

Groovy Programming

i

About the Tutorial

Groovy is an object oriented language which is based on Java platform. Groovy 1.0 was released

in January 2, 2007 with Groovy 2.4 as the current major release. Groovy is distributed via the

Apache License v 2.0. In this tutorial, we would explain all the fundamentals of Groovy and how
to put it into practice.

Audience

This tutorial is going to be extremely useful for all those software professionals who would like
to learn the basics of Groovy programming.

Prerequisites

Before proceeding with this tutorial, you should have some hands-on experience of Java or any
other object-oriented programming language. No Groovy experience is assumed.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.

Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any

contents or a part of contents of this e-book in any manner without written consent of the
publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.

provides no guarantee regarding the accuracy, timeliness or completeness of our website or its

contents including this tutorial. If you discover any errors on our website or in this tutorial,
please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Groovy Programming

ii

Table of Contents

About the Tutorial ... i

Audience.. i

Prerequisites ... i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. GROOVY – OVERVIEW ... 1

2. GROOVY – ENVIRONMENT .. 2

3. GROOVY – BASIC SYNTAX .. 12

Creating Your First Hello World Program ... 12

Import Statement in Groovy ... 12

Tokens in Groovy .. 13

Comments in Groovy .. 13

Semicolons .. 13

Identifiers.. 14

Keywords.. 14

Whitspaces ... 15

Literals .. 15

4. GROOVY – DATA TYPES .. 16

Built-in Data Types .. 16

Bound values ... 16

Class Numeric Types .. 17

5. GROOVY – VARIABLES .. 19

Variable Declarations .. 19

Naming Variables .. 20

Groovy Programming

iii

Printing Variables .. 20

6. GROOVY – OPERATORS .. 22

Arithmetic Operators ... 22

Relational operators .. 24

Logical Operators .. 26

Bitwise Operators .. 27

Assignment operators .. 28

Range Operators ... 29

Operator Precedence .. 30

7. GROOVY – LOOPS .. 31

while Statement ... 31

for Statement ... 32

for-in Statement ... 34

Loop Control Statements .. 36

Continue Statement ... 37

8. GROOVY – DECISION MAKING .. 39

if Statement .. 39

if / else Statement .. 40

Nested If statements ... 42

switch Statements ... 43

Nested Switch Statements.. 45

9. GROOVY – METHODS .. 48

Method Parameters ... 48

Default Parameters .. 49

Method Return Values ... 50

Instance methods .. 51

Local and External Parameter Names ... 52

Groovy Programming

iv

this method for Properties.. 52

10. GROOVY – FILE I/O ... 54

Reading files .. 54

Reading the Contents of a File as an Entire String .. 55

Writing to Files ... 55

Getting the Size of a File ... 55

Testing if a File is a Directory... 56

Creating a Directory .. 56

Deleting a File .. 57

Copying files .. 57

Getting Directory Contents... 57

11. GROOVY – OPTIONALS .. 59

12. GROOVY – NUMBERS .. 61

Number Methods ... 62

13. GROOVY – STRINGS .. 84

String Indexing .. 84

Basic String Operations .. 85

String Repetition .. 86

String Methods .. 87

14. GROOVY – RANGES ... 105

contains().. 105

get() ... 106

getFrom() .. 107

getTo() ... 107

isReverse() ... 108

size() .. 109

subList().. 109

Groovy Programming

v

15. GROOVY – LISTS .. 111

add() .. 111

contains().. 112

get() ... 113

isEmpty() .. 113

minus() .. 114

plus() ... 115

pop() .. 116

remove().. 116

reverse().. 117

size() .. 118

sort() .. 118

16. GROOVY – MAPS .. 120

containsKey() ... 120

get() ... 121

keySet() ... 121

put() ... 122

size() .. 123

values() ... 124

17. GROOVY – DATES AND TIMES .. 125

Date() ... 125

Date (long millisec) .. 125

after() ... 126

equals() ... 127

compareTo() ... 128

toString()... 129

before() ... 129

getTime()... 130

Groovy Programming

vi

setTime() ... 131

18. GROOVY – REGULAR EXPRESSIONS .. 133

19. GROOVY – EXCEPTION HANDLING .. 134

Catching Exceptions ... 135

Multiple Catch Blocks ... 136

Finally Block .. 137

20. GROOVY – OBJECT ORIENTED .. 141

getter and setter Methods... 141

Instance Methods .. 142

Creating Multiple Objects ... 143

Inheritance ... 144

Extends ... 144

Inner Classes ... 145

Abstract Classes ... 146

Interfaces .. 147

21. GROOVY – GENERICS .. 149

Generic for Collections ... 149

Generalized Classes .. 150

22. GROOVY – TRAITS ... 151

Implementing Interfaces ... 152

Properties ... 152

Composition of Behaviors .. 153

Extending Traits .. 154

23. GROOVY – CLOSURES .. 156

Formal parameters in closures .. 156

Closures and Variables ... 157

Using Closures in Methods .. 157

Groovy Programming

vii

Closures in Collections and String .. 158

Methods used with Closures .. 160

24. GROOVY – ANNOTATIONS .. 164

Annotation Member Values .. 165

Closure Annotation Parameters .. 165

Meta Annotations .. 165

25. GROOVY – XML ... 167

What is XML? ... 167

XML Support in Groovy .. 167

XML Markup Builder .. 168

XML Parsing ... 171

26. GROOVY – JMX ... 174

Monitoring the JVM ... 174

Monitoring Tomcat .. 176

27. GROOVY – JSON ... 177

JSON Functions ... 177

Parsing Data using JsonSlurper .. 177

JsonOutput .. 180

28. GROOVY – DSLS ... 182

29. GROOVY – DATABASES .. 184

Database Connection .. 184

Creating Database Table... 185

Insert Operation ... 185

READ Operation .. 187

Update Operation .. 188

DELETE Operation .. 188

Performing Transactions .. 189

Groovy Programming

viii

Commit Operation ... 189

Rollback Operation .. 190

Disconnecting Databases ... 190

30. GROOVY – BUILDERS .. 191

Swing Builder ... 191

Event Handlers .. 193

DOM Builder ... 195

JsonBuilder .. 196

NodeBuilder ... 197

FileTreeBuilder .. 197

31. GROOVY – COMMAND LINE .. 198

Classes and Functions ... 198

Commands ... 199

32. GROOVY – UNIT TESTING ... 201

Writing a Simple Junit Test Case ... 201

The Groovy Test Suite .. 202

33. GROOVY – TEMPLATE ENGINES .. 203

Simple Templating in Strings ... 203

Simple Template Engine ... 203

StreamingTemplateEngine ... 204

XMLTemplateEngine ... 205

34. GROOVY – META OBJECT PROGRAMMING .. 206

Missing Properties .. 206

Missing methods ... 207

Metaclass.. 208

Method Missing ... 209

Groovy Programming

1

Groovy is an object oriented language which is based on Java platform. Groovy 1.0 was released

in January 2, 2007 with Groovy 2.4 as the current major release. Groovy is distributed via the

Apache License v 2.0.

Features of Groovy

Groovy has the following features:

 Support for both static and dynamic typing

 Support for operator overloading

 Native syntax for lists and associative arrays

 Native support for regular expressions

 Native support for various markup languages such as XML and HTML

 Groovy is simple for Java developers since the syntax for Java and Groovy are very similar

 You can use existing Java libraries

 Groovy extends the java.lang.Object

The official website for Groovy is http://www.groovy-lang.org/

1. Groovy – Overview

http://www.groovy-lang.org/

Groovy Programming

2

There are a variety of ways to get the Groovy environment setup.

Binary download and installation – Go to the link www.groovy-lang.org/download.html
to get the Windows Installer section. Click on this option to start the download of the Groovy

installer.

Once you launch the installer, follow the steps given below to complete the installation.

Step 1: Select the language installer

2. Groovy – Environment

http://www.groovy-lang.org/download.html

Groovy Programming

3

Step 2: Click the Next button in the next screen.

Groovy Programming

4

Step 3: Click the ‘I Agree’ button.

Groovy Programming

5

Step 4: Accept the default components and click the Next button.

Groovy Programming

6

Step 5: Choose the appropriate destination folder and then click the Next button.

Groovy Programming

7

Step 6: Click the Install button to start the installation.

Groovy Programming

8

Step 7: Once the installation is complete, click the Next button to start the configuration.

Groovy Programming

9

Step 8: Choose the default options and click the Next button.

Step 9: Accept the default file associations and click the Next button.

Groovy Programming

10

Step 10: Click the Finish button to complete the installation.

Once the above steps are followed, you can then start the groovy shell which is part of the

Groovy installation that helps in testing our different aspects of the Groovy language without the

need of having a full-fledged integrated development environment for Groovy. This can be done

by running the command groovysh from the command prompt.

Groovy Programming

11

If you want to include the groovy binaries as part of you maven or gradle build, you can add the

following lines

Gradle

'org.codehaus.groovy:groovy:2.4.5'

Maven

<groupId>org.codehaus.groovy</groupId>

<artifactId>groovy</artifactId>

<version>2.4.5</version>

Groovy Programming

12

In order to understand the basic syntax of Groovy, let’s first look at a simple Hello World
program.

Creating Your First Hello World Program

Creating your first hello world program is as simple as just entering the following code line:

class Example
{
 static void main(String[] args)
 {
 // Using a simple println statement to print output to the console
 println('Hello World');
 }
}

When we run the above program, we will get the following result:

Hello World

Import Statement in Groovy

The import statement can be used to import the functionality of other libraries which can be
used in your code. This is done by using the import keyword.

The following example shows how to use a simple import of the MarkupBuilder class which is
probably one of the most used classes for creating HTML or XML markup.

import groovy.xml.MarkupBuilder

def xml=new MarkupBuilder()

By default, Groovy includes the following libraries in your code, so you don’t need to explicitly
import them.

import java.lang.*

import java.util.*

import java.io.*

import java.net.*

import groovy.lang.*

import groovy.util.*

import java.math.BigInteger

import java.math.BigDecimal

3. Groovy – Basic Syntax

Groovy Programming

13

Tokens in Groovy

A token is either a keyword, an identifier, a constant, a string literal, or a symbol.

println(“Hello World”);

In the above code line, there are two tokens, the first is the keyword println and the next is the
string literal of “Hello World”.

Comments in Groovy

Comments are used to document your code. Comments in Groovy can be single line or multiline.

Single line comments are identified by using the // at any position in the line. An example is

shown below:

class Example
{
 static void main(String[] args)
 {
 // Using a simple println statement to print output to the console
 println('Hello World');
 }
}

Multiline comments are identified with /* in the beginning and */ to identify the end of the

multiline comment.

class Example
{
 static void main(String[] args)
 {
 /* This program is the first program
 This program shows how to display hello world */
 println('Hello World');
 }
}

Semicolons

Just like the Java programming language, it is required to have semicolons to distinguish
between multiple statements defined in Groovy.

class Example
{
 static void main(String[] args)
 {
 // One can see the use of a semi-colon after each statement
 def x=5;
 println('Hello World');

 }
}

Groovy Programming

14

The above example shows semicolons are used to distinguish between different lines of code

statements.

Identifiers

Identifiers are used to define variables, functions or other user defined variables. Identifiers start

with a letter, a dollar or an underscore. They cannot start with a number. Here are some
examples of valid identifiers:

def employeename

def student1

def student_name

where def is a keyword used in Groovy to define an identifier.

Here is a code example of how an identifier can be used in our Hello World program.

class Example
{
 static void main(String[] args)
 {
 // One can see the use of a semi-colon after each statement
 def x=5;
 println('Hello World');

 }
}

In the above example, the variable x is used as an identifier.

Keywords

Keywords as the name suggest are special words which are reserved in the Groovy Programming

language. The following table lists the keywords which are defined in Groovy.

as assert break case

catch class const continue

def default do else

enum extends false Finally

for goto if implements

import in instanceof interface

new pull package return

super switch this throw

throws trait true try

while

Groovy Programming

15

Whitspaces

Whitespace is the term used in a programming language such as Java and Groovy to describe

blanks, tabs, newline characters and comments. Whitespace separates one part of a statement

from another and enables the compiler to identify where one element in a statement.

For example, in the following code example, there is a white space between the keyword def

and the variable x. This is so that the compiler knows that def is the keyword which needs to be
used and that x should be the variable name that needs to be defined.

def x=5;

Literals

A literal is a notation for representing a fixed value in groovy. The groovy language has notations

for integers, floating-point numbers, characters and strings. Here are some of the examples of
literals in the Groovy programming language:

12

1.45

‘a’

“aa”

Groovy Programming

16

In any programming language, you need to use various variables to store various types of

information. Variables are nothing but reserved memory locations to store values. This means

that when you create a variable you reserve some space in memory to store the value associated
with the variable.

You may like to store information of various data types like string, character, wide character,

integer, floating point, Boolean, etc. Based on the data type of a variable, the operating system
allocates memory and decides what can be stored in the reserved memory.

Built-in Data Types

Groovy offers a wide variety of built-in data types. Following is a list of data types which are

defined in Groovy:

 byte – This is used to represent a byte value. An example is 2.

 short - This is used to represent a short number. An example is 10.

 int – This is used to represent whole numbers. An example is 1234.

 long – This is used to represent a long number. An example is 10000090.

 float – This is used to represent 32-bit floating point numbers. An example is 12.34.

 double - This is used to represent 64-bit floating point numbers which are longer decimal

number representations which may be required at times. An example is 12.3456565.

 char – This defines a single character literal. An example is ‘a’.

 Boolean – This represents a Boolean value which can either be true or false.

 String – These are text literals which are represented in the form of chain of characters.

For example “Hello World”.

Bound values

The following table shows the maximum allowed values for the numerical and decimal literals.

byte -128 to 127

short -32,768 to 32,767

int -2,147,483,648 to 2,147,483,647

long -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

float 1.40129846432481707e-45 to 3.40282346638528860e+38

double 4.94065645841246544e-324d to 1.79769313486231570e+308d

4. Groovy – Data types

Groovy Programming

17

Class Numeric Types

In addition to the primitive types, the following object types (sometimes referred to as wrapper
types) are allowed:

 java.lang.Byte

 java.lang.Short

 java.lang.Integer

 java.lang.Long

 java.lang.Float

 java.lang.Double

In addition, the following classes can be used for supporting arbitrary precision arithmetic:

Name Description Example

java.math.BigInteger Immutable arbitrary-precision signed integral numbers 30g

java.math.BigDecimal Immutable arbitrary-precision signed decimal numbers 3.5g

The following code example showcases how the different built-in data types can be used:

class Example

{

 static void main(String[] args)

 {

 //Example of a int datatype

 int x=5;

 //Example of a long datatype

 long y=100L;

 //Example of a floating point datatype

 float a=10.56f;

 //Example of a double datatype

 double b=10.5e40;

 //Example of a BigInteger datatype

 BigInteger bi=30g;

 //Example of a BigDecimal datatype

 BigDecimal bd=3.5g;

 println(x);

 println(y);

 println(a);

 println(b);

 println(bi);

Groovy Programming

18

 println(bd);

 }

}

When we run the above program, we will get the following result:

5

100

10.56

1.05E41

30

3.5

Groovy Programming

19

Variables in Groovy can be defined in two ways – using the native syntax for the data type or

the next is by using the def keyword. For variable definitions it is mandatory to either provide

a type name explicitly or to use "def" in replacement. This is required by the Groovy parser.

There are following basic types of variable in Groovy as explained in the previous chapter:

 byte – This is used to represent a byte value. An example is 2.

 short - This is used to represent a short number. An example is 10.

 int – This is used to represent whole numbers. An example is 1234.

 long – This is used to represent a long number. An example is 10000090.

 float – This is used to represent 32-bit floating point numbers. An example is 12.34.

 double - This is used to represent 64-bit floating point numbers which are longer decimal

number representations which may be required at times. An example is 12.3456565.

 char – This defines a single character literal. An example is ‘a’.

 Boolean – This represents a Boolean value which can either be true or false.

 String – These are text literals which are represented in the form of chain of characters.
For example “Hello World”.

Groovy also allows for additional types of variables such as arrays, structures and classes which

we will see in the subsequent chapters.

Variable Declarations

A variable declaration tells the compiler where and how much to create the storage for the
variable.

Following is an example of variable declaration:

class Example

{

 static void main(String[] args)

 {

 // x is defined as a variable

 String x="Hello";

 // The value of the variable is printed to the console

 println(x);

5. Groovy – Variables

Groovy Programming

20

 }

}

When we run the above program, we will get the following result:

Hello

Naming Variables

The name of a variable can be composed of letters, digits, and the underscore character. It must

begin with either a letter or an underscore. Upper and lowercase letters are distinct because
Groovy, just like Java is a case-sensitive programming language.

class Example

{

 static void main(String[] args)

 {

 // Defining a variable in lowercase

 int x=5;

 // Defining a variable in uppercase

 int X=6;

 // Defining a variable with the underscore in it's name

 def _Name="Joe";

 println(x);

 println(X);

 println(_Name);

 }

}

When we run the above program, we will get the following result:

5

6

Joe

We can see that x and X are two different variables because of case sensitivity and in the third
case, we can see that _Name begins with an underscore.

Printing Variables

You can print the current value of a variable with the println function. The following example

shows how this can be achieved.

Groovy Programming

21

class Example

{

 static void main(String[] args)

 {

 //Initializing 2 variables

 int x=5;

 int X=6;

 //Printing the value of the variables to the console

 println("The value of x is " + x + "The value of X is " + X);

 }

}

When we run the above program, we will get the following result:

The value of x is 5 The value of X is 6

Groovy Programming

22

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations.

Groovy has the following types of operators:

 Arithmetic operators

 Relational operators

 Logical operators

 Bitwise operators

 Assignment operators

Arithmetic Operators

The Groovy language supports the normal Arithmetic operators as any the language. Following
are the Arithmetic operators available in Groovy:

Operator Description Example

+ Addition of two operands 1 + 2 will give 3

− Subtracts second operand from the first 2 − 1 will give 1

* Multiplication of both operands 2 * 2 will give 4

/ Division of numerator by denominator 3 / 2 will give 1.5

%
Modulus Operator and remainder of after an

integer/float division
3 % 2 will give 1

++
Incremental operators used to increment the value

of an operand by 1

int x=5;

x++;

x will give 6

--
Incremental operators used to decrement the value

of an operand by 1

int x=5;

x--;

x will give 4

6. Groovy – Operators

Groovy Programming

23

The following code snippet shows how the various operators can be used.

class Example

{

 static void main(String[] args)

 {

 // Initializing 3 variables

 def x=5;

 def y=10;

 def z=8;

 //Performing addition of 2 operands

 println(x+y);

 //Subtracts second operand from the first

 println(x-y);

 //Multiplication of both operands

 println(x*y);

 //Division of numerator by denominator

 println(z/x);

 //Modulus Operator and remainder of after an integer/float division

 println(z%x);

 //Incremental operator

 println(x++);

 //Decrementing operator

 println(x--);

 }

}

When we run the above program, we will get the following result. It can be seen that the results
are as expected from the description of the operators as shown above.

15

-5

50

1.6

3

5

6

Groovy Programming

24

Relational operators

Relational operators allow of the comparison of objects. Following are the relational operators
available in Groovy:

Operator Description Example

== Tests the equality between two objects 2 == 2 will give true

!= Tests the difference between two objects 3 != 2 will give true

<
Checks to see if the left objects is less than

the right operand.
2 < 3 will give true

<=
Checks to see if the left objects is less than or

equal to the right operand.
2 <= 3 will give true

>
Checks to see if the left objects is greater than

the right operand.
3 > 2 will give true

>=
Checks to see if the left objects is greater than

or equal to the right operand.
3 >= 2 will give true

The following code snippet shows how the various operators can be used.

class Example

{

 static void main(String[] args)

 {

 def x=5;

 def y=10;

 def z=8;

 if(x==y)

 {

 println("x is equal to y");

 }

 else

 println("x is not equal to y");

 if(z!=y)

 {

 println("z is not equal to y");

 }

 else

 println("z is equal to y");

Groovy Programming

25

 if(z!=y)

 {

 println("z is not equal to y");

 }

 else

 println("z is equal to y");

 if(z<y)

 {

 println("z is less than y");

 }

 else

 println("z is greater than y");

 if(x<=y)

 {

 println("x is less than y");

 }

 else

 println("x is greater than y");

 if(x>y)

 {

 println("x is greater than y");

 }

 else

 println("x is less than y");

 if(x>=y)

 {

 println("x is greater or equal to y");

 }

 else

 println("x is less than y");

 }

}

When we run the above program, we will get the following result. It can be seen that the results
are as expected from the description of the operators as shown above.

x is not equal to y

z is not equal to y

z is not equal to y

z is less than y

Groovy Programming

26

x is less than y

x is less than y

x is less than y

Logical Operators

Logical operators are used to evaluate Boolean expressions. Following are the logical operators
available in Groovy:

Operator Description Example

&& This is the logical “and” operator true && true will give true

|| This is the logical “or” operator true || true will give true

! This is the logical “not” operator !false will give true

The following code snippet shows how the various operators can be used.

class Example

{

 static void main(String[] args)

 {

 boolean x=true;

 boolean y=false;

 boolean z=true;

 println(x&&y);

 println(x&&z);

 println(x||z);

 println(x||y);

 println(!x);

 }

}

When we run the above program, we will get the following result. It can be seen that the results
are as expected from the description of the operators as shown above.

false

true

true

true

false

Groovy Programming

27

Bitwise Operators

Groovy provides four bitwise operators. Following are the bitwise operators available in Groovy:

Operator Description

& This is the bitwise “and” operator

| This is the bitwise “or” operator

^
This is the bitwise “xor” or Exclusive or

operator

~ This is the bitwise negation operator

Here is the truth table showcasing these operators.

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

The following code snippet shows how the various operators can be used.

class Example

{

 static void main(String[] args)

 {

 int a=00111100;

 int b=00001101;

 int x;

 println(Integer.toBinaryString(a&b));

 println(Integer.toBinaryString(a|b));

 println(Integer.toBinaryString(a^b));

 a=~a;

 println(Integer.toBinaryString(a));

 }

}

Groovy Programming

28

When we run the above program, we will get the following result. It can be seen that the results

are as expected from the description of the operators as shown above.

1001000000

1001001001000001

1001000000000001

100100100100000

Assignment operators

The Groovy language also provides assignment operators. Following are the assignment
operators available in Groovy:

Operator Description Example

+=
This adds right operand to the left operand

and assigns the result to left operand.

def A = 5

A+=3

Output will be 8

-=
This subtracts right operand from the left

operand and assigns the result to left operand

def A = 5

A-=3

Output will be 2

*=
This multiplies right operand with the left

operand and assigns the result to left operand

def A = 5

A*=3

Output will be 15

/=
This divides left operand with the right

operand and assigns the result to left operand

def A = 6

A/=3

Output will be 2

%=
This takes modulus using two operands and

assigns the result to left operand

def A = 5

A%=3

Output will be 2

class Example
{
 static void main(String[] args)

Groovy Programming

29

 {
 int x=5;
 println(x+=3);
 println(x-=3);
 println(x*=3);
 println(x/=3);
 println(x%=3);
 }
}

When we run the above program, we will get the following result. It can be seen that the results
are as expected from the description of the operators as shown above.

