

i

About the Tutorial

Ruby is a scripting language designed by Yukihiro Matsumoto, also known as

Matz. It runs on a variety of platforms, such as Windows, Mac OS, and the

various versions of UNIX.

This tutorial gives a complete understanding on Ruby.

Audience

This tutorial has been prepared for beginners to help them understand the basic

to advanced concepts related to Ruby Scripting languages.

Prerequisites

Before you start practicing with various types of examples given in this tutorial,

we are making an assumption that you are already aware of computer programs

and programming languages in general.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,

copy, distribute or republish any contents or a part of contents of this e-book in

any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial.

If you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ..

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. OVERVIEW .. 1

Features of Ruby ... 1

Tools You Will Need .. 2

What is Next? ... 2

2. ENVIRONMENT SETUP .. 3

Try it Option Online .. 3

Local Environment Setup .. 3

Ruby Installation on Linux/Unix .. 4

Using yum to Install Ruby ... 4

Ruby Installation on Windows .. 5

Ruby Command Line Options .. 5

Ruby Environment Variables ... 8

Popular Ruby Editors .. 10

Interactive Ruby (IRb) ... 10

What is Next? ... 11

3. SYNTAX ... 12

Whitespace in Ruby Program .. 12

Line Endings in Ruby Program ... 12

Ruby Identifiers .. 13

iii

Reserved Words .. 13

Here Document in Ruby .. 13

Ruby BEGIN Statement ... 15

Ruby END Statement .. 15

Ruby Comments .. 16

4. CLASSES AND OBJECTS .. 18

Defining a Class in Ruby .. 19

Variables in a Ruby Class ... 19

Creating Objects in Ruby Using new Method .. 20

Custom Method to Create Ruby Objects ... 20

Member Functions in Ruby Class .. 21

Simple Case Study ... 22

5. VARIABLES, CONSTANTS AND LITERALS .. 26

Ruby Global Variables ... 26

Ruby Instance Variables .. 27

Ruby Class Variables ... 28

Ruby Local Variables ... 29

Ruby Constants ... 29

Ruby Pseudo-Variables ... 30

Ruby Basic Literals .. 30

Integer Numbers ... 31

Floating Numbers.. 31

String Literals .. 31

Backslash Notations .. 32

Ruby Arrays .. 33

Ruby Hashes ... 34

iv

Ruby Ranges ... 34

6. OPERATORS ... 36

Ruby Arithmetic Operators ... 36

Ruby Comparison Operators ... 37

Ruby Assignment Operators ... 38

Ruby Parallel Assignment.. 39

Ruby Bitwise Operators .. 39

Ruby Logical Operators ... 40

Ruby Ternary Operator ... 41

Ruby Range Operators .. 41

Ruby defined? Operators .. 42

Ruby Dot "." and Double Colon "::" Operators .. 43

Ruby Operators Precedence .. 44

7. COMMENTS .. 47

Ruby Multiline Comments .. 47

8. IF…ELSE, CASE, UNLESS ... 49

Ruby if...else Statement ... 49

Ruby if modifier .. 50

Ruby unless Statement ... 50

Ruby unless modifier .. 51

Ruby case Statement .. 52

9. LOOPS ... 54

Ruby while Statement .. 54

Ruby while modifier ... 55

Ruby until Statement .. 56

v

Ruby until modifier ... 56

Ruby for Statement .. 57

Ruby break Statement .. 59

Ruby next Statement .. 59

Ruby redo Statement ... 60

Ruby retry Statement ... 61

10. METHODS ... 63

Return Values from Methods .. 64

Ruby return Statement ... 65

Variable Number of Parameters ... 66

Class Methods ... 67

Ruby alias Statement .. 67

Ruby undef Statement .. 68

11. BLOCKS.. 69

The yield Statement ... 69

Blocks and Methods .. 71

BEGIN and END Blocks .. 72

12. MODULES AND MIXINS ... 73

Ruby require Statement ... 74

Ruby include Statement ... 75

Mixins in Ruby .. 76

13. STRINGS .. 79

Expression Substitution .. 79

General Delimited Strings ... 80

Escape Characters ... 80

vi

Character Encoding ... 81

String Built-in Methods ... 81

String unpack Directives.. 92

14. ARRAYS ... 96

Creating Arrays ... 96

Array Built-in Methods ... 98

Array pack Directives .. 107

15. HASHES ... 111

Creating Hashes .. 111

Hash Built-in Methods .. 112

16. DATE AND TIME .. 118

Getting Current Date and Time ... 118

Getting Components of a Date & Time.. 118

Time.utc, Time.gm and Time.local Functions ... 119

Timezones and Daylight Savings Time ... 121

Formatting Times and Dates ... 121

Time Formatting Directives ... 122

Time Arithmetic .. 123

17. RANGES ... 125

Ranges as Sequences .. 125

Ranges as Conditions .. 127

Ranges as Intervals ... 128

18. ITERATORS .. 129

Ruby each Iterator .. 129

Ruby collect Iterator ... 130

vii

19. FILE I/O.. 132

The puts Statement .. 132

The gets Statement .. 132

The putc Statement .. 133

The print Statement ... 133

Opening and Closing Files ... 134

The File.new Method .. 134

The File.open Method .. 134

Reading and Writing Files ... 135

The sysread Method ... 135

The syswrite Method .. 136

The each_byte Method ... 136

The IO.readlines Method .. 137

The IO.foreach Method .. 137

Renaming and Deleting Files ... 138

File Modes and Ownership ... 138

File Inquiries ... 140

Directories in Ruby .. 141

Navigating Through Directories ... 141

Creating a Directory .. 142

Deleting a Directory .. 142

Creating Files & Temporary Directories ... 142

Built-in Functions .. 143

File Class and Methods ... 143

Directory Class and Methods .. 149

20. EXCEPTIONS .. 152

viii

Using retry Statement .. 153

Using raise Statement .. 154

Using ensure Statement ... 156

Using else Statement .. 157

Catch and Throw ... 158

Class Exception ... 160

21. RUBY OBJECT ORIENTED ... 162

Ruby Class Definition .. 162

Define Ruby Objects ... 162

The initialize Method .. 163

The instance Variables .. 163

The accessor & setter Methods ... 163

The instance Methods ... 166

The class Methods and Variables .. 167

The to_s Method... 168

Access Control .. 169

Class Inheritance ... 170

Methods Overriding .. 172

Operator Overloading ... 173

Freezing Objects.. 174

Class Constants ... 175

Create Object Using Allocate... 177

Class Information .. 178

22. REGULAR EXPRESSIONS ... 179

Regular-Expression Modifiers ... 179

Regular-Expression Patterns ... 180

ix

Regular-Expression Examples .. 183

Anchors ... 186

Special Syntax with Parentheses ... 187

Search and Replace ... 187

23. DBI .. 189

Architecture of a DBI Application .. 189

Prerequisites ... 190

Obtaining and Installing Ruby/DBI .. 190

Database Connection .. 191

INSERT Operation ... 192

Using do Statement .. 192

Using prepare and execute ... 194

READ Operation .. 195

Fetching the Result ... 197

Update Operation ... 203

DELETE Operation ... 204

Performing Transactions ... 205

COMMIT Operation .. 206

ROLLBACK Operation .. 206

Disconnecting Database .. 206

Handling Errors ... 207

Code Blocks with Methods .. 208

Driver-specific Functions and Attributes ... 209

24. WEB APPLICATIONS .. 212

Writing CGI Scripts .. 212

Using cgi.rb ... 212

x

Form Processing .. 213

Creating Forms and HTML ... 215

Quoting Strings ... 216

Useful Methods in CGI Class .. 217

Ruby CGI ... 217

Cookies and Sessions .. 223

Ruby CGI Cookies .. 224

Ruby CGI Sessions ... 226

Web Hosting Servers ... 228

25. SENDING EMAIL .. 229

Sending an HTML e-mail using Ruby ... 231

Sending Attachments as an e-mail .. 231

26. SOCKET PROGRAMMING ... 234

What are Sockets? .. 234

A Simple Client .. 235

A Simple Server ... 236

Multi-Client TCP Servers ... 236

A Tiny Web Browser ... 237

Further Readings ... 238

27. XML, XSLT, XPATH ... 239

What is XML? .. 239

XML Parser Architectures and APIs ... 239

Parsing and Creating XML using Ruby ... 239

DOM-like Parsing .. 241

SAX-like Parsing .. 242

xi

XPath and Ruby .. 244

XSLT and Ruby .. 245

Further Reading .. 247

28. WEB SERVICES ... 248

What is SOAP? .. 248

Installing SOAP4R.. 248

Writing SOAP4R Servers .. 249

Writing SOAP4R Clients ... 252

29. TK GUIDE ... 255

Introduction .. 255

Installation .. 255

Simple Tk Application ... 255

Ruby/Tk Widget Classes .. 256

TkFrame .. 257

TkButton ... 260

TkLabel ... 264

TkEntry ... 267

TkCheckButton.. 273

TkRadioButton .. 277

TkListbox ... 282

TkComboBox ... 290

TkMenu .. 291

TkMenubutton .. 298

Tk.messageBox ... 303

TkScrollbar .. 304

TkCanvas ... 310

xii

TkScale .. 320

TkText ... 326

TkToplevel .. 331

TkSpinbox ... 333

TkProgressBar ... 340

Dialog Box ... 343

Tk::Tile::Notebook .. 345

Tk::Tile::Paned .. 348

Tk::Tile::Separator .. 351

Ruby/Tk Font, Colors, and Images ... 353

Standard Configuration Options ... 357

Ruby/Tk Geometry Management ... 362

grid ... 363

Pack .. 364

Place ... 366

Ruby/Tk Event Handling ... 367

The configure Method .. 369

The cget Method .. 370

30. LDAP ... 371

Ruby/LDAP Installation ... 371

Establish LDAP Connection.. 371

Adding an LDAP Entry ... 373

Modifying an LDAP Entry .. 375

Deleting an LDAP Entry ... 376

Modifying the Distinguished Name ... 377

Performing a Search .. 378

xiii

Handling Errors ... 379

Further Reading .. 380

31. MULTITHREADING... 381

Creating Ruby Threads .. 381

Thread Lifecycle .. 382

Threads and Exceptions .. 383

Thread Variables ... 383

Thread Priorities ... 384

Thread Exclusion ... 385

Handling Deadlock .. 387

Thread States .. 388

Thread Class Methods ... 388

Thread Instance Methods ... 390

32. BUILT-IN FUNCTIONS .. 394

Functions for Numbers.. 401

Functions for Float .. 404

Functions for Math ... 405

Conversion Field Specifier ... 406

Test Function Arguments .. 408

33. PREDEFINED VARIABLES .. 411

34. PREDEFINED CONSTANTS .. 415

35. ASSOCIATED TOOLS... 417

Standard Ruby Tools ... 417

RubyGems... 417

Ruby Debugger ... 421

xiv

Interactive Ruby .. 425

Ruby Profiler ... 428

Additional Ruby Tools ... 429

eRuby: Embeded Ruby .. 429

ri: Ruby Interactive Reference ... 431

Ruby

1

Ruby is a pure object-oriented programming language. It was created in 1993

by Yukihiro Matsumoto of Japan.

You can find the name Yukihiro Matsumoto on the Ruby mailing list at

www.ruby-lang.org. Matsumoto is also known as Matz in the Ruby community.

Ruby is "A Programmer's Best Friend".

Ruby has features that are similar to those of Smalltalk, Perl, and Python. Perl,

Python, and Smalltalk are scripting languages. Smalltalk is a true object-

oriented language. Ruby, like Smalltalk, is a perfect object-oriented language.

Using Ruby syntax is much easier than using Smalltalk syntax.

Features of Ruby

 Ruby is an open-source and is freely available on the Web, but it is

subject to a license.

 Ruby is a general-purpose, interpreted programming language.

 Ruby is a true object-oriented programming language.

 Ruby is a server-side scripting language similar to Python and PERL.

 Ruby can be used to write Common Gateway Interface (CGI) scripts.

 Ruby can be embedded into Hypertext Markup Language (HTML).

 Ruby has a clean and easy syntax that allows a new developer to learn

very quickly and easily.

 Ruby has similar syntax to that of many programming languages such as

C++ and Perl.

 Ruby is very much scalable and big programs written in Ruby are easily

maintainable.

 Ruby can be used for developing Internet and intranet applications.

 Ruby can be installed in Windows and POSIX environments.

 Ruby support many GUI tools such as Tcl/Tk, GTK, and OpenGL.

 Ruby can easily be connected to DB2, MySQL, Oracle, and Sybase.

 Ruby has a rich set of built-in functions, which can be used directly into

Ruby scripts.

1. OVERVIEW

Ruby

2

Tools You Will Need

For performing the examples discussed in this tutorial, you will need a latest

computer like Intel Core i3 or i5 with a minimum of 2GB of RAM (4GB of RAM

recommended). You also will need the following software:

 Linux or Windows 95/98/2000/NT or Windows 7 operating system

 Apache 1.3.19-5 Web server

 Internet Explorer 5.0 or above Web browser

 Ruby 1.8.5

This tutorial will provide the necessary skills to create GUI, networking, and Web

applications using Ruby. It also will talk about extending and embedding Ruby

applications.

What is Next?

The next chapter guides you to where you can obtain Ruby and its

documentation. Finally, it instructs you on how to install Ruby and prepare an

environment to develop Ruby applications.

Ruby

3

Try it Option Online

We already have set up Ruby Programming environment online, so that you can

execute almost all the tutorial examples online at the same time when you are

doing your theory work. This gives you confidence in what you are reading and

to check the result with different options. Feel free to modify any example and

execute it online.

Try the following example using the Try it option available on our website at the

top right corner of the sample code box given below:

#!/usr/bin/ruby -w

puts "Hello, Ruby!";

For most of the examples given in this tutorial, you will find a Try it option on

our website code sections at the top right corner that will take you to the online

compiler. So just make use of it and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for Ruby programming

language, then let's proceed. This tutorial will teach you all the important topics

related to environment setup. We would recommend you to go through the

following topics first and then proceed further:

 Ruby Installation on Linux/Unix : If you are planning to have your

development environment on Linux/Unix Machine, then go through this

chapter.

 Ruby Installation on Windows : If you are planning to have your

development environment on Windows Machine, then go through this

chapter.

 Ruby Command Line Options : This chapter list out all the command

line options, which you can use along with Ruby interpreter.

 Ruby Environment Variables : This chapter has a list of all the

important environment variables to be set to make Ruby Interpreter

works.

2. ENVIRONMENT SETUP

Ruby

4

Ruby Installation on Linux/Unix

Here are the steps to be followed to install Ruby on a Unix machine:

NOTE: Before proceeding, make sure you have root privilege.

 Download a zipped file having latest version of Ruby. Follow Download

Link.

 After having downloaded the Ruby archive, unpack it and change into the

newly created directory:

$ tar -xvzf ruby-1.6.7.tgz

$ cd ruby-1.6.7

 Now, configure and compile the source code as follows:

$./configure

$ make

 Finally, install Ruby interpreter as follows:

$ su -l root # become a root user

$ make install

$ exit # become the original user again

 After installation, make sure everything is working fine by issuing the

following command on the command-line:

$ruby -v

ruby 1.6.7 (2002-06-04) [i386-netbsd]

 If everything is fine, this should output the version of the installed Ruby

interpreter as shown above. You may have installed different version, so it

will display a different version.

Using yum to Install Ruby

If your computer is connected to the Internet, then the easiest way to install

Ruby or any other other RPM is using the yum utility. Give the following

command at the command prompt and you will find Ruby gets installed on your

computer.

$ yum install ruby

Ruby

5

Ruby Installation on Windows

Here are the steps to install Ruby on a Windows machine.

NOTE: You may have different versions available at the time of installation.

 Download a zipped file having latest version of Ruby. Follow Download

Link.

 After having downloaded the Ruby archive, unpack it and change into the

newly created directory:

 Double-click the Ruby1.6.7.exe file. The Ruby installation wizard starts.

 Click Next to move to the Important Information page of the wizard and

keep moving till Ruby installer completes installing Ruby.

You may need to set some environment variables if your installation has not

setup them appropriately.

 If you use Windows 9x, add the following lines to your c:\autoexec.bat:

set PATH="D:\(ruby install directory)\bin;%PATH%"

 Windows NT/2000 users need to modify their registries.

o Click Control Panel | System Properties | Environment Variables.

o Under System Variables, select Path and click EDIT.

o Add your Ruby directory to the end of the Variable Value list and click

OK.

o Under System Variables, select PATHEXT and click EDIT.

o Add .RB and .RBW to the Variable Value list and click OK.

 After installation, make sure everything is working fine by issuing the

following command on the command-line:

$ruby -v

ruby 1.6.7

 If everything is fine, this should output the version of the installed Ruby

interpreter as shown above. You may have installed different version, so it

will display a different version.

Ruby Command Line Options

Ruby is generally run from the command line in the following way:

$ ruby [options] [.] [programfile] [arguments ...]

Ruby

6

The interpreter can be invoked with any of the following options to control the

environment and behavior of the interpreter.

Option Description

-a Used with -n or -p to split each line. Check -n and -p options.

-c Checks syntax only, without executing program.

-C dir Changes directory before executing (equivalent to -X).

-d Enables debug mode (equivalent to -debug).

-F pat Specifies pat as the default separator pattern ($;) used by split.

-e prog Specifies prog as the program from the command line. Specify

multiple -e options for multiline programs.

-h Displays an overview of command-line options.

-i [ext] Overwrites the file contents with program output. The original

file is saved with the extension ext. If ext isn't specified, the

original file is deleted.

-I dir Adds dir as the directory for loading libraries.

-K [kcode] Specifies the multibyte character set code (e or E for EUC

(extended Unix code); s or S for SJIS (Shift-JIS); u or U for UTF-

8; and a, A, n, or N for ASCII).

-l Enables automatic line-end processing. Chops a newline from

input lines and appends a newline to output lines.

-n Places code within an input loop (as in while gets; ... end).

-0[octal] Sets default record separator ($/) as an octal. Defaults to \0 if

octal not specified.

-p Places code within an input loop. Writes $_ for each iteration.

Ruby

7

-r lib Uses require to load lib as a library before executing.

-s Interprets any arguments between the program name and

filename arguments fitting the pattern -xxx as a switch and

defines the corresponding variable.

-T [level] Sets the level for tainting checks (1 if level not specified).

-v Displays version and enables verbose mode

-w Enables verbose mode. If program file not specified, reads from

STDIN.

-x [dir] Strips text before #!ruby line. Changes directory to dir before

executing if dir is specified.

-X dir Changes directory before executing (equivalent to -C).

-y Enables parser debug mode.

--copyright Displays copyright notice.

--debug Enables debug mode (equivalent to -d).

--help Displays an overview of command-line options (equivalent to -

h).

--version Displays version.

--verbose Enables verbose mode (equivalent to -v). Sets $VERBOSE to

true.

--yydebug Enables parser debug mode (equivalent to -y).

Ruby

8

Single character command-line options can be combined. The following two lines

express the same meaning:

$ruby -ne 'print if /Ruby/' /usr/share/bin

$ruby -n -e 'print if /Ruby/' /usr/share/bin

Ruby Environment Variables

Ruby interpreter uses the following environment variables to control its

behavior. The ENV object contains a list of all the current environment variables

set.

Variable Description

DLN_LIBRARY_PATH Search path for dynamically loaded modules.

HOME Directory moved to when no argument is passed to

Dir::chdir. Also used by File::expand_path to expand

"~".

LOGDIR Directory moved to when no arguments are passed

to Dir::chdir and environment variable HOME isn't

set.

PATH Search path for executing subprocesses and

searching for Ruby programs with the -S option.

Separate each path with a colon (semicolon in DOS

and Windows).

RUBYLIB Search path for libraries. Separate each path with a

colon (semicolon in DOS and Windows).

RUBYLIB_PREFIX Used to modify the RUBYLIB search path by replacing

prefix of library path1 with path2 using the format

path1;path2 or path1path2.

RUBYOPT Command-line options passed to Ruby interpreter.

Ignored in taint mode (Where $SAFE is greater than

0).

Ruby

9

RUBYPATH With -S option, search path for Ruby programs.

Takes precedence over PATH. Ignored in taint mode

(where $SAFE is greater than 0).

RUBYSHELL Specifies shell for spawned processes. If not set,

SHELL or COMSPEC are checked.

For Unix, use env command to see a list of all the environment variables.

HOSTNAME=ip-72-167-112-17.ip.secureserver.net

RUBYPATH=/usr/bin

SHELL=/bin/bash

TERM=xterm

HISTSIZE=1000

SSH_CLIENT=122.169.131.179 1742 22

SSH_TTY=/dev/pts/1

USER=amrood

JRE_HOME=/usr/java/jdk/jre

J2RE_HOME=/usr/java/jdk/jre

PATH=/usr/local/bin:/bin:/usr/bin:/home/guest/bin

MAIL=/var/spool/mail/guest

PWD=/home/amrood

INPUTRC=/etc/inputrc

JAVA_HOME=/usr/java/jdk

LANG=C

HOME=/root

SHLVL=2

JDK_HOME=/usr/java/jdk

LOGDIR=/usr/log/ruby

LOGNAME=amrood

SSH_CONNECTION=122.169.131.179 1742 72.167.112.17 22

LESSOPEN=|/usr/bin/lesspipe.sh %s

RUBYLIB=/usr/lib/ruby

G_BROKEN_FILENAMES=1

Ruby

10

_=/bin/env

Popular Ruby Editors

To write your Ruby programs, you will need an editor:

 If you are working on Windows machine, then you can use any simple text

editor like Notepad or Edit plus.

 VIM (Vi IMproved) is a very simple text editor. This is available on almost

all Unix machines and now Windows as well. Otherwise, your can use your

favorite vi editor to write Ruby programs.

 RubyWin is a Ruby Integrated Development Environment (IDE) for

Windows.

 Ruby Development Environment (RDE) is also a very good IDE for

windows users.

Interactive Ruby (IRb)

Interactive Ruby (IRb) provides a shell for experimentation. Within the IRb shell,

you can immediately view expression results, line by line.

This tool comes along with Ruby installation so you have nothing to do extra to

have IRb working.

