

The benefits of delivering SABR using Varian TrueBeam & FFF

Suzanne Smith

Head of Treatment Planning Radiotherapy Physics NHS Greater Glasgow & Clyde

Beatson West of Scotland Cancer Centre April 2015

Operating:

- 7 Varian Clinacs (C/D, eX & iX)
- 3 Varian TrueBeams
- 2 Varian TrueBeam STx
- 8xIGRT & 8xRapidArc capable
- All TrueBeams have FFF mode
- Approx 50 Eclipse workstations & FAS calculation servers

May 16

New Satellite Facility in Lanarkshire (2 bunkers & CT/planning)

- 6 TrueBeam & 2 STx
- Providing 8xFFF capable linacs & 10 RA linacs
- 4 Calypso systems

Radical Practice - 2008

Current Practice (2015)

- Treated >5,000 RapidArc patients, across 20+ clinical sites with c.250 RA plans per month
- Offer adaptive planning for H&N, lung & gynaecological sites
- Offer SABR:
 - Lung
 - Prostate
 - Gynaecological
 - Accredited for COMET

Treated over 300 SABR patients since 2010

- >250 patients treated using FFF

Timeline

SABR....How do we increase capacity & improve quality....?

Challenges & Solutions (2011)

- Two Clinacs with RapidArc capability
 - Capacity issues & waiting time requirement
 - Competing clinical demands
 - Time to image & treat SABR was a perceived barrier
 - Limited to 4 SABR patients per month
 - Upwards of 40 minutes for RapidArc Lung SABR
 - Booking issues and 'wasted' slots
 - cf H&N RapidArc in 10 mins
- Linac & TPS Procurement
 - 1 TrueBeam STx
 - 2 TrueBeams
 - 1 Additional RapidArc Retrofit
- Requirement to Commission Additional Functionality

Flattening Filter Free Mode

- Conventional linac use filters to give a flat beam at depth
- RapidArc modulates the MLC to give a peaked beam

Flattening Filter Free Mode

- Conventional linac use filters to give a flat beam at depth
- RapidArc modulates the MLC to give a peaked beam
- Removing the flattening filter:
 - Reduced the requirement to modulate the beam
 - Increases dose rate by up to a factor of 4
 - Improved deliver time up to 5 times faster
 - SABR delivery: 11 Gy in 2 minutes
 - Reduced head scatter- reducing the out of field dose
 - Takes advantage of the beams natural fall off
- Selected to use 10FFF @ 24 Gy/min

Challenges (2012)

NHS Greater Glasgow

- Single STx
 - Two differing energies
 - Differing MLC's
 - Back-up plan required
- Resourcing Dual SABR Planning
- Calculation times
 - Version of RapidArc (8.6) not ideal for Lung planning
 - Differences in PRO and AAA
 - Two days of a senior physicist time per plan
 - Two plans per patient

Solutions (2013)

- Training Program for Physics Staff
 - Test plans used for training
 - Experience in SABR planning developed
- ARIA upgraded to version 10.0.28
- New software accounts for the difference of PRO & AAA
 - Less repeat iterations
- New algorithm offers faster inverse calculation times
- Procurement of a 2nd STx 2013
- Procurement of FAS (framework application servers)
 - Distributed dose calculations
 - RapidArc calc times of 1 min for simple site
 - SABR calc times of 5 mins

Case 1: Lung SABR

Lung SABR: Plan Types

- Standard SABR:
 - Follow principles of ROSEL
 - 54Gy/3# for lowest risk patients
 - 55Gy/5# for tumours overlapping chest wall
 - GTV>5cm & PTV within 2cm of proximal bronchial tree are excluded
- Central lesion SABR:
 - Follow principles of RTOG 0813
 - PTV <163cc and central lesions
- Risk Adaptive SABR

Complex Planning Constraints

OARs	Standard SABR			Central/Risk Adapted		
	Constraint	Max Dose	Minor Deviation	Constraint	Limit	Max Dose
Cord	Max Pt	25Gy	25-28Gy	<0.25cc <0.5cc	22.5Gy 13.5Gy	30Gy
Oes	1cc	27Gy	27-28.5Gy	<5cc	27.5Gy	105% of Px
Ipsilateral B Plexus	1cc	27Gy	27-29Gy	<3cc	30Gy	32Gy
Heart	1cc	27Gy	27-29Gy	<15cc	32Gy	105% of Px
Trachea & Bronchus	1cc	32Gy	32-35Gy	<4cc	18Gy	105% of Px
Skin	1cc	24Gy		<10cc	30Gy	32Gy