8

5

15

5

2

Range Operators

Groovy supports the concept of ranges and provides a notation of range operators with the help
of the .. notation. A simple example of the range operator is given below.

def range = 0..5

This just defines a simple range of integers, stored into a local variable called range with a lower
bound of 0 and an upper bound of 5.

The following code snippet shows how the various operators can be used.

class Example

{

 static void main(String[] args)

 {

 def range = 5..10;

 println(range);

 println(range.get(2));

 }

}

When we run the above program, we will get the following result

From the println statement, you can see that the entire range of numbers which are defined in
the range statement are displayed.

The get statement is used to get an object from the range defined which takes in an index value
as the parameter.

Groovy Programming

30

[5, 6, 7, 8, 9, 10]

7

Operator Precedence

The following table lists all groovy operators in order of precedence.

Operators Names

++ -- + -
pre increment/decrement, unary plus, unary

minus

* / % multiply, div, modulo

+ - addition, subtraction

== != <=> equals, not equals, compare to

& binary/bitwise and

^ binary/bitwise xor

| binary/bitwise or

&& logical and

|| logical or

= **= *= /= %= += -=

<<= >>= >>>= &= ^= |=
Various assignment operators

Groovy Programming

31

So far, we have seen statements which have been executed one after the other in a sequential

manner. Additionally, statements are provided in Groovy to alter the flow of control in a

program’s logic. They are then classified into flow of control statements which we will see in
detail.

while Statement

The syntax of the while statement is shown below:

while(condition) {

statement #1

statement #2

...

}

The while statement is executed by first evaluating the condition expression (a Boolean value),

and if the result is true, then the statements in the while loop are executed. The process is

repeated starting from the evaluation of the condition in the while statement. This loop continues

until the condition evaluates to false. When the condition becomes false, the loop terminates.

The program logic then continues with the statement immediately following the while statement.
The following diagram shows the diagrammatic explanation of this loop.

7. Groovy – Loops

Groovy Programming

32

Following is an example of a while loop statement:

class Example
{
 static void main(String[] args)
 {
 int count=0;
 while(count<5)
 {
 println(count);
 count++;
 }
 }
}

In the above example, we are first initializing the value of a count integer variable to 0. Then

our condition in the while loop is that we are evaluating the condition of the expression to be

that count should be less than 5. Till the value of count is less than 5, we will print the value of
count and then increment the value of count. The output of the above code would be:

0

1

2

3

4

for Statement

The for statement is used to iterate through a set of values. The for statement is generally used

in the following way.

for(variable declaration;expression;Increment)

{

statement #1

statement #2

…

}

The classic for statement consists of the following parts:

 Variable declaration – This step is executed only once for the entire loop and used to

declare any variables which will be used within the loop.

 Expression – This will consists of an expression which will be evaluated for each iteration

of the loop.

 The increment section will contain the logic needed increment the variable declared in
the for statement.

Groovy Programming

33

The following diagram shows the diagrammatic explanation of this loop.

Following is an example of the classic for statement:

class Example
{
 static void main(String[] args)
 {
 for(int i=0;i<5;i++)
 {
 println(i);
 }
 }
}

In the above example, we are in our for loop doing three things:

 Declaring a variable i and Initializing the value of i to 0

 Putting a conditional expression that the for loop should execute till the value of i is less

than 5.

 Increment the value of i by 1 for each iteration.

Groovy Programming

34

The output of the above code would be:

0

1

2

3

4

for-in Statement

The for-in statement is used to iterate through a set of values. The for-in statement is generally

used in the following way.

for(variable in range)

{

statement #1

statement #2

…

}

The following diagram shows the diagrammatic explanation of this loop.

Groovy Programming

35

Following is an example of a for-in statement:

class Example

{

 static void main(String[] args)

 {

 int[] array=[0,1,2,3];

 for(int i in array)

 {

 println(i);

 }

 }

}

In the above example, we are first initializing an array of integers with 4 values of 0,1,2 and 3.

We are then using our for loop statement to first define a variable i which then iterates through

all of the integers in the array and prints the values accordingly. The output of the above code
would be:

0

1

2

3

The for-in statement can also be used to loop through ranges. The following example shows
how this can be accomplished.

class Example
{
 static void main(String[] args)
 {
 for(int i in 1..5)
 {
 println(i);
 }
 }
}

In the above example, we are actually looping through a range which is defined from 1 to 5 and

printing the each value in the range. The output of the above code would be:

1

2

3

4

5

Groovy Programming

36

The for-in statement can also be used to loop through Map’s. The following example shows how

this can be accomplished.

class Example
{
 static void main(String[] args)
 {
 def employee = ["Ken" : 21, "John" : 25, "Sally" : 22];
 for(emp in employee)
 {
 println(emp);
 }
 }
}

In the above example, we are actually looping through a map which has a defined set of key
value entries. The output of the above code would be:

Ken=21

John=25

Sally=22

Loop Control Statements

Break statement

The break statement is used to alter the flow of control inside loops and switch statements. We

have already seen the break statement in action in conjunction with the switch statement. The

break statement can also be used with while and for statements. Executing a break statement

with any of these looping constructs causes immediate termination of the innermost enclosing
loop.

The following diagram shows the diagrammatic explanation of the break statement.

Groovy Programming

37

Following is an example of the break statement:

class Example
{
 static void main(String[] args)
 {
 int[] array=[0,1,2,3];
 for(int i in array)
 {
 println(i);
 if(i==2)
 break;
 }
 }
}

The output of the above code would be:

0

1

2

As expected since there is a condition put saying that if the value of i is 2 then break from the
loop that is why the last element of the array which is 3 is not printed.

Continue Statement

The continue statement complements the break statement. Its use is restricted to while and for

loops. When a continue statement is executed, control is immediately passed to the test

condition of the nearest enclosing loop to determine whether the loop should continue. All
subsequent statements in the body of the loop are ignored for that particular loop iteration.

The following diagram shows the diagrammatic explanation of the continue statement.

Groovy Programming

38

Following is an example of the break statement:

class Example
{
 static void main(String[] args)
 {
 int[] array=[0,1,2,3];
 for(int i in array)
 {
 println(i);
 if(i==2)
 continue;
 }
 }
}

The output of the above code would be:

0

1

2

3

Groovy Programming

39

Decision-making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false.

if Statement

The first decision making statement is the if statement. The general form of this statement is

if(condition) {

statement #1

statement #2

...

}

The general working of this statement is that first a condition is evaluated in the if statement.

If the condition is true, it then executes the statements. The following diagram shows the flow

of the if statement.

8. Groovy – Decision Making

Groovy Programming

40

Following is an example of a if/else statement:

class Example

{

 static void main(String[] args)

 {

 // Initializing a local variable

 int a=2

 //Check for the boolean condition

 if (a<100)

 {

 //If the condition is true print the following statement

 println("The value is less than 100");

 }

 }

}

In the above example, we are first initializing a variable to a value of 2. We are then evaluating

the value of the variable and then deciding whether the println statement should be executed.
The output of the above code would be:

The value is less than 100

if / else Statement

The next decision-making statement we will see is the if/else statement. The general form of
this statement is:

if(condition) {

statement #1

statement #2

...

} else

{

statement #3

statement #4

}

The general working of this statement is that first a condition is evaluated in the if statement.

If the condition is true it then executes the statements thereafter and stops before the else

condition and exits out of the loop. If the condition is false it then executes the statements in

the else statement block and then exits the loop. The following diagram shows the flow of the if
statement.

Groovy Programming

41

Following is an example of a if/else statement:

class Example

{

 static void main(String[] args)

 {

 // Initializing a local variable

 int a=2

 //Check for the boolean condition

 if (a<100)

 {

 //If the condition is true print the following statement

 println("The value is less than 100");

 }

 else

 {

 //If the condition is false print the following statement

 println("The value is greater than 100");

 }

 }

}

Groovy Programming

42

In the above example, we are first initializing a variable to a value of 2. We are then evaluating

the value of the variable and then deciding on which println statement should be executed. The
output of the above code would be

The value is less than 100.

Nested If statements

Sometimes there is a requirement to have multiple if statement embedded inside of each other.

The general form of this statement is:

if(condition) {

statement #1

statement #2

...

} else if(condition)

{

statement #3

statement #4

}

else

{

statement #5

statement #6

}

Following is an example of a nested if/else statement:

class Example

{

 static void main(String[] args)

 {

 // Initializing a local variable

 int a=12

 //Check for the boolean condition

 if (a>100)

 {

Groovy Programming

43

 //If the condition is true print the following statement

 println("The value is less than 100");

 }

 else

 // Check if the value of a is greater than 5

 if (a>5)

 {

 //If the condition is true print the following statement

 println("The value is greater than 5 and greater than 100");

 }

 else

 {

 //If the condition is false print the following statement

 println("The value of a is less than 5");

 }

 }

}

In the above example, we are first initializing a variable to a value of 12. In the first if statement,

we are seeing if the value of a is greater than 100. If not, then we enter our second for loop to
see if the value of a is greater than 5 or less than 5. The output of the above code would be:

The value is greater than 5 and greater than 100

switch Statements

Sometimes the nested if-else statement is so common and is used so often that an easier
statement was designed called the switch statement.

switch(expression) {

case expression #1:

statement #1

...

case expression #2:

statement #2

...

case expression #N:

statement #N

...

default:

Groovy Programming

44

statement #Default

...

}

The general working of this statement is as follows:

 The expression to be evaluated is placed in the switch statement.

 There will be multiple case expressions defined to decide which set of statements should

be executed based on the evaluation of the expression.

 A break statement is added to each case section of statements at the end. This is to

ensure that the loop is exited as soon as the relevant set of statements gets executed.

 There is also a default case statement which gets executed if none of the prior case

expressions evaluate to true

The following diagram shows the flow of the switch-case statement.

Following is an example of the switch statement:

class Example

{

 static void main(String[] args)

 {

 //initializing a local variable

 int a = 2

Groovy Programming

45

 //Evaluating the expression value

 switch(a)

 {

 //There is case statement defined for 4 cases

 // Each case statement section has a break condition to exit the loop

 case 1:

 println("The value of a is One");

 break;

 case 2:

 println("The value of a is Two");

 break;

 case 3:

 println("The value of a is Three");

 break;

 case 4:

 println("The value of a is Four");

 break;

 default:

 println("The value is unknown");

 break;

 }

 }

}

In the above example, we are first initializing a variable to a value of 2. We then have a switch

statement which evaluates the value of the variable a. Based on the value of the variable it will
execute the relevant case set of statements. The output of the above code would be:

The value of a is Two

Nested Switch Statements

It is also possible to have a nested set of switch statements. The general form of the statement
is shown below:

switch(expression) {

case expression #1:

statement #1

...

case expression #2:

statement #2

Groovy Programming

46

...

case expression #N:

statement #N

...

default:

statement #Default

...

}

Following is an example of the nested switch statement:

class Example

{

 static void main(String[] args)

 {

 //Initializing 2 variables i and j

 int i = 0;

 int j = 1;

 // First evaluating the value of variable i

 switch(i)

 {

 case 0:

 // Next evaluating the value of variable j

 switch(j)

 {

 case 0:

 println("i is 0, j is 0");

 break;

 case 1:

 println("i is 0, j is 1");

 break;

 // The default condition for the inner switch statement

 default:

 println("nested default case!!");

 }

 break;

 // The default condition for the outer switch statement

 default:

 println("No matching case found!!");

Groovy Programming

47

 }

 }

}

In the above example, we are first initializing a variable to the a to a value of 2. We then have

a switch statement which evaluates the value of the variable a. Based on the value of the

variable it will execute the relevant case set of statements. The output of the above code would

be:

i is 0, j is 1

Groovy Programming

48

A method is in Groovy is defined with a return type or with the def keyword. Methods can receive

any number of arguments. It’s not necessary that the types are explicitly defined when defining

the arguments. Modifiers such as public, private and protected can be added. By default, if no
visibility modifier is provided, the method is public.

The simplest type of a method is one with no parameters as the one shown below:

def methodName() {

//Method code

}

Following is an example of simple method

class Example
{
 static def DisplayName() {
 println("This is how methods work in groovy");
 println("This is an example of a simple method");
 }

 static void main(String[] args)
 {
 DisplayName();
 }
}

In the above example, DisplayName is a simple method which consists of two println statements

which are used to output some text to the console. In our static main method, we are just calling
the DisplayName method. The output of the above method would be

This is how methods work in groovy

This is an example of a simple method

Method Parameters

A method is more generally useful if its behavior is determined by the value of one or more

parameters. We can transfer values to the called method using method parameters. Note that

the parameter names must differ from each other.

The simplest type of a method with parameters as the one shown below

def methodName(parameter1, parameter2, parameter3) {

// Method code goes here

}

9. Groovy – Methods

Groovy Programming

49

Following is an example of simple method with parameters

class Example
{
 static void sum(int a,int b)
 {
 int c=a+b;
 println(c);
 }

 static void main(String[] args)
 {
 sum(10,5);
 }
}

In this example, we are creating a sum method with 2 parameters, a and b. Both parameters

are of type int. We are then calling the sum method from our main method and passing the

values to the variables a and b.

The output of the above method would be the value 15.

Default Parameters

There is also a provision in Groovy to specify default values for parameters within methods. If

no values are passed to the method for the parameters, the default ones are used. If both non-

default and default parameters are used, then it has to be noted that the default parameters

should be defined at the end of the parameter list.

Following is an example of simple method with parameters:

def someMethod(parameter1, parameter2 = 0, parameter3 = 0) {

// Method code goes here

}

Let’s look at the same example we looked at before for the addition of two numbers and create
a method which has one default and another non-default parameter:

class Example

{

 static void sum(int a,int b=5)

 {

 int c=a+b;

 println(c);

 }

 static void main(String[] args)

 {

Groovy Programming

50

 sum(6);

 }

}

In this example, we are creating a sum method with two parameters, a and b. Both parameters

are of type int. The difference between this example and the previous example is that in this

case we are specifying a default value for b as 5. So when we call the sum method from our

main method, we have the option of just passing one value which is 6 and this will be assigned

to the parameter a within the sum method.

The output of the above method would be the value 11.

class Example
{
 static void sum(int a,int b=5)
 {
 int c=a+b;
 println(c);
 }

 static void main(String[] args)
 {
 sum(6,6);
 }
}

We can also call the sum method by passing 2 values, in our example above we are passing 2

values of 6. The second value of 6 will actually replace the default value which is assigned to the
parameter b.

The output of the above method would be the value 12.

Method Return Values

Methods can also return values back to the calling program. This is required in modern-day

programming language wherein a method does some sort of computation and then returns the
desired value to the calling method.

Following is an example of simple method with a return value.

class Example
{
 static int sum(int a,int b=5)
 {
 int c=a+b;
 return c;
 }

 static void main(String[] args)
 {
 println(sum(6));
 }
}

Groovy Programming

51

In our above example, note that this time we are specifying a return type for our method sum

which is of the type int. In the method we are using the return statement to send the sum value

to the calling main program. Since the value of the method is now available to the main method,
we are using the println function to display the value in the console.

The output of the above method would be the value 11.

Instance methods

Methods are normally implemented inside classes within Groovy just like the Java language.

A class is nothing but a blueprint or a template for creating different objects which defines its

properties and behaviors. The class objects exhibit the properties and behaviors defined by
its class. So the behaviors are defined by creating methods inside of the class.

We will see classes in more detail in a later chapter but Following is an example of a method

implementation in a class. In our previous examples we defined our method as static methods

which meant that we could access those methods directly from the class. The next example of

methods is instance methods wherein the methods are accessed by creating objects of the class.
Again we will see classes in a later chapter, for now we will demonstrate how to use methods.

Following is an example of how methods can be implemented.

class Example

{

 int x;

 public int getX()

 {

 return x;

 }

 public void setX(int pX)

 {

 x=pX;

 }

 static void main(String[] args)

 {

 Example ex=new Example();

 ex.setX(100);

 println(ex.getX());

 }

}

In our above example, note that this time we are specifying no static attribute for our class

methods. In our main function we are actually creating an instance of the Example class and
then invoking the method of the ‘ex’ object.

The output of the above method would be the value 100.

Groovy Programming

52

Local and External Parameter Names

Groovy provides the facility just like java to have local and global parameters. In the following

example, lx is a local parameter which has a scope only within the function of getX() and x is

a global property which can be accessed inside the entire Example class. If we try to access the
variable lx outside of the getX() function, we will get an error.

class Example

{

 static int x=100;

 public static int getX()

 {

 int lx=200;

 println(lx);

 return x;

 }

 static void main(String[] args)

 {

 println getX()

 }

}

When we run the above program, we will get the following result.

200

100

this method for Properties

Just like in Java, groovy can access its instance members using the this keyword. The following

example shows how when we use the statement this.x, it refers to its instance and sets the
value of x accordingly.

class Example

{

 int x=100;

 public int getX()

 {

 this.x=200;

 return x;

 }

 static void main(String[] args)

 {

Groovy Programming

53

 Example ex=new Example();

 println(ex.getX());

 }

}

When we run the above program, we will get the result of 200 printed on the console.

Groovy Programming

54

Groovy provides a number of helper methods when working with I/O. Groovy provides easier
classes to provide the following functionalities for files

 Reading files

 Writing to files

 Traversing file trees

 Reading and writing data objects to files

In addition to this, you can always use the normal Java classes listed below for File I/O operations

 java.io.File

 java.io.InputStream

 java.io.OutputStream

 java.io.Reader

 java.io.Writer

Reading files

The following example will output all the lines of a text file in Groovy. The method eachLine is

in-built in the File class in Groovy for the purpose of ensuring that each line of the text file is
read.

import java.io.File

class Example

{

 static void main(String[] args)

 {

 new File("E:/Example.txt").eachLine

 {

 line -> println "line : $line";

 }

 }

}

The File class is used to instantiate a new object which takes the file name as the parameter. It
then takes the function of eachLine, puts it to a variable called line and prints it accordingly.

If the file contains the following lines, they will be printed

line : Example1

10. Groovy – File I/O

Groovy Programming

55

line : Example2

Reading the Contents of a File as an Entire String

If you want to get the entire contents of the file as a string, you can use the text property of the
file class. The following example shows how this can be done.

class Example

{

 static void main(String[] args)

 {

 File file = new File("E:/Example.txt")

 println file.text

 }

}

If the file contains the following lines, they will be printed

line : Example1

line : Example2

Writing to Files

If you want to write to files, you need to use the writer class to output text to a file. The following
example shows how this can be done.

import java.io.File

class Example {

 static void main(String[] args) {

 new File('E:/','Example.txt').withWriter('utf-8')

 {

 writer -> writer.writeLine 'Hello World'

 }

 }

}

If you open the file Example.txt, you will see the words “Hello World” printed to the file.

Getting the Size of a File

If you want to get the size of the file one can use the length property of the file class to get the
size of the file. The following example shows how this can be done.

Groovy Programming

56

class Example
{
 static void main(String[] args)
 {
 File file = new File("E:/Example.txt")
 println "The file ${file.absolutePath} has ${file.length()} bytes"
 }
}

The above code would show the size of the file in bytes.

Testing if a File is a Directory

If you want to see if a path is a file or a directory, one can use the isFile and isDirectory option
of the File class. The following example shows how this can be done.

class Example

{

 static void main(String[] args)

 {

 def file = new File('E:/')

 println "File? ${file.isFile()}"

 println "Directory? ${file.isDirectory()}"

 }

}

The above code would show the following output:

File? false

Directory? True

Creating a Directory

If you want to create a new directory you can use the mkdir function of the File class. The
following example shows how this can be done.

class Example
{
 static void main(String[] args)
 {
 def file = new File('E:/Directory')
 file.mkdir()
 }
}

The directory E:\Directory will be created if it does not exist.

Groovy Programming

57

Deleting a File

If you want to delete a file you can use the delete function of the File class. The following example
shows how this can be done.

class Example
{
 static void main(String[] args)
 {
 def file = new File('E:/Example.txt')
 file.delete()
 }
}

The file will be deleted if it exists.

Copying files

Groovy also provides the functionality to copy the contents from one file to another. The following

example shows how this can be done.

class Example
{
 static void main(String[] args)
 {
 def src = new File("E:/Example.txt")
 def dst = new File("E:/Example1.txt")
 dst << src.text
 }
}

The file Example1 .txt will be created and all of the contents of the file Example.txt will be copied
to this file.

Getting Directory Contents

Groovy also provides the functionality to list the drives and files in a drive.

The following example shows how the drives on a machine can be displayed by using the

listRoots function of the File class.

class Example {

 static void main(String[] args)

 {

 def rootFiles = new File("test").listRoots()

 rootFiles.each

 {

 file ->println file.absolutePath

 }

Groovy Programming

58

 }

}

Depending on the drives available on your machine, the output could vary. On a standard
machine the output would be similar to the following one:

C:\

D:\

The following example shows how to list the files in a particular directory by using the eachFile
function of the File class.

class Example {
 static void main(String[] args)
 {
 new File("E:/Temp").eachFile()
 {

 file->println file.getAbsolutePath()
 }
 }
}

The output would display all of the files in the directory E:\Temp

If you want to recursively display all of files in a directory and its subdirectories, then you would

use the eachFileRecurse function of the File class. The following example shows how this can
be done.

class Example {
 static void main(String[] args) {
 new File("E:/temp").eachFileRecurse()
 {
 file -> println file.getAbsolutePath()
 }
 }
}

The output would display all of the files in the directory E:\Temp and in its subdirectories if they
exist.

Groovy Programming

59

Groovy is an “optionally” typed language, and that distinction is an important one when

understanding the fundamentals of the language. When compared to Java, which is a “strongly”

typed language, whereby the compiler knows all of the types for every variable and can

understand and honor contracts at compile time. This means that method calls are able to be
determined at compile time.

When writing code in Groovy, developers are given the flexibility to provide a type or not. This

can offer some simplicity in implementation and, when leveraged properly, can service your

application in a robust and dynamic way.

In Groovy, optional typing is done via the ‘def’ keyword. Following is an example of the usage
of the def method:

class Example

{

 static void main(String[] args)

 {

 // Example of an Integer using def

 def a=100;

 println(a);

 // Example of an float using def

 def b=100.10;

 println(b);

 // Example of an Double using def

 def c=100.101;

 println(c);

 // Example of an String using def

 def d = "HelloWorld";

 println(d);

 }

}

From the above program, we can see that we have not declared the individual variables as
Integer, float, double, or string even though they contain these types of values.

