CS 441 Discrete Mathematics for CS Lecture 2

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

Homework 1

- First homework assignment is out today will be posted on the course web page
- Due next week on Thurday

Recitations:

- today at 4:00pm SENSQ 5313
- tomorrow at 11:00 SENSQ 5313

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Propositional logic: review

- **Propositional logic:** a formal language for representing knowledge and for making logical inferences
- A proposition is a statement that is either true or false.
- **A compound proposition** can be created from other propositions using logical connectives
- The truth of a compound proposition is defined by truth values of elementary propositions and the meaning of connectives.
- The truth table for a compound proposition: table with entries (rows) for all possible combinations of truth values of elementary propositions.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Compound propositions

```
• Let p: 2 is a prime ..... T
q: 6 is a prime ..... F
```

• Determine **the truth value** of the following statements:

```
\neg p: \mathbf{F}
p \land q : \mathbf{F}
p \land \neg q : \mathbf{T}
p \lor q : \mathbf{T}
p \oplus q : \mathbf{T}
p \to q : \mathbf{F}
q \to p : \mathbf{T}
```

CS 441 Discrete mathematics for CS

Constructing the truth table

• Example: Construct the truth table for $(p \to q) \land (\neg p \leftrightarrow q)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Constructing the truth table

• Example: Construct the truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

Rows: all possible combinations of values for elementary propositions:

T T T 2^n values

T F F T

CS 441 Discrete mathematics for CS

Constructing the truth table

• Examples: Construct a truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$

р	q	¬p	$p \rightarrow q$	$\neg p \leftrightarrow q$	(¬p→q)∧
Т	Т	F	Т	F	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F

CS 441 Discrete mathematics for CS

Computer representation of True and False

We need to encode two values True and False:

- Computers represents data and programs using 0s and 1s
- Logical truth values True and False
- A bit is sufficient to represent two possible values:
 - 0 (False) or 1(True)
- A variable that takes on values 0 or 1 is called a **Boolean** variable.
- **<u>Definition</u>**: A **bit string** is a sequence of zero or more bits. The **length** of this string is the number of bits in the string.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Bitwise operations

• T and F replaced with 1 and 0

р	q	p ∨ q	p ∧ q
1	1	1	1
1	0	1	0
0	1	1	0
0	0	0	0

р	¬р
1	0
0	1

CS 441 Discrete mathematics for CS

Bitwise operations

• Examples:

 $\begin{array}{cccc} 1011\ 0011 & & 1011\ 0011 \\ \vee \ \underline{0110\ 1010} & & \wedge \ \underline{0110\ 1010} \\ 1111\ 1011 & & 0010\ 0010 \end{array}$

 $\begin{array}{r}
1011\ 0011 \\
\oplus \ \ \underline{0110\ 1010} \\
1101\ 1001
\end{array}$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Applications of propositional logic

- Translation of English sentences
- Inference and reasoning:
 - new true propositions are inferred from existing ones
 - Used in Artificial Intelligence:
 - Rule based (expert) systems
 - Automatic theorem provers
- Design of logic circuit

CS 441 Discrete mathematics for CS

Assume a sentence:

If you are older than 13 or you are with your parents then you can attend a PG-13 movie.

Parse:

• If (you are older than 13 or you are with your parents) then (you can attend a PG-13 movie)

Atomic (elementary) propositions:

- A= you are older than 13
- − B= you are with your parents
- C=you can attend a PG-13 movie
- Translation: $A \vee B \rightarrow C$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and it is a Tuesday

Step 1 find logical connectives

CS 441 Discrete mathematics for CS

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and t is a Tuesday

Step 1 find logical connectives

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and t is a Tuesday

Step 2 break the sentence into elementary propositions

CS 441 Discrete mathematics for CS

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and t is a Tuesday

a b

Step 2 break the sentence into elementary propositions

CS 441 Discrete mathematics for CS

M. Hauskrecht

Translation

- General rule for translation.
- Look for patterns corresponding to logical connectives in the sentence and use them to define elementary propositions.
- Example:

You can have free coffee if you are senior citizen and t is a Tuesday

a

b

c

c

Step 3 rewrite the sentence in propositional logic

 $b \wedge c \rightarrow a$

CS 441 Discrete mathematics for CS

- Assume two elementary statements:
 - p: you drive over 65 mph; q: you get a speeding ticket
- Translate each of these sentences to logic
 - you do not drive over 65 mph.
 - you drive over 65 mph, but you don't get a speeding ticket. (p ∧ ¬q)
 - you will get a speeding ticket if you drive over 65 mph. $(p \rightarrow q)$
 - if you do not drive over 65 mph then you will not get a speeding ticket. $(\neg p \rightarrow \neg q)$
 - driving over 65 mph is sufficient for getting a speeding ticket. (p → q)
 - you get a speeding ticket, but you do not drive over 65 mph. (q ∧ ¬p)

CS 441 Discrete mathematics for CS

M. Hauskrecht

(¬p)

Application: inference

Assume we know the following sentences are true:

If you are older than 13 or you are with your parents then you can attend a PG-13 movie. You are older than 13.

Translation:

- If (you are older than 13 or you are with your parents) then (you can attend a PG-13 movie). (You are older than 13).
 - A= you are older than 13
 - B= you are with your parents
 - C=you can attend a PG-13 movie
- $(A \vee B \rightarrow C), A$
- $(A \lor B \to C) \land A$ is true
- With the help of the logic we can infer the following statement (proposition):
 - You can attend a PG-13 movie or C is True

CS 441 Discrete mathematics for CS

Application: inference

The field of Artificial Intelligence:

- Builds programs that act intelligently
- Programs often rely on symbolic manipulations

Expert systems:

- Encode knowledge about the world in logic
- Support inferences where new facts are inferred from existing facts following the semantics of logic

Theorem provers:

- Encode existing knowledge (e.g. about math) using logic
- Show that some hypothesis is true

CS 441 Discrete mathematics for CS

M. Hauskrecht

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- It represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

Tf

- 1. The stain of the organism is gram-positive, and
- 2. The morphology of the organism is coccus, and
- 3. The growth conformation of the organism is chains

Then the identity of the organism is streptococcus

• Inferences:

 manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

CS 441

Tautology and Contradiction

• Some propositions are interesting since their values in the truth table are always the same

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.
- A compound proposition that is always false is called a **contradiction**.
- A proposition that is neither a tautology nor contradiction is called a **contingency**.

Example: $p \lor \neg p$ is a **tautology.**

р	¬р	р∨¬р
Т	F	Т
F	Т	Т

CS 441 Discrete mathematics for CS

M. Hauskrecht

Tautology and Contradiction

• Some propositions are interesting since their values in the truth table are always the same

Definitions:

- A compound proposition that is always true for all possible truth values of the propositions is called a **tautology**.
- A compound proposition that is always false is called a **contradiction**.
- A proposition that is neither a tautology nor contradiction is called a **contingency**.

Example: $p \land \neg p$ is a **contradiction**.

р	¬р	р∧¬р
T	F	F
F	Т	F

CS 441 Discrete mathematics for CS

- We have seen that some of the propositions are equivalent. Their truth values in the truth table are the same.
- Example: $\mathbf{p} \to \mathbf{q}$ is equivalent to $\neg \mathbf{q} \to \neg \mathbf{p}$ (contrapositive)

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

- Equivalent statements are important for **logical reasoning** since they can be substituted and can help us to:
 - (1) make a logical argument and (2) infer new propositions

CS 441 Discrete mathematics for CS

M. Hauskrecht

Logical equivalence

<u>Definition</u>: The propositions p and q are called **logically equivalent** if $p \leftrightarrow q$ is a tautology (alternately, if they have the same truth table). The notation p <=> q denotes p and q are logically equivalent.

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

Example: Negate "The summer in Mexico is cold and sunny" with DeMorgan's Laws

Solution: ?

CS 441 Discrete mathematics for CS

<u>Definition</u>: The propositions p and q are called <u>logically</u>
 equivalent if p ↔ q is a tautology (alternately, if they have the
 same truth table). The notation p <=> q denotes p and q are
 logically equivalent.

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

Example: Negate "The summer in Mexico is cold and sunny" with DeMorgan's Laws

Solution: "The summer in Mexico is not cold or not sunny."

