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Convex optimization & interior-point methods

FIR filters & magnitude specs

Spectral factorization

Examples

— lowpass filter design

— minimax logarithmic (dB) approximation
— third-octave equalization

— antenna array pattern design

e Spectral factorization methods

e Discretization
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Convex optimization problems'

minimize  fo(x
subject to  fi(z) <0,..., fr(z) <0,

Ax =b

e z € R" is optimization variable

e f; are convex: for 0 < )\ <1,
fiz + (1= XNy) < Afi(z) + (1 =N fi(y)

e examples: linear & (convex) quadratic programs
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(roughly speaking,)

Convex optimization problems are
fundamentally tractable

e computation time is small, grows gracefully with problem size and

required accuracy
e large problems solved quickly in practice
e what “solve” means:

— find global optimum within a given tolerance, or,

— find proof (certificate) of infeasibility
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Interior-point methods'

e handle linear and nonlinear convex problems

e based on Newton's method applied to ‘barrier’ functions that trap
x in interior of feasible region (hence the name IP)

e worst-case complexity theory: # Newton steps ~ +/problem size
e in practice: # Newton steps between 5 & 50 (!)

e can exploit problem structure (sparsity, state equations) to reduce

computation per Newton step

e 1000s variables, 10000s constraints feasible on PC
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FIR fiIterI

Finite impulse response (FIR) filter of order n:

n—l1

y(t) =Y h(k)u(t — k)
k=0

h = (h(0),h(1),... ,h(n—1)) € R™ are the filter coefficients

Frequency response H : [0, 7] — C,

H(w) = h(0) + h(1)e™ + -+ h(n—1)e 3D
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Filter magnitude specs I

magnitude spec:
Lw) < |Hw)| <U(w), wel0,n]

L,U : [0,7] — R4 given bounds; can take L(w) =0, U(w) = o0

e arises in many applications (audio, spectrum shaping, ... )

e upper bounds are convex in h; lower bounds are not

Magnitude filter design problem involves magnitude specs
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Classical example: lowpass filter design'

lowpass filter with maximum stopband attenuation:

minimize  ds
subject to  1/0; < |H(w)| <01, w € [0, wp]
H@)| < 62 € fun]

e variables: h € R" (filter coefficients),
d2 € R (stopband attenuation)

e parameters: §; € R (logarithmic passband ripple), n (order),
wp (passband frequency), ws (stopband frequency)
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magnitude filter design problems are nonconvex

e can get trapped in local minima

e cannot unambiguously determine feasibility

by change of variables, can formulate as convex problem

e can efficiently compute global solution
e unambiguously determine feasibility

e get absolute limit of performance
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Autocorrelation coefficients.

autocorrelation coefficients of filter:

r(t) = ni h(k)h(k+1t), teZ
=—ntl
o r(t)=r(=t);r(t)=0fort>n
e suffices to specify r = (r(0),... ,r(n—1)) € R"

Fourier transform of r is

n—1

R(w) =r(0)+ > _r(k) (" + e ™) = |H(w)|?
k=1
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Magnitude spec via frI

magnitude spec can be expressed as
Lw)? < Rw) < U(w)?, welo,n]

e for each w, linear inequality in r

e hence magnitude spec is convex constraint in r

must add: 7 is the autocorrelation coefficients of some h € R".
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Spectral factorization theorem'

n—1

R(w) =7(0) + > _r(k) (7" + e77*)

admits the representation

if and only if

e spectral factorization condition is convex constraint in r

e many ways to find spectral factor h given r
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Lowpass filter design (again)'

with variables r» and 52, problem becomes

minimize 52

subject to 1/51 <RWw)<d1, we 0, wp]
R(w) < 02, w € [ws, ]
R(w) >0, wel0,n]