When we run the above program, we will get the following result:

100

100.10

100.101

11. Groovy – Optionals

Groovy Programming

60

HelloWorld

Optional typing can be a powerful utility during development, but can lead to problems in

maintainability during the later stages of development when the code becomes too vast and

complex.

To get a handle on how you can utilize optional typing in Groovy without getting your codebase

into an unmaintainable mess, it is best to embrace the philosophy of “duck typing” in your
applications.

If we re-write the above code using duck typing, it would look like the one given below. The

variable names are given names which resemble more often than not the type they represent

which makes the code more understandable.

class Example

{

 static void main(String[] args)

 {

 // Example of an Integer using def

 def aint=100;

 println(aint);

 // Example of an float using def

 def bfloat=100.10;

 println(bfloat);

 // Example of an Double using def

 def cDouble=100.101;

 println(cDouble);

 // Example of an String using def

 def dString = "HelloWorld";

 println(dString);

 }

}

Groovy Programming

61

In Groovy, Numbers are actually represented as object’s, all of them being an instance of the

class Integer. To make an object do something, we need to invoke one of the methods declared

in its class.

Groovy supports integer and floating point numbers.

 An integer is a value that does not include a fraction.

 A floating-point number is a decimal value that includes a decimal fraction.

An Example of numbers in Groovy is shown below:

Integer x=5;

Float y=1.25;

Where x is of the type Integer and y is the float.

The reason why numbers in groovy are defined as objects is generally because there are

requirements to perform operations on numbers. The concept of providing a class over primitive
types is known as wrapper classes.

By default the following wrapper classes are provided in Groovy.

The object of the wrapper class contains or wraps its respective primitive data type. The process

of converting a primitive data types into object is called boxing, and this is taken care by the

compiler. The process of converting the object back to its corresponding primitive type is called
unboxing.

Example:

Following is an example of boxing and unboxing:

class Example

{

 static void main(String[] args)

 {

12. Groovy – Numbers

Groovy Programming

62

 Integer x=5,y=10,z=0; // The the values of 5,10 and 0 are boxed into Integer

types

 // The values of x and y are unboxed and the addition is performed

 z=x+y;

 println(z);

 }

The output of the above program would be 5. In the above example, the values of 5, 10, and 0

are first boxed into the Integer variables x, y and z accordingly. And then the when the addition
of x and y is performed the values are unboxed from their Integer types.

Number Methods

Since the Numbers in Groovy are represented as classes, following are the list of methods

available

xxxValue() Method

This method takes on the Number as the parameter and returns a primitive type based on the
method which is invoked. Following are the list of methods available

byte byteValue()

short shortValue()

int intValue()

long longValue()

float floatValue()

double doubleValue()

Parameters: No parameters required.

Return Value: The return value is the primitive type returned depending on the value function

which is called.

Example:

Following is an example of the usage of the method values.

class Example

{

 static void main(String[] args)

 {

 Integer x=5;

 // Converting the number to double primitive type

Groovy Programming

63

 println(x.doubleValue());

 // Converting the number to byte primitive type

 println(x.byteValue());

 // Converting the number to float primitive type

 println(x.floatValue());

 // Converting the number to long primitive type

 println(x.longValue());

 // Converting the number to short primitive type

 println(x.shortValue());

 // Converting the number to int primitive type

 println(x.intValue());

 }

}

When we run the above program, we will get the following result:

5.0

5

5.0

5

5

5

compareTo() Method

The compareTo method is to use compare one number against another. This is useful if you want
to compare the value of numbers.

Syntax

public int compareTo(NumberSubClass referenceName)

Parameters

referenceName - This could be a Byte, Double, Integer, Float, Long or Short.

Return Value

 If the Integer is equal to the argument then 0 is returned.

 If the Integer is less than the argument then -1 is returned.

 If the Integer is greater than the argument then 1 is returned.

Groovy Programming

64

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 Integer x=5;

 //Comparison against a Integer of lower value

 System.out.println(x.compareTo(3));

 //Comparison against a Integer of equal value

 System.out.println(x.compareTo(5));

 //Comparison against a Integer of higher value

 System.out.println(x.compareTo(8));

 }

}

When we run the above program, we will get the following result:

1

0

-1

equals() Method

The method determines whether the Number object that invokes the method is equal to the
object that is passed as argument.

Syntax

public boolean equals(Object o)

Parameters

o - Any object.

Return Value: The methods returns True if the argument is not null and is an object of the

same type and with the same numeric value.

Example:

Following is an example of the usage of this method:

Groovy Programming

65

class Example

{

 static void main(String[] args)

 {

 Integer x = 5;

 Integer y = 10;

 Integer z = 5;

 //Comparison against an Integer of different value

 System.out.println(x.equals(y));

 //Comparison against an Integer of same value

 System.out.println(x.equals(z));

 }

}

When we run the above program, we will get the following result:

false

true

valueOf() Method

The valueOf method returns the relevant Number Object holding the value of the argument
passed. The argument can be a primitive data type, String, etc.

This method is a static method. The method can take two arguments, where one is a String and

the other is a radix.

Syntax

static Integer valueOf(int i)

static Integer valueOf(String s)

static Integer valueOf(String s, int radix)

Parameters

Here is the detail of parameters:

 i - An int for which Integer representation would be returned.

 s - A String for which Integer representation would be returned.

 radix - This would be used to decide the value of returned Integer based on passed

String.

Return Value

 valueOf(int i): This returns an Integer object holding the value of the specified

primitive.

Groovy Programming

66

 valueOf(String s): This returns an Integer object holding the value of the specified

string representation.

 valueOf(String s, int radix): This returns an Integer object holding the integer value

of the specified string representation, parsed with the value of radix.

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 int x = 5;
 Double z=15.56;
 Integer xNew=Integer.valueOf(x);
 println(xNew);
 Double zNew=Double.valueOf(z);
 println(zNew);
 }
}

When we run the above program, we will get the following result:

5
15.56

toString() Method

The method is used to get a String object representing the value of the Number Object.

If the method takes a primitive data type as an argument, then the String object representing
the primitive data type value is returned.

If the method takes two arguments, then a String representation of the first argument in the

radix specified by the second argument will be returned.

Syntax

String toString()

static String toString(int i)

Parameters

i - An int for which string representation would be returned.

Return Value

 toString(): This returns a String object representing the value of this Integer.

 toString(int i): This returns a String object representing the specified integer.

Groovy Programming

67

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 Integer x=5;

 System.out.println(x.toString());

 System.out.println(Integer.toString(12));

 }

}

When we run the above program, we will get the following result:

5
12

parseInt() Method

This method is used to get the primitive data type of a certain String. parseXxx() is a static
method and can have one argument or two.

Syntax

static int parseInt(String s)

static int parseInt(String s, int radix)

Parameters

 s - This is a string representation of decimal.

 radix - This would be used to convert String s into integer.

Return Value

 parseInt(String s): This returns an integer (decimal only).

 parseInt(int i): This returns an integer, given a string representation of decimal, binary,

octal, or hexadecimal (radix equals 10, 2, 8, or 16 respectively) numbers as input.

Example:

Following is an example of the usage of this method:

class Example {
 static void main(String[] args)
 {
 int x =Integer.parseInt("9");
 double y = Double.parseDouble("5");

Groovy Programming

68

 int z = Integer.parseInt("444",16);
 System.out.println(x);
 System.out.println(y);
 System.out.println(z);
 }
}

When we run the above program, we will get the following result:

9

5.0

1092

abs() Method

The method gives the absolute value of the argument. The argument can be int, float, long,
double, short, byte.

Syntax

double abs(double d)

float abs(float f)

int abs(int i)

long abs(long lng)

Parameters: Any primitive data type

Return Value: This method Returns the absolute value of the argument.

Example:

Following is an example of the usage of this method.

class Example {

 static void main(String[] args)

 {

 Integer a = -8;

 double b = -100;

 float c = -90;

 System.out.println(Math.abs(a));

 System.out.println(Math.abs(b));

 System.out.println(Math.abs(c));

 }

}

When we run the above program, we will get the following result:

Groovy Programming

69

8

100.0

90.0

ceil() Method

The method ceil gives the smallest integer that is greater than or equal to the argument.

Syntax

double ceil(double d)

double ceil(float f)

Parameters: A double or float primitive data type

Return Value: This method Returns the smallest integer that is greater than or equal to the
argument. Returned as a double.

Example:

Following is an example of the usage of this method

class Example {

 static void main(String[] args)

 {

 double a = -100.675;

 float b = -90;

 System.out.println(Math.ceil(a));

 System.out.println(Math.ceil(b));

 }

}

When we run the above program, we will get the following result:

-100.0

-90.0

floor() Method

The method floor gives the largest integer that is less than or equal to the argument.

Syntax

double floor(double d)

double floor(float f)

Parameters: A double or float primitive data type

Groovy Programming

70

Return Value: This method Returns the largest integer that is less than or equal to the

argument. Returned as a double.

Example:

Following is an example of the usage of this method

class Example {

 static void main(String[] args)

 {

 double a = -100.675;

 float b = -90;

 System.out.println(Math.floor(a));

 System.out.println(Math.floor(b));

 }

}

When we run the above program, we will get the following result:

-101.0

-90.0

rint() Method

The method rint returns the integer that is closest in value to the argument.

Syntax

double rint(double d)

Parameters

d - it accepts a double value as parameter.

Return Value: This method Returns the integer that is closest in value to the argument.
Returned as a double.

Example:

Following is an example of the usage of this method

class Example {

 static void main(String[] args)

 {

 double d = 100.675;

 double e = 100.500;

 double f = 100.200;

Groovy Programming

71

 System.out.println(Math.rint(d));

 System.out.println(Math.rint(e));

 System.out.println(Math.rint(f));

 }

}

When we run the above program, we will get the following result:

101.0

100.0

100.0

round() Method

The method round returns the closest long or int, as given by the methods return type.

Syntax

long round(double d)

int round(float f)

Parameters

 d - A double or float primitive data type

 f - A float primitive data type

Return Value: This method Returns the closest long or int, as indicated by the method's return
type, to the argument.

Example:

Following is an example of the usage of this method

class Example {

 static void main(String[] args)

 {

 double d = 100.675;

 double e = 100.500;

 float f = 100;

 float g = 90f;

 System.out.println(Math.round(d));

 System.out.println(Math.round(e));

 System.out.println(Math.round(f));

Groovy Programming

72

 System.out.println(Math.round(g));

 }

}

When we run the above program, we will get the following result:

101

101

100

90

min() Method

The method gives the smaller of the two arguments. The argument can be int, float, long, double.

Syntax

double min(double arg1, double arg2)

float min(float arg1, float arg2)

int min(int arg1, int arg2)

long min(long arg1, long arg2)

Parameters: This method accepts any primitive data type as parameter.

Return Value: This method Returns the smaller of the two arguments.

Example:

Following is an example of the usage of this method:

class Example {

 static void main(String[] args)

 {

 System.out.println(Math.min(12.123, 12.456));

 System.out.println(Math.min(23.12, 23.0));

 }

}

When we run the above program, we will get the following result:

12.123

23.0

Groovy Programming

73

max() Method

The method gives the maximum of the two arguments. The argument can be int, float, long,

double.

Syntax

double max(double arg1, double arg2)

float max(float arg1, float arg2)

int max(int arg1, int arg2)

long max(long arg1, long arg2)

Parameters: This method accepts any primitive data type as parameter

Return Value: This method Returns the maximum of the two arguments.

Example:

Following is an example of the usage of this method:

class Example {

 static void main(String[] args)

 {

 System.out.println(Math.max(12.123, 12.456));

 System.out.println(Math.max(23.12, 23.0));

 }

}

When we run the above program, we will get the following result:

12.456

23.12

exp() Method

The method returns the base of the natural logarithms, e, to the power of the argument.

Syntax

double exp(double d)

Parameters

d -Any primitive data type

Return Value: This method Returns the base of the natural logarithms, e, to the power of the
argument.

Example:

Groovy Programming

74

Following is an example of the usage of this method:

class Example {
 static void main(String[] args)
 {
 double x = 11.635;
 double y = 2.76;

 System.out.printf("The value of e is %.4f%n", Math.E);
 System.out.printf("exp(%.3f) is %.3f%n", x, Math.exp(x));
 }
}

When we run the above program, we will get the following result:

The value of e is 2.7183

exp(11.635) is 112983.831

log() Method

The method returns the natural logarithm of the argument.

Syntax

double log(double d)

Parameters

d - Any primitive data type

Return Value: This method Returns the natural logarithm of the argument.

Example:

Following is an example of the usage of this method:

class Example {

 static void main(String[] args)

 {

 double x = 11.635;

 double y = 2.76;

 System.out.printf("The value of e is %.4f%n", Math.E);

 System.out.printf("log(%.3f) is %.3f%n", x, Math.log(x));

 }

}

When we run the above program, we will get the following result:

The value of e is 2.7183

Groovy Programming

75

log(11.635) is 2.454

pow() Method

The method returns the value of the first argument raised to the power of the second argument.

Syntax

double pow(double base, double exponent)

Parameters

 base - Any primitive data type

 exponent - Any primitive data type

Return Value: This method Returns the value of the first argument raised to the power of the
second argument.

Example:

Following is an example of the usage of this method:

class Example {
 static void main(String[] args)
 {
 double x = 11.635;
 double y = 2.76;

 System.out.printf("The value of e is %.4f%n", Math.E);
 System.out.printf("pow(%.3f, %.3f) is %.3f%n", x, y, Math.pow(x, y));

 }
}

When we run the above program, we will get the following result:

The value of e is 2.7183

pow(11.635, 2.760) is 874.008

sqrt() Method

The method returns the square root of the argument.

Syntax

double sqrt(double d)

Parameters

d - Any primitive data type

Return Value: This method Returns the square root of the argument.

Example:

Groovy Programming

76

Following is an example of the usage of this method:

class Example {

 static void main(String[] args)

 {

 double x = 11.635;

 double y = 2.76;

 System.out.printf("The value of e is %.4f%n", Math.E);

 System.out.printf("sqrt(%.3f) is %.3f%n", x, Math.sqrt(x));

 }

}

When we run the above program, we will get the following result:

The value of e is 2.7183

sqrt(11.635) is 3.411

sin() Method

The method returns the sine of the specified double value.

Syntax

double sin(double d)

Parameters

d - A double data type

Return Value: This method Returns the sine of the specified double value.

Example:

Following is an example of the usage of this method:

class Example {

 static void main(String[] args)

 {

 double degrees = 45.0;

 double radians = Math.toRadians(degrees);

 System.out.format("The value of pi is %.4f%n", Math.PI);

 System.out.format("The sine of %.1f degrees is %.4f%n", degrees, Math.sin(radians));

Groovy Programming

77

 }

}

When we run the above program, we will get the following result:

The value of pi is 3.1416

The sine of 45.0 degrees is 0.7071

cos() Method

The method returns the cosine of the specified double value.

Syntax

double cos(double d)

Parameters

d - This method accepts a value of double data type.

Return Value: This method Returns the cosine of the specified double value.

Example:

Following is an example of the usage of this method:

class Example {
 static void main(String[] args)
 {
 double degrees = 45.0;
 double radians = Math.toRadians(degrees);

 System.out.format("The value of pi is %.4f%n", Math.PI);
 System.out.format("The cosine of %.1f degrees is %.4f%n", degrees,
Math.cos(radians));

 }
}

When we run the above program, we will get the following result:

The value of pi is 3.1416

The cosine of 45.0 degrees is 0.7071

tan() Method

The method returns the tangent of the specified double value.

Groovy Programming

78

Syntax

double tan(double d)

Parameters:

d - This method accepts a value of double data type

Return Value: This method Returns the tangent of the specified double value.

Example:

Following is an example of the usage of this method

class Example {

 static void main(String[] args)

 {

 double degrees = 45.0;

 double radians = Math.toRadians(degrees);

 System.out.format("The value of pi is %.4f%n", Math.PI);

 System.out.format("The tangent of %.1f degrees is %.4f%n", degrees,

Math.tan(radians));

 }

}

When we run the above program, we will get the following result:

The value of pi is 3.1416

The tangent of 45.0 degrees is 1.0000

asin() Method

The method returns the arcsine of the specified double value.

Syntax

double asin(double d)

Parameters

d - This method accepts a value of double data type

Return Value: This method Returns the arcsine of the specified double value.

Example:

Following is an example of the usage of this method

Groovy Programming

79

class Example {

 static void main(String[] args)

 {

 double degrees = 45.0;

 double radians = Math.toRadians(degrees);

 System.out.format("The value of pi is %.4f%n", Math.PI);

 System.out.format("The arcsine of %.4f is %.4f degrees %n",

Math.sin(radians), Math.toDegrees(Math.asin(Math.sin(radians))));

 }

}

When we run the above program, we will get the following result:

The value of pi is 3.1416

The arcsine of 0.7071 is 45.0000 degrees

acos() Method

The method returns the arccosine of the specified double value.

Syntax

double acos(double d)

Parameters:

d - This method accepts a value of double data type

Return Value: This method Returns the arc cosine of the specified double value.

Example:

Following is an example of the usage of this method

class Example {

 static void main(String[] args)

 {

 double degrees = 45.0;

 double radians = Math.toRadians(degrees);

 System.out.format("The value of pi is %.4f%n", Math.PI);

 System.out.format("The arccosine of %.4f is %.4f degrees %n",

Math.cos(radians), Math.toDegrees(Math.acos(Math.sin(radians))));

Groovy Programming

80

 }

}

When we run the above program, we will get the following result:

The value of pi is 3.1416

The arccosine of 0.7071 is 45.0000 degrees

atan() Method

The method returns the arctangent of the specified double value.

Syntax

double atan(double d)

Parameters:

d - This method accepts a value of double data type

Return Value: This method Returns the arctangent of the specified double value.

Example:

Following is an example of the usage of this method

class Example {
 static void main(String[] args)
 {
 double degrees = 45.0;
 double radians = Math.toRadians(degrees);

 System.out.format("The value of pi is %.4f%n", Math.PI);
 System.out.format("The arctangent of %.4f is %.4f degrees %n",
Math.cos(radians), Math.toDegrees(Math.atan(Math.sin(radians))));

 }
}

When we run the above program, we will get the following result:

The value of pi is 3.1416

The arctangent of 0.7071 is 35.2644 degrees

atan2() Method

The method Converts rectangular coordinates (x, y) to polar coordinate (r, theta) and returns
theta.

Groovy Programming

81

Syntax

double atan2(double y, double x)

Parameters:

 X - X co-ordinate in double data type

 Y - Y co-ordinate in double data type

Return Value: This method Returns theta from polar coordinate (r, theta)

Example:

Following is an example of the usage of this method:

class Example {
 static void main(String[] args)
 {
 double x = 45.0;
 double y = 30.0;

 System.out.println(Math.atan2(x, y));
 }
}

When we run the above program, we will get the following result:

0.982793723247329

parseInt() Method

The method converts the argument value to degrees.

Syntax

double toDegrees(double d)

Parameters:

d - A double data type.

Return Value: This method returns a double value.

Example:

Following is an example of the usage of this method

class Example {

 static void main(String[] args)

 {

 double x = 45.0;

 double y = 30.0;

Groovy Programming

82

 System.out.println(Math.toDegrees(x));

 System.out.println(Math.toDegrees(y));

 }

}

When we run the above program, we will get the following result:

2578.3100780887044

1718.8733853924698

radian() Method

The method converts the argument value to radians.

Syntax

double toRadians(double d)

Parameters:

d - A double data type.

Return Value: This method returns a double value.

Example:

Following is an example of the usage of this method

class Example {
 static void main(String[] args)
 {
 double x = 45.0;
 double y = 30.0;

 System.out.println(Math.toRadians(x));
 System.out.println(Math.toRadians(y));
 }
}

When we run the above program, we will get the following result:

0.7853981633974483

0.5235987755982988

random() Method

The method is used to generate a random number between 0.0 and 1.0. The range is: 0.0 =<
Math.random < 1.0. Different ranges can be achieved by using arithmetic.

Syntax

static double random()

Groovy Programming

83

Parameters: This is a default method and accepts no parameter.

Return Value: This method returns a double

Example:

Following is an example of the usage of this method:

class Example {

 static void main(String[] args)

 {

 System.out.println(Math.random());

 System.out.println(Math.random());

 }

}

When we run the above program, we will get the following result:

0.0543333676591804

0.3223824169137166

Groovy Programming

84

A String literal is constructed in Groovy by enclosing the string text in quotations.

Groovy offers a variety of ways to denote a String literal. Strings in Groovy can be enclosed in

single quotes (’), double quotes (“), or triple quotes (“””). Further, a Groovy String enclosed by
triple quotes may span multiple lines.

Following is an example of the usage of strings in Groovy

class Example {

 static void main(String[] args)

 {

 String a='Hello Single';

 String b="Hello Double";

 String c="'Hello Triple" +

 "Multiple lines'";

 println(a);

 println(b);

 println(c);

 }

}

When we run the above program, we will get the following result:

Hello Single

Hello Double

'Hello TripleMultiple lines'

String Indexing

Strings in Groovy are an ordered sequences of characters. The individual character in a string
can be accessed by its position. This is given by an index position.

String indices start at zero and end at one less than the length of the string. Groovy also permits
negative indices to count back from the end of the string.

Following is an example of the usage of string indexing in Groovy:

class Example {

 static void main(String[] args)

 {

 String sample = "Hello world";

 println(sample[4]); // Print the 5 character in the string

13. Groovy – Strings

Groovy Programming

85

//Print the 1st character in the string starting from the back

 println(sample[-1]);

 println(sample[1..2]);//Prints a string starting from Index 1 to 2

 println(sample[4..2]);//Prints a string starting from Index 4 back to 2

 }

}

When we run the above program, we will get the following result:

o

d

el

oll

Basic String Operations

First let’s learn the basic string operations in groovy. They are given below.

Concatenation of two strings

Syntax

The concatenation of strings can be done by the simple ‘+’ operator.

String+String

Parameters: The parameters will be 2 strings as the left and right operand for the + operator.

Return Value: The return value is a string

Example:

Following is an example of the string concatenation in Groovy.

class Example
{
 static void main(String[] args)
 {
 String a="Hello";
 String b="World";
 println("Hello" + "World");
 println(a + b);
 }
}

When we run the above program, we will get the following result:

HelloWorld

Groovy Programming

86

HelloWorld

String Repetition

Syntax

The repetition of strings can be done by the simple ‘*’ operator.

String*number

Parameters:

The parameters will be

 A string as the left operand for the * operator

 A number at the right side of the operator to indicate the number of times the strings

needs to be repeated.

Return Value: The return value is a string

Example:

Following is an example of the usage of strings in Groovy:

class Example

{

 static void main(String[] args)

 {

 String a="Hello";

 println("Hello"*3);

 println(a*3);

 }

}

When we run the above program, we will get the following result:

HelloHelloHello

HelloHelloHello

Length of string

Syntax: The length of the string determined by the length() method of the string.