Just type irb at your command prompt and an Interactive Ruby Session will start

as given below:

$irb

irb 0.6.1(99/09/16)

irb(main):001:0> def hello

irb(main):002:1> out = "Hello World"

irb(main):003:1> puts out

irb(main):004:1> end

nil

irb(main):005:0> hello

Hello World

nil

irb(main):006:0>

Do not worry about what we did here. You will learn all these steps in

subsequent chapters.

Ruby

11

What is Next?

We assume now you have a working Ruby Environment and you are ready to

write the first Ruby Program. The next chapter will teach you how to write Ruby

programs.

Ruby

12

Let us write a simple program in ruby. All ruby files will have extension .rb. So,

put the following source code in a test.rb file.

#!/usr/bin/ruby -w

puts "Hello, Ruby!";

Here, we assumed that you have Ruby interpreter available in /usr/bin directory.

Now, try to run this program as follows:

$ ruby test.rb

This will produce the following result:

Hello, Ruby!

You have seen a simple Ruby program, now let us see a few basic concepts

related to Ruby Syntax.

Whitespace in Ruby Program

Whitespace characters such as spaces and tabs are generally ignored in Ruby

code, except when they appear in strings. Sometimes, however, they are used

to interpret ambiguous statements. Interpretations of this sort produce warnings

when the -w option is enabled.

Example

a + b is interpreted as a+b (Here a is a local variable)

a +b is interpreted as a(+b) (Here a is a method call)

Line Endings in Ruby Program

Ruby interprets semicolons and newline characters as the ending of a statement.

However, if Ruby encounters operators, such as +, -, or backslash at the end of

a line, they indicate the continuation of a statement.

3. SYNTAX

Ruby

13

Ruby Identifiers

Identifiers are names of variables, constants, and methods. Ruby identifiers are

case sensitive. It means Ram and RAM are two different identifiers in Ruby.

Ruby identifier names may consist of alphanumeric characters and the

underscore character (_).

Reserved Words

The following list shows the reserved words in Ruby. These reserved words may

not be used as constant or variable names. They can, however, be used as

method names.

BEGIN do next then

END else nil true

alias elsif not undef

and end or unless

begin ensure redo until

break false rescue when

case for retry while

class if return while

def in self __FILE__

defined? module super __LINE__

Here Document in Ruby

"Here Document" refers to build strings from multiple lines. Following a << you

can specify a string or an identifier to terminate the string literal, and all lines

following the current line up to the terminator are the value of the string.

Ruby

14

If the terminator is quoted, the type of quotes determines the type of the line-

oriented string literal. Notice there must be no space between << and the

terminator.

Here are different examples:

#!/usr/bin/ruby -w

print <<EOF

 This is the first way of creating

 here document ie. multiple line string.

EOF

print <<"EOF"; # same as above

 This is the second way of creating

 here document ie. multiple line string.

EOF

print <<`EOC` # execute commands

 echo hi there

 echo lo there

EOC

print <<"foo", <<"bar" # you can stack them

 I said foo.

foo

 I said bar.

bar

This will produce the following result:

 This is the first way of creating

 her document ie. multiple line string.

 This is the second way of creating

 her document ie. multiple line string.

hi there

lo there

Ruby

15

 I said foo.

 I said bar.

Ruby BEGIN Statement

Syntax

BEGIN {

 code

}

Declares code to be called before the program is run.

Example

#!/usr/bin/ruby

puts "This is main Ruby Program"

BEGIN {

 puts "Initializing Ruby Program"

}

This will produce the following result:

Initializing Ruby Program

This is main Ruby Program

Ruby END Statement

Syntax

END {

 code

}

Declares code to be called at the end of the program.

Ruby

16

Example

#!/usr/bin/ruby

puts "This is main Ruby Program"

END {

 puts "Terminating Ruby Program"

}

BEGIN {

 puts "Initializing Ruby Program"

}

This will produce the following result:

Initializing Ruby Program

This is main Ruby Program

Terminating Ruby Program

Ruby Comments

A comment hides a line, part of a line, or several lines from the Ruby interpreter.

You can use the hash character (#) at the beginning of a line:

I am a comment. Just ignore me.

Or, a comment may be on the same line after a statement or expression:

name = "Madisetti" # This is again comment

You can comment multiple lines as follows:

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Ruby

17

Here is another form. This block comment conceals several lines from the

interpreter with =begin/=end:

=begin

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

=end

Ruby

18

Ruby is a perfect Object Oriented Programming Language. The features of the

object-oriented programming language include:

 Data Encapsulation

 Data Abstraction

 Polymorphism

 Inheritance

These features have been discussed in the chapter Object Oriented Ruby.

An object-oriented program involves classes and objects. A class is the blueprint

from which individual objects are created. In object-oriented terms, we say that

your bicycle is an instance of the class of objects known as bicycles.

Take the example of any vehicle. It comprises wheels, horsepower, and fuel or

gas tank capacity. These characteristics form the data members of the class

Vehicle. You can differentiate one vehicle from the other with the help of these

characteristics.

A vehicle can also have certain functions, such as halting, driving, and speeding.

Even these functions form the data members of the class Vehicle. You can,

therefore, define a class as a combination of characteristics and functions.

A class Vehicle can be defined as:

Class Vehicle

{

 Number no_of_wheels

 Number horsepower

 Characters type_of_tank

 Number Capacity

 Function speeding

 {

 }

 Function driving

 {

 }

 Function halting

4. CLASSES AND OBJECTS

Ruby

19

 {

 }

}

By assigning different values to these data members, you can form several

instances of the class Vehicle. For example, an airplane has three wheels,

horsepower of 1,000, fuel as the type of tank, and a capacity of 100 liters. In

the same way, a car has four wheels, horsepower of 200, gas as the type of

tank, and a capacity of 25 liters.

Defining a Class in Ruby

To implement object-oriented programming by using Ruby, you need to first

learn how to create objects and classes in Ruby.

A class in Ruby always starts with the keyword class followed by the name of the

class. The name should always be in initial capitals. The class Customer can be

displayed as:

class Customer

end

You terminate a class by using the keyword end. All the data members in the

class are between the class definition and the end keyword.

Variables in a Ruby Class

Ruby provides four types of variables:

 Local Variables: Local variables are the variables that are defined in a

method. Local variables are not available outside the method. You will see

more details about method in subsequent chapter. Local variables begin

with a lowercase letter or _.

 Instance Variables: Instance variables are available across methods for

any particular instance or object. That means that instance variables

change from object to object. Instance variables are preceded by the at

sign (@) followed by the variable name.

 Class Variables: Class variables are available across different objects. A

class variable belongs to the class and is a characteristic of a class. They

are preceded by the sign @@ and are followed by the variable name.

 Global Variables: Class variables are not available across classes. If you

want to have a single variable, which is available across classes, you need

to define a global variable. The global variables are always preceded by

the dollar sign ($).

Ruby

20

Example

Using the class variable @@no_of_customers, you can determine the number of

objects that are being created. This enables in deriving the number of

customers.

class Customer

 @@no_of_customers=0

end

Creating Objects in Ruby Using new Method

Objects are instances of the class. You will now learn how to create objects of a

class in Ruby. You can create objects in Ruby by using the method new of the

class.

The method new is a unique type of method, which is predefined in the Ruby

library. The new method belongs to the class methods.

Here is the example to create two objects cust1 and cust2 of the class

Customer:

cust1 = Customer. new

cust2 = Customer. new

Here, cust1 and cust2 are the names of two objects. You write the object name

followed by the equal to sign (=) after which the class name will follow. Then,

the dot operator and the keyword new will follow.

Custom Method to Create Ruby Objects

You can pass parameters to method new and those parameters can be used to

initialize class variables.

When you plan to declare the new method with parameters, you need to declare

the method initialize at the time of the class creation.

The initialize method is a special type of method, which will be executed when

the new method of the class is called with parameters.

Here is the example to create initialize method:

class Customer

Ruby

21

 @@no_of_customers=0

 def initialize(id, name, addr)

 @cust_id=id

 @cust_name=name

 @cust_addr=addr

 end

end

In this example, you declare the initialize method with id, name, and addr as

local variables. Here, def and end are used to define a Ruby method initialize. You

will learn more about methods in subsequent chapters.

In the initialize method, you pass on the values of these local variables to the

instance variables @cust_id, @cust_name, and @cust_addr. Here local variables

hold the values that are passed along with the new method.

Now, you can create objects as follows:

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Member Functions in Ruby Class

In Ruby, functions are called methods. Each method in a class starts with the

keyword def followed by the method name.

The method name always preferred in lowercase letters. You end a method in

Ruby by using the keyword end.

Here is the example to define a Ruby method:

class Sample

 def function

 statement 1

 statement 2

 end

end

Here, statement 1 and statement 2 are part of the body of the method function

inside the class Sample. These statements could be any valid Ruby statement.

For example, we can put a method puts to print Hello Ruby as follows:

class Sample

Ruby

22

 def hello

 puts "Hello Ruby!"

 end

end

Now in the following example, create one object of Sample class and call hello

method and see the result:

#!/usr/bin/ruby

class Sample

 def hello

 puts "Hello Ruby!"

 end

end

Now using above class to create objects

object = Sample. new

object.hello

This will produce the following result:

Hello Ruby!

Simple Case Study

Here is a case study if you want to do more practice with class and objects.

Ruby Class Case Study

For your case study, you will create a Ruby Class called Customer and you will

declare two methods:

 display_details: This method will display the details of the customer.

 total_no_of_customers: This method will display the total number of

customers created in the system.

#!/usr/bin/ruby

class Customer

Ruby

23

 @@no_of_customers=0

 def initialize(id, name, addr)

 @cust_id=id

 @cust_name=name

 @cust_addr=addr

 end

 def display_details()

 puts "Customer id #@cust_id"

 puts "Customer name #@cust_name"

 puts "Customer address #@cust_addr"

 end

 def total_no_of_customers()

 @@no_of_customers += 1

 puts "Total number of customers: #@@no_of_customers"

 end

end

The display_details method contains three puts statements, displaying the

Customer ID, the Customer name, and the Customer address. The puts

statement will display the text Customer id followed by the value of the variable

@cust_id in a single line as follows:

puts "Customer id #@cust_id"

When you want to display the text and the value of the instance variable in a

single line, you need to precede the variable name with the hash symbol (#) in

the puts statement. The text and the instance variable along with the hash

symbol (#) should be enclosed in double quotation marks.

The second method, total_no_of_customers, is a method that contains the class

variable @@no_of_customers. The expression @@no_of_ customers+=1 adds 1

to the variable no_of_customers each time the method total_no_of_customers is

called. In this way, you will always have the total number of customers in the

class variable.

Now, create two customers as follows:

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Ruby

24

Here, we create two objects of the Customer class as cust1 and cust2 and pass

the necessary parameters with the new method. The initialize method is

invoked, and the necessary properties of the object are initialized.

Once the objects are created, you need to call the methods of the class by using

the two objects. If you want to call a method or any data member, you write the

following:

cust1.display_details()

cust1.total_no_of_customers()

The object name should always be followed by a dot, which is in turn followed by

the method name or any data member. We have seen how to call the two

methods by using the cust1 object. Using the cust2 object, you can call both

methods as shown below:

cust2.display_details()

cust2.total_no_of_customers()

Save and Execute the Code

Now, put all this source code in the main.rb file as follows:

#!/usr/bin/ruby

class Customer

 @@no_of_customers=0

 def initialize(id, name, addr)

 @cust_id=id

 @cust_name=name

 @cust_addr=addr

 end

 def display_details()

 puts "Customer id #@cust_id"

 puts "Customer name #@cust_name"

 puts "Customer address #@cust_addr"

 end

 def total_no_of_customers()

 @@no_of_customers += 1

 puts "Total number of customers: #@@no_of_customers"

Ruby

25

 end

end

Create Objects

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Call Methods

cust1.display_details()

cust1.total_no_of_customers()

cust2.display_details()

cust2.total_no_of_customers()

Now, run this program as follows:

$ ruby main.rb

This will produce the following result:

Customer id 1

Customer name John

Customer address Wisdom Apartments, Ludhiya

Total number of customers: 1

Customer id 2

Customer name Poul

Customer address New Empire road, Khandala

Total number of customers: 2

Ruby

26

Variables are the memory locations, which hold any data to be used by any

program.

There are five types of variables supported by Ruby. You already have gone

through a small description of these variables in the previous chapter as well.

These five types of variables are explained in this chapter.

Ruby Global Variables

Global variables begin with $. Uninitialized global variables have the value nil and

produce warnings with the -w option.

Assignment to global variables alters the global status. It is not recommended to

use global variables. They make programs cryptic.

Here is an example showing the usage of global variable.

#!/usr/bin/ruby

$global_variable = 10

class Class1

 def print_global

 puts "Global variable in Class1 is #$global_variable"

 end

end

class Class2

 def print_global

 puts "Global variable in Class2 is #$global_variable"

 end

end

class1obj = Class1.new

class1obj.print_global

class2obj = Class2.new

class2obj.print_global

5. VARIABLES, CONSTANTS AND LITERALS

Ruby

27

Here $global_variable is a global variable. This will produce the following result:

NOTE: In Ruby, you CAN access value of any variable or constant by putting a

hash (#) character just before that variable or constant.

Global variable in Class1 is 10

Global variable in Class2 is 10

Ruby Instance Variables

Instance variables begin with @. Uninitialized instance variables have the value

nil and produce warnings with the -w option.

Here is an example showing the usage of Instance Variables.

#!/usr/bin/ruby

class Customer

 def initialize(id, name, addr)

 @cust_id=id

 @cust_name=name

 @cust_addr=addr

 end

 def display_details()

 puts "Customer id #@cust_id"

 puts "Customer name #@cust_name"

 puts "Customer address #@cust_addr"

 end

end

Create Objects

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Call Methods

cust1.display_details()

cust2.display_details()

Ruby

28

Here, @cust_id, @cust_name and @cust_addr are instance variables. This will

produce the following result:

Customer id 1

Customer name John

Customer address Wisdom Apartments, Ludhiya

Customer id 2

Customer name Poul

Customer address New Empire road, Khandala

Ruby Class Variables

Class variables begin with @@ and must be initialized before they can be used in

method definitions.

Referencing an uninitialized class variable produces an error. Class variables are

shared among descendants of the class or module in which the class variables

are defined.

Overriding class variables produce warnings with the -w option.

Here is an example showing the usage of class variable:

#!/usr/bin/ruby

class Customer

 @@no_of_customers=0

 def initialize(id, name, addr)

 @cust_id=id

 @cust_name=name

 @cust_addr=addr

 end

 def display_details()

 puts "Customer id #@cust_id"

 puts "Customer name #@cust_name"

 puts "Customer address #@cust_addr"

 end

 def total_no_of_customers()

 @@no_of_customers += 1

Ruby

29

 puts "Total number of customers: #@@no_of_customers"

 end

end

Create Objects

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Call Methods

cust1.total_no_of_customers()

cust2.total_no_of_customers()

Here @@no_of_customers is a class variable. This will produce the following

result:

Total number of customers: 1

Total number of customers: 2

Ruby Local Variables

Local variables begin with a lowercase letter or _. The scope of a local variable

ranges from class, module, def, or do to the corresponding end or from a block's

opening brace to its close brace {}.

When an uninitialized local variable is referenced, it is interpreted as a call to a

method that has no arguments.

Assignment to uninitialized local variables also serves as variable declaration.

The variables start to exist until the end of the current scope is reached. The

lifetime of local variables is determined when Ruby parses the program.

In the above example, local variables are id, name and addr.

Ruby Constants

Constants begin with an uppercase letter. Constants defined within a class or

module can be accessed from within that class or module, and those defined

outside a class or module can be accessed globally.

Constants may not be defined within methods. Referencing an uninitialized

constant produces an error. Making an assignment to a constant that is already

initialized produces a warning.

Ruby

30

#!/usr/bin/ruby

class Example

 VAR1 = 100

 VAR2 = 200

 def show

 puts "Value of first Constant is #{VAR1}"

 puts "Value of second Constant is #{VAR2}"

 end

end

Create Objects

object=Example.new()

object.show

Here VAR1 and VAR2 are constants. This will produce the following result:

Value of first Constant is 100

Value of second Constant is 200

Ruby Pseudo-Variables

They are special variables that have the appearance of local variables but

behave like constants. You cannot assign any value to these variables.

 self: The receiver object of the current method.

 true: Value representing true.

 false: Value representing false.

 nil: Value representing undefined.

 __FILE__: The name of the current source file.

 __LINE__: The current line number in the source file.

Ruby Basic Literals

The rules Ruby uses for literals are simple and intuitive. This section explains all

basic Ruby Literals.

Ruby

31

Integer Numbers

Ruby supports integer numbers. An integer number can range from -230 to 230-1

or -262 to 262-1. Integers within this range are objects of class Fixnum and

integers outside this range are stored in objects of class Bignum.

You write integers using an optional leading sign, an optional base indicator (0

for octal, 0x for hex, or 0b for binary), followed by a string of digits in the

appropriate base. Underscore characters are ignored in the digit string.

You can also get the integer value, corresponding to an ASCII character or

escape the sequence by preceding it with a question mark.

Example

123 # Fixnum decimal

1_234 # Fixnum decimal with underline

-500 # Negative Fixnum

0377 # octal

0xff # hexadecimal

0b1011 # binary

?a # character code for 'a'

?\n # code for a newline (0x0a)

12345678901234567890 # Bignum

NOTE: Class and Objects are explained in a separate chapter of this tutorial.

Floating Numbers

Ruby supports integer numbers. They are also numbers but with decimals.

Floating-point numbers are objects of class Float and can be any of the following:

Example

123.4 # floating point value

1.0e6 # scientific notation

4E20 # dot not required

4e+20 # sign before exponential

String Literals

Ruby strings are simply sequences of 8-bit bytes and they are objects of class

String. Double-quoted strings allow substitution and backslash notation but

Ruby

32

single-quoted strings don't allow substitution and allow backslash notation only

for \\ and \'

Example

#!/usr/bin/ruby -w

puts 'escape using "\\"';

puts 'That\'s right';

This will produce the following result:

escape using "\"

That's right

You can substitute the value of any Ruby expression into a string using the

sequence #{ expr }. Here, expr could be any ruby expression.

#!/usr/bin/ruby -w

puts "Multiplication Value : #{24*60*60}";

This will produce the following result:

Multiplication Value : 86400

Backslash Notations

Following is the list of Backslash notations supported by Ruby:

Notation Character represented

\n Newline (0x0a)

\r Carriage return (0x0d)

\f Formfeed (0x0c)

\b Backspace (0x08)

\a Bell (0x07)

Ruby

33

\e Escape (0x1b)

\s Space (0x20)

\nnn Octal notation (n being 0-7)

\xnn Hexadecimal notation (n being 0-9, a-f, or A-F)

\cx, \C-x Control-x

\M-x Meta-x (c | 0x80)

\M-\C-x Meta-Control-x

\x Character x

Ruby Arrays

Literals of Ruby Array are created by placing a comma-separated series of object

references between the square brackets. A trailing comma is ignored.

Example

#!/usr/bin/ruby

ary = ["fred", 10, 3.14, "This is a string", "last element",]

ary.each do |i|

 puts i

end

This will produce the following result:

fred

10

3.14

This is a string

last element

Ruby

34

Ruby Hashes

A literal Ruby Hash is created by placing a list of key/value pairs between

braces, with either a comma or the sequence => between the key and the

value. A trailing comma is ignored.

Example

#!/usr/bin/ruby

hsh = colors = { "red" => 0xf00, "green" => 0x0f0, "blue" => 0x00f }

hsh.each do |key, value|

 print key, " is ", value, "\n"

end

This will produce the following result:

green is 240

red is 3840

blue is 15

Ruby Ranges

A Range represents an interval.a set of values with a start and an end. Ranges

may be constructed using the s..e and s...e literals, or with Range.new.

Ranges constructed using .. run from the start to the end inclusively. Those

created using ... exclude the end value. When used as an iterator, ranges return

each value in the sequence.

A range (1..5) means it includes 1, 2, 3, 4, 5 values and a range (1...5) means it

includes 1, 2, 3, 4 values.

Example

#!/usr/bin/ruby

(10..15).each do |n|

 print n, ' '

Ruby

35

end

This will produce the following result:

10 11 12 13 14 15

Ruby

36

Ruby supports a rich set of operators, as you'd expect from a modern language.

Most operators are actually method calls. For example, a + b is interpreted as

a.+(b), where the + method in the object referred to by variable a is called with

b as its argument.

For each operator (+ - * / % ** & | ^ << >> && ||), there is a corresponding

form of abbreviated assignment operator (+= -= etc.).

Ruby Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

+ Addition - Adds values on either side of the

operator.

a + b will give

30

- Subtraction - Subtracts right hand operand from

left hand operand.

a - b will give -

10

* Multiplication - Multiplies values on either side of

the operator.

a * b will give

200

/ Division - Divides left hand operand by right hand

operand.

b / a will give

2

% Modulus - Divides left hand operand by right

hand operand and returns remainder.

b % a will give

0

** Exponent - Performs exponential (power)

calculation on operators.

a**b will give

10 to the

power 20

6. OPERATORS

Ruby

37

Ruby Comparison Operators

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

== Checks if the value of two operands are equal or

not, if yes then condition becomes true.

(a == b) is not

true.

!= Checks if the value of two operands are equal or

not, if values are not equal then condition

becomes true.

(a != b) is true.

> Checks if the value of left operand is greater

than the value of right operand, if yes then

condition becomes true.

(a > b) is not

true.

< Checks if the value of left operand is less than

the value of right operand, if yes then condition

becomes true.

(a < b) is true.

>= Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes then condition becomes true.

(a >= b) is not

true.

<= Checks if the value of left operand is less than or

equal to the value of right operand, if yes then

condition becomes true.

(a <= b) is

true.

<=> Combined comparison operator. Returns 0 if first

operand equals second, 1 if first operand is

greater than the second and -1 if first operand is

less than the second.

(a <=> b)

returns -1.

=== Used to test equality within a when clause of a

case statement.

(1...10) === 5

returns true.

.eql? True if the receiver and argument have both the

same type and equal values.

1 == 1.0

returns true,

but 1.eql?(1.0)

is false.

Ruby

38

equal? True if the receiver and argument have the

same object id.

if aObj is

duplicate of

bObj then aObj

== bObj is

true,

a.equal?bObj is

false but

a.equal?aObj is

true.

