
http://www.tutorialspoint.com/sdlc/sdlc_rad_model.htm Copyright © tutorialspoint.com

SDLC - RAD MODELSDLC - RAD MODEL

The RAD RapidApplicationDevelopment model is based on prototyping and iterative development with
no specific planning involved. The process of writing the software itself involves the planning
required for developing the product.

Rapid Application development focuses on gathering customer requirements through workshops
or focus groups, early testing of the prototypes by the customer using iterative concept, reuse of
the existing prototypes components, continuous integration and rapid delivery.

What is RAD?
Rapid application development RAD is a software development methodology that uses minimal
planning in favor of rapid prototyping. A prototype is a working model that is functionally
equivalent to a component of the product.

In RAD model the functional modules are developed in parallel as prototypes and are integrated to
make the complete product for faster product delivery.

Since there is no detailed preplanning, it makes it easier to incorporate the changes within the
development process. RAD projects follow iterative and incremental model and have small teams
comprising of developers, domain experts, customer representatives and other IT resources
working progressively on their component or prototype.

The most important aspect for this model to be successful is to make sure that the prototypes
developed are reusable.

RAD Model Design
RAD model distributes the analysis, design, build, and test phases into a series of short, iterative
development cycles. Following are the phases of RAD Model:

Business Modeling: The business model for the product under development is designed in
terms of flow of information and the distribution of information between various business
channels. A complete business analysis is performed to find the vital information for
business, how it can be obtained, how and when is the information processed and what are
the factors driving successful flow of information.

Data Modeling: The information gathered in the Business Modeling phase is reviewed and
analyzed to form sets of data objects vital for the business. The attributes of all data sets is
identified and defined. The relation between these data objects are established and defined
in detail in relevance to the business model.

Process Modeling: The data object sets defined in the Data Modeling phase are converted
to establish the business information flow needed to achieve specific business objectives as
per the business model. The process model for any changes or enhancements to the data
object sets is defined in this phase. Process descriptions for adding , deleting, retrieving or
modifying a data object are given.

Application Generation: The actual system is built and coding is done by using automation
tools to convert process and data models into actual prototypes.

Testing and Turnover:The overall testing time is reduced in RAD model as the prototypes
are independently tested during every iteration. However the data flow and the interfaces
between all the components need to be thoroughly tested with complete test coverage.
Since most of the programming components have already been tested, it reduces the risk of
any major issues.

Following image illustrates the RAD Model:

http://www.tutorialspoint.com/sdlc/sdlc_rad_model.htm


RAD Model Vs Traditional SDLC
The traditional SDLC follows a rigid process models with high emphasis on requirement analysis
and gathering before the coding starts. It puts a pressure on the customer to sign off the
requirements before the project starts and the customer doesn.t get the feel of the product as
there is no working build available for a long time.

The customer may need some changes after he actually gets to see the software, however the
change process is quite rigid and it may not be feasible to incorporate major changes in the
product in traditional SDLC.

RAD model focuses on iterative and incremental delivery of working models to the customer. This
results in rapid delivery to the customer and customer involvement during the complete
development cycle of product reducing the risk of non conformance with the actual user
requirements.

RAD Model Application
RAD model can be applied successfully to the projects in which clear modularization is possible. If
the project cannot be broken into modules, RAD may fail. Following are the typical scenarios
where RAD can be used:

RAD should be used only when a system can be modularized to be delivered in incremental
manner.

It should be used if there.s high availability of designers for modeling.

It should be used only if the budget permits use of automated code generating tools.

RAD SDLC model should be chosen only if domain experts are available with relevant
business knowledge.

Should be used where the requirements change during the course of the project and working
prototypes are to be presented to customer in small iterations of 2-3 months.



RAD Model Pros and Cons
RAD model enables rapid delivery as it reduces the overall development time due to reusability of
the components and parallel development.

RAD works well only if high skilled engineers are available and the customer is also committed to
achieve the targeted prototype in the given time frame. If there is commitment lacking on either
side the model may fail.

Following table lists out the pros and cons of RAD Model:

Pros Cons

Changing requirements can be
accommodated.

Progress can be measured.

Iteration time can be short with use of
powerful RAD tools.

Productivity with fewer people in short
time.

Reduced development time.

Increases reusability of components

Quick initial reviews occur

Encourages customer feedback

Integration from very beginning solves a
lot of integration issues.

Dependency on technically strong team
members for identifying business
requirements.

Only system that can be modularized can
be built using RAD.

Requires highly skilled
developers/designers.

High dependency on modeling skills.

Inapplicable to cheaper projects as cost
of modeling and automated code
generation is very high.

Management complexity is more.

Suitable for systems that are component
based and scalable.

Requires user involvement throughout
the life cycle.

Suitable for project requiring shorter
development times.

Loading [MathJax]/jax/output/HTML-CSS/jax.js