Parameters: No parameters

Return Value: An Integer showing the length of the string

Example:

Following is an example of the usage of strings in Groovy:

Groovy Programming

87

class Example
{
 static void main(String[] args)
 {
 String a="Hello";
 println(a.length());
 }
}

When we run the above program, we will get the following result:

5

String Methods

Here is the list of methods supported by String class.

center()

Returns a new String of length numberOfChars consisting of the recipient padded on the left and
right with space characters.

Syntax

String center(Number numberOfChars)

Parameters:

Number – Number of characters for the new string

Return Value: This method returns a string

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 String a="HelloWorld";

 println(a.center(30));

 }

}

When we run the above program, we will get the following result:

HelloWorld

Groovy Programming

88

compareToIgnoreCase()

Compares two strings lexicographically, ignoring case differences

Syntax

int compareToIgnoreCase(String str)

Parameters:

Str – String value for comparison

Return Value: This method returns a negative integer, zero, or a positive integer as the
specified String is greater than, equal to, or less than this String, ignoring case considerations.

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 String str1 = "Hello World";

 String str2 = "HELLO WORLD";

 String str3 = "HELLO World World";

 System.out.println(str1.compareToIgnoreCase(str2));

 System.out.println(str2.compareToIgnoreCase(str3));

 System.out.println(str3.compareToIgnoreCase(str1));

 }

}

When we run the above program, we will get the following result:

0

-6

6

concat()

Concatenates the specified String to the end of this String.

Syntax

Groovy Programming

89

String concat(String str)

Parameters:

str - the String that is concatenated to the end of this String.

Return Value: This methods returns a string that represents the concatenation of this object's

characters followed by the string argument's characters.

Example:

Following is an example of the usage of this method

class Example
{
 static void main(String[] args)
 {
 String s = "Hello ";
 s = s.concat("World");
 System.out.println(s);
 }
}

When we run the above program, we will get the following result:

Hello World

eachMatch()

Processes each regex group (see next section) matched substring of the given String.

Syntax

void eachMatch(String regex, Closure clos)

Parameters

 Regex – The string expression to search for

 Closure – optional closure

Return Value: No return value

Example:

Following is an example of the usage of this method

class Example
{
 static void main(String[] args)
 {
 String s = "HelloWorld";
 s.eachMatch(".")
 {
 ch -> println ch
 }

Groovy Programming

90

 }
}

When we run the above program, we will get the following result:

H

e

l

l

o

W

o

r

l

d

endsWith()

Tests whether this string ends with the specified suffix

Syntax

Boolean endsWith(String suffix)

Parameters

 Suffix – The suffix to search for

Return Value: This method returns true if the character sequence represented by the argument

is a suffix of the character sequence represented by this object; false otherwise. Note that the

result will be true if the argument is the empty string or is equal to this String object as
determined by the equals(Object) method.

Example:

Following is an example of the usage of this method

class Example
{
 static void main(String[] args)
 {
 String s = "HelloWorld";
 println(s.endsWith("ld"));
 println(s.endsWith("lo"));
 println("Hello".endsWith("lo"));
 }
}

When we run the above program, we will get the following result:

true

Groovy Programming

91

false

true

equalsIgnoreCase()

Compares this String to another String, ignoring case considerations.

Syntax

Boolean equalsIgnoreCase(String str)

Parameters

 Str - the String to compare this String against

Return Value: This method returns true if the argument is not null and the Strings are equal,
ignoring case; false otherwise.

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World";

 String b = "HELLO World";

 String c = "HELLO WORLD";

 println(a.equalsIgnoreCase(b));

 println(a.equalsIgnoreCase(c));

 println(b.equalsIgnoreCase(c));

 }

}

When we run the above program, we will get the following result:

true

true

true

getAt()

Syntax

Groovy Programming

92

String getAt(int index)

Parameters

Index – The position of the string to return

Return Value

String value at the index position

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World";

 println(a.getAt(2));

 println(a.getAt(6));

 println(a.getAt(7));

 }

}

When we run the above program, we will get the following result:

l

W

O

indexOf()

Returns the index within this String of the first occurrence of the specified substring. This method
has 4 different variants:

 public int indexOf(int ch): Returns the index within this string of the first occurrence

of the specified character or -1 if the character does not occur.

Syntax

public int indexOf(int ch)

Parameters

ch – The character to search for in the string

Return Value: Returns the index within this string of the first occurrence of the specified
character or -1 if the character does not occur

Groovy Programming

93

 public int indexOf(int ch, int fromIndex): Returns the index within this string of the

first occurrence of the specified character, starting the search at the specified index or -
1 if the character does not occur.

Syntax

public int indexOf(int ch, int fromIndex)

Parameters

 ch – The character to search for in the string

 fromIndex – where to start the search from

Return Value

Returns the index within this string of the first occurrence of the specified character, starting the
search at the specified index or -1 if the character does not occur.

 int indexOf(String str): Returns the index within this string of the first occurrence of

the specified substring. If it does not occur as a substring, -1 is returned.

Syntax

int indexOf(String str)

Parameter

Str – The string to search for

Return Value

Returns the index within this string of the first occurrence of the specified substring. If it does

not occur as a substring, -1 is returned.

 int indexOf(String str, int fromIndex): Returns the index within this string of the first

occurrence of the specified substring, starting at the specified index. If it does not occur,

-1 is returned.

Syntax

int indexOf(String str, int fromIndex)

Parameters

str – The string to search for

 fromIndex – where to start the search from

Return Value: Returns the index within this string of the first occurrence of the specified
substring, starting at the specified index. If it does not occur, -1 is returned.

Following is an example of the usage of all 4 method variants

Groovy Programming

94

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World";

 // Using public int indexOf(int ch)

 println(a.indexOf('e'));

 println(a.indexOf('o'));

 // Using public int indexOf(int ch, int fromIndex)

 println(a.indexOf('l',1));

 println(a.indexOf('e',4));

 // Using public int indexOf(string str)

 println(a.indexOf('el'));

 println(a.indexOf('or'));

 // Using public int indexOf(string str,int fromIndex)

 println(a.indexOf('el',1));

 println(a.indexOf('or',8));

 }

}

When we run the above program, we will get the following result:

1

4

2

-1

1

7

1

-1

matches()

It outputs whether a String matches the given regular expression.

Syntax

Boolean matches(String regex)

Parameters

Regex - the expression for comparison

Groovy Programming

95

Return Value: This method returns true if, and only if, this string matches the given regular

expression.

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World";

 println(a.matches("Hello"));

 println(a.matches("Hello(.*)"));

 }

}

When we run the above program, we will get the following result:

false

true

minus()

Removes the value part of the String.

Syntax

String minus(Object value)

Parameters

Value – the string object which needs to be removed

Return Value: The new string minus the value of the object value

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World";

 println(a.minus("World"));

 println(a.minus("Hello"));

Groovy Programming

96

 }

}

When we run the above program, we will get the following result:

Hello

 World

next()

This method is called by the ++ operator for the class String. It increments the last character in
the given String.

Syntax

String next()

Parameters: None

Return Value: The new value of the string

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World";

 println(a.next());

 }

}

When we run the above program, we will get the following result:

Hello Worle

padLeft()

Pad the String with the spaces appended to the left.This method has 2 different variants

 String padLeft(Number numberOfCharacters): Pad the String with the spaces

appended to the left.

Syntax

String padLeft(Number numberOfCharacters)

Groovy Programming

97

Parameters

numberOfCharacters – The number of characters to pad the string with.

Return Value: The new value of the string with the padded characters

 String padLeft(Number numberOfCharacters, String padding): Pad the String

with the padding characters appended to the left.

Syntax

String padLeft(Number numberOfCharacters, String padding)

Parameters

 numberOfCharacters – The number of characters to pad the string with.

 Padding – The character to apply for the padding.

Return Value: The new value of the string with the padded characters.

Example:

Following is an example of the usage of both method variants:

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World";

 println(a.padLeft(14));

 println(a.padLeft(16));

 println(a.padLeft(16,'*'));

 println(a.padLeft(14,'*'));

 }

}

When we run the above program, we will get the following result:

 Hello World

 Hello World

*****Hello World

***Hello World

padRight()

Pad the String with the spaces appended to the right. This method has 2 different variants

 String padRight(Number numberOfCharacters): Pad the String with the spaces

appended to the right.

Groovy Programming

98

Syntax

String padRight(Number numberOfCharacters)

Parameters

numberOfCharacters – The number of characters to pad the string with.

Return Value: The new value of the string with the padded characters

 String padRight(Number numberOfCharacters, String padding): Pad the String

with the padding characters appended to the right.

Syntax

String padRight(Number numberOfCharacters, String padding)

Parameters

 numberOfCharacters – The number of characters to pad the string with.

 Padding – The character to apply for the padding.

Return Value: The new value of the string with the padded characters

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World";

 println(a.padRight(14));

 println(a.padRight(16));

 println(a.padRight(16,'*'));

 println(a.padRight(14,'*'));

 }

}

When we run the above program, we will get the following result:

Hello World

Hello World

Hello World*****

Hello World***

Groovy Programming

99

plus()

Appends a String.

Syntax

String plus(Object value)

Parameters

Value – The object to append to the string

Return Value: This method returns the resulting String.

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 String a= "Hello";

 println(a.plus("World"));

 println(a.plus("World Again"));

 }

}

When we run the above program, we will get the following result:

HelloWorld

HelloWorld Again

previous()

Syntax

String previous()

Parameters: None

Return Value: This method returns the resulting String.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

Groovy Programming

100

 String a= "Hello";

 println(a.previous());

 }

}

When we run the above program, we will get the following result:

Helln

replaceAll()

Replaces all occurrences of a captured group by the result of a closure on that text.

Syntax

void replaceAll(String regex, String replacement)

Parameters

 regex -- the regular expression to which this string is to be matched.

 replacement -- the string which would replace found expression.

Return Value: This method returns the resulting String.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 String a= "Hello World Hello";

 println(a.replaceAll("Hello","Bye"));

 println(a.replaceAll("World","Hello"));

 }

}

When we run the above program, we will get the following result:

Bye World Bye

Hello Hello Hello

Groovy Programming

101

center()

Creates a new String which is the reverse of this String.

Syntax

String reverse()

Parameters: None

Return Value: This method returns the resulting String.

Following is an example of the usage of this method

class Example
{
 static void main(String[] args)
 {
 String a = "Hello World";
 println(a.reverse());
 }
}

When we run the above program, we will get the following result:

dlroW olleH

split()

Splits this String around matches of the given regular expression.

Syntax

String[] split(String regex)

Parameters

regex - the delimiting regular expression.

Return Value: It returns the array of strings computed by splitting this string around matches
of the given regular expression.

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 String a = "Hello-World";
 String[] str;
 str=a.split('-');
 for(String values : str)
 println(values);
 }
}

Groovy Programming

102

When we run the above program, we will get the following result:

Hello

World

subString()

Returns a new String that is a substring of this String. This method has 2 different variants

 String substring(int beginIndex): Pad the String with the spaces appended to the

right.

Syntax

String substring(int beginIndex)

Parameters

 beginIndex - the begin index, inclusive.

Return Value: The specified substring.

 String substring(int beginIndex, int endIndex): Pad the String with the padding

characters appended to the right.

Syntax

String substring(int beginIndex, int endIndex)

Parameters

 beginIndex - the begin index, inclusive.

 endIndex - the end index, exclusive.

Return Value: The specified substring.

Example:

Following is an example of the usage of both variants:

class Example

{

 static void main(String[] args)

 {

 String a = "HelloWorld";

 println(a.substring(4));

 println(a.substring(4,8));

Groovy Programming

103

 }

}

When we run the above program, we will get the following result:

oWorld

oWor

toUpperCase()

Converts all of the characters in this String to upper case.

Syntax

String toUpperCase()

Parameters: None

Return Value: The modified string in upper case

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 String a = "HelloWorld";

 println(a.toUpperCase());

 }

}

When we run the above program, we will get the following result:

HELLOWORLD

toLowerCase ()

Converts all of the characters in this String to lower case.

Syntax

String toLowerCase()

Parameters: None

Return Value: The modified string in lower case

Groovy Programming

104

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 String a = "HelloWorld";

 println(a.toLowerCase());

 }

}

When we run the above program, we will get the following result:

Helloworld

Groovy Programming

105

A range is shorthand for specifying a sequence of values. A Range is denoted by the first and

last values in the sequence, and Range can be inclusive or exclusive. An inclusive Range includes

all the values from the first to the last, while an exclusive Range includes all values except the
last. Here are some examples of Range literals:

 1..10 - An example of an inclusive Range

 1..<10 - An example of an exclusive Range

 ‘a’..’x’ – Ranges can also consist of characters

 10..1 – Ranges can also be in descending order

 ‘x’..’a’ – Ranges can also consist of characters and be in descending order.

Following are the various methods available for ranges

contains()

Checks if a range contains a specific value

Syntax

boolean contains(Object obj)

Parameters

Obj – The value to check in the range list

Return Value: Returns true if this Range contains the specified element.

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 // Example of an Integer using def

 def rint=1..10;

 println(rint.contains(2));

 println(rint.contains(11));

 }

}

14. Groovy – Ranges

Groovy Programming

106

When we run the above program, we will get the following result:

true

false

get()

Returns the element at the specified position in this Range.

Syntax

Object get(int index)

Parameters

Index – The index value to get from the range

Return Value: The range value at the particular index

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 // Example of an Integer using def

 def rint=1..10;

 println(rint.get(2));

 println(rint.get(4));

 }

}

When we run the above program, we will get the following result:

3

5

Groovy Programming

107

getFrom()

Get the lower value of this Range.

Syntax

Comparable getFrom()

Parameters: None

Return Value: The lower value of the range.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 // Example of an Integer using def

 def rint=1..10;

 println(rint.getFrom());

 }

}

When we run the above program, we will get the following result:

1

getTo()

Get the upper value of this Range.

Syntax

Comparable getTo()

Parameters: None

Return Value: The upper value of the range.

Groovy Programming

108

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 // Example of an Integer using def

 def rint=1..10;

 println(rint.getTo());

 }

}

When we run the above program, we will get the following result:

10

isReverse()

Is this a reversed Range, iterating backwards?

Syntax

boolean isReverse()

Parameters: None

Return Value: Boolean value of true or false on whether the range is reversed.

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 // Example of an Integer using def

 def rint=1..10;

 println(rint.isReverse());

 }

}

Groovy Programming

109

When we run the above program, we will get the following result:

false

size()

Returns the number of elements in this Range.

Syntax

int size()

Parameters: None

Return Value: Returns the size of the range.

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 // Example of an Integer using def

 def rint=1..10;

 println(rint.size());

 }

}

When we run the above program, we will get the following result:

10

subList()

Returns a view of the portion of this Range between the specified fromIndex, inclusive, and
toIndex, exclusive

Syntax

List subList(int fromIndex, int toIndex)

Parameters

 fromIndex – Starting index of the range

 toIndex – End Index of the range

Groovy Programming

110

Return Value

The list of range values from specified starting to ending index.

Following is an example of the usage of this method.

class Example

{

 static void main(String[] args)

 {

 def rint=1..10;

 println(rint.subList(1,4));

 println(rint.subList(4,8));

 }

}

When we run the above program, we will get the following result:

[2, 3, 4]

[5, 6, 7, 8]

Groovy Programming

111

The List is a structure used to store a collection of data items. In Groovy, the List holds a

sequence of object references. Object references in a List occupy a position in the sequence and

are distinguished by an integer index. A List literal is presented as a series of objects separated
by commas and enclosed in square brackets.

To process the data in a list, we must be able to access individual elements. Groovy Lists are
indexed using the indexing operator []. List indices start at zero, which refers to the first element.

Following are some example of lists

 [11, 12, 13, 14] – A list of integer values

 [‘Angular’, ‘Groovy’, ‘Java’] – A list of Strings

 [1, 2, [3, 4], 5] – A nested list

 [‘Groovy’, 21, 2.11] – A heterogeneous list of object references

 [] – An empty list

In this chapter, we will discuss the list methods available in Groovy.

add()

Append the new value to the end of this List. This method has 2 different variants

 boolean add(Object value): Append the new value to the end of this List

Syntax

boolean add(Object value)

Parameters

 value – Value to be appended to the list.

Return Value: A Boolean value on whether the value was added

 void add(int index, Object value) : Append the new value to a particular position in

the List

Syntax

void add(int index, Object value)

Parameters

 value – Value to be appended to the list.

 index- the index where the value needs to be added.

15. Groovy – Lists

Groovy Programming

112

Return Value: None

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 def lst=[11, 12, 13, 14];
 println(lst);
 lst.add(15);
 println(lst);
 lst.add(2,20);
 println(lst);
 }
}

When we run the above program, we will get the following result:

[11, 12, 13, 14]

[11, 12, 13, 14, 15]

[11, 12, 20, 13, 14, 15]

contains()

Returns true if this List contains the specified value.

Syntax

boolean contains(Object value)

Parameters

Value – The value to find in the list

Return Value: True or false depending on if the value is present in the list.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def lst = [11, 12, 13, 14];

 println(lst.contains(12));

 println(lst.contains(18));

Groovy Programming

113

 }

}

When we run the above program, we will get the following result:

true

false

get()

Returns the element at the specified position in this List.

Syntax

Object get(int index)

Parameters

Index – The index at which the value needs to be returned.

Return Value: The value at the index position in the list

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 def lst = [11, 12, 13, 14];
 println(lst.get(0));
 println(lst.get(2));
 }
}

When we run the above program, we will get the following result:

11

13

isEmpty()

Returns true if this List contains no elements

Syntax

boolean isEmpty()

Parameters: None

Return Value: True or false depending on whether the list is empty or not.

Groovy Programming

114

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def lst = [11, 12, 13, 14];

 def emptylst=[];

 println(lst.isEmpty());

 println(emptylst.isEmpty());

 }

}

When we run the above program, we will get the following result:

false

true

minus()

Creates a new List composed of the elements of the original without those specified in the

collection.

Syntax

List minus(Collection collection)

Parameters

Collection – The collection of values to minus from the list

Return Value: New list of values

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def lst = [11, 12, 13, 14];

 def newlst=[];

Groovy Programming

115

 newlst=lst.minus([12,13]);

 println(newlst);

 }

}

When we run the above program, we will get the following result:

[11, 14]

plus()

Creates a new List composed of the elements of the original together with those specified in the
collection.

Syntax

List plus(Collection collection)

Parameters

Collection – The collection of values to add to the list

Return Value: New list of values

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def lst = [11, 12, 13, 14];

 def newlst=[];

 newlst=lst.plus([15,16]);

 println(newlst);

 }

}

When we run the above program, we will get the following result:

[11, 12, 13, 14, 15, 16]

Groovy Programming

116

pop()

Removes the last item from this List

Syntax

Object pop()

Parameters: None

Return Value: The popped value from the list

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def lst = [11, 12, 13, 14];

 println(lst.pop());

 println(lst);

 }

}

When we run the above program, we will get the following result:

14

[11, 12, 13]

remove()

Removes the element at the specified position in this List.

Syntax

Object remove(int index)

Parameters

Index – Index at which the value needs to be removed

Return Value: The removed value

Example:

Following is an example of the usage of this method:

class Example
{

Groovy Programming

117

 static void main(String[] args)
 {
 def lst = [11, 12, 13, 14];
 println(lst.remove(2));
 println(lst);
 }
}

When we run the above program, we will get the following result:

13

[11, 12, 14]

reverse()

Create a new List that is the reverse the elements of the original List

Syntax

List reverse()

Parameters: None

Return Value: The reversed list

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def lst = [11, 12, 13, 14];

 def revlst=lst.reverse();

 println(revlst);

 }

}

When we run the above program, we will get the following result:

[14, 13, 12, 11]

Groovy Programming

118

size()

Obtains the number of elements in this List.

Syntax

int size()

Parameters: None

Return Value: The size of the list

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 def lst = [11, 12, 13, 14];
 println(lst.size);
 }
}

When we run the above program, we will get the following result:

4

sort()

Returns a sorted copy of the original List.

Syntax

List sort()

Parameters: None

Return Value: The sorted list.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def lst = [13, 12, 15, 14];

 def newlst=lst.sort();

 println(newlst);

Groovy Programming

119

 }

}

When we run the above program, we will get the following result:

[12, 13, 14, 15]

Groovy Programming

120

A Map (also known as an associative array, dictionary, table, and hash) is an unordered collection

of object references. The elements in a Map collection are accessed by a key value. The keys

used in a Map can be of any class. When we insert into a Map collection, two values are required:
the key and the value.

Following are some examples of maps

 [‘TopicName’ : ‘Lists’, ‘TopicName’ : ‘Maps’] – Collections of key value pairs which has

TopicName as the key and their respective values.

 [:] – An Empty map

In this chapter, we will discuss the map methods available in Groovy.

containsKey()

Does this Map contain this key?

Syntax

boolean containsKey(Object key)

Parameters

Key – The key used to search for

Return Value: True or false depending on whether the key value is there or not.

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 def mp = ["TopicName" : "Maps", "TopicDescription" : "Methods in Maps"]

 println(mp.containsKey("TopicName"));

 println(mp.containsKey("Topic"));

 }

}

16. Groovy – Maps

Groovy Programming

121

When we run the above program, we will get the following result:

true

false

get()

Look up the key in this Map and return the corresponding value. If there is no entry in this Map

for the key, then return null.

Syntax

Object get(Object key)

Parameters

Key – Key to search for retrieval

Return Value: The key-value pair or NULL if it does not exist.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def mp = ["TopicName" : "Maps", "TopicDescription" : "Methods in Maps"]

 println(mp.get("TopicName"));

 println(mp.get("Topic"));

 }

}

When we run the above program, we will get the following result:

Maps

Null

keySet()

Obtain a Set of the keys in this Map.

Syntax

Set keySet()

Parameters: None

Groovy Programming

122

Return Value: Set of Keys

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def mp = ["TopicName" : "Maps", "TopicDescription" : "Methods in Maps"]

 println(mp.keySet());

 }

}

When we run the above program, we will get the following result:

[TopicName, TopicDescription]

put()

Associates the specified value with the specified key in this Map. If this Map previously contained

a mapping for this key, the old value is replaced by the specified value.

Syntax

Object put(Object key, Object value)

Parameters

 Key – The key to be put in the map

 Value – The associated value for the key

Return Value: The returned key-value pair which is inserted.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def mp = ["TopicName" : "Maps", "TopicDescription" : "Methods in Maps"]

 mp.put("TopicID","1");

Groovy Programming

123

 println(mp);

 }

}

When we run the above program, we will get the following result:

[TopicName:Maps, TopicDescription:Methods in Maps, TopicID:1]

size()

Returns the number of key-value mappings in this Map.