Ruby Assignment Operators

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

= Simple assignment operator, assigns values

from right side operands to left side operand.

c = a + b will

assign the

value of a + b

into c

+= Add AND assignment operator, adds right

operand to the left operand and assign the result

to left operand.

c += a is

equivalent to c

= c + a

-= Subtract AND assignment operator, subtracts

right operand from the left operand and assign

the result to left operand.

c -= a is

equivalent to c

= c - a

*= Multiply AND assignment operator, multiplies

right operand with the left operand and assign

the result to left operand.

c *= a is

equivalent to c

= c * a

/= Divide AND assignment operator, divides left

operand with the right operand and assign the

result to left operand.

c /= a is

equivalent to c

= c / a

%= Modulus AND assignment operator, takes

modulus using two operands and assign the

result to left operand.

c %= a is

equivalent to c

= c % a

Ruby

39

**= Exponent AND assignment operator, performs

exponential (power) calculation on operators and

assign value to the left operand.

c **= a is

equivalent to c

= c ** a

Ruby Parallel Assignment

Ruby also supports the parallel assignment of variables. This enables multiple

variables to be initialized with a single line of Ruby code. For example:

a = 10

b = 20

c = 30

This may be more quickly declared using parallel assignment:

a, b, c = 10, 20, 30

Parallel assignment is also useful for swapping the values held in two variables:

a, b = b, c

Ruby Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation.

Assume if a = 60; and b = 13; now in binary format they will be as follows:

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

Ruby

40

The following Bitwise operators are supported by Ruby language.

Operator Description Example

& Binary AND Operator copies a bit to the result

if it exists in both operands.

(a & b) will give

12, which is 0000

1100

| Binary OR Operator copies a bit if it exists in

either operand.

(a | b) will give

61, which is 0011

1101

^ Binary XOR Operator copies the bit if it is set

in one operand but not both.

(a ^ b) will give

49, which is 0011

0001

~ Binary Ones Complement Operator is unary

and has the effect of 'flipping' bits.

(~a) will give -

61, which is 1100

0011 in 2's

complement form

due to a signed

binary number.

<< Binary Left Shift Operator. The left operands

value is moved left by the number of bits

specified by the right operand.

a << 2 will give

240, which is

1111 0000

>> Binary Right Shift Operator. The left operands

value is moved right by the number of bits

specified by the right operand.

a >> 2 will give

15, which is 0000

1111

Ruby Logical Operators

The following logical operators are supported by Ruby language

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

and Called Logical AND operator. If both the

operands are true, then the condition

(a and b) is true.

Ruby

41

becomes true.

or Called Logical OR Operator. If any of the two

operands are non zero, then the condition

becomes true.

(a or b) is true.

&& Called Logical AND operator. If both the

operands are non zero, then the condition

becomes true.

(a && b) is true.

|| Called Logical OR Operator. If any of the two

operands are non zero, then the condition

becomes true.

(a || b) is true.

! Called Logical NOT Operator. Use to reverses

the logical state of its operand. If a condition

is true, then Logical NOT operator will make

false.

!(a && b) is false.

not Called Logical NOT Operator. Use to reverses

the logical state of its operand. If a condition

is true, then Logical NOT operator will make

false.

not(a && b) is

false.

Ruby Ternary Operator

There is one more operator called Ternary Operator. It first evaluates an

expression for a true or false value and then executes one of the two given

statements depending upon the result of the evaluation. The conditional

operator has this syntax:

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X

: Otherwise value Y

Ruby Range Operators

Sequence ranges in Ruby are used to create a range of successive values -

consisting of a start value, an end value, and a range of values in between.

Ruby

42

In Ruby, these sequences are created using the ".." and "..." range operators.

The two-dot form creates an inclusive range, while the three-dot form creates a

range that excludes the specified high value.

Operator Description Example

.. Creates a range from start point to

end point inclusive.

1..10 Creates a range from

1 to 10 inclusive.

... Creates a range from start point to

end point exclusive.

1...10 Creates a range

from 1 to 9.

Ruby defined? Operators

defined? is a special operator that takes the form of a method call to determine

whether or not the passed expression is defined. It returns a description string

of the expression, or nil if the expression isn't defined.

There are various usage of defined? Operator.

Usage 1

defined? variable # True if variable is initialized

For Example

foo = 42

defined? foo # => "local-variable"

defined? $_ # => "global-variable"

defined? bar # => nil (undefined)

Usage 2

defined? method_call # True if a method is defined

For Example

defined? puts # => "method"

Ruby

43

defined? puts(bar) # => nil (bar is not defined here)

defined? unpack # => nil (not defined here)

Usage 3

True if a method exists that can be called with super user

defined? super

For Example

defined? super # => "super" (if it can be called)

defined? super # => nil (if it cannot be)

Usage 4

defined? yield # True if a code block has been passed

For Example

defined? yield # => "yield" (if there is a block passed)

defined? yield # => nil (if there is no block)

Ruby Dot "." and Double Colon "::" Operators

You call a module method by preceding its name with the module's name and a

period, and you reference a constant using the module name and two colons.

The :: is a unary operator that allows: constants, instance methods and class

methods defined within a class or module, to be accessed from anywhere

outside the class or module.

Remember in Ruby, classes and methods may be considered constants too.

You need to just prefix the :: Const_name with an expression that returns the

appropriate class or module object.

If no prefix expression is used, the main Object class is used by default.

Here are two examples:

MR_COUNT = 0 # constant defined on main Object class

Ruby

44

module Foo

 MR_COUNT = 0

 ::MR_COUNT = 1 # set global count to 1

 MR_COUNT = 2 # set local count to 2

end

puts MR_COUNT # this is the global constant

puts Foo::MR_COUNT # this is the local "Foo" constant

Second Example

CONST = ' out there'

class Inside_one

 CONST = proc {' in there'}

 def where_is_my_CONST

 ::CONST + ' inside one'

 end

end

class Inside_two

 CONST = ' inside two'

 def where_is_my_CONST

 CONST

 end

end

puts Inside_one.new.where_is_my_CONST

puts Inside_two.new.where_is_my_CONST

puts Object::CONST + Inside_two::CONST

puts Inside_two::CONST + CONST

puts Inside_one::CONST

puts Inside_one::CONST.call + Inside_two::CONST

Ruby Operators Precedence

The following table lists all operators from highest precedence to lowest.

Method Operator Description

Ruby

45

Yes :: Constant resolution operator

Yes [] []= Element reference, element set

Yes ** Exponentiation (raise to the power)

Yes ! ~ + - Not, complement, unary plus and minus

(method names for the last two are +@

and -@)

Yes * / % Multiply, divide, and modulo

Yes + - Addition and subtraction

Yes >> << Right and left bitwise shift

Yes & Bitwise 'AND'

Yes ^ | Bitwise exclusive `OR' and regular `OR'

Yes <= < > >= Comparison operators

Yes <=> == === != =~ !~ Equality and pattern match operators

(!= and !~ may not be defined as

methods)

 && Logical 'AND'

 || Logical 'OR'

 Range (inclusive and exclusive)

 ? : Ternary if-then-else

 = %= { /= -= += |=

&= >>= <<= *= &&=

||= **=

Assignment

Ruby

46

 defined? Check if specified symbol defined

 not Logical negation

 or and Logical composition

NOTE: Operators with a Yes in the method column are actually methods, and as

such may be overridden.

Ruby

47

Comments are lines of annotation within Ruby code that are ignored at runtime.

A single line comment starts with # character and they extend from # to the

end of the line as follows:

#!/usr/bin/ruby -w

This is a single line comment.

puts "Hello, Ruby!"

When executed, the above program produces the following result:

Hello, Ruby!

Ruby Multiline Comments

You can comment multiple lines using =begin and =end syntax as follows:

#!/usr/bin/ruby -w

puts "Hello, Ruby!"

=begin

This is a multiline comment and con spwan as many lines as you

like. But =begin and =end should come in the first line only.

=end

When executed, the above program produces the following result:

Hello, Ruby!

7. COMMENTS

Ruby

48

Make sure trailing comments are far enough from the code and that they are

easily distinguished. If more than one trailing comment exists in a block, align

them. For example:

@counter # keeps track times page has been hit

@siteCounter # keeps track of times all pages have been hit

Ruby

49

Ruby offers conditional structures that are pretty common to modern languages.

Here, we will explain all the conditional statements and modifiers available in

Ruby.

Ruby if...else Statement

Syntax

if conditional [then]

 code...

[elsif conditional [then]

 code...]...

[else

 code...]

end

if expressions are used for conditional execution. The values false and nil are

false, and everything else are true. Notice, Ruby uses elsif, not else if nor elif.

Executes code if the conditional is true. If the conditional is not true, code

specified in the else clause is executed.

An if expression's conditional is separated from code by the reserved word then,

a newline, or a semicolon.

Example

#!/usr/bin/ruby

x=1

if x > 2

 puts "x is greater than 2"

elsif x <= 2 and x!=0

 puts "x is 1"

else

 puts "I can't guess the number"

8. IF…ELSE, CASE, UNLESS

Ruby

50

end

x is 1

Ruby if modifier

Syntax

code if condition

Executes code if the conditional is true.

Example

#!/usr/bin/ruby

$debug=1

print "debug\n" if $debug

This will produce the following result:

debug

Ruby unless Statement

Syntax

unless conditional [then]

 code

[else

 code]

end

Executes code if conditional is false. If the conditional is true, code specified in

the else clause is executed.

Ruby

51

Example

#!/usr/bin/ruby

x=1

unless x>2

 puts "x is less than 2"

 else

 puts "x is greater than 2"

end

This will produce the following result:

x is less than 2

Ruby unless modifier

Syntax

code unless conditional

Executes code if conditional is false.

Example

#!/usr/bin/ruby

$var = 1

print "1 -- Value is set\n" if $var

print "2 -- Value is set\n" unless $var

$var = false

print "3 -- Value is set\n" unless $var

This will produce the following result:

1 -- Value is set

3 -- Value is set

Ruby

52

Ruby case Statement

Syntax

case expression

[when expression [, expression ...] [then]

 code]...

[else

 code]

end

Compares the expression specified by case and that specified by when using the

=== operator and executes the code of the when clause that matches.

The expression specified by the when clause is evaluated as the left operand. If

no when clauses match, case executes the code of the else clause.

A when statement's expression is separated from code by the reserved word

then, a newline, or a semicolon. Thus:

case expr0

when expr1, expr2

 stmt1

when expr3, expr4

 stmt2

else

 stmt3

end

is basically similar to the following:

_tmp = expr0

if expr1 === _tmp || expr2 === _tmp

 stmt1

elsif expr3 === _tmp || expr4 === _tmp

 stmt2

else

 stmt3

end

Ruby

53

Example

#!/usr/bin/ruby

$age = 5

case $age

when 0 .. 2

 puts "baby"

when 3 .. 6

 puts "little child"

when 7 .. 12

 puts "child"

when 13 .. 18

 puts "youth"

else

 puts "adult"

end

This will produce the following result:

little child

Ruby

54

Loops in Ruby are used to execute the same block of code a specified number of

times. This chapter details all the loop statements supported by Ruby.

Ruby while Statement

Syntax

while conditional [do]

 code

end

Executes code while conditional is true. A while loop's conditional is separated

from code by the reserved word do, a newline, backslash \, or a semicolon ;.

Example

#!/usr/bin/ruby

$i = 0

$num = 5

while $i < $num do

 puts("Inside the loop i = #$i")

 $i +=1

end

This will produce the following result:

Inside the loop i = 0

Inside the loop i = 1

Inside the loop i = 2

Inside the loop i = 3

Inside the loop i = 4

9. LOOPS

Ruby

55

Ruby while modifier

Syntax

code while condition

OR

begin

 code

end while conditional

Executes code while conditional is true.

If a while modifier follows a begin statement with no rescue or ensure clauses,

code is executed once before conditional is evaluated.

Example

#!/usr/bin/ruby

$i = 0

$num = 5

begin

 puts("Inside the loop i = #$i")

 $i +=1

end while $i < $num

This will produce the following result:

Inside the loop i = 0

Inside the loop i = 1

Inside the loop i = 2

Inside the loop i = 3

Inside the loop i = 4

Ruby

56

Ruby until Statement

until conditional [do]

 code

end

Executes code while conditional is false. An until statement's conditional is

separated from code by the reserved word do, a newline, or a semicolon.

Example

#!/usr/bin/ruby

$i = 0

$num = 5

until $i > $num do

 puts("Inside the loop i = #$i")

 $i +=1;

end

This will produce the following result:

Inside the loop i = 0

Inside the loop i = 1

Inside the loop i = 2

Inside the loop i = 3

Inside the loop i = 4

Inside the loop i = 5

Ruby until modifier

Syntax

code until conditional

OR

Ruby

57

begin

 code

end until conditional

Executes code while conditional is false.

If an until modifier follows a begin statement with no rescue or ensure clauses,

code is executed once before conditional is evaluated.

Example

#!/usr/bin/ruby

$i = 0

$num = 5

begin

 puts("Inside the loop i = #$i")

 $i +=1;

end until $i > $num

This will produce the following result:

Inside the loop i = 0

Inside the loop i = 1

Inside the loop i = 2

Inside the loop i = 3

Inside the loop i = 4

Inside the loop i = 5

Ruby for Statement

Syntax

for variable [, variable ...] in expression [do]

 code

end

Executes code once for each element in expression.

Example

Ruby

58

#!/usr/bin/ruby

for i in 0..5

 puts "Value of local variable is #{i}"

end

Here, we have defined the range 0..5. The statement for i in 0..5 will allow i to

take values in the range from 0 to 5 (including 5). This will produce the following

result:

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Value of local variable is 5

A for...in loop is almost exactly equivalent to the following:

(expression).each do |variable[, variable...]| code end

except that a for loop doesn't create a new scope for the local variables. A for

loop's expression is separated from code by the reserved word do, a newline, or

a semicolon.

Example

#!/usr/bin/ruby

(0..5).each do |i|

 puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Ruby

59

Value of local variable is 5

Ruby break Statement

Syntax

break

Terminates the most internal loop. Terminates a method with an associated

block if called within the block (with the method returning nil).

Example

#!/usr/bin/ruby

for i in 0..5

 if i > 2 then

 break

 end

 puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is 0

Value of local variable is 1

Value of local variable is 2

Ruby next Statement

Syntax

next

Jumps to the next iteration of the most internal loop. Terminates execution of a

block if called within a block (with yield or call returning nil).

Example

Ruby

60

#!/usr/bin/ruby

for i in 0..5

 if i < 2 then

 next

 end

 puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is 2

Value of local variable is 3

Value of local variable is 4

Value of local variable is 5

Ruby redo Statement

Syntax

redo

Restarts this iteration of the most internal loop, without checking loop condition.

Restarts yield or call if called within a block.

Example

#!/usr/bin/ruby

for i in 0..5

 if i < 2 then

 puts "Value of local variable is #{i}"

 redo

 end

end

This will produce the following result and will go in an infinite loop:

Ruby

61

Value of local variable is 0

Value of local variable is 0

............................

Ruby retry Statement

Syntax

retry

If retry appears in rescue clause of begin expression, restart from the beginning

of the begin body.

begin

 do_something # exception raised

rescue

 # handles error

 retry # restart from beginning

end

If retry appears in the iterator, the block, or the body of the for expression,

restarts the invocation of the iterator call. Arguments to the iterator is re-

evaluated.

for i in 1..5

 retry if some_condition # restart from i == 1

end

Example

#!/usr/bin/ruby

for i in 1..5

 retry if i > 2

 puts "Value of local variable is #{i}"

end

This will produce the following result and will go in an infinite loop:

Ruby

62

Value of local variable is 1

Value of local variable is 2

Value of local variable is 1

Value of local variable is 2

Value of local variable is 1

Value of local variable is 2

............................

Ruby

63

Ruby methods are very similar to functions in any other programming language.

Ruby methods are used to bundle one or more repeatable statements into a

single unit.

Method names should begin with a lowercase letter. If you begin a method name

with an uppercase letter, Ruby might think that it is a constant and hence can

parse the call incorrectly.

Methods should be defined before calling them, otherwise Ruby will raise an

exception for undefined method invoking.

Syntax

def method_name [([arg [= default]]...[, * arg [, &expr]])]

 expr..

end

So, you can define a simple method as follows:

def method_name

 expr..

end

You can represent a method that accepts parameters like this:

def method_name (var1, var2)

 expr..

end

You can set default values for the parameters, which will be used if method is

called without passing the required parameters:

def method_name (var1=value1, var2=value2)

 expr..

end

10. METHODS

Ruby

64

Whenever you call the simple method, you write only the method name as

follows:

method_name

However, when you call a method with parameters, you write the method name

along with the parameters, such as:

method_name 25, 30

The most important drawback to using methods with parameters is that you

need to remember the number of parameters whenever you call such methods.

For example, if a method accepts three parameters and you pass only two, then

Ruby displays an error.

Example

#!/usr/bin/ruby

def test(a1="Ruby", a2="Perl")

 puts "The programming language is #{a1}"

 puts "The programming language is #{a2}"

end

test "C", "C++"

test

This will produce the following result:

The programming language is C

The programming language is C++

The programming language is Ruby

The programming language is Perl

Return Values from Methods

Every method in Ruby returns a value by default. This returned value will be the

value of the last statement. For example:

def test

 i = 100

 j = 10

 k = 0

Ruby

65

end

This method, when called, will return the last declared variable k.

Ruby return Statement

The return statement in ruby is used to return one or more values from a Ruby

Method.

Syntax

return [expr[`,' expr...]]

If more than two expressions are given, the array containing these values will be

the return value. If no expression given, nil will be the return value.

Example

return

OR

return 12

OR

return 1,2,3

Have a look at this example:

#!/usr/bin/ruby

def test

 i = 100

 j = 200

 k = 300

return i, j, k

end

var = test

Ruby

66

puts var

This will produce the following result:

100

200

300

Variable Number of Parameters

Suppose you declare a method that takes two parameters, whenever you call

this method, you need to pass two parameters along with it.

However, Ruby allows you to declare methods that work with a variable number

of parameters. Let us examine a sample of this:

#!/usr/bin/ruby

def sample (*test)

 puts "The number of parameters is #{test.length}"

 for i in 0...test.length

 puts "The parameters are #{test[i]}"

 end

end

sample "Zara", "6", "F"

sample "Mac", "36", "M", "MCA"

In this code, you have declared a method sample that accepts one parameter

test. However, this parameter is a variable parameter. This means that this

parameter can take in any number of variables. So, the above code will produce

the following result:

The number of parameters is 3

The parameters are Zara

The parameters are 6

The parameters are F

The number of parameters is 4

The parameters are Mac

The parameters are 36

Ruby

67

The parameters are M

The parameters are MCA

Class Methods

When a method is defined outside of the class definition, the method is marked

as private by default. On the other hand, the methods defined in the class

definition are marked as public by default. The default visibility and the private

mark of the methods can be changed by public or private of the Module.

Whenever you want to access a method of a class, you first need to instantiate

the class. Then, using the object, you can access any member of the class.

Ruby gives you a way to access a method without instantiating a class. Let us

see how a class method is declared and accessed:

class Accounts

 def reading_charge

 end

 def Accounts.return_date

 end

end

See how the method return_date is declared. It is declared with the class name

followed by a period, which is followed by the name of the method. You can

access this class method directly as follows:

Accounts.return_date

To access this method, you need not create objects of the class Accounts.

Ruby alias Statement

This gives alias to methods or global variables. Aliases cannot be defined within

the method body. The alias of the method keeps the current definition of the

method, even when methods are overridden.

Making aliases for the numbered global variables ($1, $2,...) is prohibited.

Overriding the built-in global variables may cause serious problems.

Syntax

alias method-name method-name

Ruby

68

alias global-variable-name global-variable-name

Example

alias foo bar

alias $MATCH $&

Here, we have defined foo alias for bar, and $MATCH is an alias for $&

Ruby undef Statement

This cancels the method definition. An undef cannot appear in the method body.

By using undef and alias, the interface of the class can be modified independently

from the superclass, but notice it may be broke programs by the internal

method call to self.

Syntax

undef method-name

Example

To undefine a method called bar, do the following:

undef bar

Ruby

69

You have seen how Ruby defines methods where you can put number of

statements and then you call that method. Similarly, Ruby has a concept of

Block.

 A block consists of chunks of code.

 You assign a name to a block.

 The code in the block is always enclosed within braces ({}).

 A block is always invoked from a function with the same name as that of

the block. This means that if you have a block with the name test, then

you use the function test to invoke this block.

 You invoke a block by using the yield statement.

Syntax

block_name{

 statement1

 statement2

}

Here, you will learn to invoke a block by using a simple yield statement. You will

also learn to use a yield statement with parameters for invoking a block. You will

check the sample code with both types of yield statements.

The yield Statement

Let's look at an example of the yield statement:

#!/usr/bin/ruby

def test

 puts "You are in the method"

 yield

 puts "You are again back to the method"

 yield

11. BLOCKS

Ruby

70

end

test {puts "You are in the block"}

This will produce the following result:

You are in the method

You are in the block

You are again back to the method

You are in the block

You also can pass parameters with the yield statement. Here is an example:

#!/usr/bin/ruby

def test

 yield 5

 puts "You are in the method test"

 yield 100

end

test {|i| puts "You are in the block #{i}"}

This will produce the following result:

You are in the block 5

You are in the method test

You are in the block 100

Here, the yield statement is written followed by parameters. You can even pass

more than one parameter. In the block, you place a variable between two

vertical lines (||) to accept the parameters. Therefore, in the preceding code,

the yield 5 statement passes the value 5 as a parameter to the test block.

Now, look at the following statement:

test {|i| puts "You are in the block #{i}"}

Here, the value 5 is received in the variable i. Now, observe the following puts

statement:

puts "You are in the block #{i}"

Ruby

71

The output of this puts statement is:

You are in the block 5

If you want to pass more than one parameters, then the yield statement

becomes:

yield a, b

and the block is:

test {|a, b| statement}

The parameters will be separated by commas.

Blocks and Methods

You have seen how a block and a method can be associated with each other.

You normally invoke a block by using the yield statement from a method that

has the same name as that of the block. Therefore, you write:

#!/usr/bin/ruby

def test

 yield

end

test{ puts "Hello world"}

This example is the simplest way to implement a block. You call the test block by

using the yield statement.