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

To convince us that two propositions are logically equivalent use the truth table

р	q	¬p	¬q	¬(p ∨ q)	¬p ^ ¬q
Т	Т	F	F		
Т	F	F	Т		
F	Т	Т	F		
F	F	Т	Т		

CS 441 Discrete mathematics for CS

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

To convince us that two propositions are logically equivalent use the truth table

р	q	¬р	¬q	¬(p ∨ q)	¬p ^ ¬q
Т	Т	F	F	F	
Т	F	F	Т	F	
F	Т	Т	F	F	
F	F	Т	Т	T	

CS 441 Discrete mathematics for CS

M. Hauskrecht

Equivalence

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

To convince us that two propositions are logically equivalent use the truth table

р	q	¬р	¬q	¬(p ∨ q)	¬p ∧ ¬q
Т	Т	F	F	F	F
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	T	T

CS 441 Discrete mathematics for CS

Example of important equivalences

- DeMorgan's Laws:
- 1) $\neg (p \lor q) \iff \neg p \land \neg q$
- 2) $\neg (p \land q) \iff \neg p \lor \neg q$

To convince us that two propositions are logically equivalent use the truth table

р	q	¬p	¬q	¬(p ∨ q)	¬p ^ ¬q
Т	Т	F	F	F	F
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	Т	Т	T	T

CS 441 Discrete mathematics for CS

M. Hauskrecht

Important logical equivalences

- Identity
 - $p \wedge T \iff p$
 - $p \lor F \iff p$
- Domination
 - $p \lor T \iff T$
 - $p \wedge F \iff F$
- Idempotent
 - $p \lor p \iff p$
 - $p \wedge p \iff p$

CS 441 Discrete mathematics for CS

Important logical equivalences

- Double negation
 - $\neg (\neg p) \iff p$
- Commutative
 - $p \lor q \iff q \lor p$
 - $p \wedge q \iff q \wedge p$
- Associative
 - $-\ (p\vee q)\vee r\ <=>\ p\vee (q\vee r)$
 - $-(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Important logical equivalences

- Distributive
 - $p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$
 - $p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$
- De Morgan
 - $\neg (p \lor q) <=> \neg p \land \neg q$
 - $(p \wedge q) \iff \neg p \vee \neg q$
- Other useful equivalences
 - $-p \lor \neg p <=> T$
 - $p \land \neg p <=> F$
 - $p \rightarrow q \iff (\neg p \lor q)$

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example: Show $(p \land q) \rightarrow p$ is a tautology.
- **Proof:** (we must show $(p \land q) \rightarrow p \iff T$)

$$(p \land q) \rightarrow p \iff \neg(p \land q) \lor p$$
 Useful

- $\langle = \rangle [\neg p \vee \neg q] \vee p$ DeMorgan
- $\langle = \rangle [\neg q \vee \neg p] \vee p$ Commutative
- $\langle = \rangle \neg q \lor [\neg p \lor p]$ Associative
- $\langle = \rangle \neg q \vee [T]$ Useful
- <=> T Domination

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- **Example:** Show $(p \land q) \rightarrow p$ is a tautology.
- Alternate proof:

р	q	p∧q	(p ∧ q)→p
T	Т	Т	Т
Т	F	F	Т
F	Т	F	T
F	F	F	Т

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$
- <=> ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$
- $\langle = \rangle \neg (\neg q) \lor (\neg p)$ Useful
- <=> ?

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \to q) \iff (\neg q \to \neg p)$
- $\langle = \rangle \neg (\neg q) \lor (\neg p)$ Useful
- $\langle = \rangle$ q \vee (\neg p) Double negation
- <=> ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Using logical equivalences

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$
- $\langle = \rangle \neg (\neg q) \lor (\neg p)$ Useful
- $\langle = \rangle$ q \vee (\neg p) Double negation
- \Rightarrow \Rightarrow $\neg p \lor q$ Commutative
- <=> ?

CS 441 Discrete mathematics for CS

- Equivalences can be used in proofs. A proposition or its part can be transformed using equivalences and some conclusion can be reached.
- Example 2: Show $(p \rightarrow q) \iff (\neg q \rightarrow \neg p)$ Proof:
- $(p \to q) \iff (\neg q \to \neg p)$
- $\langle = \rangle \neg (\neg q) \lor (\neg p)$ Useful
- $\langle = \rangle$ q \vee (\neg p) Double negation
- $\langle = \rangle \neg p \lor q$ Commutative
- $<=> p \rightarrow q$ Useful

End of proof

CS 441 Discrete mathematics for CS