Syntax

int size()

Parameters: None

Return Value: The size of the map

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 def mp = ["TopicName" : "Maps", "TopicDescription" : "Methods in Maps"]

 println(mp.size());

 mp.put("TopicID","1");

 println(mp.size());

 }

}

When we run the above program, we will get the following result:

2

3

Groovy Programming

124

values()

Returns a collection view of the values contained in this Map.

Syntax

Collection values()

Parameters: None

Return Value: Collection of values

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 def mp = ["TopicName" : "Maps", "TopicDescription" : "Methods in Maps"]
 println(mp.values());
 }
}

When we run the above program, we will get the following result:

[Maps, Methods in Maps]

Groovy Programming

125

The class Date represents a specific instant in time, with millisecond precision. The Date class

has two constructors as shown below.

Date()

Syntax

public Date()

Parameters: None

Return Value

Allocates a Date object and initializes it so that it represents the time at which it was allocated,
measured to the nearest millisecond

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 Date date = new Date();

 // display time and date using toString()

 System.out.println(date.toString());

 }

}

When we run the above program, we will get the following result. The following output will give
you the current date and time

Thu Dec 10 21:31:15 GST 2015

Date (long millisec)

Syntax

public Date(long millisec)

17. Groovy – Dates and Times

Groovy Programming

126

Parameters

Millisec – The number of millisecconds to specify since the standard base time

Return Value: Allocates a Date object and initializes it to represent the specified number of

milliseconds since the standard base time known as "the epoch", namely January 1, 1970,
00:00:00 GMT.

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 Date date = new Date(100);
 // display time and date using toString()
 System.out.println(date.toString());
 }
}

When we run the above program, we will get the following result:

Thu Jan 01 04:00:00 GST 1970

Following are the given methods of the Date class.In all methods of class Date that accept or

return year, month, date, hours, minutes, and seconds values, the following representations are
used:

 A year y is represented by the integer y - 1900.

 A month is represented by an integer from 0 to 11; 0 is January, 1 is February, and so

forth; thus 11 is December.

 A date (day of month) is represented by an integer from 1 to 31 in the usual manner.

 An hour is represented by an integer from 0 to 23. Thus, the hour from midnight to 1

a.m. is hour 0, and the hour from noon to 1 p.m. is hour 12.

 A minute is represented by an integer from 0 to 59 in the usual manner.
 A second is represented by an integer from 0 to 61

after()

Tests if this date is after the specified date.

Syntax

public boolean after(Date when)

Parameters

When – The date to compare against.

https://docs.oracle.com/javase/7/docs/api/java/util/Date.html

Groovy Programming

127

Return Value: True if and only if the instant represented by this Date object is strictly later

than the instant represented by when; false otherwise.

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 Date olddate = new Date("05/11/2015");
 Date newdate = new Date("05/12/2015");
 Date latestdate = new Date();
 System.out.println(olddate.after(newdate));
 System.out.println(latestdate.after(newdate));
 }
}

When we run the above program, we will get the following result:

false

true

equals()

Compares two dates for equality. The result is true if and only if the argument is not null and is
a Date object that represents the same point in time, to the millisecond, as this object.

Thus, two Date objects are equal if and only if the getTime method returns the same long value
for both.

Syntax

public boolean equals(Object obj)

Parameters

obj - the object to compare with.

Return Value: True if the objects are the same; false otherwise.

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 Date olddate = new Date("05/11/2015");
 Date newdate = new Date("05/11/2015");
 Date latestdate = new Date();

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Groovy Programming

128

 System.out.println(olddate.equals(newdate));
 System.out.println(latestdate.equals(newdate));
 }
}

When we run the above program, we will get the following result:

true

false

compareTo()

Compares two Dates for ordering.

Syntax

public int compareTo(Date anotherDate)

Parameters

anotherDate – the Date to be compared.

Return Value: The value 0 if the argument Date is equal to this Date; a value less than 0 if
this Date is before the Date argument; and a value greater than 0 if this Date is after the Date

argument.

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 Date olddate = new Date("05/11/2015");

 Date newdate = new Date("05/11/2015");

 Date latestdate = new Date();

 System.out.println(olddate.compareTo(newdate));

 System.out.println(latestdate.compareTo(newdate));

 }

}

When we run the above program, we will get the following result:

0

1

https://docs.oracle.com/javase/7/docs/api/java/util/Date.html

Groovy Programming

129

toString()

Converts this Date object to a String of the form:

dow mon dd hh:mm:ss zzz yyyy

Syntax

public String toString()

Parameters: None

Return Value: A string representation of this date.

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 Date olddate = new Date("05/11/2015");

 Date newdate = new Date("05/11/2015");

 Date latestdate = new Date();

 System.out.println(olddate.toString());

 System.out.println(newdate.toString());

 System.out.println(latestdate.toString());

 }

}

When we run the above program, we will get the following result:

Mon May 11 00:00:00 GST 2015

Mon May 11 00:00:00 GST 2015

Thu Dec 10 21:46:18 GST 2015

before()

Tests if this date is before the specified date.

Syntax

public boolean before(Date when)

Parameters

when - a date.

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/Date.html

Groovy Programming

130

Return Value: True if and only if the instant of time represented by this Date object is strictly

earlier than the instant represented by when; false otherwise.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 Date olddate = new Date("05/11/2015");

 Date newdate = new Date("05/11/2015");

 Date latestdate = new Date();

 System.out.println(olddate.before(newdate));

 System.out.println(olddate.before(latestdate));

 }

}

When we run the above program, we will get the following result:

false

true

getTime()

Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by

this Date object.

Syntax

public long getTime()

Parameters: None

Return Value: The number of milliseconds since January 1, 1970, 00:00:00 GMT represented
by this date.

Example:

Following is an example of the usage of this method:

class Example

{

 static void main(String[] args)

 {

 Date olddate = new Date("05/11/2015");

Groovy Programming

131

 Date newdate = new Date("05/11/2015");

 Date latestdate = new Date();

 System.out.println(olddate.getTime());

 System.out.println(newdate.getTime());

 System.out.println(latestdate.getTime());

 }

}

When we run the above program, we will get the following result:

1431288000000

1431288000000

1449769878348

setTime()

Sets this Date object to represent a point in time that is time milliseconds after January 1, 1970
00:00:00 GMT.

Syntax

public void setTime(long time)

Parameters

time - the number of milliseconds.

Return Value: None

Example:

Following is an example of the usage of this method

class Example

{

 static void main(String[] args)

 {

 Date olddate = new Date("05/11/2015");

 Date newdate = new Date("05/12/2015");

 Date latestdate = new Date();

 olddate.setTime(10000);

 newdate.setTime(10000);

 latestdate.setTime(10000);

 System.out.println(olddate.toString());

 System.out.println(newdate.toString());

Groovy Programming

132

 System.out.println(latestdate.toString());

 }

}

When we run the above program, we will get the following result:

Thu Jan 01 04:00:10 GST 1970

Thu Jan 01 04:00:10 GST 1970

Thu Jan 01 04:00:10 GST 1970

Groovy Programming

133

A regular expression is a pattern that is used to find substrings in text. Groovy supports regular

expressions natively using the ~”regex” expression. The text enclosed within the quotations

represent the expression for comparison.

For example we can create a regular expression object as shown below

def regex = ~'Groovy'

When the Groovy operator =~ appears as a predicate (expression returning a Boolean) in if and

while statements (see Chapter 8), the String operand on the left is matched against the regular
expression operand on the right. Hence, each of the following delivers the value true:

When defining regular expression, the following special characters can be used:

 There are two special positional characters that are used to denote the beginning and

end of a line: caret (∧) and dollar sign ($):

 Regular expressions can also include quantifiers. The plus sign (+) represents one or

more times, applied to the preceding element of the expression. The asterisk (*) is used

to represent zero or more occurrences. The question mark (?) denotes zero or once.

 The metacharacter { and } is used to match a specific number of instances of the

preceding character.

 In a regular expression, the period symbol (.) can represent any character. This is

described as the wildcard character

 A regular expression may include character classes. A set of characters can be given as

a simple sequence of characters enclosed in the metacharacters [and] as in [aeiou]. For

letter or number ranges, you can use a dash separator as in [a–z] or [a–mA–M]. The

complement of a character class is denoted by a leading caret within the square rackets

as in [∧a–z] and represents all characters other than those specified. Some examples of

Regular expressions are given below

'Groovy' =~ 'Groovy'

'Groovy' =~ 'oo'

'Groovy' ==~ 'Groovy'

'Groovy' ==~ 'oo'

'Groovy' =~ '∧G'

‘Groovy' =~ 'G$'

‘Groovy' =~ 'Gro*vy'

'Groovy' =~ 'Gro{2}vy'

18. Groovy – Regular Expressions

Groovy Programming

134

Exception handling is required in any programming language to handle the runtime errors so
that normal flow of the application can be maintained.

Exception normally disrupts the normal flow of the application, which is the reason why we need
to use Exception handling in our application.

Exceptions are broadly classified into the following categories:

1. Checked Exception - The classes that extend Throwable class except RuntimeException

and Error are known as checked exceptions e.g.IOException, SQLException etc. Checked
exceptions are checked at compile-time.

One classical case is the FileNotFoundException. Suppose you had the following codein your

application which reads from a file in E drive.

class Example
{
 static void main(String[] args)
 {
 File file=new File("E://file.txt");
 FileReader fr = new FileReader(file);
 }
}

if the File (file.txt) is not there in the E drive then the following exception will be raised.

Caught: java.io.FileNotFoundException: E:\file.txt (The system cannot find the file specified)

java.io.FileNotFoundException: E:\file.txt (The system cannot find the file specified)

2. Unchecked Exception - The classes that extend RuntimeException are known as

unchecked exceptions, e.g., ArithmeticException, NullPointerException,

ArrayIndexOutOfBoundsException etc. Unchecked exceptions are not checked at
compile-time rather they are checked at runtime.

One classical case is the ArrayIndexOutOfBoundsException which happens when you try to

access an index of an array which is greater than the length of the array. Following is a typical
example of this sort of mistake.

class Example
{
 static void main(String[] args)
 {
 def arr = new int[3];
 arr[5]=5;
 }
}

19. Groovy – Exception Handling

Groovy Programming

135

When the above code is executed the following exception will be raised.

Caught: java.lang.ArrayIndexOutOfBoundsException: 5

java.lang.ArrayIndexOutOfBoundsException: 5

3. Error - Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError,
AssertionError etc.

These are errors which the program can never recover from and will cause the program to crash.

The following diagram shows how the hierarchy of exceptions in Groovy is organized. It’s all

based on the hierarchy defined in Java.

Catching Exceptions

A method catches an exception using a combination of the try and catch keywords. A try/catch

block is placed around the code that might generate an exception

try

{

 //Protected code

}

catch(ExceptionName e1)

{

Groovy Programming

136

 //Catch block

}

All of your code which could raise an exception is placed in the Protected code block.

In the catch block, you can write custom code to handle your exception so that the application
can recover from the exception.

Let’s look at an example of the similar code we saw above for accessing an array with an index

value which is greater than the size of the array. But this time let’s wrap our code in a try/catch
block.

class Example
{
 static void main(String[] args)
 {
 try
 {
 def arr = new int[3];
 arr[5] = 5;
 }
 catch(Exception ex)
 {
 println("Catching the exception");
 }
 println("Let's move on after the exception");
 }
}

When we run the above program, we will get the following result:

Catching the exception

Let's move on after the exception

From the above code, we wrap out faulty code in the try block. In the catch block we are just
catching our exception and outputting a message that an exception has occurred.

Multiple Catch Blocks

One can have multiple catch blocks to handle multiple types of exceptions. For each catch block,

depending on the type of exception raised you would write code to handle it accordingly.

Let’s modify our above code to catch the ArrayIndexOutOfBoundsException specifically.
Following is the code snippet.

class Example
{
 static void main(String[] args)
 {
 try
 {
 def arr = new int[3];
 arr[5] = 5;

Groovy Programming

137

 }
 catch(ArrayIndexOutOfBoundsException ex)
 {
 println("Catching the Array out of Bounds exception");
 }
 catch(Exception ex)
 {
 println("Catching the exception");
 }
 println("Let's move on after the exception");
 }
}

When we run the above program, we will get the following result:

Catching the Aray out of Bounds exception

Let's move on after the exception

From the above code you can see that the ArrayIndexOutOfBoundsException catch block is
caught first because it means the criteria of the exception.

Finally Block

The finally block follows a try block or a catch block. A finally block of code always executes,
irrespective of occurrence of an Exception.

Using a finally block allows you to run any cleanup-type statements that you want to execute,

no matter what happens in the protected code. The syntax for this block is given below

try

{

 //Protected code

}

catch(ExceptionType1 e1)

{

 //Catch block

}

catch(ExceptionType2 e2)

{

 //Catch block

}

catch(ExceptionType3 e3)

{

 //Catch block

}

finally

{

Groovy Programming

138

 //The finally block always executes.

}

Let’s modify our above code and add the finally block of code. Following is the code snippet.

class Example
{
 static void main(String[] args)
 {
 try
 {
 def arr = new int[3];
 arr[5] = 5;
 }
 catch(ArrayIndexOutOfBoundsException ex)
 {
 println("Catching the Array out of Bounds exception");
 }
 catch(Exception ex)
 {
 println("Catching the exception");
 }
 finally
 {
 println("The final block");
 }
 println("Let's move on after the exception");
 }
}

When we run the above program, we will get the following result:

Catching the Array out of Bounds exception

The final block

Let's move on after the exception

Following are the Exception methods available in Groovy:

public String getMessage()

Returns a detailed message about the exception that has occurred. This message is initialized in
the Throwable constructor.

public Throwable getCause()

Returns the cause of the exception as represented by a Throwable object.

public String toString()

Returns the name of the class concatenated with the result of getMessage()

public void printStackTrace()

Groovy Programming

139

Prints the result of toString() along with the stack trace to System.err, the error output stream.

public StackTraceElement [] getStackTrace()

Returns an array containing each element on the stack trace. The element at index 0 represents

the top of the call stack, and the last element in the array represents the method at the bottom
of the call stack.

public Throwable fillInStackTrace()

Fills the stack trace of this Throwable object with the current stack trace, adding to any previous

information in the stack trace.

Example:

Following is the code example using some of the methods given above:

class Example
{
 static void main(String[] args)
 {
 try
 {
 def arr = new int[3];
 arr[5] = 5;
 }
 catch(ArrayIndexOutOfBoundsException ex)
 {
 println(ex.toString());
 println(ex.getMessage());
 println(ex.getStackTrace());

 }
 catch(Exception ex)
 {
 println("Catching the exception");
 }
 finally
 {
 println("The final block");
 }
 println("Let's move on after the exception");
 }
}

When we run the above program, we will get the following result:

java.lang.ArrayIndexOutOfBoundsException: 5

5

[org.codehaus.groovy.runtime.dgmimpl.arrays.IntegerArrayPutAtMetaMethod$MyPojoMetaMet
hodSite.call(IntegerArrayPutAtMetaMethod.java:75),
org.codehaus.groovy.runtime.callsite.CallSiteArray.defaultCall(CallSiteArray.java:48)
,
org.codehaus.groovy.runtime.callsite.AbstractCallSite.call(AbstractCallSite.java:113)
,

Groovy Programming

140

org.codehaus.groovy.runtime.callsite.AbstractCallSite.call(AbstractCallSite.java:133)
, Example.main(Sample:8), sun.reflect.NativeMethodAccessorImpl.invoke0(Native
Method),
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57),
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
, java.lang.reflect.Method.invoke(Method.java:606),
org.codehaus.groovy.reflection.CachedMethod.invoke(CachedMethod.java:93),
groovy.lang.MetaMethod.doMethodInvoke(MetaMethod.java:325),
groovy.lang.MetaClassImpl.invokeStaticMethod(MetaClassImpl.java:1443),
org.codehaus.groovy.runtime.InvokerHelper.invokeMethod(InvokerHelper.java:893),
groovy.lang.GroovyShell.runScriptOrMainOrTestOrRunnable(GroovyShell.java:287),
groovy.lang.GroovyShell.run(GroovyShell.java:524),
groovy.lang.GroovyShell.run(GroovyShell.java:513),
groovy.ui.GroovyMain.processOnce(GroovyMain.java:652),
groovy.ui.GroovyMain.run(GroovyMain.java:384),
groovy.ui.GroovyMain.process(GroovyMain.java:370),
groovy.ui.GroovyMain.processArgs(GroovyMain.java:129),
groovy.ui.GroovyMain.main(GroovyMain.java:109),
sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method),
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57),
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
, java.lang.reflect.Method.invoke(Method.java:606),
org.codehaus.groovy.tools.GroovyStarter.rootLoader(GroovyStarter.java:109),
org.codehaus.groovy.tools.GroovyStarter.main(GroovyStarter.java:131),
sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method),
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57),
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
, java.lang.reflect.Method.invoke(Method.java:606),
com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)]

The final block

Let's move on after the exception

Groovy Programming

141

In Groovy, as in any other Object-Oriented language, there is the concept of classes and objects

to represent the objected oriented nature of the programming language. A Groovy class is a

collection of data and the methods that operate on that data. Together, the data and methods
of a class are used to represent some real world object from the problem domain

A class in Groovy declares the state (data) and the behavior of objects defined by that class.
Hence, a Groovy class describes both the instance fields and methods for that class.

Following is an example of a class in Groovy. The name of the class is Student which has two

fields – StudentID and StudentName. In the main function, we are creating an object of this

class and assigning values to the StudentID and StudentName of the object.

class Student
{
 int StudentID;
 String StudentName;
 static void main(String[] args)
 {
 Student st=new Student();
 st.StudentID=1;
 st.StudentName="Joe"
 }
}

getter and setter Methods

In any programming language, it always a practice to hide the instance members with the private

keyword and instead provide getter and setter methods to set and get the values of the instance

variables accordingly. The following example shows how this can be done.

class Student
{
 private int StudentID;
 private String StudentName;
 void setStudentID(int pID)
 {
 StudentID=pID;
 }
 void setStudentName(String pName)
 {
 StudentName=pName;
 }
 int getStudentID()
 {
 return this.StudentID;
 }
 String getStudentName()
 {
 return this.StudentName;
 }
 static void main(String[] args)

20. Groovy – Object Oriented

Groovy Programming

142

 {
 Student st=new Student();
 st.setStudentID(1);
 st.setStudentName("Joe");
 println(st.getStudentID());
 println(st.getStudentName());
 }
}

When we run the above program, we will get the following result:

1

Joe

Note the following key points about the above program:

 In the class both the studentID and studentName are marked as private which means

that they cannot be accessed from outside of the class.

 Each instance member has its own getter and setter method. The getter method returns

the value of the instance variable, for example the method int getStudentID() and the

setter method sets the value of the instance ID, for example the method - void

setStudentName(String pName)

Instance Methods

It’s normally a natural to include more methods inside of the class which actually does some sort

of functionality for the class. In our student example, let’s add instance members of Marks1,

Marks2 and Marks3 to denote the marks of the student in 3 subjects. We will then add a new

instance method which will calculate the total marks of the student. Following is how the code
would look like.

In the following example, the method Total is an additional Instance method which has some

logic built into it.

class Student
{
 int StudentID;
 String StudentName;
 int Marks1;
 int Marks2;
 int Marks3;
 int Total()
 {
 return Marks1+Marks2+Marks3;
 }
 static void main(String[] args)
 {
 Student st=new Student();
 st.StudentID=1;
 st.StudentName="Joe";
 st.Marks1=10;
 st.Marks2=20;
 st.Marks3=30;
 println(st.Total());

Groovy Programming

143

 }
}

When we run the above program, we will get the following result:

60

Creating Multiple Objects

One can also create multiple objects of a class. Following is the example of how this can be

achieved. In here we are creating 3 objects (st, st1 and st2) and calling their instance members
and instance methods accordingly.

class Student
{
 int StudentID;
 String StudentName;
 int Marks1;
 int Marks2;
 int Marks3;
 int Total()
 {
 return Marks1+Marks2+Marks3;
 }
 static void main(String[] args)
 {
 Student st=new Student();
 st.StudentID=1;
 st.StudentName="Joe";
 st.Marks1=10;
 st.Marks2=20;
 st.Marks3=30;
 println(st.Total());

 Student st1=new Student();
 st.StudentID=1;
 st.StudentName="Joe";
 st.Marks1=10;
 st.Marks2=20;
 st.Marks3=40;
 println(st.Total());

 Student st3=new Student();
 st.StudentID=1;
 st.StudentName="Joe";
 st.Marks1=10;
 st.Marks2=20;
 st.Marks3=50;
 println(st.Total());
 }
}

Groovy Programming

144

When we run the above program, we will get the following result:

60

70

80

Inheritance

Inheritance can be defined as the process where one class acquires the properties (methods and

fields) of another. With the use of inheritance the information is made manageable in a

hierarchical order.

The class which inherits the properties of other is known as subclass (derived class, child class)
and the class whose properties are inherited is known as superclass (base class, parent class).

Extends

extends is the keyword used to inherit the properties of a class. Given below is the syntax of

extends keyword. In the following example we are doing the following things

 Creating a class called Person. This class has one instance member called name.

 Creating a class called Student which extends from the Person class. Note that the name

instance member which is defined in the Person class gets inherited in the Student class.

 In the Student class constructor, we are calling the base class constructor.

 In our Student class, we are adding 2 additional instance members of StudentID and

Marks1.

class Example
{
 static void main(String[] args)
 {
 Student st = new Student();
 st.StudentID = 1;
 st.Marks1 = 10;
 st.name="Joe";
 println(st.name);
 }
 }
class Person
 {
 public String name;
 public Person()
 {
 }

 }
class Student extends Person
{
 int StudentID
 int Marks1;

Groovy Programming

145

 public Student()
 {
 super();
 }
}

When we run the above program, we will get the following result:

Joe

Inner Classes

Inner classes are defined within another classes. The enclosing class can use the inner class as

usual. On the other side, a inner class can access members of its enclosing class, even if they

are private. Classes other than the enclosing class are not allowed to access inner classes.

Following is an example of an Outer and Inner class. In the following example we are doing the

following things:

 Creating an class called Outer which will be our outer class

 Defining a string called name in our Outer class

 Creating an Inner or nested class inside of our Outer class

 Note that in the inner class we are able to access the name instance member defined in

the Outer class.

class Example

{

 static void main(String[] args)

 {

 Outer outobj=new Outer();

 outobj.name="Joe";

 outobj.callInnerMethod()

 }

 }

class Outer

{

 String name;

 def callInnerMethod()

 {

 new Inner().methodA()

 }

 class Inner

 {

Groovy Programming

146

 def methodA()

 {

 println(name);

 }

 }

}

When we run the above program, we will get the following result:

Joe

Abstract Classes

Abstract classes represent generic concepts, thus, they cannot be instantiated, being created to

be subclassed. Their members include fields/properties and abstract or concrete methods.

