in the string.

M. HauskrechtCS 441 Discrete mathematics for CS

Bitwise operations 

• T and F replaced with 1 and 0

p q p  q p  q

1 1 1 1

1 0 1 0

0 1 1 0

0 0 0 0

p ¬p

1
0

0
1



6

M. HauskrechtCS 441 Discrete mathematics for CS

Bitwise operations 

• Examples:

1011 0011 1011 0011 1011 0011
 0110 1010  0110 1010  0110 1010

1111 1011 0010 0010                   1101 1001

M. Hauskrecht

Applications of propositional logic

• Translation of English sentences

• Inference and reasoning:

– new true propositions are inferred from existing ones

– Used in Artificial Intelligence:

• Rule based (expert) systems

• Automatic theorem provers

• Design of logic circuit

CS 441 Discrete mathematics for CS



7

M. HauskrechtCS 441 Discrete mathematics for CS

Translation

Assume a sentence:
If you are older than 13 or you are with your parents then you can 

attend a PG-13 movie.

Parse:
• If  ( you are older than 13 or you are with your parents ) then

( you can attend a PG-13 movie)

Atomic (elementary) propositions: 
– A= you are older than 13
– B= you are with your parents
– C=you can attend a PG-13 movie

• Translation: A  B  C

M. HauskrechtCS 441 Discrete mathematics for CS

Translation 

• General rule for translation. 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 1 find logical connectives



8

M. HauskrechtCS 441 Discrete mathematics for CS

Translation 

• General rule for translation. 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 1 find logical connectives

M. HauskrechtCS 441 Discrete mathematics for CS

Translation 

• General rule for translation. 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 2 break the sentence into elementary propositions



9

M. HauskrechtCS 441 Discrete mathematics for CS

Translation 

• General rule for translation. 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 2 break the sentence into elementary propositions

a b c

M. HauskrechtCS 441 Discrete mathematics for CS

Translation 

• General rule for translation . 
• Look for patterns corresponding to logical connectives in the 

sentence and use them to define elementary propositions. 

• Example:

You can have free coffee if you are senior  citizen and it is a Tuesday

Step 3 rewrite the sentence in propositional logic

a b c

b  c  a



10

M. HauskrechtCS 441 Discrete mathematics for CS

Translation 

• Assume two elementary statements:
– p: you drive over 65 mph ; q: you get a speeding ticket

• Translate each of these sentences to logic
– you do not drive over 65 mph. (¬p)
– you drive over 65 mph, but you don't get a speeding 

ticket. (p  ¬q)
– you will get a speeding ticket if you drive over 65 mph.

(p  q)
– if you do not drive over 65 mph then you will not get a 

speeding ticket.(¬p  ¬q)
– driving over 65 mph is sufficient for getting a speeding 

ticket. (p  q)
– you get a speeding ticket, but you do not drive over 65 

mph. (q  ¬p)

M. HauskrechtCS 441 Discrete mathematics for CS

Application: inference 

Assume we know the following sentences are true:
If you are older than 13 or you are with your parents then you 

can attend a PG-13 movie. You are older than 13. 
Translation:
• If  ( you are older than 13 or you are with your parents ) then

( you can attend a PG-13 movie) . (You are older than 13). 
– A= you are older than 13
– B= you are with your parents
– C=you can attend a PG-13 movie

• (A  B  C), A   
• (A  B  C)  A is true  
• With the help of the logic we can infer the following 

statement (proposition):
– You can attend a PG-13 movie  or C is True    



11

M. HauskrechtCS 441 Discrete mathematics for CS

Application: inference 

The field of Artificial Intelligence: 
• Builds programs that act intelligently
• Programs often rely on symbolic manipulations

Expert systems:
• Encode knowledge about the world in logic
• Support inferences where new facts are inferred from existing 

facts following the semantics of logic

Theorem provers:
• Encode existing knowledge (e.g. about math) using logic
• Show that some hypothesis is true 

M. HauskrechtCS 441 

Example: MYCIN

• MYCIN: an expert system for diagnosis of bacterial infections

• It represents

– Facts about a specific patient case 

– Rules describing relations between entities in the bacterial 
infection domain

• Inferences: 

– manipulates the facts and known relations to answer 
diagnostic queries (consistent with findings and rules)

1. The stain of the organism is gram-positive, and
2. The morphology of the organism is coccus, and
3. The growth conformation of the organism is chains
the identity of the organism is streptococcus

If

Then



12

M. HauskrechtCS 441 Discrete mathematics for CS

Tautology and Contradiction 
• Some propositions are interesting since their values in the truth 

table are always the same
Definitions:
• A compound proposition that is always true for all possible 

truth values of the propositions is called a tautology.  
• A compound proposition that is always false is called a 

contradiction.
• A proposition that is neither a tautology nor contradiction is 

called a contingency.
Example: p  ¬p is a tautology.

p ¬p p  ¬p

T
F

F
T

T
T

M. HauskrechtCS 441 Discrete mathematics for CS

Tautology and Contradiction 
• Some propositions are interesting since their values in the truth 

table are always the same

Definitions:

• A compound proposition that is always true for all possible 
truth values of the propositions is called a tautology.  