But if the last argument of a method is preceded by &, then you can pass a

block to this method and this block will be assigned to the last parameter. In

case both * and & are present in the argument list, & should come later.

#!/usr/bin/ruby

def test(&block)

 block.call

end

test { puts "Hello World!"}

Ruby

72

This will produce the following result:

Hello World!

BEGIN and END Blocks

Every Ruby source file can declare blocks of code to be run as the file is being

loaded (the BEGIN blocks) and after the program has finished executing (the

END blocks).

#!/usr/bin/ruby

BEGIN {

 # BEGIN block code

 puts "BEGIN code block"

}

END {

 # END block code

 puts "END code block"

}

 # MAIN block code

puts "MAIN code block"

A program may include multiple BEGIN and END blocks. BEGIN blocks are

executed in the order they are encountered. END blocks are executed in reverse

order. When executed, the above program produces the following result:

BEGIN code block

MAIN code block

END code block

Ruby

73

Modules are a way of grouping together methods, classes, and constants.

Modules give you two major benefits.

 Modules provide a namespace and prevent name clashes.

 Modules implement the mixin facility.

Modules define a namespace, a sandbox in which your methods and constants

can play without having to worry about being stepped on by other methods and

constants.

Syntax

module Identifier

 statement1

 statement2

end

Module constants are named just like class constants, with an initial uppercase

letter. The method definitions look similar, too: Module methods are defined just

like class methods.

As with class methods, you call a module method by preceding its name with the

module's name and a period, and you reference a constant using the module

name and two colons.

Example

#!/usr/bin/ruby

Module defined in trig.rb file

module Trig

 PI = 3.141592654

 def Trig.sin(x)

 # ..

 end

12. MODULES AND MIXINS

Ruby

74

 def Trig.cos(x)

 # ..

 end

end

We can define one more module with the same function name but different

functionality:

#!/usr/bin/ruby

Module defined in moral.rb file

module Moral

 VERY_BAD = 0

 BAD = 1

 def Moral.sin(badness)

 # ...

 end

end

Like class methods, whenever you define a method in a module, you specify the

module name followed by a dot and then the method name.

Ruby require Statement

The require statement is similar to the include statement of C and C++ and the

import statement of Java. If a third program wants to use any defined module, it

can simply load the module files using the Ruby require statement:

Syntax

require filename

Here, it is not required to give .rb extension along with a file name.

Example:

$LOAD_PATH << '.'

require 'trig.rb'

Ruby

75

require 'moral'

y = Trig.sin(Trig::PI/4)

wrongdoing = Moral.sin(Moral::VERY_BAD)

Here we are using $LOAD_PATH << '.' to make Ruby aware that included files

must be searched in the current directory. If you do not want to use

$LOAD_PATH then you can use require_relative to include files from a relative

directory.

IMPORTANT: Here, both the files contain the same function name. So, this will

result in code ambiguity while including in calling program but modules avoid

this code ambiguity and we are able to call appropriate function using module

name.

Ruby include Statement

You can embed a module in a class. To embed a module in a class, you use the

include statement in the class:

Syntax

include modulename

If a module is defined in a separate file, then it is required to include that file

using require statement before embedding module in a class.

Example

Consider the following module written in support.rb file.

module Week

 FIRST_DAY = "Sunday"

 def Week.weeks_in_month

 puts "You have four weeks in a month"

 end

 def Week.weeks_in_year

 puts "You have 52 weeks in a year"

 end

end

Ruby

76

Now, you can include this module in a class as follows:

#!/usr/bin/ruby

$LOAD_PATH << '.'

require "support"

class Decade

include Week

 no_of_yrs=10

 def no_of_months

 puts Week::FIRST_DAY

 number=10*12

 puts number

 end

end

d1=Decade.new

puts Week::FIRST_DAY

Week.weeks_in_month

Week.weeks_in_year

d1.no_of_months

This will produce the following result:

Sunday

You have four weeks in a month

You have 52 weeks in a year

Sunday

120

Mixins in Ruby

Before going through this section, we assume you have the knowledge of Object

Oriented Concepts.

When a class can inherit features from more than one parent class, the class is

supposed to show multiple inheritance.

Ruby

77

Ruby does not support multiple inheritance directly but Ruby Modules have

another wonderful use. At a stroke, they pretty much eliminate the need for

multiple inheritance, providing a facility called a mixin.

Mixins give you a wonderfully controlled way of adding functionality to classes.

However, their true power comes out when the code in the mixin starts to

interact with code in the class that uses it.

Let us examine the following sample code to gain an understand of mixin:

module A

 def a1

 end

 def a2

 end

end

module B

 def b1

 end

 def b2

 end

end

class Sample

include A

include B

 def s1

 end

end

samp=Sample.new

samp.a1

samp.a2

samp.b1

samp.b2

samp.s1

Ruby

78

Module A consists of the methods a1 and a2. Module B consists of the methods

b1 and b2. The class Sample includes both modules A and B. The class Sample

can access all four methods, namely, a1, a2, b1, and b2. Therefore, you can see

that the class Sample inherits from both the modules. Thus, you can say the

class Sample shows multiple inheritance or a mixin.

Ruby

79

A String object in Ruby holds and manipulates an arbitrary sequence of one or

more bytes, typically representing characters that represent human language.

The simplest string literals are enclosed in single quotes (the apostrophe

character). The text within the quote marks is the value of the string:

'This is a simple Ruby string literal'

If you need to place an apostrophe within a single-quoted string literal, precede

it with a backslash, so that the Ruby interpreter does not think that it terminates

the string:

'Won\'t you read O\'Reilly\'s book?'

The backslash also works to escape another backslash, so that the second

backslash is not itself interpreted as an escape character.

Following are the string-related features of Ruby.

Expression Substitution

Expression substitution is a means of embedding the value of any Ruby

expression into a string using #{ and }:

#!/usr/bin/ruby

x, y, z = 12, 36, 72

puts "The value of x is #{ x }."

puts "The sum of x and y is #{ x + y }."

puts "The average was #{ (x + y + z)/3 }."

This will produce the following result:

The value of x is 12.

The sum of x and y is 48.

The average was 40.

13. STRINGS

Ruby

80

General Delimited Strings

With general delimited strings, you can create strings inside a pair of matching

though arbitrary delimiter characters, e.g., !, (, {, <, etc., preceded by a

percent character (%). Q, q, and x have special meanings. General delimited

strings can be:

%{Ruby is fun.} equivalent to "Ruby is fun."

%Q{ Ruby is fun. } equivalent to " Ruby is fun. "

%q[Ruby is fun.] equivalent to a single-quoted string

%x!ls! equivalent to back tick command output `ls`

Escape Characters

Following table is a list of escape or non-printable characters that can be

represented with the backslash notation.

NOTE: In a double-quoted string, an escape character is interpreted; in a single-

quoted string, an escape character is preserved.

Backslash

notation

Hexadecimal

character

Description

\a 0x07 Bell or alert

\b 0x08 Backspace

\cx Control-x

\C-x Control-x

\e 0x1b Escape

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n 0x0a Newline

\nnn Octal notation, where n is in the range 0.7

Ruby

81

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\x Character x

\xnn Hexadecimal notation, where n is in the

range 0.9, a.f, or A.F

Character Encoding

The default character set for Ruby is ASCII, whose characters may be

represented by single bytes. If you use UTF-8, or another modern character set,

characters may be represented in one to four bytes.

You can change your character set using $KCODE at the beginning of your

program, like this:

$KCODE = 'u'

Following are the possible values for $KCODE.

Code Description

a ASCII (same as none). This is the default.

e EUC.

n None (same as ASCII).

u UTF-8.

String Built-in Methods

We need to have an instance of String object to call a String method. Following

is the way to create an instance of String object:

Ruby

82

new [String.new(str="")]

This will return a new string object containing a copy of str. Now, using str

object, we can all use any available instance methods. For example:

#!/usr/bin/ruby

myStr = String.new("THIS IS TEST")

foo = myStr.downcase

puts "#{foo}"

This will produce the following result:

this is test

Following are the public String methods (Assuming str is a String object):

SN Methods with Description

1 str % arg

Formats a string using a format specification. arg must be an array if it

contains more than one substitution. For information on the format

specification, see sprintf under "Kernel Module."

2 str * integer

Returns a new string containing integer times str. In other words, str is

repeated integer imes.

3 str + other_str

Concatenates other_str to str.

4 str << obj

Concatenates an object to str. If the object is a Fixnum in the range

0.255, it is converted to a character. Compare it with concat.

5 str <=> other_str

Compares str with other_str, returning -1 (less than), 0 (equal), or 1

Ruby

83

(greater than). The comparison is case-sensitive.

6 str == obj

Tests str and obj for equality. If obj is not a String, returns false; returns

true if str <=> obj returns 0.

7 str =~ obj

Matches str against a regular expression pattern obj. Returns the position

where the match starts; otherwise, false.

8 str.capitalize

Capitalizes a string.

9 str.capitalize!

Same as capitalize, but changes are made in place.

10 str.casecmp

Makes a case-insensitive comparison of strings.

11 str.center

Centers a string.

12 str.chomp

Removes the record separator ($/), usually \n, from the end of a string.

If no record separator exists, does nothing.

13 str.chomp!

Same as chomp, but changes are made in place.

14 str.chop

Removes the last character in str.

15 str.chop!

Same as chop, but changes are made in place.

Ruby

84

16 str.concat(other_str)

Concatenates other_str to str.

17 str.count(str, ...)

Counts one or more sets of characters. If there is more than one set of

characters, counts the intersection of those sets

18 str.crypt(other_str)

Applies a one-way cryptographic hash to str. The argument is the salt

string, which should be two characters long, each character in the range

a.z, A.Z, 0.9, . or /.

19 str.delete(other_str, ...)

Returns a copy of str with all characters in the intersection of its

arguments deleted.

20 str.delete!(other_str, ...)

Same as delete, but changes are made in place.

21 str.downcase

Returns a copy of str with all uppercase letters replaced with lowercase.

22 str.downcase!

Same as downcase, but changes are made in place.

23 str.dump

Returns a version of str with all nonprinting characters replaced by \nnn

notation and all special characters escaped.

24 str.each(separator=$/) { |substr| block }

Splits str using argument as the record separator ($/ by default), passing

each substring to the supplied block.

25 str.each_byte { |fixnum| block }

Passes each byte from str to the block, returning each byte as a decimal

Ruby

85

representation of the byte.

26 str.each_line(separator=$/) { |substr| block }

Splits str using argument as the record separator ($/ by default), passing

each substring to the supplied block.

27 str.empty?

Returns true if str is empty (has a zero length).

28 str.eql?(other)

Two strings are equal if they have the same length and content.

29 str.gsub(pattern, replacement) [or]

str.gsub(pattern) { |match| block }

Returns a copy of str with all occurrences of pattern replaced with either

replacement or the value of the block. The pattern will typically be a

Regexp; if it is a String then no regular expression metacharacters will be

interpreted (that is, /\d/ will match a digit, but '\d' will match a backslash

followed by a 'd')

30 str[fixnum] [or] str[fixnum,fixnum] [or] str[range] [or]

str[regexp] [or] str[regexp, fixnum] [or] str[other_str]

References str, using the following arguments: one Fixnum, returns a

character code at fixnum; two Fixnums, returns a substring starting at an

offset (first fixnum) to length (second fixnum); range, returns a substring

in the range; regexp returns portion of matched string; regexp with

fixnum, returns matched data at fixnum; other_str returns substring

matching other_str. A negative Fixnum starts at end of string with -1.

31 str[fixnum] = fixnum [or] str[fixnum] = new_str [or] str[fixnum,

fixnum] = new_str [or] str[range] = aString [or] str[regexp]

=new_str [or] str[regexp, fixnum] =new_str [or] str[other_str]

= new_str]

Replace (assign) all or part of a string. Synonym of slice!.

32 str.gsub!(pattern, replacement) [or] str.gsub!(pattern) { |match|

block }

Performs the substitutions of String#gsub in place, returning str, or nil if

Ruby

86

no substitutions were performed.

33 str.hash

Returns a hash based on the string's length and content.

34 str.hex

Treats leading characters from str as a string of hexadecimal digits (with

an optional sign and an optional 0x) and returns the corresponding

number. Zero is returned on error.

35 str.include? other_str [or] str.include? fixnum

Returns true if str contains the given string or character.

36 str.index(substring [, offset]) [or]

str.index(fixnum [, offset]) [or]

str.index(regexp [, offset])

Returns the index of the first occurrence of the given substring, character

(fixnum), or pattern (regexp) in str. Returns nil if not found. If the

second parameter is present, it specifies the position in the string to

begin the search.

37 str.insert(index, other_str)

Inserts other_str before the character at the given index, modifying str.

Negative indices count from the end of the string, and insert after the

given character. The intent is to insert a string so that it starts at the

given index.

38 str.inspect

Returns a printable version of str, with special characters escaped.

39 str.intern [or] str.to_sym

Returns the Symbol corresponding to str, creating the symbol if it did not

previously exist.

40 str.length

Returns the length of str. Compare size.

Ruby

87

41 str.ljust(integer, padstr=' ')

If integer is greater than the length of str, returns a new String of length

integer with str left-justified and padded with padstr; otherwise, returns

str.

42 str.lstrip

Returns a copy of str with leading whitespace removed.

43 str.lstrip!

Removes leading whitespace from str, returning nil if no change was

made.

44 str.match(pattern)

Converts pattern to a Regexp (if it isn't already one), then invokes its

match method on str.

45 str.oct

Treats leading characters of str as a string of octal digits (with an optional

sign) and returns the corresponding number. Returns 0 if the conversion

fails.

46 str.replace(other_str)

Replaces the contents and taintedness of str with the corresponding

values in other_str.

47 str.reverse

Returns a new string with the characters from str in reverse order.

48 str.reverse!

Reverses str in place.

49 str.rindex(substring [, fixnum]) [or]

str.rindex(fixnum [, fixnum]) [or]

str.rindex(regexp [, fixnum])

Returns the index of the last occurrence of the given substring, character

(fixnum), or pattern (regexp) in str. Returns nil if not found. If the

Ruby

88

second parameter is present, it specifies the position in the string to end

the search.characters beyond this point won't be considered.

50 str.rjust(integer, padstr=' ')

If integer is greater than the length of str, returns a new String of length

integer with str right-justified and padded with padstr; otherwise, returns

str.

51 str.rstrip

Returns a copy of str with trailing whitespace removed.

52 str.rstrip!

Removes trailing whitespace from str, returning nil if no change was

made.

53 str.scan(pattern) [or]

str.scan(pattern) { |match, ...| block }

Both forms iterate through str, matching the pattern (which may be a

Regexp or a String). For each match, a result is generated and either

added to the result array or passed to the block. If the pattern contains

no groups, each individual result consists of the matched string, $&. If

the pattern contains groups, each individual result is itself an array

containing one entry per group.

54 str.slice(fixnum) [or] str.slice(fixnum, fixnum) [or]

str.slice(range) [or] str.slice(regexp) [or]

str.slice(regexp, fixnum) [or] str.slice(other_str)

See str[fixnum], etc.

str.slice!(fixnum) [or] str.slice!(fixnum, fixnum) [or]

str.slice!(range) [or] str.slice!(regexp) [or]

str.slice!(other_str)

Deletes the specified portion from str, and returns the portion deleted.

The forms that take a Fixnum will raise an IndexError if the value is out

of range; the Range form will raise a RangeError, and the Regexp and

String forms will silently ignore the assignment.

Ruby

89

55 str.split(pattern=$;, [limit])

Divides str into substrings based on a delimiter, returning an array of

these substrings.

If pattern is a String, then its contents are used as the delimiter when

splitting str. If pattern is a single space, str is split on whitespace, with

leading whitespace and runs of contiguous whitespace characters

ignored.

If pattern is a Regexp, str is divided where the pattern matches.

Whenever the pattern matches a zero-length string, str is split into

individual characters.

If pattern is omitted, the value of $; is used. If $; is nil (which is the

default), str is split on whitespace as if ` ` were specified.

If the limit parameter is omitted, trailing null fields are suppressed. If

limit is a positive number, at most that number of fields will be returned

(if limit is 1, the entire string is returned as the only entry in an array). If

negative, there is no limit to the number of fields returned, and trailing

null fields are not suppressed.

56 str.squeeze([other_str]*)

Builds a set of characters from the other_str parameter(s) using the

procedure described for String#count. Returns a new string where runs

of the same character that occur in this set are replaced by a single

character. If no arguments are given, all runs of identical characters are

replaced by a single character.

57 str.squeeze!([other_str]*)

Squeezes str in place, returning either str, or nil if no changes were

made.

58 str.strip

Returns a copy of str with leading and trailing whitespace removed.

59 str.strip!

Removes leading and trailing whitespace from str. Returns nil if str was

not altered.

60 str.sub(pattern, replacement) [or]

Ruby

90

str.sub(pattern) { |match| block }

Returns a copy of str with the first occurrence of pattern replaced with

either replacement or the value of the block. The pattern will typically be

a Regexp; if it is a String then no regular expression metacharacters will

be interpreted.

61 str.sub!(pattern, replacement) [or]

str.sub!(pattern) { |match| block }

Performs the substitutions of String#sub in place, returning str, or nil if

no substitutions were performed.

62 str.succ [or] str.next

Returns the successor to str.

63 str.succ! [or] str.next!

Equivalent to String#succ, but modifies the receiver in place.

64 str.sum(n=16)

Returns a basic n-bit checksum of the characters in str, where n is the

optional Fixnum parameter, defaulting to 16. The result is simply the sum

of the binary value of each character in str modulo 2n - 1. This is not a

particularly good checksum.

65 str.swapcase

Returns a copy of str with uppercase alphabetic characters converted to

lowercase and lowercase characters converted to uppercase.

66 str.swapcase!

Equivalent to String#swapcase, but modifies the receiver in place,

returning str, or nil if no changes were made.

67 str.to_f

>Returns the result of interpreting leading characters in str as a floating-

point number. Extraneous characters past the end of a valid number are

ignored. If there is not a valid number at the start of str, 0.0 is returned.

This method never raises an exception.

Ruby

91

68 str.to_i(base=10)

Returns the result of interpreting leading characters in str as an integer

base (base 2, 8, 10, or 16). Extraneous characters past the end of a valid

number are ignored. If there is not a valid number at the start of str, 0 is

returned. This method never raises an exception.

69 str.to_s [or] str.to_str

Returns the receiver.

70 str.tr(from_str, to_str)

Returns a copy of str with the characters in from_str replaced by the

corresponding characters in to_str. If to_str is shorter than from_str, it is

padded with its last character. Both strings may use the c1.c2 notation to

denote ranges of characters, and from_str may start with a ^, which

denotes all characters except those listed.

71 str.tr!(from_str, to_str)

Translates str in place, using the same rules as String#tr. Returns str, or

nil if no changes were made.

72 str.tr_s(from_str, to_str)

Processes a copy of str as described under String#tr, then removes

duplicate characters in regions that were affected by the translation.

73 str.tr_s!(from_str, to_str)

Performs String#tr_s processing on str in place, returning str, or nil if no

changes were made.

74 str.unpack(format)

>Decodes str (which may contain binary data) according to the format

string, returning an array of each value extracted. The format string

consists of a sequence of single-character directives, summarized in

Table 18. Each directive may be followed by a number, indicating the

number of times to repeat with this directive. An asterisk (*) will use up

all remaining elements. The directives sSiIlL may each be followed by an

underscore (_) to use the underlying platform's native size for the

specified type; otherwise, it uses a platform-independent consistent size.

Spaces are ignored in the format string.

Ruby

92

75 str.upcase

Returns a copy of str with all lowercase letters replaced with their

uppercase counterparts. The operation is locale insensitive. Only

characters a to z are affected.

76 str.upcase!

Changes the contents of str to uppercase, returning nil if no changes are

made.

77 str.upto(other_str) { |s| block }

Iterates through successive values, starting at str and ending at other_str

inclusive, passing each value in turn to the block. The String#succ

method is used to generate each value.

String unpack Directives

Following table lists the unpack directives for method String#unpack.

Directive Returns Description

A String With trailing nulls and spaces removed.

a String String.

B String Extracts bits from each character (most significant

bit first).

b String Extracts bits from each character (least significant

bit first).

C Fixnum Extracts a character as an unsigned integer.

c Fixnum Extracts a character as an integer.

D, d Float Treats sizeof(double) characters as a native

double.

Ruby

93

E Float Treats sizeof(double) characters as a double in

littleendian byte order.

e Float Treats sizeof(float) characters as a float in

littleendian byte order.

F, f Float Treats sizeof(float) characters as a native float.

G Float Treats sizeof(double) characters as a double in

network byte order.

g String Treats sizeof(float) characters as a float in

network byte order.

H String Extracts hex nibbles from each character (most

significant bit first)

h String Extracts hex nibbles from each character (least

significant bit first).

I Integer Treats sizeof(int) (modified by _) successive

characters as an unsigned native integer.

i Integer Treats sizeof(int) (modified by _) successive

characters as a signed native integer.

L Integer Treats four (modified by _) successive characters

as an unsigned native long integer.

l Integer Treats four (modified by _) successive characters

as a signed native long integer.

M String Quoted-printable.

m String Base64-encoded.

N Integer Treats four characters as an unsigned long in

network byte order.

Ruby

94

n Fixnum Treats two characters as an unsigned short in

network byte order.

P String Treats sizeof(char *) characters as a pointer, and

return \emph{len} characters from the referenced

location.

p String Treats sizeof(char *) characters as a pointer to a

null-terminated string.

Q Integer Treats eight characters as an unsigned quad word

(64 bits).

q Integer Treats eight characters as a signed quad word (64

bits).

S Fixnum Treats two (different if _ used) successive

characters as an unsigned short in native byte

order.

s Fixnum Treats two (different if _ used) successive

characters as a signed short in native byte order.

U Integer UTF-8 characters as unsigned integers.

u String UU-encoded.

V Fixnum Treats four characters as an unsigned long in

little-endian byte order.

v Fixnum Treats two characters as an unsigned short in

little-endian byte order.

w Integer BER-compressed integer.

X Skips backward one character.

x Skips forward one character.

Ruby

95

Z String With trailing nulls removed up to first null with *.

@ Skips to the offset given by the length argument.

Example

Try the following example to unpack various data.