Abstract methods do not have implementation, and must be implemented by concrete

subclasses. Abstract classes must be declared with abstract keyword. Abstract methods must
also be declared with abstract keyword

In the following example, note that the Person class is now made into an abstract class and

cannot be instantiated. Also note that there is an abstract method called DisplayMarks in the

abstract class which has no implementation details. In the student class it is mandatory to add
the implementation details.

class Example

{

 static void main(String[] args)

 {

 Student st = new Student();

 st.StudentID = 1;

 st.Marks1 = 10;

 st.name="Joe";

 println(st.name);

 println(st.DisplayMarks());

 }

}

abstract class Person

{

 public String name;

 public Person()

 {

 }

abstract void DisplayMarks();

Groovy Programming

147

}

class Student extends Person

{

 int StudentID

 int Marks1;

 public Student()

 {

 super();

 }

 void DisplayMarks()

 {

 println(Marks1);

 }

}

When we run the above program, we will get the following result:

Joe

10

Interfaces

An interface defines a contract that a class needs to conform to. An interface only defines a list

of methods that need to be implemented, but does not define the methods implementation. An

interface needs to be declared using the interface keyword. An interface only defines method

signatures. Methods of an interface are always public. It is an error to use protected or private
methods in interfaces.

Following is an example of an interface in groovy. In the following example we are doing the

following things

 Creating an interface called Marks and creating an interface method called DisplayMarks

 In the class definition, we are using the implements keyword to implement the

interface.

 Because we are implementing the interface we have to provide the implementation for

the DisplayMarks method.

class Example
{
 static void main(String[] args)
 {
 Student st = new Student();
 st.StudentID = 1;
 st.Marks1 = 10;

Groovy Programming

148

 println(st.DisplayMarks());
 }
}
interface Marks
{
 void DisplayMarks();
}
class Student implements Marks
{
 int StudentID
 int Marks1;
 void DisplayMarks()
 {
 println(Marks1);
 }
}

When we run the above program, we will get the following result:

10

Groovy Programming

149

Generics enable types (classes and interfaces) to be parameters when defining classes,

interfaces and methods. Much like the more familiar formal parameters used in method

declarations, type parameters provide a way for you to re-use the same code with different

inputs. The difference is that the inputs to formal parameters are values, while the inputs to
type parameters are types.

Generic for Collections

The collections classes such as the List class can be generalized so that only collections of that

type are accepted in the application. An example of the generalized ArrayList is shown below.

What the following statement does is that it only accepts list items which are of the type string

List<String> list = new ArrayList<String>();

In the following code example, we are doing the following

 Creating a Generalized ArrayList collection which will hold only Strings.

 Add 3 strings to the list

 For each item in the list, printing the value of the strings.

class Example
{
 static void main(String[] args)
 {
 // Creating a generic List collection
 List<String> list = new ArrayList<String>();
 list.add("First String");
 list.add("Second String");
 list.add("Third String");
 for(String str : list)
 {
 println(str);
 }
 }
}

The output of the above program would be:

First String

Second String

Third String

21. Groovy – Generics

Groovy Programming

150

Generalized Classes

The entire class can also be generalized. This makes the class more flexible in accepting any

types and working accordingly with those types. Let’s look at an example of how we can

accomplish this.

In the following program, we are carrying out the following steps:

1. We are creating a class called ListType. Note the <T> keywords placed in front of the

class definition. This tells the compiler that this class can accept any type. So when we

declare an object of this class, we can specify a type during the the declaration and that

type would be replaced in the placeholder <T>.

2. The generic class has simple getter and setter methods to work with the member

variable defined in the class.

3. In the main program, notice that we are able to declare objects of the ListType class,

but of different types. The first one is of the type Integer and the second one is of the

type String.

class Example
{
 static void main(String[] args)
 {
 // Creating a generic List collection
 ListType<String> lststr = new ListType<>();
 lststr.set("First String");
 println(lststr.get());

 ListType<Integer> lstint = new ListType<>();
 lstint.set(1);
 println(lstint.get());
 }
}
public class ListType<T> {
 private T localt;
 public T get() {
 return this.localt;
 }
 public void set(T plocal) {
 this.localt = plocal;
 }
}

The output of the above program would be:

First String

1

Groovy Programming

151

Traits are a structural construct of the language which allow:

 Composition of behaviors

 Runtime implementation of interfaces

 Compatibility with static type checking/compilation

They can be seen as interfaces carrying both default implementations and state. A trait is

defined using the trait keyword:

An example of a trait is given below:

trait Marks
{
 void DisplayMarks()
 {
 println("Display Marks");
 }
}

One can then use the implement keyword to implement the trait in the similar way as interfaces.

class Example
{
 static void main(String[] args)
 {
 Student st = new Student();
 st.StudentID = 1;
 st.Marks1 = 10;
 println(st.DisplayMarks());
 }
}
trait Marks
{
 void DisplayMarks()
 {
 println("Display Marks");
 }
}
class Student implements Marks
{
 int StudentID
 int Marks1;

}

22. Groovy – Traits

Groovy Programming

152

Implementing Interfaces

Traits may implement interfaces, in which case the interfaces are declared using
the implements keyword:

An example of a trait implementing an interface is given below. In the following example the

following key points can be noted

 An interface Total is defined with the method DisplayTotal

 The trait Marks implements the Total interface and hence needs to provide an
implementation for the DisplayTotal method.

class Example
{
 static void main(String[] args)
 {
 Student st = new Student();
 st.StudentID = 1;
 st.Marks1 = 10;
 println(st.DisplayMarks());
 println(st.DisplayTotal());
 }
}
interface Total
{
 void DisplayTotal()
}
trait Marks implements Total
{
 void DisplayMarks()
 {
 println("Display Marks");
 }
 void DisplayTotal()
 {
 println("Display Total");
 }
}
class Student implements Marks
{
 int StudentID
 int Marks1;

}

The output of the above program would be:

Display Marks

Display Total

Properties

A trait may define properties. An example of a trait with a property is given below.

In the following example, the Marks1 of type integer is a property.

Groovy Programming

153

class Example
{
 static void main(String[] args)
 {
 Student st = new Student();
 st.StudentID = 1;
 println(st.DisplayMarks());
 println(st.DisplayTotal());
 }
}
interface Total
{
 void DisplayTotal()
}
trait Marks implements Total
{
 int Marks1;
 void DisplayMarks()
 {
 this.Marks1=10;
 println(this.Marks1);
 }
 void DisplayTotal()
 {
 println("Display Total");
 }
}
class Student implements Marks {
 int StudentID
}

The output of the above program would be:

10

Display Total

Composition of Behaviors

Traits can be used to implement multiple inheritance in a controlled way, avoiding the diamond

issue. In the following code example, we have defined two traits – Marks and Total. Our Student

class implements both traits. Since the student class extends both traits, it is able to access the
both of the methods – DisplayMarks and DisplayTotal.

class Example
{
 static void main(String[] args)
 {
 Student st = new Student();
 st.StudentID = 1;
 println(st.DisplayMarks());
 println(st.DisplayTotal());
 }
}
trait Marks
{

Groovy Programming

154

 void DisplayMarks()
 {
 println("Marks1");
 }
}
trait Total
{
 void DisplayTotal()
 {
 println("Total");
 }
}

class Student implements Marks,Total
{
 int StudentID
}

The output of the above program would be:

Total
Marks1

Extending Traits

Traits may extend another trait, in which case you must use the extends keyword. In the

following code example, we are extending the Total trait with the Marks trait

class Example
{
 static void main(String[] args)
 {
 Student st = new Student();
 st.StudentID = 1;
 println(st.DisplayMarks());
 }
}
trait Marks
{
 void DisplayMarks()
 {
 println("Marks1");
 }
}
trait Total extends Marks
{
 void DisplayMarks()
 {
 println("Total");
 }
}

class Student implements Total
{

Groovy Programming

155

 int StudentID
}

The output of the above program would be:

Total

Groovy Programming

156

A closure is a short anonymous block of code. It just normally spans a few lines of code. A
method can even take the block of code as a parameter. They are anonymous in nature.

Following is an example of a simple closure and what it looks like.

class Example
{
 static void main(String[] args)
 {
 def clos={println "Hello World"};
 clos.call();
 }
}

In the above example, the code line - {println "Hello World"} is known as a closure. The code

block referenced by this identifier can be executed with the call statement

When we run the above program, we will get the following result:

Hello World

Formal parameters in closures

Closures can also contain formal parameters to make them more useful just like methods in

Groovy

class Example
{
 static void main(String[] args)
 {
 def clos={param->println "Hello ${param}"};
 clos.call("World");
 }
}

In the above code example, notice the use of the ${param } which causes the closure to take a

parameter. When calling the closure via the clos.call statement we now have the option to pass
a parameter to the closure.

When we run the above program, we will get the following result:

Hello World

The next illustration repeats the previous example and produces the same result, but shows that
an implicit single parameter referred to as it can be used. Here ‘it’ is a keyword in Groovy.

class Example
{
 static void main(String[] args)
 {

23. Groovy – Closures

Groovy Programming

157

 def clos={println "Hello ${it}"};
 clos.call("World");
 }
}

When we run the above program, we will get the following result:

Hello World

Closures and Variables

More formally, closures can refer to variables at the time the closure is defined. Following is an

example of how this can be achieved.

class Example
{
 static void main(String[] args)
 {
 def str1 = "Hello";
 def clos = {param -> println "${str1} ${param}"}
 clos.call("World");
 // We are now changing the value of the String str1 which is referenced in
the closure
 str1="Welcome";
 clos.call("World");
 }
}

In the above example, in addition to passing a parameter to the closure, we are also defining a

variable called str1. The closure also takes on the variable along with the parameter.

When we run the above program, we will get the following result:

Hello World

Welcome World

Using Closures in Methods

Closures can also be used as parameters to methods. In Groovy, a lot of the inbuilt methods for
data types such as Lists and collections have closures as a parameter type.

The following example shows how a closure can be sent to a method as a parameter.

class Example
{
 def static Display(clo)
 {
 // This time the $param parameter gets replaced by the string "Inner"
 clo.call("Inner");
 }

 static void main(String[] args) {
 def str1 = "Hello";
 def clos = { param -> println "${str1} ${param}" }

Groovy Programming

158

 clos.call("World");
 // We are now changing the value of the String str1 which is referenced in
the closure
 str1 = "Welcome";
 clos.call("World");
 // Passing our closure to a method
 Example.Display(clos);
 }
}

In the above example,

 We are defining a static method called Display which takes a closure as an argument.

 We are then defining a closure in our main method and passing it to our Display

method as a parameter.

When we run the above program, we will get the following result:

Hello World

Welcome World

Welcome Inner

Closures in Collections and String

Several List, Map, and String methods accept a closure as an argument. Let’s look at example

of how closures can be used in these data types.

Using Closures with Lists

The following example shows how closures can be used with Lists. In the following example we

are first defining a simple list of values. The list collection type then defines a function called

.each. This function takes on a closure as a parameter and applies the closure to each element
of the list.

class Example
{
 static void main(String[] args)
 {
 def lst = [11, 12, 13, 14];
 lst.each {println it}
 }
}

When we run the above program, we will get the following result:

11

12

13

14

Groovy Programming

159

Using Closures with Maps

The following example shows how closures can be used with Maps. In the following example we

are first defining a simple Map of key value items. The map collection type then defines a function

called .each. This function takes on a closure as a parameter and applies the closure to each
key-value pair of the map.

class Example
{
 static void main(String[] args)
 {
 def mp = ["TopicName" : "Maps", "TopicDescription" : "Methods in Maps"]
 mp.each {println it}
 mp.each {println "${it.key} maps to: ${it.value}"}
 }
}

When we run the above program, we will get the following result:

TopicName=Maps

TopicDescription=Methods in Maps

TopicName maps to: Maps

TopicDescription maps to: Methods in Maps

Often, we may wish to iterate across the members of a collection and apply some logic only

when the element meets some criterion. This is readily handled with a conditional statement in
the closure.

class Example
{
 static void main(String[] args)
 {
 def lst = [1,2,3,4];
 lst.each {println it}
 println("The list will only display those numbers which are divisible by 2")
 lst.each{num -> if(num % 2 == 0) println num}
 }
}

The above example shows the conditional if(num % 2 == 0) expression being used in the closure

which is used to check if each item in the list is divisible by 2.

When we run the above program, we will get the following result:

1

2

3

4

Groovy Programming

160

The list will only display those numbers which are divisible by 2.

2

4

Methods used with Closures

The closures themselves provide some methods.

find()

The find method finds the first value in a collection that matches some criterion.

Syntax

Object find(Closure closure)

Parameters: The condition to be met by the collection element is specified in the closure that
must be some Boolean expression

Return Value: The find method returns the first value found or null if no such element exists.

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 def lst = [1,2,3,4];
 def value;
 value= lst.find {element -> element > 2}
 println(value);
 }
}

When we run the above program, we will get the following result:

3

findAll()

It finds all values in the receiving object matching the closure condition

Syntax

List findAll(Closure closure)

Parameters: The condition to be met by the collection element is specified in the closure that

must be some Boolean expression

Return Value: The find method returns a list of all values found as per the expression

Groovy Programming

161

Example:

Following is an example of the usage of this method:

class Example
{
 static void main(String[] args)
 {
 def lst = [1,2,3,4];
 def value;
 value= lst.findAll{element -> element > 2}
 value.each {println it}
 }
}

When we run the above program, we will get the following result:

3

4

any() & every()

Method any iterates through each element of a collection checking whether a Boolean predicate

is valid for at least one element.

Syntax

boolean any(Closure closure)

boolean every(Closure closure)

Parameters: The condition to be met by the collection element is specified in the closure that
must be some Boolean expression

Return Value: The find method returns a Boolean value.

Example:

Following is an example of the usage of this method of the any method:

class Example
{
 static void main(String[] args)
 {
 def lst = [1,2,3,4];
 def value;
 // Is there any value above 2
 value= lst.any{element -> element > 2}
 println(value);
 // Is there any value above 4
 value= lst.any{element -> element > 4}
 println(value);
 }
}

Groovy Programming

162

When we run the above program, we will get the following result:

true

false

Following is an example of the usage of this method of the every method:

class Example
{
 static void main(String[] args)
 {
 def lst = [1,2,3,4];
 def value;
 // Are all value above 2
 value= lst.every{element -> element > 2}
 println(value);
 // Are all value above 4
 value= lst.every{element -> element > 4}
 println(value);

 def largelst = [4,5,6];
 // Are all value above 2
 value= largelst.every{element -> element > 2}
 println(value);

 }
}

When we run the above program, we will get the following result:

false

false

true

collect()

The method collect iterates through a collection, converting each element into a new value using

the closure as the transformer.

Syntax

List collect(Closure closure)

Parameters: The Closure expression

Return Value: The modified list collection

Example:

Following is an example of the usage of this method of the every method:

class Example
{
 static void main(String[] args)
 {

Groovy Programming

163

 def lst = [1,2,3,4];
 def newlst=[];
 newlst=lst.collect {element -> return element * element}
 println(newlst);
 }
}

When we run the above program, we will get the following result:

[1, 4, 9, 16]

Groovy Programming

164

Annotations are a form of metadata wherein they provide data about a program that is not part

of the program itself. Annotations have no direct effect on the operation of the code they

annotate.

Annotations are mainly used for the following reasons:

 Information for the compiler — Annotations can be used by the compiler to detect

errors or suppress warnings.

 Compile-time and deployment-time processing — Software tools can process

annotation information to generate code, XML files, and so forth.

 Runtime processing — Some annotations are available to be examined at runtime.

In Groovy, a basic annotation looks as follows:

@interface - The at sign character (@) indicates to the compiler that what follows is an

annotation.

An annotation may define members in the form of methods without bodies and an optional
default value.

Annotation’s can be applied to the following types:

String Type

An example of an Annotation for a string is given below

@interface Simple {
String str1() default "HelloWorld";
}

Enum type

enum DayOfWeek { mon, tue, wed, thu, fri, sat, sun }
@interface Scheduled {
 DayOfWeek dayOfWeek()
}

Class type

@interface Simple {}
@Simple
class User {
 String username

24. Groovy – Annotations

Groovy Programming

165

 int age
}
def user = new User(username: "Joe",age:1);
println(user.age);
println(user.username);

Annotation Member Values

When an annotation is used, it is required to set at least all members that do not have a default

value. An example is given below. When the annotation Example is used after being defined, it

needs to have a value assigned to it.

@interface Example {
 int status()
}
@Example(status=1)

Closure Annotation Parameters

A good feature of annotations in Groovy is that you can use a closure as an annotation value

also. Therefore annotations may be used with a wide variety of expressions.

An example is given below on this. The annotation Onlyif is created based on a class value. Then

the annotation is applied to two methods which posts different messages to the result variable
based on the value of the number variable.

@interface OnlyIf {
 Class value()
}

@OnlyIf({ number<=6 })
void Version6() {
 result << 'Number greater than 6'
}
@OnlyIf({ number>=6 })
void Version7() {
 result << 'Number greater than 6'
}

Meta Annotations

This is quite a useful feature of annotations in groovy. There may comes times wherein you

might have multiple annotations for a method as the one shown below. Sometimes this can

become messy to have multiple annotations.

@Procedure
@Master
class MyMasterProcedure {}

In such a case you can define a meta-annotation which clubs multiple annotations together and

the apply the meta annotation to the method. So for the above example you can fist define the
collection of annotation using the AnnotationCollector.

Groovy Programming

166

import groovy.transform.AnnotationCollector

@Procedure
@Master
@AnnotationCollector

Once this is done, you can apply the following meta-annotator to the method:

import groovy.transform.AnnotationCollector

@Procedure
@Master
@AnnotationCollector

@MasterProcedure
class MyMasterProcedure {}

Groovy Programming

167

XML is a portable, open source language that allows programmers to develop applications that

can be read by other applications, regardless of operating system and/or developmental

language. This is one of the most common languages used for exchanging data between
applications.

What is XML?

The Extensible Markup Language XML is a markup language much like HTML or SGML. This is

recommended by the World Wide Web Consortium and available as an open standard. XML is

extremely useful for keeping track of small to medium amounts of data without requiring a SQL-

based backbone.

XML Support in Groovy

The Groovy language also provides a rich support of the XML language. The two most basic XML
classes used are:

1. XML Markup Builder - Groovy supports a tree-based markup generator,

BuilderSupport, that can be subclassed to make a variety of tree-structured object

representations. Commonly, these builders are used to represent XML markup, HTML

markup. Groovy’s markup generator catches calls to pseudomethods and converts them

into elements or nodes of a tree structure. Parameters to these pseudomethods are

treated as attributes of the nodes. Closures as part of the method call are considered as

nested subcontent for the resulting tree node.

2. XML Parser - The Groovy XmlParser class employs a simple model for parsing an XML

document into a tree of Node instances. Each Node has the name of the XML element,

the attributes of the element, and references to any child Nodes. This model is

sufficient for most simple XML processing.

For all our XML code examples, let's use the following simple XML file movies.xml for construction

of the XML file and reading the file subsequently.

<collection shelf="New Arrivals">

<movie title="Enemy Behind">

<type>War, Thriller</type>

<format>DVD</format>

<year>2003</year>

<rating>PG</rating>

<stars>10</stars>

<description>Talk about a US-Japan war</description>

</movie>

<movie title="Transformers">

<type>Anime, Science Fiction</type>

25. Groovy – XML

Groovy Programming

168

<format>DVD</format>

<year>1989</year>

<rating>R</rating>

<stars>8</stars>

<description>A schientific fiction</description>

</movie>

<movie title="Trigun">

<type>Anime, Action</type>

<format>DVD</format>

<year>1986</year>

<rating>PG</rating>

<stars>10</stars>

<description>Vash the Stam pede!</description>

</movie>

<movie title="Ishtar">

<type>Comedy</type>

<format>VHS</format>

<year>1987</year>

<rating>PG</rating>

<stars>2</stars>

<description>Viewable boredom </description>

</movie>

</collection>

XML Markup Builder

Syntax

public MarkupBuilder()

The MarkupBuilder is used to construct the entire XML document. The XML document is created

by first creating an object of the XML document class. Once the object is created, a
pseudomethod can be called to create the various elements of the XML document.

Let’s look at an example of how to create one block, that is, one movie element from the above
XML document:

import groovy.xml.MarkupBuilder
class Example
{
 static void main(String[] args)
 {
 def mB = new MarkupBuilder()

Groovy Programming

169

 // Compose the builder
 mB.collection(shelf : 'New Arrivals')
 {
 movie(title : 'Enemy Behind')
 type('War, Thriller')
 format('DVD')
 year('2003')
 rating('PG')
 stars(10)
 description('Talk about a US-Japan war')
 }
 }
}

In the above example, the following things need to be noted

 mB.collection() – This is a markup generator that creates the head XML tag of

<collection></collection>

 movie(title : 'Enemy Behind')- These pseudomethods create the child tags with this

method creating the tag with the value. By specifying a value called title, this actually

indicates that an attribute needs to be created for the element.

 A closure is provided to the pseudomethod to create the remaining elements of the XML

document.

 The default constructor for the class MarkupBuilder is initialized so that the generated

XML is issued to the standard output stream

When we run the above program, we will get the following result:

<collection shelf='New Arrivals'>

 <movie title='Enemy Behind' />

 <type>War, Thriller</type>

 <format>DVD</format>

 <year>2003</year>

 <rating>PG</rating>

 <stars>10</stars>

 <description>Talk about a US-Japan war</description>

</movie>

</collection>

In order to create the entire XML document, the following things need to be done

 A map entry needs to be created to store the different values of the elements.

 For each element of the map, we are assigning the value to each element.

Groovy Programming

170

import groovy.xml.MarkupBuilder
class Example
{
 static void main(String[] args)
 {
 def mp = [1 : ['Enemy Behind', 'War, Thriller','DVD','2003', 'PG', '10','Talk
about a US-Japan war'],
 2 : ['Transformers','Anime, Science Fiction','DVD','1989', 'R',
'8','A scientific fiction'],
 3 : ['Trigun','Anime, Action','DVD','1986', 'PG', '10','Vash the
Stam pede'],
 4 : ['Ishtar','Comedy','VHS','1987', 'PG', '2','Viewable boredom
']]

 def mB = new MarkupBuilder()

 // Compose the builder
 def MOVIEDB=mB.collection('shelf': 'New Arrivals')
 {
 mp.each {
 sd ->
 mB.movie('title': sd.value[0])
 {
 type(sd.value[1])
 format(sd.value[2])
 year(sd.value[3])
 rating(sd.value[4])
 stars(sd.value[4])
 description(sd.value[5])
 }
 }
 }
 }
}

When we run the above program, we will get the following result:

<collection shelf='New Arrivals'>

 <movie title='Enemy Behind'>

 <type>War, Thriller</type>

 <format>DVD</format>

 <year>2003</year>

 <rating>PG</rating>

 <stars>PG</stars>

 <description>10</description>

 </movie>

 <movie title='Transformers'>

 <type>Anime, Science Fiction</type>

 <format>DVD</format>

 <year>1989</year>

Groovy Programming

171

 <rating>R</rating>

 <stars>R</stars>

 <description>8</description>

 </movie>

 <movie title='Trigun'>

 <type>Anime, Action</type>

 <format>DVD</format>

 <year>1986</year>

 <rating>PG</rating>

 <stars>PG</stars>

 <description>10</description>

 </movie>

 <movie title='Ishtar'>

 <type>Comedy</type>

 <format>VHS</format>

 <year>1987</year>

 <rating>PG</rating>

 <stars>PG</stars>

 <description>2</description>

 </movie>

</collection>

XML Parsing

The Groovy XmlParser class employs a simple model for parsing an XML document into a tree of

Node instances. Each Node has the name of the XML element, the attributes of the element, and
references to any child Nodes. This model is sufficient for most simple XML processing.