• A compound proposition that is always false is called a 
contradiction. 

• A proposition that is neither a tautology nor contradiction is 
called a contingency.

Example:   p  ¬p is a contradiction.

p ¬p p  ¬p

T
F

F
T

F
F



13

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence 
• We have seen that some of the propositions are equivalent. 

Their truth values in the truth table are the same. 

• Example: p  q  is  equivalent to  ¬q  ¬p  (contrapositive)

• Equivalent statements are important for logical reasoning 
since they can be substituted and can help us to:

(1) make a logical argument and (2) infer new propositions 

p q p  q ¬q  ¬p

T T T T

T F F F

F T T T

F F T T

M. HauskrechtCS 441 Discrete mathematics for CS

Logical equivalence 
Definition: The propositions p and q are called logically 

equivalent if p  q is a tautology (alternately, if they have the 
same truth table). The notation p <=> q denotes p and q are 
logically equivalent.

Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

Example: Negate "The summer in Mexico is cold and sunny" 
with DeMorgan's Laws

Solution: ?



14

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence 
• Definition: The propositions p and q are called logically 

equivalent if p  q is a tautology (alternately, if they have the 
same truth table). The notation p <=> q denotes p and q are 
logically equivalent.

Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

Example: Negate "The summer in Mexico is cold and sunny" 
with DeMorgan's Laws

Solution: "The summer in Mexico is not cold or not sunny."

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence 
Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

To convince us that two propositions are logically equivalent 
use the truth table

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F

T F F T

F T T F

F F T T



15

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence 
Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

To convince us that two propositions are logically equivalent 
use the truth table

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F F

T F F T F

F T T F F

F F T T T

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence 
Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

To convince us that two propositions are logically equivalent 
use the truth table

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F F F

T F F T F F

F T T F F F

F F T T T T



16

M. HauskrechtCS 441 Discrete mathematics for CS

Equivalence 
Example of important equivalences

• DeMorgan's Laws:

• 1)   ¬( p  q )  <=> ¬p  ¬q

• 2)   ¬( p  q )  <=> ¬p  ¬q

To convince us that two propositions are logically equivalent 
use the truth table

p q ¬p ¬q ¬(p  q) ¬p  ¬q

T T F F F F

T F F T F F

F T T F F F

F F T T T T

M. HauskrechtCS 441 Discrete mathematics for CS

Important logical equivalences 

• Identity

– p  T  <=>  p

– p  F  <=>  p

• Domination

– p  T  <=>  T

– p  F  <=>  F

• Idempotent

– p  p  <=> p

– p  p  <=> p



17

M. HauskrechtCS 441 Discrete mathematics for CS

Important logical equivalences 

• Double negation

– ¬(¬p)  <=> p

• Commutative

– p  q  <=>  q  p

– p  q  <=>  q  p 

• Associative

– (p  q)  r  <=>  p  (q  r)

– (p  q)  r  <=>  p  (q  r) 

M. HauskrechtCS 441 Discrete mathematics for CS

Important logical equivalences 

• Distributive

– p  (q  r)  <=>  (p  q)  (p  r)

– p  (q  r)  <=>  (p  q)  (p  r) 

• De Morgan

– ¬( p  q )  <=> ¬p  ¬q

– ( p  q )  <=> ¬p  ¬q 

• Other useful equivalences

– p  ¬p <=> T

– p  ¬p <=> F

– p  q  <=> (¬p  q)



18

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example: Show (p  q)  p is a tautology.

• Proof: (we must show (p  q)  p  <=>  T)

(p  q)  p  <=>  ¬(p  q)  p Useful

• <=>  [¬p  ¬q]  p DeMorgan

• <=>  [¬q  ¬p]  p         Commutative

• <=>  ¬q  [ ¬p  p ]        Associative

• <=>  ¬q  [ T ] Useful

• <=>   T Domination

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example: Show (p  q)  p is a tautology.

• Alternate proof: 

p q p  q (p  q)p

T T T T

T F F T

F T F T

F F F T



19

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>    ?

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>  ¬(¬q)  (¬p) Useful

• <=>    ?



20

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>  ¬(¬q)  (¬p) Useful

• <=>    q  (¬p) Double negation

• <=>    ?

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>  ¬(¬q)  (¬p) Useful

• <=>    q  (¬p) Double negation

• <=>    ¬p  q Commutative

• <=>    ?



21

M. HauskrechtCS 441 Discrete mathematics for CS

Using logical equivalences 

• Equivalences can be used in proofs. A proposition or its part 
can be transformed using equivalences and some conclusion 
can be reached.

• Example 2: Show     (p  q)  <=>  (¬q  ¬p)

Proof:

• (p  q)  <=>  (¬q  ¬p)

• <=>  ¬(¬q)  (¬p) Useful

• <=>    q  (¬p) Double negation

• <=>    ¬p  q Commutative

• <=>    p  q Useful

End of proof