"abc \0\0abc \0\0".unpack('A6Z6') #=> ["abc", "abc "]

"abc \0\0".unpack('a3a3') #=> ["abc", " \000\000"]

"abc \0abc \0".unpack('Z*Z*') #=> ["abc ", "abc "]

"aa".unpack('b8B8') #=> ["10000110", "01100001"]

"aaa".unpack('h2H2c') #=> ["16", "61", 97]

"\xfe\xff\xfe\xff".unpack('sS') #=> [-2, 65534]

"now=20is".unpack('M*') #=> ["now is"]

"whole".unpack('xax2aX2aX1aX2a') #=> ["h", "e", "l", "l", "o"]

Ruby

96

Ruby arrays are ordered, integer-indexed collections of any object. Each element

in an array is associated with and referred to by an index.

Array indexing starts at 0, as in C or Java. A negative index is assumed relative

to the end of the array --- that is, an index of -1 indicates the last element of

the array, -2 is the next to last element in the array, and so on.

Ruby arrays can hold objects such as String, Integer, Fixnum, Hash, Symbol,

even other Array objects. Ruby arrays are not as rigid as arrays in other

languages. Ruby arrays grow automatically while adding elements to them.

Creating Arrays

There are many ways to create or initialize an array. One way is with the new

class method:

names = Array.new

You can set the size of an array at the time of creating array:

names = Array.new(20)

The array names now has a size or length of 20 elements. You can return the

size of an array with either the size or length methods:

#!/usr/bin/ruby

names = Array.new(20)

puts names.size # This returns 20

puts names.length # This also returns 20

This will produce the following result:

20

20

14. ARRAYS

Ruby

97

You can assign a value to each element in the array as follows:

#!/usr/bin/ruby

names = Array.new(4, "mac")

puts "#{names}"

This will produce the following result:

macmacmacmac

You can also use a block with new, populating each element with what the block

evaluates to:

#!/usr/bin/ruby

nums = Array.new(10) { |e| e = e * 2 }

puts "#{nums}"

This will produce the following result:

024681012141618

There is another method of Array, []. It works like this:

nums = Array.[](1, 2, 3, 4,5)

One more form of array creation is as follows:

nums = Array[1, 2, 3, 4,5]

The Kernel module available in core Ruby has an Array method, which only

accepts a single argument. Here, the method takes a range as an argument to

create an array of digits:

#!/usr/bin/ruby

digits = Array(0..9)

puts "#{digits}"

Ruby

98

This will produce the following result:

0123456789

Array Built-in Methods

We need to have an instance of Array object to call an Array method. As we

have seen, following is the way to create an instance of Array object:

Array.[](...) [or] Array[...] [or] [...]

This will return a new array populated with the given objects. Now, using the

created object, we can call any available instance methods. For example:

#!/usr/bin/ruby

digits = Array(0..9)

num = digits.at(6)

puts "#{num}"

This will produce the following result:

6

Following are the public array methods (assuming array is an array object):

SN Methods with Description

1 array & other_array

Returns a new array containing elements common to the two arrays, with

no duplicates.

2 array * int [or] array * str

Returns a new array built by concatenating the int copies of self. With a

String argument, equivalent to self.join(str).

3 array + other_array

Returns a new array built by concatenating the two arrays together to

Ruby

99

produce a third array.

4 array - other_array

Returns a new array that is a copy of the original array, removing any

items that also appear in other_array.

5 str <=> other_str

Compares str with other_str, returning -1 (less than), 0 (equal), or 1

(greater than). The comparison is casesensitive.

6 array | other_array

Returns a new array by joining array with other_array, removing

duplicates.

7 array << obj

Pushes the given object onto the end of array. This expression returns

the array itself, so several appends may be chained together.

8 array <=> other_array

Returns an integer (-1, 0, or +1) if this array is less than, equal to, or

greater than other_array.

9 array == other_array

Two arrays are equal if they contain the same number of elements and if

each element is equal to (according to Object.==) the corresponding

element in the other array.

10 array[index] [or] array[start, length] [or]

array[range] [or] array.slice(index) [or]

array.slice(start, length) [or] array.slice(range)

Returns the element at index, or returns a subarray starting at start and

continuing for length elements, or returns a subarray specified by range.

Negative indices count backward from the end of the array (-1 is the last

element). Returns nil if the index (or starting index) is out of range.

11 array[index] = obj [or]

Ruby

100

array[start, length] = obj or an_array or nil [or]

array[range] = obj or an_array or nil

Sets the element at index, or replaces a subarray starting at start and

continuing for length elements, or replaces a subarray specified by range.

If indices are greater than the current capacity of the array, the array

grows automatically. Negative indices will count backward from the end

of the array. Inserts elements if length is zero. If nil is used in the second

and third form, deletes elements from self.

12 array.abbrev(pattern = nil)

Calculates the set of unambiguous abbreviations for the strings in self. If

passed a pattern or a string, only the strings matching the pattern or

starting with the string are considered.

13 array.assoc(obj)

Searches through an array whose elements are also arrays comparing obj

with the first element of each contained array using obj.==. Returns the

first contained array that matches or nil if no match is found.

14 array.at(index)

Returns the element at index. A negative index counts from the end of

self. Returns nil if the index is out of range.

15 array.clear

Removes all elements from array.

16 array.collect { |item| block } [or]

array.map { |item| block }

Invokes block once for each element of self. Creates a new array

containing the values returned by the block.

17 array.collect! { |item| block } [or]

array.map! { |item| block }

Invokes block once for each element of self, replacing the element with

the value returned by block.

Ruby

101

18 array.compact

Returns a copy of self with all nil elements removed.

19 array.compact!

Removes nil elements from array. Returns nil if no changes were made.

20 array.concat(other_array)

Appends the elements in other_array to self.

21 array.delete(obj) [or]

array.delete(obj) { block }

Deletes items from self that are equal to obj. If the item is not found,

returns nil. If the optional code block is given, returns the result of block if

the item is not found.

22 array.delete_at(index)

Deletes the element at the specified index, returning that element, or nil if

the index is out of range.

23 array.delete_if { |item| block }

Deletes every element of self for which block evaluates to true.

24 array.each { |item| block }

Calls block once for each element in self, passing that element as a

parameter.

25 array.each_index { |index| block }

Same as Array#each, but passes the index of the element instead of the

element itself.

26 array.empty?

Returns true if the self array contains no elements.

27 array.eql?(other)

Returns true if array and other are the same object, or are both arrays

Ruby

102

with the same content.

28 array.fetch(index) [or]

array.fetch(index, default) [or]

array.fetch(index) { |index| block }

Tries to return the element at position index. If index lies outside the

array, the first form throws an IndexError exception, the second form

returns default, and the third form returns the value of invoking block,

passing in index. Negative values of index count from the end of the

array.

29 array.fill(obj) [or]

array.fill(obj, start [, length]) [or]

array.fill(obj, range) [or]

array.fill { |index| block } [or]

array.fill(start [, length]) { |index| block } [or]

array.fill(range) { |index| block }

The first three forms set the selected elements of self to obj. A start of nil

is equivalent to zero. A length of nil is equivalent to self.length. The last

three forms fill the array with the value of the block. The block is passed

with the absolute index of each element to be filled.

30 array.first [or]

array.first(n)

Returns the first element, or the first n elements, of the array. If the

array is empty, the first form returns nil, and the second form returns an

empty array.

31 array.flatten

Returns a new array that is a one-dimensional flattening of this array

(recursively).

32 array.flatten!

Flattens array in place. Returns nil if no modifications were made. (array

contains no subarrays.)

Ruby

103

33 array.frozen?

Returns true if array is frozen (or temporarily frozen while being sorted).

34 array.hash

Computes a hash-code for array. Two arrays with the same content will

have the same hash code.

35 array.include?(obj)

Returns true if obj is present in self, false otherwise.

36 array.index(obj)

Returns the index of the first object in self that is == to obj. Returns nil if

no match is found.

37 array.indexes(i1, i2, ... iN) [or]

array.indices(i1, i2, ... iN)

This methods is deprecated in latest version of Ruby so please use

Array#values_at.

38 array.indices(i1, i2, ... iN) [or]

array.indexes(i1, i2, ... iN)

This methods is deprecated in latest version of Ruby so please use

Array#values_at.

39 array.insert(index, obj...)

Inserts the given values before the element with the given index (which

may be negative).

40 array.inspect

Creates a printable version of array.

41 array.join(sep=$,)

Returns a string created by converting each element of the array to a

string, separated by sep.

Ruby

104

42 array.last [or] array.last(n)

Returns the last element(s) of self. If array is empty, the first form

returns nil.

43 array.length

Returns the number of elements in self. May be zero.

44 array.map { |item| block } [or]

array.collect { |item| block }

Invokes block once for each element of self. Creates a new array

containing the values returned by the block.

45 array.map! { |item| block } [or]

array.collect! { |item| block }

Invokes block once for each element of array, replacing the element with

the value returned by block.

46 array.nitems

Returns the number of non-nil elements in self. May be zero.

47 array.pack(aTemplateString)

Packs the contents of array into a binary sequence according to the

directives in a TemplateString. Directives A, a, and Z may be followed by

a count, which gives the width of the resulting field. The remaining

directives also may take a count, indicating the number of array elements

to convert. If the count is an asterisk (*), all remaining array elements

will be converted. Any of the directives is still may be followed by an

underscore (_) to use the underlying platform's native size for the

specified type; otherwise, they use a platform independent size. Spaces

are ignored in the template string.

48 array.pop

Removes the last element from array and returns it, or nil if array is

empty.

49 array.push(obj, ...)

Pushes (appends) the given obj onto the end of this array. This

Ruby

105

expression returns the array itself, so several appends may be chained

together.

50 array.rassoc(key)

Searches through the array whose elements are also arrays. Compares

key with the second element of each contained array using ==. Returns

the first contained array that matches.

51 array.reject { |item| block }

Returns a new array containing the items array for which the block is not

true.

52 array.reject! { |item| block }

Deletes elements from array for which the block evaluates to true, but

returns nil if no changes were made. Equivalent to Array#delete_if.

53 array.replace(other_array)

Replaces the contents of array with the contents of other_array,

truncating or expanding if necessary.

54 array.reverse

Returns a new array containing array's elements in reverse order.

55 array.reverse!

Reverses array in place.

56 array.reverse_each {|item| block }

Same as Array#each, but traverses array in reverse order.

57 array.rindex(obj)

Returns the index of the last object in array == to obj. Returns nil if no

match is found.

58 array.select {|item| block }

Invokes the block passing in successive elements from array, returning

an array containing those elements for which the block returns a true

Ruby

106

value.

59 array.shift

Returns the first element of self and removes it (shifting all other

elements down by one). Returns nil if the array is empty.

60 array.size

Returns the length of array (number of elements). Alias for length.

61 array.slice(index) [or] array.slice(start, length) [or]

array.slice(range) [or] array[index] [or]

array[start, length] [or] array[range]

Returns the element at index, or returns a subarray starting at start and

continuing for length elements, or returns a subarray specified by range.

Negative indices count backward from the end of the array (-1 is the last

element). Returns nil if the index (or starting index) are out of range.

62 array.slice!(index) [or] array.slice!(start, length) [or]

array.slice!(range)

Deletes the element(s) given by an index (optionally with a length) or by

a range. Returns the deleted object, subarray, or nil if index is out of

range.

63 array.sort [or] array.sort { | a,b | block }

Returns a new array created by sorting self.

64 array.sort! [or] array.sort! { | a,b | block }

Sorts self.

65 array.to_a

Returns self. If called on a subclass of Array, converts the receiver to an

Array object.

66 array.to_ary

Returns self.

Ruby

107

67 array.to_s

Returns self.join.

68 array.transpose

Assumes that self is an array of arrays and transposes the rows and

columns.

69 array.uniq

Returns a new array by removing duplicate values in array.

70 array.uniq!

Removes duplicate elements from self. Returns nil if no changes are made

(that is, no duplicates are found).

71 array.unshift(obj, ...)

Prepends objects to the front of array, other elements up one.

72 array.values_at(selector,...)

Returns an array containing the elements in self corresponding to the

given selector (one or more). The selectors may be either integer indices

or ranges.

73 array.zip(arg, ...) [or]

array.zip(arg, ...){ | arr | block }

Converts any arguments to arrays, then merges elements of array with

corresponding elements from each argument.

Array pack Directives

Following table lists the pack directives for use with Array#pack.

Directive Description

@ Moves to absolute position.

Ruby

108

A ASCII string (space padded, count is width).

a ASCII string (null padded, count is width).

B Bit string (descending bit order).

b Bit string (ascending bit order).

C Unsigned char.

c Char.

D, d Double-precision float, native format.

E Double-precision float, little-endian byte order.

e Single-precision float, little-endian byte order.

F, f Single-precision float, native format.

G Double-precision float, network (big-endian) byte order.

g Single-precision float, network (big-endian) byte order.

H Hex string (high nibble first).

h Hex string (low nibble first).

I Unsigned integer.

i Integer.

L Unsigned long.

l Long.

M Quoted printable, MIME encoding (see RFC 2045).

Ruby

109

m Base64-encoded string.

N Long, network (big-endian) byte order.

n Short, network (big-endian) byte order.

P Pointer to a structure (fixed-length string).

p Pointer to a null-terminated string.

Q, q 64-bit number.

S Unsigned short.

s Short.

U UTF-8.

u UU-encoded string.

V Long, little-endian byte order.

v Short, little-endian byte order.

w BER-compressed integer \fnm.

X Back up a byte.

x Null byte.

Z Same as a, except that null is added with *.

Example

Try the following example to pack various data.

a = ["a", "b", "c"]

n = [65, 66, 67]

Ruby

110

puts a.pack("A3A3A3") #=> "a b c "

puts a.pack("a3a3a3") #=> "a\000\000b\000\000c\000\000"

puts n.pack("ccc") #=> "ABC"

This will produce the following result:

a b c

abc

ABC

Ruby

111

A Hash is a collection of key-value pairs like this: "employee" => "salary". It is

similar to an Array, except that indexing is done via arbitrary keys of any object

type, not an integer index.

The order in which you traverse a hash by either key or value may seem

arbitrary and will generally not be in the insertion order. If you attempt to

access a hash with a key that does not exist, the method will return nil.

Creating Hashes

As with arrays, there is a variety of ways to create hashes. You can create an

empty hash with the new class method:

months = Hash.new

You can also use new to create a hash with a default value, which is otherwise

just nil:

months = Hash.new("month")

or

months = Hash.new "month"

When you access any key in a hash that has a default value, if the key or value

doesn't exist, accessing the hash will return the default value:

#!/usr/bin/ruby

months = Hash.new("month")

puts "#{months[0]}"

puts "#{months[72]}"

This will produce the following result:

month

month

15. HASHES

Ruby

112

#!/usr/bin/ruby

H = Hash["a" => 100, "b" => 200]

puts "#{H['a']}"

puts "#{H['b']}"

This will produce the following result:

100

200

You can use any Ruby object as a key or value, even an array, so the following

example is a valid one:

[1,"jan"] => "January"

Hash Built-in Methods

We need to have an instance of Hash object to call a Hash method. As we have

seen, following is the way to create an instance of Hash object:

Hash[[key =>|, value]*] or

Hash.new [or] Hash.new(obj) [or]

Hash.new { |hash, key| block }

This will return a new hash populated with the given objects. Now using the

created object, we can call any available instance methods. For example:

#!/usr/bin/ruby

$, = ", "

months = Hash.new("month")

months = {"1" => "January", "2" => "February"}

keys = months.keys

Ruby

113

puts "#{keys}"

This will produce the following result:

["1", "2"]

Following are the public hash methods (assuming hash is an array object):

SN Methods with Description

1

hash == other_hash

Tests whether two hashes are equal, based on whether they have the

same number of key-value pairs, and whether the key-value pairs match

the corresponding pair in each hash.

2

hash.[key]

Using a key, references a value from hash. If the key is not found, returns

a default value.

3
hash.[key]=value

Associates the value given by value with the key given by key.

4
hash.clear

Removes all key-value pairs from hash.

5

hash.default(key = nil)

Returns the default value for hash, nil if not set by default=. ([] returns a

default value if the key does not exist in hash.)

6
hash.default = obj

Sets a default value for hash.

7
hash.default_proc

Returns a block if hash was created by a block.

8

hash.delete(key) [or]

array.delete(key) { |key| block }

Deletes a key-value pair from hash by key. If block is used, returns the

Ruby

114

result of a block if pair is not found. Compare delete_if.

9

hash.delete_if { |key,value| block }

Deletes a key-value pair from hash for every pair the block evaluates to

true.

10

hash.each { |key,value| block }

Iterates over hash, calling the block once for each key, passing the key-

value as a two-element array.

11

hash.each_key { |key| block }

Iterates over hash, calling the block once for each key, passing key as a

parameter.

12

hash.each_key { |key_value_array| block }

Iterates over hash, calling the block once for each key, passing the key and

value as parameters.

13

hash.each_key { |value| block }

Iterates over hash, calling the block once for each key, passing value as a

parameter.

14

hash.empty?

Tests whether hash is empty (contains no key-value pairs), returning true

or false.

15

hash.fetch(key [, default]) [or]

hash.fetch(key) { | key | block }

Returns a value from hash for the given key. If the key can't be found, and

there are no other arguments, it raises an IndexError exception; if default is

given, it is returned; if the optional block is specified, its result is returned.

16

hash.has_key?(key) [or] hash.include?(key) [or]

hash.key?(key) [or] hash.member?(key)

Tests whether a given key is present in hash, returning true or false.

17
hash.has_value?(value)

Tests whether hash contains the given value.

Ruby

115

18

hash.index(value)

Returns the key for the given value in hash, nil if no matching value is

found.

19

hash.indexes(keys)

Returns a new array consisting of values for the given key(s). Will insert

the default value for keys that are not found. This method is deprecated.

Use select.

20

hash.indices(keys)

Returns a new array consisting of values for the given key(s). Will insert

the default value for keys that are not found. This method is deprecated.

Use select.

21
hash.inspect

Returns a pretty print string version of hash.

22

hash.invert

Creates a new hash, inverting keys and values from hash; that is, in the

new hash, the keys from hash become values and values become keys.

23
hash.keys

Creates a new array with keys from hash.

24
hash.length

Returns the size or length of hash as an integer.

25

hash.merge(other_hash) [or]

hash.merge(other_hash) { |key, oldval, newval| block }

Returns a new hash containing the contents of hash and other_hash,

overwriting pairs in hash with duplicate keys with those from other_hash.

26

hash.merge!(other_hash) [or]

hash.merge!(other_hash) { |key, oldval, newval| block }

Same as merge, but changes are done in place.

27
hash.rehash

Rebuilds hash based on the current values for each key. If values have

Ruby

116

changed since they were inserted, this method reindexes hash.

28
hash.reject { |key, value| block }

Creates a new hash for every pair the block evaluates to true.

29
hash.reject! { |key, value| block }

Same as reject, but changes are made in place.

30
hash.replace(other_hash)

Replaces the contents of hash with the contents of other_hash.

31

hash.select { |key, value| block }

Returns a new array consisting of key-value pairs from hash for which the

blockreturns true.

32
hash.shift

Removes a key-value pair from hash, returning it as a two-element array.

33
hash.size

Returns the size or length of hash as an integer.

34

hash.sort

Converts hash to a two-dimensional array containing arrays of key-value

pairs, then sorts it as an array.

35
hash.store(key, value)

Stores a key-value pair in hash.

36

hash.to_a

Creates a two-dimensional array from hash. Each key/value pair is

converted to an array, and all these arrays are stored in a containing array.

37
hash.to_hash

Returns hash (self).

38
hash.to_s

Converts hash to an array, then converts that array to a string.

Ruby

117

39

hash.update(other_hash) [or]

hash.update(other_hash) {|key, oldval, newval| block}

Returns a new hash containing the contents of hash and other_hash,

overwriting pairs in hash with duplicate keys with those from other_hash.

40
hash.value?(value)

Tests whether hash contains the given value.

41
hash.values

Returns a new array containing all the values of hash.

42

hash.values_at(obj, ...)

Returns a new array containing the values from hash that are associated

with the given key or keys.

Ruby

118

The Time class represents dates and times in Ruby. It is a thin layer over the

system date and time functionality provided by the operating system. This class

may be unable on your system to represent dates before 1970 or after 2038.

This chapter makes you familiar with all the most wanted concepts of date and

time.

Getting Current Date and Time

Following is the simple example to get current date and time:

#!/usr/bin/ruby -w

time1 = Time.new

puts "Current Time : " + time1.inspect

Time.now is a synonym:

time2 = Time.now

puts "Current Time : " + time2.inspect

This will produce the following result:

Current Time : Mon Jun 02 12:02:39 -0700 2008

Current Time : Mon Jun 02 12:02:39 -0700 2008

Getting Components of a Date & Time

We can use Time object to get various components of date and time. Following is

the example showing the same:

#!/usr/bin/ruby -w

time = Time.new

Components of a Time

16. DATE AND TIME

Ruby

119

puts "Current Time : " + time.inspect

puts time.year # => Year of the date

puts time.month # => Month of the date (1 to 12)

puts time.day # => Day of the date (1 to 31)

puts time.wday # => 0: Day of week: 0 is Sunday

puts time.yday # => 365: Day of year

puts time.hour # => 23: 24-hour clock

puts time.min # => 59

puts time.sec # => 59

puts time.usec # => 999999: microseconds

puts time.zone # => "UTC": timezone name

This will produce the following result:

Current Time : Mon Jun 02 12:03:08 -0700 2008

2008

6

2

1

154

12

3

8

247476

UTC

Time.utc, Time.gm and Time.local Functions

These two functions can be used to format date in a standard format as follows:

July 8, 2008

Time.local(2008, 7, 8)

July 8, 2008, 09:10am, local time

Time.local(2008, 7, 8, 9, 10)

July 8, 2008, 09:10 UTC

Time.utc(2008, 7, 8, 9, 10)

Ruby

120

July 8, 2008, 09:10:11 GMT (same as UTC)

Time.gm(2008, 7, 8, 9, 10, 11)

Following is the example to get all the components in an array in the following

format:

[sec,min,hour,day,month,year,wday,yday,isdst,zone]

Try the following:

#!/usr/bin/ruby -w

time = Time.new

values = time.to_a

p values

This will generate the following result:

[26, 10, 12, 2, 6, 2008, 1, 154, false, "MST"]

This array could be passed to Time.utc or Time.local functions to get different

format of dates as follows:

#!/usr/bin/ruby -w

time = Time.new

values = time.to_a

puts Time.utc(*values)

This will generate the following result:

Mon Jun 02 12:15:36 UTC 2008

Following is the way to get time represented internally as seconds since the

(platform-dependent) epoch:

Returns number of seconds since epoch

time = Time.now.to_i

Ruby

121

Convert number of seconds into Time object.