Syntax

public XmlParser()

 throws ParserConfigurationException,

 SAXException

The following codeshows an example of how the XML parser can be used to read an XML

document

Let’s assume we have the same document called Movies.xml and we wanted to parse the XML

document and display a proper output to the user. The following codeis a snippet of how we can

traverse through the entire content of the XML document and display a proper response to the
user.

import groovy.xml.MarkupBuilder
import groovy.util.*

http://docs.oracle.com/javase/8/docs/api/javax/xml/parsers/ParserConfigurationException.html?is-external=true
http://docs.oracle.com/javase/8/docs/api/org/xml/sax/SAXException.html?is-external=true

Groovy Programming

172

class Example
{
 static void main(String[] args)
 {

 def parser = new XmlParser()
 def doc = parser.parse("D:\\Movies.xml");
 doc.movie.each{
 bk->
 print("Movie Name:")
 println "${bk['@title']}"
 print("Movie Type:")
 println "${bk.type[0].text()}"
 print("Movie Format:")
 println "${bk.format[0].text()}"
 print("Movie year:")
 println "${bk.year[0].text()}"
 print("Movie rating:")
 println "${bk.rating[0].text()}"
 print("Movie stars:")
 println "${bk.stars[0].text()}"
 print("Movie description:")
 println "${bk.description[0].text()}"
 println("*******************************")
 }
 }
}

When we run the above program, we will get the following result:

Movie Name:Enemy Behind

Movie Type:War, Thriller

Movie Format:DVD

Movie year:2003

Movie rating:PG

Movie stars:10

Movie description:Talk about a US-Japan war

Movie Name:Transformers

Movie Type:Anime, Science Fiction

Movie Format:DVD

Movie year:1989

Movie rating:R

Movie stars:8

Movie description:A schientific fiction

Movie Name:Trigun

Movie Type:Anime, Action

Groovy Programming

173

Movie Format:DVD

Movie year:1986

Movie rating:PG

Movie stars:10

Movie description:Vash the Stam pede!

Movie Name:Ishtar

Movie Type:Comedy

Movie Format:VHS

Movie year:1987

Movie rating:PG

Movie stars:2

Movie description:Viewable boredom

The important things to note about the above code

 An object of the class XmlParser is being formed so that it can be used to parse the

XML document.

 The parser is given the location of the XML file.

 For each movie element, we are using a closure to browse through each child node and

display the relevant information.

For the movie element itself, we are using the @ symbol to display the title attribute attached
to the movie element.

Groovy Programming

174

JMX is the defacto standard which is used for monitoring all applications which have anything to

do with the Java virual environment. Given that Groovy sits directly on top of Java, Groovy can

leverage the tremendous amount of work already done for JMX with Java

Monitoring the JVM

One can use the standard classes available in java.lang.management for carrying out the
monitoring of the JVM. The following code example shows how this can be done

import java.lang.management.*

def os = ManagementFactory.operatingSystemMXBean
println """OPERATING SYSTEM:
\tOS architecture = $os.arch
\tOS name = $os.name
\tOS version = $os.version
\tOS processors = $os.availableProcessors
"""

def rt = ManagementFactory.runtimeMXBean
println """RUNTIME:
\tRuntime name = $rt.name
\tRuntime spec name = $rt.specName
\tRuntime vendor = $rt.specVendor
\tRuntime spec version = $rt.specVersion
\tRuntime management spec version = $rt.managementSpecVersion
"""

def mem = ManagementFactory.memoryMXBean
def heapUsage = mem.heapMemoryUsage
def nonHeapUsage = mem.nonHeapMemoryUsage
println """MEMORY:
HEAP STORAGE:
\tMemory committed = $heapUsage.committed
\tMemory init = $heapUsage.init
\tMemory max = $heapUsage.max
\tMemory used = $heapUsage.used
NON-HEAP STORAGE:
\tNon-heap memory committed = $nonHeapUsage.committed
\tNon-heap memory init = $nonHeapUsage.init
\tNon-heap memory max = $nonHeapUsage.max
\tNon-heap memory used = $nonHeapUsage.used
"""

println "GARBAGE COLLECTION:"
ManagementFactory.garbageCollectorMXBeans.each { gc ->
 println "\tname = $gc.name"
 println "\t\tcollection count = $gc.collectionCount"
 println "\t\tcollection time = $gc.collectionTime"
 String[] mpoolNames = gc.memoryPoolNames
 mpoolNames.each { mpoolName ->

26. Groovy – JMX

Groovy Programming

175

 println "\t\tmpool name = $mpoolName"
 }
}

When the code is executed, the output will vary depending on the system on which the code is
run. A sample of the output is given below

OPERATING SYSTEM:

 OS architecture = x86

 OS name = Windows 7

 OS version = 6.1

 OS processors = 4

RUNTIME:

 Runtime name = 5144@Babuli-PC

 Runtime spec name = Java Virtual Machine Specification

 Runtime vendor = Oracle Corporation

 Runtime spec version = 1.7

 Runtime management spec version = 1.2

MEMORY:

HEAP STORAGE:

 Memory committed = 16252928

 Memory init = 16777216

 Memory max = 259522560

 Memory used = 7355840

NON-HEAP STORAGE:

 Non-heap memory committed = 37715968

 Non-heap memory init = 35815424

 Non-heap memory max = 123731968

 Non-heap memory used = 18532232

GARBAGE COLLECTION:

 name = Copy

 collection count = 15

 collection time = 47

 mpool name = Eden Space

 mpool name = Survivor Space

 name = MarkSweepCompact

 collection count = 0

Groovy Programming

176

 collection time = 0

 mpool name = Eden Space

 mpool name = Survivor Space

 mpool name = Tenured Gen

 mpool name = Perm Gen

 mpool name = Perm Gen [shared-ro]

 mpool name = Perm Gen [shared-rw]

Monitoring Tomcat

In order to monitor tomcat, the following parameter should be set when tomcat is started:

set JAVA_OPTS=-Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.port=9004\

 -Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false

The following code uses JMX to discover the available MBeans in the running Tomcat, determine
which are the web modules and extract the processing time for each web module.

import groovy.swing.SwingBuilder

import javax.management.ObjectName
import javax.management.remote.JMXConnectorFactory as JmxFactory
import javax.management.remote.JMXServiceURL as JmxUrl
import javax.swing.WindowConstants as WC

import org.jfree.chart.ChartFactory
import org.jfree.data.category.DefaultCategoryDataset as Dataset
import org.jfree.chart.plot.PlotOrientation as Orientation

def serverUrl = 'service:jmx:rmi:///jndi/rmi://localhost:9004/jmxrmi'
def server = JmxFactory.connect(new JmxUrl(serverUrl)).MBeanServerConnection
def serverInfo = new GroovyMBean(server, 'Catalina:type=Server').serverInfo
println "Connected to: $serverInfo"

def query = new ObjectName('Catalina:*')
String[] allNames = server.queryNames(query, null)
def modules = allNames.findAll { name ->
 name.contains('j2eeType=WebModule')
}.collect{ new GroovyMBean(server, it) }

println "Found ${modules.size()} web modules. Processing ..."
def dataset = new Dataset()

modules.each { m ->
 println m.name()
 dataset.addValue m.processingTime, 0, m.path
}

Groovy Programming

177

This chapter covers how to we can use the Groovy language for parsing and producing JSON
objects.

JSON Functions

Function Libraries

JsonSlurper

JsonSlurper is a class that parses JSON text or reader content into Groovy
data

Structures such as maps, lists and primitive types like Integer, Double,
Boolean and String.

JsonOutput This method is responsible for serialising Groovy objects into JSON strings.

Parsing Data using JsonSlurper

JsonSlurper is a class that parses JSON text or reader content into Groovy data Structures such
as maps, lists and primitive types like Integer, Double, Boolean and String.

Syntax

def slurper = new JsonSlurper()

JSON slurper parses text or reader content into a data structure of lists and maps.

The JsonSlurper class comes with a couple of variants for parser implementations. Sometimes

you may have different requirements when it comes to parsing certain strings. Let’s take an

instance wherein one needs to read the JSON which is returned from the response from a web

server. In such a case it’s beneficial to use the parser JsonParserLax variant. This parsee allows

comments in the JSON text as well as no quote strings etc. To specify this sort of parser you
need to use JsonParserType.LAX parser type when defining an object of the JsonSlurper.

Let’s see an example of this given below. The example is for getting JSON data from a web

server using the http module. For this type of traversal, the best option is to have the parser
type set to JsonParserLax variant.

http.request(GET, TEXT)
{
 headers.Accept = 'application/json'
 headers.'User-Agent' = USER_AGENT
 response.success =
 { res, rd ->

 def jsonText = rd.text

//Setting the parser type to JsonParserLax
 def parser = new JsonSlurper().setType(JsonParserType.LAX)

27. Groovy – JSON

Groovy Programming

178

 def jsonResp = parser.parseText(jsonText)
 }
 }

Similarly the following additional parser types are available in Groovy:

 The JsonParserCharArray parser basically takes a JSON string and operates on the

underlying character array. During value conversion it copies character sub-arrays (a

mechanism known as "chopping") and operates on them individually.

 The JsonFastParser is a special variant of the JsonParserCharArray and is the fastest

parser. JsonFastParser is also known as the index-overlay parser. During parsing of the

given JSON String it tries as hard as possible to avoid creating new char arrays

or String instances. It just keeps pointers to the underlying original character array only.

In addition, it defers object creation as late as possible.

 The JsonParserUsingCharacterSource is a special parser for very large files. It uses a

technique called "character windowing" to parse large JSON files (large means files over

2MB size in this case) with constant performance characteristics.

Parsing Text

Let’s have a look at some examples of how we can use the JsonSlurper class

import groovy.json.JsonSlurper
class Example
{
 static void main(String[] args)
 {
 def jsonSlurper = new JsonSlurper()
 def object = jsonSlurper.parseText('{ "name": "John", "ID" : "1"}')
 println(object.name);
 println(object.ID);
 }
}

In the above example, we are

 First creating an instance of the JsonSlurper class

 We are then using the parseText function of the JsonSlurper class to parse some JSON

text.

 When we get the object, you can see that we can actually access the values in the

JSON string via the key.

The output of the above program is given below

John

1

Groovy Programming

179

Parsing List of Integers

Let’s take a look at another example of the JsonSlurper parsing method. In the following

example, we are pasing a list of integers. You will notice from The following codethat we are
able to use the List method of each and pass a closure to it.

import groovy.json.JsonSlurper
class Example
{
 static void main(String[] args)
 {
 def jsonSlurper = new JsonSlurper()
 Object lst = jsonSlurper.parseText('{ "List": [2, 3, 4, 5] }')
 lst.each { println it }
 }
}

The output of the above program is given below:

List=[2, 3, 4, 5, 23, 42]

Parsing List of Primitive Data types

The JSON parser also supports the primitive data types of string, number,

object, true, false and null. The JsonSlurper class converts these JSON types into corresponding
Groovy types.

The following example shows how to use the JsonSlurper to parse a JSON string. And here you

can see that the JsonSlurper is able to parse the individual items into their respective primitive

types.

import groovy.json.JsonSlurper
class Example
{
 static void main(String[] args)
 {
 def jsonSlurper = new JsonSlurper()
 def obj = jsonSlurper.parseText ''' {"Integer": 12, "fraction": 12.55,
"double": 12e13}'''
 println(obj.Integer);
 println(obj.fraction);
 println(obj.double);
 }
}

The output of the above program is given below:

12

12.55

1.2E+14

Groovy Programming

180

JsonOutput

Now let’s talk about how to print output in Json. This can be done by the JsonOutput method.
This method is responsible for serialising Groovy objects into JSON strings.

Syntax

Static string JsonOutput.toJson(datatype obj)

Parameters: The parameters can be an object of a datatype – Number, Boolean,
character,String, Date, Map, closure etc.

Return type: The return type is a json string

Example:

Following is a simple example of how this can be achieved.

import groovy.json.JsonOutput
class Example
{
 static void main(String[] args)
 {
 def output = JsonOutput.toJson([name: 'John', ID: 1])
 println(output);

 }
}

The output of the above program is given below

{"name":"John","ID":1}

The JsonOutput can alos be used for plain old groovy objects. In the following example, you can
see that we are actually passing objects of the type Student to the JsonOutput method.

import groovy.json.JsonOutput

class Example
{
 static void main(String[] args)
 {
 def output = JsonOutput.toJson([new Student(name: 'John',ID:1), new
Student(name: 'Mark',ID:2)])
 println(output);

 }
}
class Student
{
 String name
 int ID;
}

Groovy Programming

181

The output of the above program is given below:

[{"name":"John","ID":1},{"name":"Mark","ID":2}]

Groovy Programming

182

Groovy allows one to omit parentheses around the arguments of a method call for top-level

statements. This is known as the "command chain" feature. This extension works by allowing

one to chain such parentheses-free method calls, requiring neither parentheses around
arguments, nor dots between the chained calls.

If a call is executed as a b c d, this will actually be equivalent to a(b).c(d).

DSL or Domain specific language is meant to simplify the code written in Groovy in such a way

that it becomes easily understandable for the common user. The following example shows what
exactly is meant by having a domain specific language.

def lst=[1,2,3,4]

print lst

The above code shows a list of numbers being printed to the console using the println statement.
In a domain specific language the commands would be as

Given the numbers 1,2,3,4

Display all the numbers

So the above example shows the transformation of the programming language to meet the
needs of a domain specific language.

Let’s look at a simple example of how we can implement DSLs in Groovy:

class EmailDsl {

 String toText

 String fromText

 String body

 /**

 * This method accepts a closure which is essentially the DSL. Delegate the

 * closure methods to

 * the DSL class so the calls can be processed

 */

 def static make(closure) {

 EmailDsl emailDsl = new EmailDsl()

 // any method called in closure will be delegated to the EmailDsl class

 closure.delegate = emailDsl

28. Groovy – DSLs

Groovy Programming

183

 closure()

 }

 /**

 * Store the parameter as a variable and use it later to output a memo

 */

 def to(String toText) {

 this.toText = toText

 }

 def from(String fromText) {

 this.fromText = fromText

 }

 def body(String bodyText) {

 this.body = bodyText

 }

 }

EmailDsl.make {

 to "Nirav Assar"

 from "Barack Obama"

 body "How are things? We are doing well. Take care"

}

The following needs to be noted about the above code implementation

 A static method is used that accepts a closure. This is mostly a hassle free way to

implement a DSL.

 In the email example, the class EmailDsl has a make method. It creates an instance and

delegates all calls in the closure to the instance. This is the mechanism where the "to",

and "from" sections end up executing methods inside the EmailDsl class.

 Once the to() method is called, we store the text in the instance for formatting later on.

 We can now call the EmailDSL method with an easy language that is easy to understand
for end users.

Groovy Programming

184

Groovy’s groovy-sql module provides a higher-level abstraction over the current Java’s JDBC

technology. The Groovy sql API supports a wide variety of databases, some of which are shown

below

 HSQLDB

 Oracle

 SQL Server

 MySQL

 MongoDB

In our example, we are going to use MySQL DB as an example. In order to use MySQL with

Groovy, the first thing to do is to download the MySQL jdbc jar file from the mysql site. The
format of the MySQL will be shown below.

mysql-connector-java-5.1.38-bin

Then ensure to add the above jar file to the classpath in your workstation.

Database Connection

Before connecting to a MySQL database, make sure of the followings −

 You have created a database TESTDB.

 You have created a table EMPLOYEE in TESTDB.

 This table has fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

 User ID "testuser" and password "test123" are set to access TESTDB.

 Ensure you have downloaded the mysql jar file and added the file to your classpath.

 You have gone through MySQL tutorial to understand MySQL Basics

The following example shows how to connect with MySQL database "TESTDB"

import java.sql.*;
import groovy.sql.Sql
class Example
{
 static void main(String[] args)
 {
 // Creating a connection to the database
 def sql = Sql.newInstance('jdbc:mysql://localhost:3306/TESTDB', 'testuser',
'test123', 'com.mysql.jdbc.Driver')
 // Executing the query SELECT VERSION which gets the version of the database
 // Also using the eachROW method to fetch the result from the database
 sql.eachRow('SELECT VERSION()')
 { row ->
 println row[0]
 }

29. Groovy – Databases

http://www.tutorialspoint.com/mysql/index.htm

Groovy Programming

185

sql.close()

 }
}

While running this script, it is producing the following result:

5.7.10-log

The Sql.newInstance method is used to establish a connection to the database.

Creating Database Table

The next step after connecting to the database is to create the tables in our database. The

following example shows how to create a table in the database using Groovy. The execute

method of the Sql class is used to execute statements against the database.

import java.sql.*;
import groovy.sql.Sql
class Example
{
 static void main(String[] args)
 {
 // Creating a connection to the database
 def sql = Sql.newInstance('jdbc:mysql://localhost:3306/TESTDB', 'testuser',
'test123', 'com.mysql.jdbc.Driver')

 def sqlstr = """CREATE TABLE EMPLOYEE (
 FIRST_NAME CHAR(20) NOT NULL,
 LAST_NAME CHAR(20),
 AGE INT,
 SEX CHAR(1),
 INCOME FLOAT)"""

 sql.execute(sqlstr);
 sql.close()
 }
}

Insert Operation

It is required when you want to create your records into a database table.

Example

The following example will insert a record in the employee table. The code is placed in a try catch

block so that if the record is executed successfully, the transaction is committed to the database.
If the transaction fails, a rollback is done.

Groovy Programming

186

import java.sql.*;
import groovy.sql.Sql
class Example
{
 static void main(String[] args)
 {
 // Creating a connection to the database
 def sql = Sql.newInstance('jdbc:mysql://localhost:3306/TESTDB', 'testuser',
'test123', 'com.mysql.jdbc.Driver')
 sql.connection.autoCommit = false
 def sqlstr = """INSERT INTO EMPLOYEE(FIRST_NAME,
 LAST_NAME, AGE, SEX, INCOME)
 VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""
try
{
 sql.execute(sqlstr);
 sql.commit()
 println("Successfully committed")
}
catch(Exception ex)
{
 sql.rollback()
 println("Transaction rollback")
}
 sql.close()
 }
}

Suppose if you wanted to just select certain rows based on a criteria. The following codeshows

how you can add a parameter placeholder to search for values. The above example can also be

written to take in parameters as shown in the following code. The $ symbol is used to define a
parameter which can then be replaced by values when the sql statement is executed.

import java.sql.*;
import groovy.sql.Sql
class Example
{
 static void main(String[] args)
 {
 // Creating a connection to the database
 def sql = Sql.newInstance('jdbc:mysql://localhost:3306/TESTDB', 'testuser',
'test123', 'com.mysql.jdbc.Driver')
 sql.connection.autoCommit = false

 def firstname="Mac"
 def lastname ="Mohan"
 def age=20
 def sex="M"
 def income=2000

 def sqlstr = "INSERT INTO EMPLOYEE(FIRST_NAME,LAST_NAME, AGE, SEX, INCOME)
VALUES " +
 "(${firstname}, ${lastname}, ${age}, ${sex}, ${income})"
try
{
 sql.execute(sqlstr);
 sql.commit()

Groovy Programming

187

 println("Successfully committed")
}
catch(Exception ex)
{
 sql.rollback()
 println("Transaction rollback")
}
 sql.close()
 }
}

READ Operation

READ Operation on any database means to fetch some useful information from the database.
Once our database connection is established, you are ready to make a query into this database

The read operation is performed by using the eachRow method of the sql class.

Syntax

eachRow(GString gstring, Closure closure)

Performs the given SQL query calling the given Closure with each row of the result set

Parameters

 Gstring – The sql statement which needs to be executed.

 Closure – The closure statement to process the rows retrived from the read operation.

Performs the given SQL query calling the given Closure with each row of the result set.

The following code example shows how to fetch all the records from the employee table

import java.sql.*;
import groovy.sql.Sql
class Example
{
 static void main(String[] args)
 {
 // Creating a connection to the database
 def sql = Sql.newInstance('jdbc:mysql://localhost:3306/TESTDB', 'testuser',
'test123', 'com.mysql.jdbc.Driver')

 sql.eachRow('select * from employee')
 {
 tp ->
println([tp.FIRST_NAME,tp.LAST_NAME,tp.age,tp.sex,tp.INCOME])
 }

 sql.close()
 }
}

http://docs.groovy-lang.org/latest/html/api/groovy/sql/Sql.html#eachRow(groovy.lang.GString,%20groovy.lang.Closure)
http://docs.groovy-lang.org/latest/html/api/groovy/lang/GString.html
http://docs.groovy-lang.org/latest/html/api/groovy/lang/Closure.html

Groovy Programming

188

The output from the above program would be:

[Mac, Mohan, 20, M, 2000.0]

Update Operation

UPDATE Operation on any database means to update one or more records, which are already

available in the database. The following procedure updates all the records having SEX as 'M'.
Here, we increase AGE of all the males by one year.

import java.sql.*;
import groovy.sql.Sql
class Example
{
 static void main(String[] args)
 {
 // Creating a connection to the database
 def sql = Sql.newInstance('jdbc:mysql://localhost:3306/TESTDB', 'testuser',
'test@123', 'com.mysql.jdbc.Driver')
 sql.connection.autoCommit = false
 def sqlstr = "UPDATE EMPLOYEE SET AGE = AGE + 1 WHERE SEX = 'M'"

 try
 {
 sql.execute(sqlstr);
 sql.commit()
 println("Successfully committed")
 }
 catch(Exception ex)
 {
 sql.rollback()
 println("Transaction rollback")
 }
 sql.close()
 }
}

DELETE Operation

DELETE operation is required when you want to delete some records from your database.
Following is the procedure to delete all the records from EMPLOYEE where AGE is more than 20.

import java.sql.*;
import groovy.sql.Sql
class Example
{
 static void main(String[] args)
 {
 // Creating a connection to the database
 def sql = Sql.newInstance('jdbc:mysql://localhost:3306/TESTDB', 'testuser',
'test@123', 'com.mysql.jdbc.Driver')
 sql.connection.autoCommit = false
 def sqlstr = "DELETE FROM EMPLOYEE WHERE AGE > 20"

Groovy Programming

189

 try
 {
 sql.execute(sqlstr);
 sql.commit()
 println("Successfully committed")
 }
 catch(Exception ex)
 {
 sql.rollback()
 println("Transaction rollback")
 }
 sql.close()
 }
}

Performing Transactions

Transactions are a mechanism that ensures data consistency. Transactions have the following

four properties:

 Atomicity: Either a transaction completes or nothing happens at all.