(d; corresponds to 47 in original problem)

e a convex problem in r and d5

e hence, can be efficiently, globally solved
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Variations I

e minimize ripple d; in dB (nonlinear convex problem)
e minimize order n (quasiconvex problem)
e minimize stopband w;, (quasiconvex problem)

e multiple stop & pass bands

these can be efficiently, globally solved
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Minimax logarithmic (dB) approximation'

given desired frequency response magnitude D : [0, 7] — R, find

h = argmin m[%x} | log |H(w)| — log D(w)]
we |0,

reformulate as
minimize T
subjectto 1/7 < R(w)/Dw)? <7, w €0,
(constraint implies R(w) > 0 for w € [0, 7))
e a convex probleminr € R" and 7 € R

e hence efficiently, globally solved
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Example: 1/f (pink noise) fiIterI

minimax dB fit over 0.0l7r < w <7, D(w) = 1/\w

. .
10" 10°

w

for 50-tap filter, optimal fit is +0.5dB
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Equalization I

e given system frequency response T': [0, 7] — C
e design FIR equalizer H

e so equalized freq response T'H has desired properties

17

FIR Filter Design via Spectral Factorization and Convex Optimization

Third-octave equalization'

K third-octave frequency intervals in [0, 7]:

[, ], ... [Qx, Qxaa], Qe =2F"D/3qg,

gain of equalized system in kth band is
. Qi 1/2
= — TH(w)|? dw
g <Qk+9k/ﬂ TH(w) )

third-octave equalization: choose H so gx ~ 1
(gives good results for audio perception)
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formulate third-octave equalization problem as
minimize «
Qp41 2 _
subject to 1/a<Qk+1—Qkf RWTw)|fPdw<a, k=1,... K,
R(w) >0, we€l0,n]

e nonlinear convex problem in r, «
e hence efficiently, globally solved
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Third-octave equalization exampIeI

e n = 20; 15 third-octave bands from €2; = 0.0317 to Q16 = 7

e constraint |H(w)| < 10 for all w

equalized (solid) and unequalized (dashed) gains and freq. response:

gk
T(w)| & [H(w)T(w)]

w

e gains equalized to +2dB

e deep notch in T near w = 0.5 makes constraint |H| < 10 active
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Antenna array magnitude pattern design'

n isotropic antenna elements with spacing d

plane harmonic wave incident from angle 6

frequency w, wavelength \

element outputs linearly combined with complex weights w;
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Antenna array magnitude pattern design'

far-field pattern G : [0,27) — C:

n—1
G(0) = Z w(k) exp (j 27;kd COS 9)
k=0

e design variables: w € C"

magnitude spec: L(0) < |G(0)| < U(H), 6 € [0, 27)

can convert to FIR filter problem with complex coefficients

hence, same techniques work . ..
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Antenna array pattern design exampIeI

e 12 elements, spacing d = 0.45\

e allowed ripple £2dB in £30° beam

e minimize max of |G| outside £45°

10dB divisions; —19dB sidelobe attenuation achieved
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Extensions I

some other specifications/problems that are convex in 7:

e bound on size of filter coefficients:

r(0) = Zh(i)2 <M

e bounds on log-magnitude slope:

<d\H\ w dR w
“=Tdw HW)

e multi-system magnitude equalization

e magnitude design of infinite impulse response (lIR) filters
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Spectral factorization methods'

given T(z) = r(0) + 7= r(k) (2" + 2~%) with
T(“)>0, welo,7]
find S(z) = h(0) + h(1)z=* + -+ + h(n — 1)2=(~Y such that
T(z) = S(2)S(z™ 1)

methods:

e compute roots of T inside unit disk

Cholesky factorization of banded Toeplitz matrix

solution of algebraic Riccati equation

Newton’'s method

Fast Fourier transform
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Discretization I

constraints in problems above are semi-infinite:

have a constraint for each w € [0, 7]

discretization: replace [0, 7| by finite set, e.g., w; = iw/m,

1=0,...,m

example: discretized max attenuation lowpass filter:
minimize 52
subject to 1/51 < R(w;) <01, wié€ 0, wp]

R(wz) < 52, w; € [ws,w]
R(w) >0, i=0,....,m

. a linear program in r and &5
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Discretization (cont’d)'

e works very well in practice; common rule of thumb m ~ 15n

e can add appropriate, small ‘safety factor’ to ensure R(w) > 0
between sampled frequencies

e is basis for sophisticated methods (e.g., exchange)
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Conclusions I

e magnitude filter design problems can be reformulated as convex
optimization problems

e hence, efficiently solved by new interior-point methods

e autocorrelation coefficients are designed; filter coefficients are
obtained via spectral factorization

e can handle many useful extensions, e.g., minimum-order, minimax
dB designs
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