Time.at(time)

Returns second since epoch which includes microseconds

time = Time.now.to_f

Timezones and Daylight Savings Time

You can use a Time object to get all the information related to Timezones and

daylight savings as follows:

time = Time.new

Here is the interpretation

time.zone # => "UTC": return the timezone

time.utc_offset # => 0: UTC is 0 seconds offset from UTC

time.zone # => "PST" (or whatever your timezone is)

time.isdst # => false: If UTC does not have DST.

time.utc? # => true: if t is in UTC time zone

time.localtime # Convert to local timezone.

time.gmtime # Convert back to UTC.

time.getlocal # Return a new Time object in local zone

time.getutc # Return a new Time object in UTC

Formatting Times and Dates

There are various ways to format date and time. Here is one example showing a

few:

#!/usr/bin/ruby -w

time = Time.new

puts time.to_s

puts time.ctime

puts time.localtime

puts time.strftime("%Y-%m-%d %H:%M:%S")

Ruby

122

This will produce the following result:

Mon Jun 02 12:35:19 -0700 2008

Mon Jun 2 12:35:19 2008

Mon Jun 02 12:35:19 -0700 2008

2008-06-02 12:35:19

Time Formatting Directives

These directives in the following table are used with the method Time.strftime.

Directive Description

%a The abbreviated weekday name (Sun).

%A The full weekday name (Sunday).

%b The abbreviated month name (Jan).

%B The full month name (January).

%c The preferred local date and time representation.

%d Day of the month (01 to 31).

%H Hour of the day, 24-hour clock (00 to 23).

%I Hour of the day, 12-hour clock (01 to 12).

%j Day of the year (001 to 366).

%m Month of the year (01 to 12).

%M Minute of the hour (00 to 59).

%p Meridian indicator (AM or PM).

%S Second of the minute (00 to 60).

Ruby

123

%U Week number of the current year, starting with the first Sunday as

the first day of the first week (00 to 53).

%W Week number of the current year, starting with the first Monday as

the first day of the first week (00 to 53).

%w Day of the week (Sunday is 0, 0 to 6).

%x Preferred representation for the date alone, no time.

%X Preferred representation for the time alone, no date.

%y Year without a century (00 to 99).

%Y Year with century.

%Z Time zone name.

%% Literal % character.

Time Arithmetic

You can perform simple arithmetic with time as follows:

now = Time.now # Current time

puts now

past = now - 10 # 10 seconds ago. Time - number => Time

puts past

future = now + 10 # 10 seconds from now Time + number => Time

puts future

diff = future - now # => 10 Time - Time => number of seconds

puts diff

This will produce the following result:

Ruby

124

Thu Aug 01 20:57:05 -0700 2013

Thu Aug 01 20:56:55 -0700 2013

Thu Aug 01 20:57:15 -0700 2013

10.0

Ruby

125

Ranges occur everywhere: January to December, 0 to 9, lines 50 through 67,

and so on. Ruby supports ranges and allows us to use ranges in a variety of

ways:

 Ranges as Sequences

 Ranges as Conditions

 Ranges as Intervals

Ranges as Sequences

The first and perhaps the most natural use of ranges is to express a sequence.

Sequences have a start point, an end point, and a way to produce successive

values in the sequence.

Ruby creates these sequences using the ''..'' and ''...'' range operators. The two-

dot form creates an inclusive range, while the three-dot form creates a range

that excludes the specified high value.

(1..5) #==> 1, 2, 3, 4, 5

(1...5) #==> 1, 2, 3, 4

('a'..'d') #==> 'a', 'b', 'c', 'd'

The sequence 1..100 is held as a Range object containing references to two

Fixnum objects. If you need to, you can convert a range to a list using the to_a

method. Try the following example:

#!/usr/bin/ruby

$, =", " # Array value separator

range1 = (1..10).to_a

range2 = ('bar'..'bat').to_a

puts "#{range1}"

puts "#{range2}"

17. RANGES

Ruby

126

This will produce the following result:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

bar, bas, bat

Ranges implement methods that let you iterate over them and test their

contents in a variety of ways:

#!/usr/bin/ruby

Assume a range

digits = 0..9

puts digits.include?(5)

ret = digits.min

puts "Min value is #{ret}"

ret = digits.max

puts "Max value is #{ret}"

ret = digits.reject {|i| i < 5 }

puts "Rejected values are #{ret}"

digits.each do |digit|

 puts "In Loop #{digit}"

end

This will produce the following result:

true

Min value is 0

Max value is 9

Rejected values are 5, 6, 7, 8, 9

In Loop 0

In Loop 1

In Loop 2

In Loop 3

Ruby

127

In Loop 4

In Loop 5

In Loop 6

In Loop 7

In Loop 8

In Loop 9

Ranges as Conditions

Ranges may also be used as conditional expressions. For example, the following

code fragment prints sets of lines from the standard input, where the first line in

each set contains the word start and the last line the word end.:

while gets

 print if /start/../end/

end

Ranges can be used in case statements:

#!/usr/bin/ruby

score = 70

result = case score

 when 0..40: "Fail"

 when 41..60: "Pass"

 when 61..70: "Pass with Merit"

 when 71..100: "Pass with Distinction"

 else "Invalid Score"

end

puts result

This will produce the following result:

Pass with Merit

Ruby

128

Ranges as Intervals

A final use of the versatile range is as an interval test: seeing if some value falls

within the interval represented by the range. This is done using ===, the case

equality operator.

#!/usr/bin/ruby

if ((1..10) === 5)

 puts "5 lies in (1..10)"

end

if (('a'..'j') === 'c')

 puts "c lies in ('a'..'j')"

end

if (('a'..'j') === 'z')

 puts "z lies in ('a'..'j')"

end

This will produce the following result:

5 lies in (1..10)

c lies in ('a'..'j')

Ruby

129

Iterators are nothing but methods supported by collections. Objects that store a

group of data members are called collections. In Ruby, arrays and hashes can be

termed collections.

Iterators return all the elements of a collection, one after the other. We will be

discussing two iterators here, each and collect. Let's look at these in detail.

Ruby each Iterator

The each iterator returns all the elements of an array or a hash.

Syntax

collection.each do |variable|

 code

end

Executes code for each element in collection. Here, collection could be an array or

a ruby hash.

Example

#!/usr/bin/ruby

ary = [1,2,3,4,5]

ary.each do |i|

 puts i

end

This will produce the following result:

1

2

3

4

5

18. ITERATORS

Ruby

130

You always associate the each iterator with a block. It returns each value of the

array, one by one, to the block. The value is stored in the variable i and then

displayed on the screen.

Ruby collect Iterator

The collect iterator returns all the elements of a collection.

Syntax

collection = collection.collect

The collect method need not always be associated with a block. The collect

method returns the entire collection, regardless of whether it is an array or a

hash.

Example

#!/usr/bin/ruby

a = [1,2,3,4,5]

b = Array.new

b = a.collect

puts b

This will produce the following result:

1

2

3

4

5

NOTE: The collect method is not the right way to do copying between arrays.

There is another method called a clone, which should be used to copy one array

into another array.

You normally use the collect method when you want to do something with each

of the values to get the new array. For example, this code produces an array b

containing 10 times each value in a.

Ruby

131

#!/usr/bin/ruby

a = [1,2,3,4,5]

b = a.collect{|x| 10*x}

puts b

This will produce the following result:

10

20

30

40

50

Ruby

132

Ruby provides a whole set of I/O-related methods implemented in the Kernel

module. All the I/O methods are derived from the class IO.

The class IO provides all the basic methods, such as read, write, gets, puts,

readline, getc, and printf.

This chapter will cover all the basic I/O functions available in Ruby. For more

functions, please refer to Ruby Class IO.

The puts Statement

In the previous chapters, you have assigned values to variables and then printed

the output using puts statement.

The puts statement instructs the program to display the value stored in the

variable. This will add a new line at the end of each line it writes.

Example

#!/usr/bin/ruby

val1 = "This is variable one"

val2 = "This is variable two"

puts val1

puts val2

This will produce the following result:

This is variable one

This is variable two

The gets Statement

The gets statement can be used to take any input from the user from standard

screen called STDIN.

19. FILE I/O

Ruby

133

Example

The following code shows you how to use the gets statement. This code will

prompt the user to enter a value, which will be stored in a variable val and

finally will be printed on STDOUT.

#!/usr/bin/ruby

puts "Enter a value :"

val = gets

puts val

This will produce the following result:

Enter a value :

This is entered value

This is entered value

The putc Statement

Unlike the puts statement, which outputs the entire string onto the screen, the

putc statement can be used to output one character at a time.

Example

The output of the following code is just the character H:

#!/usr/bin/ruby

str="Hello Ruby!"

putc str

This will produce the following result:

H

The print Statement

The print statement is similar to the puts statement. The only difference is that

the puts statement goes to the next line after printing the contents, whereas

with the print statement the cursor is positioned on the same line.

Ruby

134

Example

#!/usr/bin/ruby

print "Hello World"

print "Good Morning"

This will produce the following result:

Hello WorldGood Morning

Opening and Closing Files

Until now, you have been reading and writing to the standard input and output.

Now, we will see how to play with actual data files.

The File.new Method

You can create a File object using File.new method for reading, writing, or both,

according to the mode string. Finally, you can use File.close method to close that

file.

Syntax

aFile = File.new("filename", "mode")

 # ... process the file

aFile.close

The File.open Method

You can use File.open method to create a new file object and assign that file

object to a file. However, there is one difference in between File.open and

File.new methods. The difference is that the File.open method can be associated

with a block, whereas you cannot do the same using the File.new method.

File.open("filename", "mode") do |aFile|

 # ... process the file

end

Here is a list of The Different Modes of opening a File:

Ruby

135

Modes Description

r Read-only mode. The file pointer is placed at the beginning of the file.

This is the default mode.

r+ Read-write mode. The file pointer will be at the beginning of the file.

w Write-only mode. Overwrites the file if the file exists. If the file does

not exist, creates a new file for writing.

w+ Read-write mode. Overwrites the existing file if the file exists. If the

file does not exist, creates a new file for reading and writing.

a Write-only mode. The file pointer is at the end of the file if the file

exists. That is, the file is in the append mode. If the file does not

exist, it creates a new file for writing.

a+ Read and write mode. The file pointer is at the end of the file if the

file exists. The file opens in the append mode. If the file does not

exist, it creates a new file for reading and writing.

Reading and Writing Files

The same methods that we've been using for 'simple' I/O are available for all file

objects. So, gets reads a line from standard input, and aFile.gets reads a line

from the file object aFile.

However, I/O objects provides additional set of access methods to make our

lives easier.

The sysread Method

You can use the method sysread to read the contents of a file. You can open the

file in any of the modes when using the method sysread. For example:

Following is the input text file:

This is a simple text file for testing purpose.

Now let's try to read this file:

Ruby

136

#!/usr/bin/ruby

aFile = File.new("input.txt", "r")

if aFile

 content = aFile.sysread(20)

 puts content

else

 puts "Unable to open file!"

end

This statement will output the first 20 characters of the file. The file pointer will

now be placed at the 21st character in the file.

The syswrite Method

You can use the method syswrite to write the contents into a file. You need to

open the file in write mode when using the method syswrite. For example:

#!/usr/bin/ruby

aFile = File.new("input.txt", "r+")

if aFile

 aFile.syswrite("ABCDEF")

else

 puts "Unable to open file!"

end

This statement will write "ABCDEF" into the file.

The each_byte Method

This method belongs to the class File. The method each_byte is always

associated with a block. Consider the following code sample:

#!/usr/bin/ruby

aFile = File.new("input.txt", "r+")

if aFile

 aFile.syswrite("ABCDEF")

Ruby

137

 aFile.each_byte {|ch| putc ch; putc ?. }

else

 puts "Unable to open file!"

end

Characters are passed one by one to the variable ch and then displayed on the

screen as follows:

s. .a. .s.i.m.p.l.e. .t.e.x.t. .f.i.l.e. .f.o.r. .t.e.s.t.i.n.g.

.p.u.r.p.o.s.e...

.

.

The IO.readlines Method

The class File is a subclass of the class IO. The class IO also has some methods,

which can be used to manipulate files.

One of the IO class methods is IO.readlines. This method returns the contents of

the file line by line. The following code displays the use of the method

IO.readlines:

#!/usr/bin/ruby

arr = IO.readlines("input.txt")

puts arr[0]

puts arr[1]

In this code, the variable arr is an array. Each line of the file input.txt will be an

element in the array arr. Therefore, arr[0] will contain the first line, whereas

arr[1] will contain the second line of the file.

The IO.foreach Method

This method also returns output line by line. The difference between the method

foreach and the method readlines is that the method foreach is associated with a

block. However, unlike the method readlines, the method foreach does not return

an array. For example:

#!/usr/bin/ruby

Ruby

138

IO.foreach("input.txt"){|block| puts block}

This code will pass the contents of the file test line by line to the variable block,

and then the output will be displayed on the screen.

Renaming and Deleting Files

You can rename and delete files programmatically with Ruby with the rename

and delete methods.

Following is the example to rename an existing file test1.txt:

#!/usr/bin/ruby

Rename a file from test1.txt to test2.txt

File.rename("test1.txt", "test2.txt")

Following is the example to delete an existing file test2.txt:

#!/usr/bin/ruby

Delete file test2.txt

File.delete("text2.txt")

File Modes and Ownership

Use the chmod method with a mask to change the mode or permissions/access

list of a file:

Following is the example to change mode of an existing file test.txt to a mask

value:

#!/usr/bin/ruby

file = File.new("test.txt", "w")

file.chmod(0755)

Following is the table, which can help you to choose different mask for chmod

method:

Ruby

139

Mask Description

0700 rwx mask for owner

0400 r for owner

0200 w for owner

0100 x for owner

0070 rwx mask for group

0040 r for group

0020 w for group

0010 x for group

0007 rwx mask for other

0004 r for other

0002 w for other

0001 x for other

4000 Set user ID on execution

2000 Set group ID on execution

1000 Save swapped text, even after use

Ruby

140

File Inquiries

The following command tests whether a file exists before opening it:

#!/usr/bin/ruby

File.open("file.rb") if File::exists?("file.rb")

The following command inquire whether the file is really a file:

#!/usr/bin/ruby

This returns either true or false

File.file?("text.txt")

The following command finds out if the given file name is a directory:

#!/usr/bin/ruby

a directory

File::directory?("/usr/local/bin") # => true

a file

File::directory?("file.rb") # => false

The following command finds whether the file is readable, writable or

executable:

#!/usr/bin/ruby

File.readable?("test.txt") # => true

File.writable?("test.txt") # => true

File.executable?("test.txt") # => false

The following command finds whether the file has zero size or not:

#!/usr/bin/ruby

File.zero?("test.txt") # => true

The following command returns size of the file:

Ruby

141

#!/usr/bin/ruby

File.size?("text.txt") # => 1002

The following command can be used to find out a type of file:

#!/usr/bin/ruby

File::ftype("test.txt") # => file

The ftype method identifies the type of the file by returning one of the following:

file, directory, characterSpecial, blockSpecial, fifo, link, socket, or unknown.

The following command can be used to find when a file was created, modified, or

last accessed :

#!/usr/bin/ruby

File::ctime("test.txt") # => Fri May 09 10:06:37 -0700 2008

File::mtime("text.txt") # => Fri May 09 10:44:44 -0700 2008

File::atime("text.txt") # => Fri May 09 10:45:01 -0700 2008

Directories in Ruby

All files are contained within various directories, and Ruby has no problem

handling these too. Whereas the File class handles files, directories are handled

with the Dir class.

Navigating Through Directories

To change directory within a Ruby program, use Dir.chdir as follows. This

example changes the current directory to /usr/bin.

Dir.chdir("/usr/bin")

You can find out what the current directory is with Dir.pwd:

puts Dir.pwd # This will return something like /usr/bin

You can get a list of the files and directories within a specific directory using

Dir.entries:

Ruby

142

puts Dir.entries("/usr/bin").join(' ')

Dir.entries returns an array with all the entries within the specified directory.

Dir.foreach provides the same feature:

Dir.foreach("/usr/bin") do |entry|

 puts entry

end

An even more concise way of getting directory listings is by using Dir's class

array method:

Dir["/usr/bin/*"]

Creating a Directory

The Dir.mkdir can be used to create directories:

Dir.mkdir("mynewdir")

You can also set permissions on a new directory (not one that already exists)

with mkdir:

NOTE: The mask 755 sets permissions owner, group, world [anyone] to rwxr-xr-

x where r = read, w = write, and x = execute.

Dir.mkdir("mynewdir", 755)

Deleting a Directory

The Dir.delete can be used to delete a directory. The Dir.unlink and Dir.rmdir

performs exactly the same function and are provided for convenience.

Dir.delete("testdir")

Creating Files & Temporary Directories

Temporary files are those that might be created briefly during a program's

execution but aren't a permanent store of information.

Dir.tmpdir provides the path to the temporary directory on the current system,

although the method is not available by default. To make Dir.tmpdir available it's

necessary to use require 'tmpdir'.

Ruby

143

You can use Dir.tmpdir with File.join to create a platform-independent temporary

file:

require 'tmpdir'

 tempfilename = File.join(Dir.tmpdir, "tingtong")

 tempfile = File.new(tempfilename, "w")

 tempfile.puts "This is a temporary file"

 tempfile.close

 File.delete(tempfilename)

This code creates a temporary file, writes data to it, and deletes it. Ruby's

standard library also includes a library called Tempfile that can create temporary

files for you:

require 'tempfile'

 f = Tempfile.new('tingtong')

 f.puts "Hello"

 puts f.path

 f.close

Built-in Functions

Here are the ruby built-in functions to process files and directories:

 File Class and Methods.

 Dir Class and Methods.

File Class and Methods

A File represents n stdio object that connects to a regular file and returns an

instance of this class for regular files.

Class Methods

SN Methods with Description

1
File::atime(path)

Returns the last access time for path.

Ruby

144

2

File::basename(path[, suffix])

Returns the filename at the end of path. If suffix is specified, it's deleted

from the end of the filename.

e.g. File.basename("/home/users/bin/ruby.exe") #=> "ruby.exe"

3
File::blockdev?(path)

Returns true if path is a block device.

4
File::chardev?(path)

Returns true if path is a character device.

5
File::chmod(mode, path...)

Changes the permission mode of the specified files.

6
File::chown(owner, group, path...)

Changes the owner and group of the specified files.

7
File::ctime(path)

Returns the last node change time for path.

8

File::delete(path...)

File::unlink(path...)

Deletes the specified files.

9
File::directory?(path)

Returns true if path is a directory.

10
File::dirname(path)

Returns the directory portion of path, without the final filename.

11
File::executable?(path)

Returns true if path is executable.

12
File::executable_real?(path)

Returns true if path is executable with real user permissions.

13 File::exist?(path)

Ruby

145

Returns true if path exists.

14

File::expand_path(path[, dir])

Returns the absolute path of path, expanding ~ to the process owner's

home directory, and ~user to the user's home directory. Relative paths are

resolved from the directory specified by dir, or the current working

directory if dir is omitted.

15
File::file?(path)

Returns true if path is a regular file.

16

File::ftype(path)

Returns one of the following strings representing a file type:

file - Regular file

directory - Directory

characterSpecial - Character special file

blockSpecial - Block special file

fifo - Named pipe (FIFO)

link - Symbolic link

socket - Socket

unknown - Unknown file type

17
File::grpowned?(path)

Returns true if path is owned by the user's group.

18

File::join(item...)

Returns a string consisting of the specified items joined together with

File::Separator separating each item.

e.g., File::join("", "home", "usrs", "bin") # => "/home/usrs/bin"

19
File::link(old, new)

Creates a hard link to file old.

20

File::lstat(path)

Same as stat, except that it returns information on symbolic links

themselves, not the files they point to.

Ruby

146

21
File::mtime(path)

Returns the last modification time for path.

22

File::new(path[, mode="r"])

File::open(path[, mode="r"])

File::open(path[, mode="r"]) {|f| ...}

Opens a file. If a block is specified, the block is executed with the new file

passed as an argument. The file is closed automatically when the block

exits. These methods differ from Kernel.open in that even if path begins

with |, the following string isn't run as a command.

23
File::owned?(path)

Returns true if path is owned by the effective user.

24
File::pipe?(path)

Returns true if path is a pipe.

25
File::readable?(path)

Returns true if path is readable.

26
File::readable_real?(path)

Returns true if path is readable with real user permissions.

27
File::readlink(path)

Returns the file pointed to by path.

28
File::rename(old, new)

Changes the filename from old to new.

29
File::setgid?(path)

Returns true if path's set-group-id permission bit is set.

30
File::setuid?(path)

Returns true if path's set-user-id permission bit is set.

31
File::size(path)

Returns the file size of path.

Ruby

147

32
File::size?(path)

Returns the file size of path, or nil if it's 0.

33
File::socket?(path)

Returns true if path is a socket.

34

File::split(path)

Returns an array containing the contents of path split into

File::dirname(path) and File::basename(path).

35
File::stat(path)

Returns a File::Stat object with information on path.

36
File::sticky?(path)

Returns true if path's sticky bit is set.

37
File::symlink(old, new)

Creates a symbolic link to file old.

38
File::symlink?(path)

Returns true if path is a symbolic link.

39
File::truncate(path, len)

Truncates the specified file to len bytes.

40
File::unlink(path...)

Deletes a file given at the path.

41

File::umask([mask])

Returns the current umask for this process if no argument is specified. If

an argument is specified, the umask is set, and the old umask is returned.

42
File::utime(atime, mtime, path...)

Changes the access and modification times of the specified files.

43
File::writable?(path)

Returns true if path is writable.

Ruby

148

44
File::writable_real?(path)

Returns true if path is writable with real user permissions.