 Consistency: A transaction must start in a consistent state and leave the system in a

consistent state.

 Isolation: Intermediate results of a transaction are not visible outside the current

transaction.

 Durability: Once a transaction was committed, the effects are persistent, even after a
system failure.

Here is a simple example of how to implement transactions. We have already seen this example
from our previous topic of the DELETE operation.

def sqlstr = "DELETE FROM EMPLOYEE WHERE AGE > 20"

try
{
 sql.execute(sqlstr);
 sql.commit()
 println("Successfully committed")
}
catch(Exception ex)
{
 sql.rollback()
 println("Transaction rollback")
}
sql.close()

Commit Operation

The commit operation is what tells the database to proceed ahead with the operation and finalize
all changes to the database.

Groovy Programming

190

In our above example, this is achieved by the following statement:

sql.commit()

Rollback Operation

If you are not satisfied with one or more of the changes and you want to revert back those
changes completely, then use rollback method.

In our above example, this is achieved by the following statement:

sql.rollback()

Disconnecting Databases

To disconnect Database connection, use the close method.

sql.close()

Groovy Programming

191

During the process of software development, sometimes developers spend a lot of time in

creating Data structures, domain classes, XML, GUI Layouts, Output streams etc.And sometimes

the code used to create these specific requirements results in the repitition of the same snippet

of code in many places. This is where Groovy builders come into play. Groovy has builders which

can be used to create standard objects and structures. These builders saves time as developer

dont need to write their own code to create these builders. In the couse of this chapter we will

look at the different builders available in groovy.

Swing Builder

In groovy one can also create graphical user interfaces using the swing builders available in

groovy. The main class for developing swing components is the SwingBuilder class. This class
has many methods for creating graphical components such as

 JFrame – This is for creating the frame element

 JTextField – This is used for creating the textfield component

Let’s look at a simple example of how to create a Swing application using the SwingBuilder class.
In the following example, you can see the following points:

 You need to import the groovy.swing.SwingBuilder and the javax.swing.* classes

 All of the componets displayed in the Swing application are part of the SwingBuilder

class.

 For the frame itself, you can specify the initial location and size of the frame. You can

also specify the title of the frame.

 You need to set the Visibility property to true in order for the frame to be shown.

import groovy.swing.SwingBuilder
import javax.swing.*
// Create a builder
def myapp = new SwingBuilder()
// Compose the builder
def myframe = myapp.frame(title : 'Tutorials Point', location : [200, 200],
 size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE)
 {
 label(text : 'Hello world')
 }
// The following statement is used for displaying the form
frame.setVisible(true)

30. Groovy – Builders

Groovy Programming

192

The output of the above program is given below. The following output shows a JFrame along

with a JLabel with a text of Hello World.

Let’s look at our next example for creating an input screen with textboxes. In the following

example, we want to create a form which has text boxes for Student name, subject and School
Name. In the following example, you can see the following key points:

 We are defining a layout for our controls on the screen. In this case we are using the

Grid Layout.

 We are using an alignment property for our labels.

 We are using the textField method for displaying textboxes on the screen

import groovy.swing.SwingBuilder

import javax.swing.*

import java.awt.*

// Create a builder

def myapp = new SwingBuilder()

// Compose the builder

def myframe = myapp.frame(title : 'Tutorials Point', location : [200, 200],

 size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE)

 {

 panel(layout: new GridLayout(3, 2, 5, 5))

 {

 label(text : 'Student Name:', horizontalAlignment : JLabel.RIGHT)

 textField(text : '', columns : 10)

 label(text : 'Subject Name:', horizontalAlignment : JLabel.RIGHT)

 textField(text : '', columns : 10)

Groovy Programming

193

 label(text : 'School Name:', horizontalAlignment : JLabel.RIGHT)

 textField(text : '', columns : 10)

 }

 }

// The following statement is used for displaying the form

myframe.setVisible(true)

The output of the above program is given below:

Event Handlers

Now let’s look at event handlers. Event handlers are used for button to perform some sort of

processing when a button is pressed. Each button pseudomethod call includes the
actionPerformed parameter. This represents a code block presented as a closure.

Let’s look at our next example for creating a screen with 2 buttons. When either button is pressed

a corresponding message is sent to the console screen. In the following example, you can see
the following key points:

1) For each button defined, we are using the actionPerformed method and defining a

closure to send some output to the console when the button is clicked.

import groovy.swing.SwingBuilder
import javax.swing.*
import java.awt.*
def myapp = new SwingBuilder()

def buttonPanel =
 {
 myapp.panel(constraints : BorderLayout.SOUTH)
 {
 button(text : 'Option A', actionPerformed :
 {
 println 'Option A chosen'
 }
)
 button(text : 'Option B', actionPerformed :
 {

Groovy Programming

194

 println 'Option B chosen'
 }
)
 }
 }

def mainPanel =
 {
 myapp.panel(layout : new BorderLayout())
 {
 label(text : 'Which Option do you want', horizontalAlignment :
JLabel.CENTER,
 constraints : BorderLayout.CENTER)
 buttonPanel()
 }
 }

def myframe = myapp.frame(title : 'Tutorials Point', location : [100, 100],
 size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE)
 {
 mainPanel()
 }
myframe.setVisible(true)

The output of the above program is given below. When you click on either button, the required
message is sent to the console log screen.

Another variation of the above example is to define methods which can can act as handlers. In
the following example we are defining 2 handlers of DisplayA and DisplayB.

import groovy.swing.SwingBuilder
import javax.swing.*
import java.awt.*
def myapp = new SwingBuilder()

def DisplayA=
{
 println("Option A")
}
def DisplayB=
{
 println("Option B")

Groovy Programming

195

}
def buttonPanel =
 {
 myapp.panel(constraints : BorderLayout.SOUTH)
 {
 button(text : 'Option A', actionPerformed : DisplayA)
 button(text : 'Option B', actionPerformed : DisplayB)
 }
 }

def mainPanel =
 {
 myapp.panel(layout : new BorderLayout())
 {
 label(text : 'Which Option do you want', horizontalAlignment :
JLabel.CENTER,
 constraints : BorderLayout.CENTER)
 buttonPanel()
 }
 }

def myframe = myapp.frame(title : 'Tutorials Point', location : [100, 100],
 size : [400, 300], defaultCloseOperation : WindowConstants.EXIT_ON_CLOSE)
 {
 mainPanel()
 }
myframe.setVisible(true)

The output of the above program would remain the same as the earlier example.

DOM Builder

The DOM builder can be used for parsing HTML, XHTML and XML and converting it into a W3C
DOM tree.

The following example shows how the DOM builder can be used.

String records = '''
 <library>
 <Student>
 <StudentName division='A'>Joe</StudentName>
 <StudentID>1</StudentID>
 </Student>
 <Student>
 <StudentName division='B'>John</StudentName>
 <StudentID>2</StudentID>
 </Student>
 <Student>
 <StudentName division='C'>Mark</StudentName>
 <StudentID>3</StudentID>
 </Student>
</library>'''

def rd = new StringReader(records)
def doc = groovy.xml.DOMBuilder.parse(rd)

https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Document_Object_Model

Groovy Programming

196

JsonBuilder

The JsonBuilder is used for creating json type objects.

The following example shows how the Json builder can be used.

def builder = new groovy.json.JsonBuilder()
def root = builder.students {
 student {
 studentname 'Joe'
 studentid '1'
 Marks(
 Subject1: 10,
 Subject2: 20,
 Subject3:30,
)
 }
}
println(builder.toString());

The output of the above program is given below. The output clearlt shows that the Jsonbuilder
was able to build the json object out of a structed set of nodes.

{"students":{"student":{"studentname":"Joe","studentid":"1","Marks":{"Subject1":10,"S
ubject2":20,"Subject3":30}}}}

The jsonbuilder can also take in a list and convert it to a json object. The following example

shows how this can be accomplished.

def builder = new groovy.json.JsonBuilder()
def lst = builder([1, 2, 3])
println(builder.toString());

The output of the above program is given below.

[1,2,3]

The jsonBuilder can also be used for classes. The following example shows how objects of a class
can become inputs to the json builder

def builder = new groovy.json.JsonBuilder()
class Student {
 String name

}
def studentlist = [new Student (name: "Joe"), new Student (name: "Mark"), new Student
(name: "John")]
builder studentlist, { Student student ->name student.name}
println(builder)

The output of the above program is given below.

[{"name":"Joe"},{"name":"Mark"},{"name":"John"}]

Groovy Programming

197

NodeBuilder

NodeBuilder is used for creating nested trees of Node objects for handling arbitrary data. An
example of the usage of a Nodebuilder is shown below.

def nodeBuilder = new NodeBuilder()
def studentlist = nodeBuilder.userlist {
 user(id: '1', studentname: 'John', Subject: 'Chemistry')
 user(id: '2', studentname: 'Joe', Subject: 'Maths')
 user(id: '3', studentname: 'Mark', Subject: 'Physics')
}
println(studentlist)

FileTreeBuilder

FileTreeBuilder is a builder for generating a file directory structure from a specification. Following

is an example of how the FileTreeBuilder can be used.

tmpDir = File.createTempDir()
def fileTreeBuilder = new FileTreeBuilder(tmpDir)
fileTreeBuilder.dir('main')
 {
 dir('submain')
 {
 dir('Tutorial')
 {
 file('Sample.txt', 'println "Hello World"')
 }
 }
}

From the execution of the above code a file called sample.txt will be created in the folder
main/submain/Tutorial. And the sample.txt file will have the text of “Hello World”.

Groovy Programming

198

The Groovy shell known as groovysh can be easily used to evaluate groovy expressions, define
classes and run simple programs. The command line shell gets installed when Groovy is installed.

Following are the command line options available in Groovy:

Command line

parameter
Full Name Details

-C --color[=FLAG] Enable or disable use of ANSI colors

-D --define=NAME=VALUE Define a system property

-T --terminal=TYPE Specify the terminal TYPE to use

-V --version Display the version

-classpath
Specify where to find the class files – must be
the first arguement

-cp --classpath Aliases for '-classpath'

-d --debug Enable debug output

-e --evaluate=arg
Evaluate option fist when starting interactive
session

-h --help Display this help message

-q --quiet Suppress superfluous output

-v --verbose Enable verbose output

The following snapshot shows a simple example of an expression being executed in the Groovy

shell. In the following example we are just printing “Hello World” in the groovy shell.

Classes and Functions

It is very easy to define a class in the command prompt, create a new object and invoke a

method on the class. The following example shows how this can be implemented. In the following

example, we are creating a simple Student class with a simple method. In the command prompt
itself, we are creating an object of the class and calling the Display method.

31. Groovy – Command line

Groovy Programming

199

It is very easy to define a method in the command prompt and invoke the method. Note that

the method is defined using the def type. Also note that we have included a parameter called

name which then gets substituted with the actual value when the Display method is called. The
following example shows how this can be implemented.

Commands

The shell has a number of different commands, which provide rich access to the shell’s
environment. Following is the list of them and what they do.

Command Command Description

:help
(:h) Display this help message

? (:?) Alias to: :help

:exit (:x) Exit the shell

:quit (:q) Alias to: :exit

import (:i) Import a class into the namespace

:display (:d) Display the current buffer

Groovy Programming

200

:clear (:c) Clear the buffer and reset the prompt counter

:show (:S) Show variables, classes or imports

:inspect
(:n) Inspect a variable or the last result with the GUI object
browser

:purge (:p) Purge variables, classes, imports or preferences

:edit
(:e) Edit the current buffer

:load (:l) Load a file or URL into the buffer

. (:.) Alias to: :load

.save (:s) Save the current buffer to a file

.record
(:r) Record the current session to a file

:alias (:a) Create an alias

:set (:=) Set (or list) preferences

:register (:rc) Registers a new command with the shell

:doc
(:D) Opens a browser window displaying the doc for the

argument

:history (:H) Display, manage and recall edit-line history

Groovy Programming

201

The fundamental unit of an object-oriented system is the class. Therefore unit testing consists

of testig within a class. The approach taken is to create an object of the class under testing and

use it to check that selected methods execute as expected. Not every method can be tested,

since it is not always pratical to test each and every thing. But unit testing should be conducted
for key and critical methods.

JUnit is an open-source testing framework that is the accepted industry standard for the

automated unit testing of Java code. Fortunately, the JUnit framework can be easily used for

testing Groovy classes. All that is required is to extend the GroovyTestCase class that is part of
the standard Groovy environment. The Groovy test case class is based on the Junit test case.

Writing a Simple Junit Test Case

Let assume we have the following class defined in a an application class file:

class Example
{
 static void main(String[] args)
 {
 Student mst=new Student();
 mst.name="Joe";
 mst.ID=1;
 println(mst.Display())
 }
}

public class Student
{
 String name;
 int ID;
 String Display()
 {
 return name +ID;
 }

}

And now suppose we wanted to write a test case for the Student class. A typical test case would

look like the one below. The following points need to be noted about the following code:

 The test case class extends the GroovyTestCase class

 We are using the assert statement to ensure that the Display method returns the right

string.

class StudentTest extends GroovyTestCase {
 void testDisplay() {
 def stud = new Student(name : 'Joe', ID : '1')
 def expected = 'Joe1'
 assertToString(stud.Display(), expected)

32. Groovy – Unit Testing

Groovy Programming

202

 }
}

The Groovy Test Suite

Normally as the number of unit tests increases, it would become difficult to keep on executing

all the test cases one by one. Hence Groovy provides a facility to create a test suite that can

encapsulate all test cases into one logicial unit. The following codesnippet shows how this can
be achieved. The following things should be noted about the code

 The GroovyTestSuite is used to encapsulate all test cases into one.

 In the following example, we are assuming that we have two tests case files, one called

StudentTest and the other is EmployeeTest which contains all of the necessary

testing.

import groovy.util.GroovyTestSuite

import junit.framework.Test

import junit.textui.TestRunner

class AllTests {

 static Test suite() {

 def allTests = new GroovyTestSuite()

 allTests.addTestSuite(StudentTest.class)

 allTests.addTestSuite(EmployeeTest.class)

 return allTests

 }

}

TestRunner.run(AllTests.suite())

Groovy Programming

203

Groovy’s template engine operates like a mail merge (the automatic addition of names and

addresses from a database to letters and envelopes in order to facilitate sending mail, especially

advertising, to many addresses) but it is much more general.

Simple Templating in Strings

If you take the simple example below, we are first defining a name variable to hold the string

“Groovy”. In the println statement, we are using $ symbol to define a parameter or template
where a value can be inserted.

def name = "Groovy"
println "This Tutorial is about ${name}"

If the above code is executed in groovy, the following output will be shown. The output clearly
shows that the $name was replaced by the value which was assigned by the def statement.

Simple Template Engine

Following is an example of the SimpleTemplateEngine that allows you to use JSP-like scriptlets

and EL expressions in your template in order to generate parametrized text. The templating

engine allows you to bind a list of parameters and their values so that they can be replaced in
the string which has the defined placeholders.

def text ='This Tutorial focuses on $TutorialName. In this tutorial you will learn
about $Topic'

def binding = ["TutorialName":"Groovy", "Topic":"Templates"]

def engine = new groovy.text.SimpleTemplateEngine()
def template = engine.createTemplate(text).make(binding)
println template

If the above code is executed in groovy, the following output will be shown.

Let’s now use the templating feature for an XML file. As a first step let’s add the following code

to a file called Student.template. In the following file you will notice that we have not added the

actual values for the elements, but placeholders. So $name,$is and $subject are all put as
placeholders which will need to replaced at runtime.

<Student>

<name>${name}</name>

<ID>${id}</ID>

<subject>${subject}</subject>

</Student>

33. Groovy – Template Engines

Groovy Programming

204

Now let’s add our Groovy script code to add the functionality which can be used to replace the

above template with actual values. The following things should be noted about the following
code

1) The mapping of the place-holders to actual values is done through a binding and a

SimpleTemplateEngine. The binding is a Map with the place-holders as keys and the

replacements as the values

import groovy.text.*

import java.io.*

def file = new File("D:/Student.template")

def binding = ['name' : 'Joe',

 'id' : 1,

 'subject' : 'Physics'

]

def engine = new SimpleTemplateEngine()

def template = engine.createTemplate(file)

def writable = template.make(binding)

println writable

If the above code is executed in groovy, the following output will be shown. From the output it
can be seen that the values are successfully replaced in the relevant placeholders.

<Student>

<name>Joe</name>

<ID>1</ID>

<subject>Physics</subject>

</Student>

StreamingTemplateEngine

The StreamingTemplateEngine engine is another templating engine available in Groovy. This is

kind of equivalent to the SimpleTemplateEngine, but creates the template using writeable

closures making it more scalable for large templates. Specifically this template engine can handle
strings larger than 64k.

Following is an example of how StreamingTemplateEngine are used:

def text = '''This Tutorial is <% out.print TutorialName %> The Topic name is
${TopicName}'''
def template = new groovy.text.StreamingTemplateEngine().createTemplate(text)

def binding = [
 TutorialName : "Groovy",
 TopicName : "Templates",
]

Groovy Programming

205

String response = template.make(binding)
println(response)

If the above code is executed in groovy, the following output will be shown

This Tutorial is Groovy The Topic name is Templates

XMLTemplateEngine

The XmlTemplateEngine is used in templating scenarios where both the template source and the

expected output are intended to be XML. Templates use the normal ${expression} and $variable
notations to insert an arbitrary expression into the template.

Following is an example of how XMLTemplateEngine is used

def binding = [StudentName: 'Joe', id: 1, subject: 'Physics']
def engine = new groovy.text.XmlTemplateEngine()
def text = '''\
 <document xmlns:gsp='http://groovy.codehaus.org/2005/gsp'>
 <Student>
 <name>${StudentName}</name>
 <ID>${id}</ID>
 <subject>${subject}</subject>
 </Student>
 </document>
'''
def template = engine.createTemplate(text).make(binding)
println template.toString()

If the above code is executed in groovy, the following output will be shown

<document>

 <Student>

 <name>

 Joe

 </name>

 <ID>

 1

 </ID>

 <subject>

 Physics

 </subject>

 </Student>

</document>

Groovy Programming

206

Meta object programming or MOP can be used to invoke methods dynamically and also create
classes and methods on the fly.

So what does this mean? Let’s consider a class called Student, which is kind of an empty class

with no member variables or methods. Suppose if you had to invoke the following statements

on this class

Def myStudent = new Student()

myStudent.Name=”Joe”;

myStudent.Display()

Now in meta object programming, even though the class does not have the member variable
Name or the method Display(), the above code will still work.

How can this work? Well, for this to work out, one has to implement the GroovyInterceptable

interface to hook into the execution process of Groovy. Following are the methods available for

this interface

Public interface GroovyInterceptable {

Public object invokeMethod(String methodName, Object args)

Public object getproperty(String propertyName)

Public object setProperty(String propertyName, Object newValue)

Public MetaClass getMetaClass()

Public void setMetaClass(MetaClass metaClass)

}

So in the above interface description, suppose if you had to implement the invokeMethod(), it
would be called for every method which either exists or does not exist.

Missing Properties

So let’s look an example of how we can implement Meta Object Programming for missing

Properties. The following keys things should be noted about the following code

 The class Student has no member variable called Name or ID defined.

 The class Student implements the GroovyInterceptable interface

 There is a parameter called dynamicProps which will be used to hold the value of the

member variables which are created on the fly.

 The methods getproperty and setproperty have been implemented to get and set the

values of the property’s of the class at runtime.

class Example
{
 static void main(String[] args)

34. Groovy – Meta Object Programming

Groovy Programming

207

 {
 Student mst=new Student();
 mst.Name="Joe";
 mst.ID=1;
 println(mst.Name);
 println(mst.ID);
 }
}
class Student implements GroovyInterceptable
{
protected dynamicProps=[:]
 void setProperty(String pName,val)
 {
 dynamicProps[pName]=val
 }
 def getProperty(String pName)
 {
 dynamicProps[pName]
 }
}

The output of the following code would be:

Joe

1

Missing methods

So let’s look an example of how we can implement Meta Object Programming for missing
Properties. The following keys things should be noted about the following code:

1) The class Student now implememts the invokeMethod method which gets called

irrespective of whether the method exists or not.

class Example
{
 static void main(String[] args)
 {
 Student mst=new Student();
 mst.Name="Joe";
 mst.ID=1;
 println(mst.Name);
 println(mst.ID);
 mst.AddMarks();
 }
}
class Student implements GroovyInterceptable {
 protected dynamicProps = [:]

 void setProperty(String pName, val) {
 dynamicProps[pName] = val
 }

 def getProperty(String pName) {
 dynamicProps[pName]
 }

Groovy Programming

208

 def invokeMethod(String name, Object args) {
 return "called invokeMethod $name $args"
 }

 }

The output of the following codewould be shown below. Note that there is no error of missing
Method Exception even though the method Display does not exist.

Joe

1

Metaclass

This functionality is related to the MetaClass implementation. In the default implementation you

can access fields without invoking their getters and setters. The following example shows how

by using the metaClass function we are able to change the value of the private variables in the
class.

class Example
{
 static void main(String[] args)
 {
 Student mst=new Student();
 println mst.getName()
 mst.metaClass.setAttribute(mst, 'name', 'Mark')
 println mst.getName()
 }
}
class Student {
 private String name="Joe";
 public String getName()
 {
 return this.name;
 }
}

The output of the following code would be:

Joe

Mark

Groovy Programming

209

Method Missing

Groovy supports the concept of methodMissing. This method differs from invokeMethod in that

it is only invoked in case of a failed method dispatch, when no method can be found for the

given name and/or the given arguments. The following example shows how the methodMissing
can be used.

class Example
{
 static void main(String[] args)
 {
 Student mst=new Student();
 mst.Name="Joe";
 mst.ID=1;
 println(mst.Name);
 println(mst.ID);
 mst.AddMarks();
 }
}
class Student implements GroovyInterceptable {
 protected dynamicProps = [:]

 void setProperty(String pName, val) {
 dynamicProps[pName] = val
 }

 def getProperty(String pName) {
 dynamicProps[pName]
 }

 def methodMissing(String name, def args) {
 println "Missing method"
 }

}

The output of the following code would be:

Joe

1

Missing method