Case 2: Prostate SABR

Phase 1 Clinical Trial (2014-15)

- Initially for 20 patients
- Increased to 40 cases
- 28 patients to date
- Px of 35Gy in 5#
- OAR constraints taken from Milan
- All plans have met dose constraints
- Fused MR & CT imaging
- Seeds matched
- cbCT before and after treatment
 - no requirement for mid treatment cbCT
 - 2 minute beam delivery with FFF

NORMAL TISSUE DOSE CONSTRAINTS						
Rectum						
Dose [Gy]	Constraint[%]					
V18	35					
V28	10					
V32	5					
V35	1					
Bladder						
V35	1					
TARGET DOSE ACHIEVED						
	Aim					
GTV	V95%>99%					
PTV	V95%>95%					
PTV	1cc<107%					

Case 3: Gynaecological SABR

Reasons for SABR

- Recurrence at tumour site
- Nodal Recurrence
- Patients not suitable for HDR
- Prescription dose?
- OAR constraints?

- Recurrence at primary site limiting clinical options
- Patient had previous EBRT & HDR
- Patient did not tolerate previous Tx well
 - Decision to use SABR
- 35 Gy in 5#
- COMET trial constraints
- Fused MR&CT
- Delivered on TrueBeam STx with 10FFF
- At 16 months, complete remission
- Patient tolerated treatment very well

Challenges (2013-15)

- Limitation is no longer linac based
- How do we increase the number of patients/sites?
 - Clinician time for voluming
 - Clinician time for online match approval
 - Complex planning, insufficient no. of senior staff
 - Machine time for Pre-Treatment IMRT QA

Solutions (2013-15)

- Limitation is no longer linac based
- How do we increase the number of patients/sites?
 - Clinician time for voluming
 - Clinician time for online match approval
 - Complex planning, insufficient no. of senior staff
 - Machine time for Pre-Treatment IMRT QA
- OAR delineation by Physics and Radiography Staff
- Online matching & approval by Radiographers
- March 15
 - ARIA/Eclipse 13.6 (new PO algorithm)
 - RapidPlan
 - New automated delineation tools SmartSeg/Adapt

RapidPlan

NHS Greater Glasgow

- Knowledge Based Objective Estimation Algorithm
- Method for estimating DVHs:
 - Based on patient geometry
 - Previous knowledge contained in a set of existing patient cases
- Standardised contouring required- patient QA
- Used in conjunction with Smart Segmentation

Building a Model: 120 55Gy/5# Lung SABR plans

Comparison of two models: plan selection is crucial

Physicist vs RapidPlan – decreased D2cm and improved PTV

First Test RapidPlan in Glasgow – Lung SABR

Conclusion - TrueBeam

- Treats all types of clinical case
 - Radiosurgery/SABR
 - In room time of approx 20 mins
 - Any standard 3D plan & palliation
 - Improved imaging & integrated system
 - 4d cbCT availability
 - FFF modes
 - Excellent QA results (no failures)
 - Gating

One accelerator for multiple solutions

Conclusion – RapidPlan

Glasgow

- Calculate RapidArc in a fraction of the time
 - First two RapidPlan SABRs treated today
 - Standard SABR case 13 mins start to finish
 - Volume preparation takes longer than planning
 - Standardising planning
 - Increases the pool of planners that can advance plan
 - Reduce the requirement for dosimetry QA
 - OAR delineation QA
 - Complexity of different SABR techniques- multiple models?

Conclusion – Eclipse/RapidPlan

- Networking & FAS
 - 18 Framework Application Servers
 - RapidArc fields distributed across servers
 - No longer need to calculate to local client
 - Can use a Citrix based solution for calculation- no longer need to be at an Eclipse station
 - Standard RapidArc Brain 10 mins start to finish

SmartAdapt - RapidPlan - FAS - TB & FFF

Adaptive Planning?

Current Practice

Questions?