45
File::zero?(path)

Returns true if the file size of path is 0.

Instance Methods

Assuming f is an instance of File class:

SN Methods with Description

1 f.atime

Returns the last access time for f.

2 f.chmode(mode)

Changes the permission mode of f.

3 f.chown(owner, group)

Changes the owner and group of f.

4 f.ctime

Returns the last inode change time for f.

5 f.flock(op)

Calls flock(2). op may be 0 or a logical or of the File class constants

LOCK_EX, LOCK_NB, LOCK_SH, and LOCK_UN.

6 f.lstat

Same as stat, except that it returns information on symbolic links

themselves, not the files they point to.

7 f.mtime

Returns the last modification time for f.

Ruby

149

8 f.path

Returns the pathname used to create f.

9 f.reopen(path[, mode="r"])

Reopens the file.

10 f.truncate(len)

Truncates f to len bytes.

Directory Class and Methods

A Dir is a class to represent a directory stream that gives filenames in the

directory in the operating system. Dir class also holds directory related

operations, such as wild card filename matching, changing current working

directory, etc. as class methods.

Class Methods

SN Method with Description

1 Dir[pat]

Dir::glob(pat)

Returns an array of filenames matching the specified wild card pattern

pat :

* - Matches any string including the null string

** - Matches any string recursively

? - Matches any single character

[...] - Matches any one of enclosed characters

{a,b...} - Matches any one of strings

Dir["foo.*"] # matches "foo.c", "foo.rb", etc.

Dir["foo.?"] # matches "foo.c", "foo.h", etc.

2 Dir::chdir(path)

Changes the current directory.

Ruby

150

3 Dir::chroot(path)

Changes the root directory (only allowed by super user). Not available on

all platforms.

4 Dir::delete(path)

Deletes the directory specified by path. The directory must be empty.

5 Dir::entries(path)

Returns an array of filenames in directory path.

6 Dir::foreach(path) {| f| ...}

Executes the block once for each file in the directory specified by path.

7 Dir::getwd

Dir::pwd

Returns the current directory.

8 Dir::mkdir(path[, mode=0777])

Creates the directory specified by path. Permission mode may be

modified by the value of File::umask and is ignored on Win32 platforms.

9 Dir::new(path)

Dir::open(path)

Dir::open(path) {| dir| ...}

Returns a new directory object for path. If open is given a block, a new

directory object is passed to the block, which closes the directory object

before terminating.

10 Dir::pwd

See Dir::getwd.

11 Dir::rmdir(path)

Dir::unlink(path)

Dir::delete(path)

Deletes the directory specified by path. The directory must be empty.

Ruby

151

Instance Methods

Assuming d is an instance of Dir class:

SN Method with Description

1 d.close

Closes the directory stream.

2 d.each {| f| ...}

Executes the block once for each entry in d.

3 d.pos

d.tell

Returns the current position in d.

4 d.pos= offset

Sets the position in the directory stream.

5 d.pos= pos

d.seek(po s)

Moves to a position in d. pos must be a value returned by d.pos or 0.

6 d.read

Returns the next entry from d.

7 d.rewind

Moves position in d to the first entry.

8 d.seek(po s)

See d.pos=pos.

9 d.tell

See d.pos.

Ruby

152

The execution and the exception always go together. If you are opening a file,

which does not exist, then if you did not handle this situation properly, then your

program is considered to be of bad quality.

The program stops if an exception occurs. So exceptions are used to handle

various type of errors, which may occur during a program execution and take

appropriate action instead of halting program completely.

Ruby provide a nice mechanism to handle exceptions. We enclose the code that

could raise an exception in a begin/end block and use rescue clauses to tell Ruby

the types of exceptions we want to handle.

Syntax

begin

-

rescue OneTypeOfException

-

rescue AnotherTypeOfException

-

else

Other exceptions

ensure

Always will be executed

end

Everything from begin to rescue is protected. If an exception occurs during the

execution of this block of code, control is passed to the block between rescue

and end.

For each rescue clause in the begin block, Ruby compares the raised Exception

against each of the parameters in turn. The match will succeed if the exception

named in the rescue clause is the same as the type of the currently thrown

exception, or is a superclass of that exception.

In an event, that an exception does not match any of the error types specified,

we are allowed to use an else clause after all the rescue clauses.

20. EXCEPTIONS

Ruby

153

Example

#!/usr/bin/ruby

begin

 file = open("/unexistant_file")

 if file

 puts "File opened successfully"

 end

rescue

 file = STDIN

end

print file, "==", STDIN, "\n"

This will produce the following result. You can see that STDIN is substituted to

file because open failed.

#<IO:0xb7d16f84>==#<IO:0xb7d16f84>

Using retry Statement

You can capture an exception using rescue block and then use retry statement to

execute begin block from the beginning.

Syntax

begin

 # Exceptions raised by this code will

 # be caught by the following rescue clause

rescue

 # This block will capture all types of exceptions

 retry # This will move control to the beginning of begin

end

Ruby

154

Example

#!/usr/bin/ruby

begin

 file = open("/unexistant_file")

 if file

 puts "File opened successfully"

 end

rescue

 fname = "existant_file"

 retry

end

The following is the flow of the process:

 An exception occurred at open.

 Went to rescue. fname was re-assigned.

 By retry went to the beginning of the begin.

 This time file opens successfully.

 Continued the essential process.

NOTE: Notice that if the file of re-substituted name does not exist this example

code retries infinitely. Be careful if you use retry for an exception process.

Using raise Statement

You can use raise statement to raise an exception. The following method raises

an exception whenever it's called. It's second message will be printed.

Syntax

raise

OR

raise "Error Message"

OR

Ruby

155

raise ExceptionType, "Error Message"

OR

raise ExceptionType, "Error Message" condition

The first form simply re-raises the current exception (or a RuntimeError if there

is no current exception). This is used in exception handlers that need to

intercept an exception before passing it on.

The second form creates a new RuntimeError exception, setting its message to

the given string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the

associated message to the second argument.

The fourth form is similar to the third form but you can add any conditional

statement like unless to raise an exception.

Example

#!/usr/bin/ruby

begin

 puts 'I am before the raise.'

 raise 'An error has occurred.'

 puts 'I am after the raise.'

rescue

 puts 'I am rescued.'

end

puts 'I am after the begin block.'

This will produce the following result:

I am before the raise.

I am rescued.

I am after the begin block.

One more example showing the usage of raise:

Ruby

156

#!/usr/bin/ruby

begin

 raise 'A test exception.'

rescue Exception => e

 puts e.message

 puts e.backtrace.inspect

end

This will produce the following result:

A test exception.

["main.rb:4"]

Using ensure Statement

Sometimes, you need to guarantee that some processing is done at the end of a

block of code, regardless of whether an exception was raised. For example, you

may have a file open on entry to the block and you need to make sure it gets

closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and

contains a chunk of code that will always be executed as the block terminates. It

doesn't matter if the block exits normally, if it raises and rescues an exception,

or if it is terminated by an uncaught exception, the ensure block will get run.

Syntax

begin

 #.. process

 #..raise exception

rescue

 #.. handle error

ensure

 #.. finally ensure execution

 #.. This will always execute.

end

Example

Ruby

157

begin

 raise 'A test exception.'

rescue Exception => e

 puts e.message

 puts e.backtrace.inspect

ensure

 puts "Ensuring execution"

end

This will produce the following result:

A test exception.

["main.rb:4"]

Ensuring execution

Using else Statement

If the else clause is present, it goes after the rescue clauses and before any

ensure.

The body of an else clause is executed only if no exceptions are raised by the

main body of code.

Syntax

begin

 #.. process

 #..raise exception

rescue

 # .. handle error

else

 #.. executes if there is no exception

ensure

 #.. finally ensure execution

 #.. This will always execute.

end

Example

Ruby

158

begin

 # raise 'A test exception.'

 puts "I'm not raising exception"

rescue Exception => e

 puts e.message

 puts e.backtrace.inspect

else

 puts "Congratulations-- no errors!"

ensure

 puts "Ensuring execution"

end

This will produce the following result:

I'm not raising exception

Congratulations-- no errors!

Ensuring execution

Raised error message can be captured using $! variable.

Catch and Throw

While the exception mechanism of raise and rescue is great for abandoning the

execution when things go wrong, it's sometimes nice to be able to jump out of

some deeply nested construct during normal processing. This is where catch and

throw come in handy.

The catch defines a block that is labeled with the given name (which may be a

Symbol or a String). The block is executed normally until a throw is

encountered.

Syntax

throw :lablename

#.. this will not be executed

catch :lablename do

#.. matching catch will be executed after a throw is encountered.

end

Ruby

159

OR

throw :lablename condition

#.. this will not be executed

catch :lablename do

#.. matching catch will be executed after a throw is encountered.

end

Example

The following example uses a throw to terminate interaction with the user if '!' is

typed in response to any prompt.

def promptAndGet(prompt)

 print prompt

 res = readline.chomp

 throw :quitRequested if res == "!"

 return res

end

catch :quitRequested do

 name = promptAndGet("Name: ")

 age = promptAndGet("Age: ")

 sex = promptAndGet("Sex: ")

 # ..

 # process information

end

promptAndGet("Name:")

You should try the above program on your machine because it needs manual

interaction. This will produce the following result:

Name: Ruby on Rails

Age: 3

Sex: !

Name:Just Ruby

Ruby

160

Class Exception

Ruby's standard classes and modules raise exceptions. All the exception classes

form a hierarchy, with the class Exception at the top. The next level contains

seven different types:

 Interrupt

 NoMemoryError

 SignalException

 ScriptError

 StandardError

 SystemExit

There is one other exception at this level, Fatal, but the Ruby interpreter only

uses this internally.

Both ScriptError and StandardError have a number of subclasses, but we do not

need to go into the details here. The important thing is that if we create our own

exception classes, they need to be subclasses of either class Exception or one of

its descendants.

Let's look at an example:

class FileSaveError < StandardError

 attr_reader :reason

 def initialize(reason)

 @reason = reason

 end

end

Now, look at the following example, which will use this exception:

File.open(path, "w") do |file|

begin

 # Write out the data ...

rescue

 # Something went wrong!

 raise FileSaveError.new($!)

end

end

Ruby

161

The important line here is raise FileSaveError.new($!). We call raise to signal

that an exception has occurred, passing it a new instance of FileSaveError, with

the reason being that specific exception caused the writing of the data to fail.

Ruby

162

Ruby is a pure object-oriented language and everything appears to Ruby as an

object. Every value in Ruby is an object, even the most primitive things: strings,

numbers and even true and false. Even a class itself is an object that is an

instance of the Class class. This chapter will take you through all the major

functionalities related to Object Oriented Ruby.

A class is used to specify the form of an object and it combines data

representation and methods for manipulating that data into one neat package.

The data and methods within a class are called members of the class.

Ruby Class Definition

When you define a class, you define a blueprint for a data type. This doesn't

actually define any data, but it does define what the class name means, that is,

what an object of the class will consist of and what operations can be performed

on such an object.

A class definition starts with the keyword class followed by the class name and

is delimited with an end. For example, we defined the Box class using the

keyword class as follows:

class Box

 code

end

The name must begin with a capital letter and by convention names that contain

more than one word are run together with each word capitalized and no

separating characters (CamelCase).

Define Ruby Objects

A class provides the blueprints for objects, so basically an object is created from

a class. We declare objects of a class using new keyword. Following statements

declare two objects of class Box:

box1 = Box.new

box2 = Box.new

21. RUBY OBJECT ORIENTED

Ruby

163

The initialize Method

The initialize method is a standard Ruby class method and works almost same

way as constructor works in other object oriented programming languages. The

initialize method is useful when you want to initialize some class variables at the

time of object creation. This method may take a list of parameters and like any

other ruby method it would be preceded by def keyword as shown below:

class Box

 def initialize(w,h)

 @width, @height = w, h

 end

end

The instance Variables

The instance variables are kind of class attributes and they become properties

of objects once objects are created using the class. Every object's attributes are

assigned individually and share no value with other objects. They are accessed

using the @ operator within the class but to access them outside of the class we

use public methods, which are called accessor methods. If we take the above

defined class Box then @width and @height are instance variables for the class

Box.

class Box

 def initialize(w,h)

 # assign instance avriables

 @width, @height = w, h

 end

end

The accessor & setter Methods

To make the variables available from outside the class, they must be defined

within accessor methods, these accessor methods are also known as a getter

methods. Following example shows the usage of accessor methods:

#!/usr/bin/ruby -w

define a class

class Box

Ruby

164

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # accessor methods

 def printWidth

 @width

 end

 def printHeight

 @height

 end

end

create an object

box = Box.new(10, 20)

use accessor methods

x = box.printWidth()

y = box.printHeight()

puts "Width of the box is : #{x}"

puts "Height of the box is : #{y}"

When the above code is executed, it produces the following result:

Width of the box is : 10

Height of the box is : 20

Similar to accessor methods, which are used to access the value of the

variables, Ruby provides a way to set the values of those variables from outside

of the class using setter methods, which are defined as below:

#!/usr/bin/ruby -w

Ruby

165

define a class

class Box

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # accessor methods

 def getWidth

 @width

 end

 def getHeight

 @height

 end

 # setter methods

 def setWidth=(value)

 @width = value

 end

 def setHeight=(value)

 @height = value

 end

end

create an object

box = Box.new(10, 20)

use setter methods

box.setWidth = 30

box.setHeight = 50

use accessor methods

Ruby

166

x = box.getWidth()

y = box.getHeight()

puts "Width of the box is : #{x}"

puts "Height of the box is : #{y}"

When the above code is executed, it produces the following result:

Width of the box is : 30

Height of the box is : 50

The instance Methods

The instance methods are also defined in the same way as we define any other

method using def keyword and they can be used using a class instance only as

shown below. Their functionality is not limited to access the instance variables,

but also they can do a lot more as per your requirement.

#!/usr/bin/ruby -w

define a class

class Box

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # instance method

 def getArea

 @width * @height

 end

end

create an object

box = Box.new(10, 20)

call instance methods

a = box.getArea()

Ruby

167

puts "Area of the box is : #{a}"

When the above code is executed, it produces the following result:

Area of the box is : 200

The class Methods and Variables

The class variables is a variable, which is shared between all instances of a

class. In other words, there is one instance of the variable and it is accessed by

object instances. Class variables are prefixed with two @ characters (@@). A

class variable must be initialized within the class definition as shown below.

A class method is defined using def self.methodname(), which ends with end

delimiter and would be called using the class name as

classname.methodname as shown in the following example:

#!/usr/bin/ruby -w

class Box

 # Initialize our class variables

 @@count = 0

 def initialize(w,h)

 # assign instance avriables

 @width, @height = w, h

 @@count += 1

 end

 def self.printCount()

 puts "Box count is : #@@count"

 end

end

create two object

box1 = Box.new(10, 20)

box2 = Box.new(30, 100)

Ruby

168

call class method to print box count

Box.printCount()

When the above code is executed, it produces the following result:

Box count is : 2

The to_s Method

Any class you define should have a to_s instance method to return a string

representation of the object. Following is a simple example to represent a Box

object in terms of width and height:

#!/usr/bin/ruby -w

class Box

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # define to_s method

 def to_s

 "(w:#@width,h:#@height)" # string formatting of the object.

 end

end

create an object

box = Box.new(10, 20)

to_s method will be called in reference of string automatically.

puts "String representation of box is : #{box}"

When the above code is executed, it produces the following result:

String representation of box is : (w:10,h:20)

Ruby

169

Access Control

Ruby gives you three levels of protection at instance methods level, which may

be public, private, or protected. Ruby does not apply any access control over

instance and class variables.

 Public Methods: Public methods can be called by anyone. Methods are

public by default except for initialize, which is always private.

 Private Methods: Private methods cannot be accessed, or even viewed

from outside the class. Only the class methods can access private

members.

 Protected Methods: A protected method can be invoked only by objects

of the defining class and its subclasses. Access is kept within the family.

Following is a simple example to show the syntax of all the three access

modifiers:

#!/usr/bin/ruby -w

define a class

class Box

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # instance method by default it is public

 def getArea

 getWidth() * getHeight

 end

 # define private accessor methods

 def getWidth

 @width

 end

 def getHeight

 @height

 end

Ruby

170

 # make them private

 private :getWidth, :getHeight

 # instance method to print area

 def printArea

 @area = getWidth() * getHeight

 puts "Big box area is : #@area"

 end

 # make it protected

 protected :printArea

end

create an object

box = Box.new(10, 20)

call instance methods

a = box.getArea()

puts "Area of the box is : #{a}"

try to call protected or methods

box.printArea()

When the above code is executed, it produces the following result. Here, first

method is called successfully but second method gave a problem.

Area of the box is : 200

test.rb:42: protected method `printArea' called for #

<Box:0xb7f11280 @height=20, @width=10> (NoMethodError)

Class Inheritance

One of the most important concepts in object-oriented programming is that of

inheritance. Inheritance allows us to define a class in terms of another class,

which makes it easier to create and maintain an application.

Inheritance also provides an opportunity to reuse the code functionality and fast

implementation time but unfortunately Ruby does not support multiple levels of

Ruby

171

inheritances but Ruby supports mixins. A mixin is like a specialized

implementation of multiple inheritance in which only the interface portion is

inherited.

When creating a class, instead of writing completely new data members and

member functions, the programmer can designate that the new class should

inherit the members of an existing class. This existing class is called the base

class or superclass, and the new class is referred to as the derived class or

sub-class.

Ruby also supports the concept of subclassing, i.e., inheritance and following

example explains the concept. The syntax for extending a class is simple. Just

add a < character and the name of the superclass to your class statement. For

example, following define a class BigBox as a subclass of Box:

#!/usr/bin/ruby -w

define a class

class Box

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # instance method

 def getArea

 @width * @height

 end

end

define a subclass

class BigBox < Box

 # add a new instance method

 def printArea

 @area = @width * @height

 puts "Big box area is : #@area"

 end

end

Ruby

172

create an object

box = BigBox.new(10, 20)

print the area

box.printArea()

When the above code is executed, it produces the following result:

Big box area is : 200

Methods Overriding

Though you can add new functionality in a derived class, but sometimes you

would like to change the behavior of already defined method in a parent class.

You can do so simply by keeping the method name same and overriding the

functionality of the method as shown below in the example:

#!/usr/bin/ruby -w

define a class

class Box

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # instance method

 def getArea

 @width * @height

 end

end

define a subclass

class BigBox < Box

 # change existing getArea method as follows

 def getArea

Ruby

173

 @area = @width * @height

 puts "Big box area is : #@area"

 end

end

create an object

box = BigBox.new(10, 20)

print the area using overriden method.

box.getArea()

Operator Overloading

We'd like the + operator to perform vector addition of two Box objects using +,

the * operator to multiply a Box width and height by a scalar, and the unary -

operator to do negate the width and height of the Box. Here is a version of the

Box class with mathematical operators defined:

class Box

 def initialize(w,h) # Initialize the width and height

 @width,@height = w, h

 end

 def +(other) # Define + to do vector addition

 Box.new(@width + other.width, @height + other.height)

 end

 def -@ # Define unary minus to negate width and height

 Box.new(-@width, -@height)

 end

 def *(scalar) # To perform scalar multiplication

 Box.new(@width*scalar, @height*scalar)

 end

end

Ruby

174

Freezing Objects

Sometimes, we want to prevent an object from being changed. The freeze

method in Object allows us to do this, effectively turning an object into a

constant. Any object can be frozen by invoking Object.freeze. A frozen object

may not be modified: you can't change its instance variables.

You can check if a given object is already frozen or not using Object.frozen?

method, which returns true in case the object is frozen otherwise a false value is

return. Following example clears the concept:

#!/usr/bin/ruby -w

define a class

class Box

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # accessor methods

 def getWidth

 @width

 end

 def getHeight

 @height

 end

 # setter methods

 def setWidth=(value)

 @width = value

 end

 def setHeight=(value)

 @height = value

 end

end

Ruby

175

create an object

box = Box.new(10, 20)

let us freez this object

box.freeze

if(box.frozen?)

 puts "Box object is frozen object"

else

 puts "Box object is normal object"

end

now try using setter methods

box.setWidth = 30

box.setHeight = 50

use accessor methods

x = box.getWidth()

y = box.getHeight()

puts "Width of the box is : #{x}"

puts "Height of the box is : #{y}"

When the above code is executed, it produces the following result:

Box object is frozen object

test.rb:20:in `setWidth=': can't modify frozen object (TypeError)

 from test.rb:39

Class Constants

You can define a constant inside a class by assigning a direct numeric or string

value to a variable, which is defined without using either @ or @@. By

convention, we keep constant names in upper case.

Once a constant is defined, you cannot change its value but you can access a

constant directly inside a class much like a variable but if you want to access a

Ruby

176

constant outside of the class then you would have to use classname::constant

as shown in the below example.

#!/usr/bin/ruby -w

define a class

class Box

 BOX_COMPANY = "TATA Inc"

 BOXWEIGHT = 10

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # instance method

 def getArea

 @width * @height

 end

end

create an object

box = Box.new(10, 20)

call instance methods

a = box.getArea()

puts "Area of the box is : #{a}"

puts Box::BOX_COMPANY

puts "Box weight is: #{Box::BOXWEIGHT}"

When the above code is executed, it produces the following result:

Area of the box is : 200

TATA Inc

Box weight is: 10

Class constants are inherited and can be overridden like instance methods.

Ruby

177

Create Object Using Allocate

There may be a situation when you want to create an object without calling its

constructor initialize i.e. using new method, in such case you can call allocate,

which will create an uninitialized object for you as in the following example:

#!/usr/bin/ruby -w

define a class

class Box

 attr_accessor :width, :height

 # constructor method

 def initialize(w,h)

 @width, @height = w, h

 end

 # instance method

 def getArea

 @width * @height

 end

end

create an object using new

box1 = Box.new(10, 20)

create another object using allocate

box2 = Box.allocate

call instance method using box1

a = box1.getArea()

puts "Area of the box is : #{a}"

call instance method using box2

a = box2.getArea()

Ruby

178

puts "Area of the box is : #{a}"

When the above code is executed, it produces the following result:

Area of the box is : 200

test.rb:14: warning: instance variable @width not initialized

test.rb:14: warning: instance variable @height not initialized

test.rb:14:in `getArea': undefined method `*'

 for nil:NilClass (NoMethodError) from test.rb:29

Class Information

If class definitions are executable code, this implies that they execute in the

context of some object: self must reference something. Let's find out what it is.

#!/usr/bin/ruby -w

class Box

 # print class information

 puts "Type of self = #{self.type}"

 puts "Name of self = #{self.name}"

end

When the above code is executed, it produces the following result:

Type of self = Class

Name of self = Box

This means that a class definition is executed with that class as the current

object. This means that methods in the metaclass and its superclasses will be

available during the execution of the method definition.

Ruby

179

A regular expression is a special sequence of characters that helps you match or

find other strings or sets of strings using a specialized syntax held in a pattern.

A regular expression literal is a pattern between slashes or between arbitrary

delimiters followed by %r as follows:

Syntax

/pattern/

/pattern/im # option can be specified

%r!/usr/local! # general delimited regular expression

Example

#!/usr/bin/ruby

line1 = "Cats are smarter than dogs";

line2 = "Dogs also like meat";

if (line1 =~ /Cats(.*)/)

 puts "Line1 contains Cats"

end

if (line2 =~ /Cats(.*)/)

 puts "Line2 contains Dogs"

end

This will produce the following result:

Line1 contains Cats

Regular-Expression Modifiers

Regular expression literals may include an optional modifier to control various

aspects of matching. The modifier is specified after the second slash character,

as shown previously and may be represented by one of these characters:

22. REGULAR EXPRESSIONS

Ruby

180

Modifier Description

i Ignores case when matching text.

o Performs #{} interpolations only once, the first time the

regexp literal is evaluated.

x Ignores whitespace and allows comments in regular

expressions.

m Matches multiple lines, recognizing newlines as normal

characters.

u,e,s,n Interprets the regexp as Unicode (UTF-8), EUC, SJIS, or

ASCII. If none of these modifiers is specified, the regular

expression is assumed to use the source encoding.

Like string literals delimited with %Q, Ruby allows you to begin your regular

expressions with %r followed by a delimiter of your choice. This is useful when

the pattern you are describing contains a lot of forward slash characters that you

don't want to escape:

Following matches a single slash character, no escape required

%r|/|

Flag characters are allowed with this syntax, too

%r[</(.*)>]i

Regular-Expression Patterns

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match

themselves. You can escape a control character by preceding it with a backslash.

Following table lists the regular expression syntax that is available in Ruby.

Pattern Description

^ Matches beginning of line.

Ruby

181

$ Matches end of line.

. Matches any single character except newline. Using m

option allows it to match newline as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more occurrence of preceding expression.

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding

expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding

expression.

a| b Matches either a or b.

(re) Groups regular expressions and remembers matched text.

(?imx) Temporarily toggles on i, m, or x options within a regular

expression. If in parentheses, only that area is affected.

(?-imx) Temporarily toggles off i, m, or x options within a regular

expression. If in parentheses, only that area is affected.

(?: re) Groups regular expressions without remembering matched

text.

(?imx: re) Temporarily toggles on i, m, or x options within

parentheses.

Ruby

182

(?-imx: re) Temporarily toggles off i, m, or x options within

parentheses.

(?#...) Comment.

(?= re) Specifies position using a pattern. Doesn't have a range.

(?! re) Specifies position using pattern negation. Doesn't have a

range.

(?> re) Matches independent pattern without backtracking.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just

before newline.

\z Matches end of string.

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches

backspace (0x08) when inside brackets.

\B Matches nonword boundaries.

Ruby

183

\n, \t, etc. Matches newlines, carriage returns, tabs, etc.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if it matched already.

Otherwise refers to the octal representation of a character

code.

Regular-Expression Examples

Literal Characters

Example Description

/ruby/ Matches "ruby".

¥ Matches Yen sign. Multibyte characters are supported in

Ruby 1.9 and Ruby 1.8.

Character Classes

Example Description

/[Rr]uby/ Matches "Ruby" or "ruby".

/rub[ye]/ Matches "ruby" or "rube".

/[aeiou]/ Matches any one lowercase vowel.

/[0-9]/ Matches any digit; same as /[0123456789]/.

/[a-z]/ Matches any lowercase ASCII letter.

/[A-Z]/ Matches any uppercase ASCII letter.

/[a-zA-Z0-9]/ Matches any of the above.

Ruby

184

/[^aeiou]/ Matches anything other than a lowercase vowel.

/[^0-9]/ Matches anything other than a digit.

Special Character Classes

Example Description

/./ Matches any character except newline.

/./m In multiline mode, matches newline, too.

/\d/ Matches a digit: /[0-9]/.

/\D/ Matches a nondigit: /[^0-9]/.

/\s/ Matches a whitespace character: /[\t\r\n\f]/.

/\S/ Matches nonwhitespace: /[^ \t\r\n\f]/.

/\w/ Matches a single word character: /[A-Za-z0-9_]/.

/\W/ Matches a nonword character: /[^A-Za-z0-9_]/.

Repetition Cases

Example Description

/ruby?/ Matches "rub" or "ruby": the y is optional.

/ruby*/ Matches "rub" plus 0 or more ys.

/ruby+/ Matches "rub" plus 1 or more ys.

/\d{3}/ Matches exactly 3 digits.

Ruby

185

/\d{3,}/ Matches 3 or more digits.

/\d{3,5}/ Matches 3, 4, or 5 digits.

Nongreedy Repetition

This matches the smallest number of repetitions:

Example Description

/<.*>/ Greedy repetition: matches "<ruby>perl>".

/<.*?>/ Nongreedy: matches "<ruby>" in "<ruby>perl>".

Grouping with Parentheses

Example Description

/\D\d+/ No group: + repeats \d

/(\D\d)+/ Grouped: + repeats \D\d pair

/([Rr]uby(,)?)+/ Match "Ruby", "Ruby, ruby, ruby", etc.

Back References

This matches a previously matched group again:

Example Description

/([Rr])uby&\1ails/ Matches ruby&rails or Ruby&Rails.

/(['"])(?:(?!\1).)*\1/ Single or double-quoted string. \1 matches whatever

the 1st group matched . \2 matches whatever the 2nd

group matched, etc.

Ruby

186

Alternatives

Example Description

/ruby|rube/ Matches "ruby" or "rube".

/rub(y|le))/ Matches "ruby" or "ruble".

/ruby(!+|\?)/ "ruby" followed by one or more ! or one ?

Anchors

It needs to specify match position.

Example Description

/^Ruby/ Matches "Ruby" at the start of a string or internal line.

/Ruby$/ Matches "Ruby" at the end of a string or line.

/\ARuby/ Matches "Ruby" at the start of a string.

/Ruby\Z/ Matches "Ruby" at the end of a string.

/\bRuby\b/ Matches "Ruby" at a word boundary.

/\brub\B/ \B is nonword boundary: matches "rub" in "rube" and

"ruby" but not alone.

/Ruby(?=!)/ Matches "Ruby", if followed by an exclamation point.

/Ruby(?!!)/ Matches "Ruby", if not followed by an exclamation point.

Ruby

187

Special Syntax with Parentheses

Example Description

/R(?#comment)/ Matches "R". All the rest is a comment.

/R(?i)uby/ Case-insensitive while matching "uby".

/R(?i:uby)/ Same as above.

/rub(?:y|le))/ Group only without creating \1 backreference.

Search and Replace

Some of the most important String methods that use regular expressions are

sub and gsub, and their in-place variants sub! and gsub!.

All of these methods perform a search-and-replace operation using a Regexp

pattern. The sub & sub! replaces the first occurrence of the pattern and gsub &

gsub! replaces all occurrences.

The sub and gsub returns a new string, leaving the original unmodified where as

sub! andgsub! modify the string on which they are called.

Following is the example:

#!/usr/bin/ruby

phone = "2004-959-559 #This is Phone Number"

Delete Ruby-style comments

phone = phone.sub!(/#.*$/, "")

puts "Phone Num : #{phone}"

Remove anything other than digits

phone = phone.gsub!(/\D/, "")

puts "Phone Num : #{phone}"

Ruby

188

This will produce the following result:

Phone Num : 2004-959-559

Phone Num : 2004959559

Following is another example:

#!/usr/bin/ruby

text = "rails are rails, really good Ruby on Rails"

Change "rails" to "Rails" throughout

text.gsub!("rails", "Rails")

Capitalize the word "Rails" throughout

text.gsub!(/\brails\b/, "Rails")

puts "#{text}"

This will produce the following result:

Rails are Rails, really good Ruby on Rails

Ruby

189

This chapter teaches you how to access a database using Ruby. The Ruby DBI

module provides a database-independent interface for Ruby scripts similar to

that of the Perl DBI module.

DBI stands for Database Independent Interface for Ruby, which means DBI

provides an abstraction layer between the Ruby code and the underlying

database, allowing you to switch database implementations really easily. It

defines a set of methods, variables, and conventions that provide a consistent

database interface, independent of the actual database being used.

DBI can interface with the following:

 ADO (ActiveX Data Objects)

 DB2

 Frontbase

 mSQL

 MySQL

 ODBC

 Oracle

 OCI8 (Oracle)

 PostgreSQL

 Proxy/Server

 SQLite

 SQLRelay

Architecture of a DBI Application

DBI is independent of any database available in the backend. You can use DBI

whether you are working with Oracle, MySQL or Informix, etc. This is clear from

the following architecture diagram.

23. DBI

Ruby

190

The general architecture for Ruby DBI uses two layers:

 The database interface (DBI) layer. This layer is database independent

and provides a set of common access methods that are used the same

way regardless of the type of database server with which you're

communicating.

 The database driver (DBD) layer. This layer is database dependent;

different drivers provide access to different database engines. There is

one driver for MySQL, another for PostgreSQL, another for InterBase,

another for Oracle, and so forth. Each driver interprets requests from the

DBI layer and maps them onto requests appropriate for a given type of

database server.

Prerequisites

If you want to write Ruby scripts to access MySQL databases, you'll need to

have the Ruby MySQL module installed.

This module acts as a DBD as explained above and can be downloaded

fromhttp://www.tmtm.org/en/mysql/ruby/.

Obtaining and Installing Ruby/DBI

You can download and install the Ruby DBI module from the following location:

http://rubyforge.org/projects/ruby-dbi/

Before starting this installation make sure you have the root privilege. Now,

follow the steps given below:

Step 1

$ tar zxf dbi-0.2.0.tar.gz

Ruby

191

Step 2

Go in distribution directory dbi-0.2.0 and configure it using the setup.rb script in

that directory. The most general configuration command looks like this, with no

arguments following the config argument. This command configures the

distribution to install all drivers by default.

$ ruby setup.rb config

To be more specific, provide a --with option that lists the particular parts of the

distribution you want to use. For example, to configure only the main DBI

module and the MySQL DBD-level driver, issue the following command:

$ ruby setup.rb config --with=dbi,dbd_mysql

Step 3

Final step is to build the driver and install it using the following commands:

$ ruby setup.rb setup

$ ruby setup.rb install

Database Connection

Assuming we are going to work with MySQL database, before connecting to a

database make sure of the following:

 You have created a database TESTDB.

 You have created EMPLOYEE in TESTDB.

 This table is having fields FIRST_NAME, LAST_NAME, AGE, SEX, and

INCOME.

 User ID "testuser" and password "test123" are set to access TESTDB.

 Ruby Module DBI is installed properly on your machine.

 You have gone through MySQL tutorial to understand MySQL Basics.

Following is the example of connecting with MySQL database "TESTDB"

#!/usr/bin/ruby -w

require "dbi"

begin

Ruby

192

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost", "testuser", "test123")

 # get server version string and display it

 row = dbh.select_one("SELECT VERSION()")

 puts "Server version: " + row[0]

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

While running this script, it produces the following result at our Linux machine.

Server version: 5.0.45

If a connection is established with the data source, then a Database Handle is

returned and saved into dbh for further use otherwise dbh is set to nil value and

e.err and e::errstr return error code and an error string respectively.

Finally, before coming out it, ensure that database connection is closed and

resources are released.

INSERT Operation

INSERT operation is required when you want to create your records into a

database table.

Once a database connection is established, we are ready to create tables or

records into the database tables using do method or prepare and execute

method.

Using do Statement

Statements that do not return rows can be issued by invoking the do database

handle method. This method takes a statement string argument and returns a

count of the number of rows affected by the statement.

dbh.do("DROP TABLE IF EXISTS EMPLOYEE")

dbh.do("CREATE TABLE EMPLOYEE (

Ruby

193

 FIRST_NAME CHAR(20) NOT NULL,

 LAST_NAME CHAR(20),

 AGE INT,

 SEX CHAR(1),

 INCOME FLOAT)");

Similarly, you can execute the SQL INSERT statement to create a record into the

EMPLOYEE table.

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 dbh.do("INSERT INTO EMPLOYEE(FIRST_NAME,

 LAST_NAME,

 AGE,

 SEX,

 INCOME)

 VALUES ('Mac', 'Mohan', 20, 'M', 2000)")

 puts "Record has been created"

 dbh.commit

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

Ruby

194

Using prepare and execute

You can use prepare and execute methods of DBI class to execute the SQL

statement through Ruby code.

Record creation takes the following steps:

 Preparing SQL statement with INSERT statement. This will be done using

the prepare method.

 Executing SQL query to select all the results from the database. This will

be done using the execute method.

 Releasing Statement handle. This will be done using finish API

 If everything goes fine, then commit this operation otherwise you can

rollback the complete transaction.

Following is the syntax to use these two methods:

sth = dbh.prepare(statement)

sth.execute

 ... zero or more SQL operations ...

sth.finish

These two methods can be used to pass bind values to SQL statements. There

may be a case when values to be entered is not given in advance. In such a

case, binding values are used. A question mark (?) is used in place of actual

values and then actual values are passed through execute() API.

Following is the example to create two records in the EMPLOYEE table:

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 sth = dbh.prepare("INSERT INTO EMPLOYEE(FIRST_NAME,

 LAST_NAME,

 AGE,

 SEX,

Ruby

195

 INCOME)

 VALUES (?, ?, ?, ?, ?)")

 sth.execute('John', 'Poul', 25, 'M', 2300)

 sth.execute('Zara', 'Ali', 17, 'F', 1000)

 sth.finish

 dbh.commit

 puts "Record has been created"

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

If there are multiple INSERTs at a time, then preparing a statement first and

then executing it multiple times within a loop is more efficient than invoking do

each time through the loop

READ Operation

READ Operation on any database means to fetch some useful information from

the database.

Once our database connection is established, we are ready to make a query into

this database. We can use either do method or prepare and execute methods to

fetch values from a database table.

Record fetching takes following steps:

 Preparing SQL query based on required conditions. This will be done using

the prepare method.

 Executing SQL query to select all the results from the database. This will

be done using the execute method.

 Fetching all the results one by one and printing those results. This will be

done using the fetch method.

 Releasing Statement handle. This will be done using the finish method.

Ruby

196

Following is the procedure to query all the records from EMPLOYEE table having

salary more than 1000.

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 sth = dbh.prepare("SELECT * FROM EMPLOYEE

 WHERE INCOME > ?")

 sth.execute(1000)

 sth.fetch do |row|

 printf "First Name: %s, Last Name : %s\n", row[0], row[1]

 printf "Age: %d, Sex : %s\n", row[2], row[3]

 printf "Salary :%d \n\n", row[4]

 end

 sth.finish

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

This will produce the following result:

First Name: Mac, Last Name : Mohan

Ruby

197

Age: 20, Sex : M

Salary :2000

First Name: John, Last Name : Poul

Age: 25, Sex : M

Salary :2300

There are more short cut methods to fetch records from the database. If you are

interested then go through the Fetching the Result otherwise proceed to the

next section.

Fetching the Result

DBI provides several different methods to fetch records from the database.

Assuming dbh is a database handle and sth is a statement handle:

S.N. Methods with Description

1 db.select_one(stmt, *bindvars) => aRow | nil

Executes the stmt statement with the bindvars binding beforehand to

parameter markers. Returns the first row or nil if the result-set is

empty.

2 db.select_all(stmt, *bindvars) => [aRow, ...] | nil

db.select_all(stmt, *bindvars){ |aRow| aBlock }

Executes the stmt statement with the bindvars binding beforehand to

parameter markers. Calling this method without block returns an array

containing all rows. If a block is given, this will be called for each row.

3 sth.fetch => aRow | nil

Returns the next row. Returns nil if no further rows are in the result-set.

4 sth.fetch { |aRow| aBlock }

Invokes the given block for the remaining rows of the result-set.

5 sth.fetch_all => [aRow, ...]

Returns all remaining rows of the result-set collected in an array.

Ruby

198

6 sth.fetch_many(count) => [aRow, ...]

Returns the next count rows collected in an [aRow, ...] array.

7 sth.fetch_scroll(direction, offset=1) => aRow | nil

Returns the row specified by the direction parameter and offset.

Parameter offsetis discarded for all but SQL_FETCH_ABSOLUTE and

SQL_FETCH_RELATIVE. See a table below for possible values of

direction parameter.

8 sth.column_names => anArray

Returns the names of the columns.

9 column_info => [aColumnInfo, ...]

Returns an array of DBI::ColumnInfo objects. Each object stores

information about one column and contains its name, type, precision

and more.

10 sth.rows => rpc

Returns the Row Processed Count of the executed statement or nil if no

such exist.

11 sth.fetchable? => true | false

Returns true if it's possible to fetch rows, otherwise false.

12 sth.cancel

Frees the resources held by the result-set. After calling this method, it is

no longer possible to fetch rows until you again call execute.

13 sth.finish

Frees the resources held by the prepared statement. After calling this

method no further methods can be called onto this object.

The direction Parameter

Following values could be used for the direction Parameter of the fetch_scroll

Method:

Ruby

199

Constant Description

DBI::SQL_FETCH_FIRST Fetches first row.

DBI::SQL_FETCH_LAST Fetches last row.

DBI::SQL_FETCH_NEXT Fetches next row.

DBI::SQL_FETCH_PRIOR Fetches previous row.

DBI::SQL_FETCH_ABSOLUTE Fetches row at position offset.

DBI::SQL_FETCH_RELATIVE Fetches the row that is offset rows away from

the current.

Example

The following example shows how to get the metadata for a statement. Consider

the EMPLOYEE table, which we created in the last chapter.

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 sth = dbh.prepare("SELECT * FROM EMPLOYEE

 WHERE INCOME > ?")

 sth.execute(1000)

 if sth.column_names.size == 0 then

 puts "Statement has no result set"

 printf "Number of rows affected: %d\n", sth.rows

 else

 puts "Statement has a result set"

 rows = sth.fetch_all

Ruby

200

 printf "Number of rows: %d\n", rows.size

 printf "Number of columns: %d\n", sth.column_names.size

 sth.column_info.each_with_index do |info, i|

 printf "--- Column %d (%s) ---\n", i, info["name"]

 printf "sql_type: %s\n", info["sql_type"]

 printf "type_name: %s\n", info["type_name"]

 printf "precision: %s\n", info["precision"]

 printf "scale: %s\n", info["scale"]

 printf "nullable: %s\n", info["nullable"]

 printf "indexed: %s\n", info["indexed"]

 printf "primary: %s\n", info["primary"]

 printf "unique: %s\n", info["unique"]

 printf "mysql_type: %s\n", info["mysql_type"]

 printf "mysql_type_name: %s\n", info["mysql_type_name"]

 printf "mysql_length: %s\n", info["mysql_length"]

 printf "mysql_max_length: %s\n", info["mysql_max_length"]

 printf "mysql_flags: %s\n", info["mysql_flags"]

 end

 end

 sth.finish

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

This will produce the following result:

Statement has a result set

Number of rows: 5

Ruby

201

Number of columns: 5

--- Column 0 (FIRST_NAME) ---

sql_type: 12

type_name: VARCHAR

precision: 20

scale: 0

nullable: true

indexed: false

primary: false

unique: false

mysql_type: 254

mysql_type_name: VARCHAR

mysql_length: 20

mysql_max_length: 4

mysql_flags: 0

--- Column 1 (LAST_NAME) ---

sql_type: 12

type_name: VARCHAR

precision: 20

scale: 0

nullable: true

indexed: false

primary: false

unique: false

mysql_type: 254

mysql_type_name: VARCHAR

mysql_length: 20

mysql_max_length: 5

mysql_flags: 0

--- Column 2 (AGE) ---

sql_type: 4

type_name: INTEGER

precision: 11

Ruby

202

scale: 0

nullable: true

indexed: false

primary: false

unique: false

mysql_type: 3

mysql_type_name: INT

mysql_length: 11

mysql_max_length: 2

mysql_flags: 32768

--- Column 3 (SEX) ---

sql_type: 12

type_name: VARCHAR

precision: 1

scale: 0

nullable: true

indexed: false

primary: false

unique: false

mysql_type: 254

mysql_type_name: VARCHAR

mysql_length: 1

mysql_max_length: 1

mysql_flags: 0

--- Column 4 (INCOME) ---

sql_type: 6

type_name: FLOAT

precision: 12

scale: 31

nullable: true

indexed: false

primary: false

unique: false

Ruby

203

mysql_type: 4

mysql_type_name: FLOAT

mysql_length: 12

mysql_max_length: 4

mysql_flags: 32768

Update Operation

UPDATE Operation on any database means to update one or more records,

which are already available in the database. Following is the procedure to update

all the records having SEX as 'M'. Here, we will increase AGE of all the males by

one year. This will take three steps:

 Preparing SQL query based on required conditions. This will be done using

the prepare method.

 Executing SQL query to select all the results from the database. This will

be done using the execute method.

 Releasing Statement handle. This will be done using the finish method.

 If everything goes fine then commit this operation otherwise you can

rollback the complete transaction.

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 sth = dbh.prepare("UPDATE EMPLOYEE SET AGE = AGE + 1

 WHERE SEX = ?")

 sth.execute('M')

 sth.finish

 dbh.commit

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

Ruby

204

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

DELETE Operation

DELETE operation is required when you want to delete some records from your

database. Following is the procedure to delete all the records from EMPLOYEE

where AGE is more than 20. This operation will take following steps.

 Preparing SQL query based on required conditions. This will be done using

the prepare method.

 Executing SQL query to delete required records from the database. This

will be done using the execute method.

 Releasing Statement handle. This will be done using the finish method.

 If everything goes fine then commit this operation otherwise you can

rollback the complete transaction.

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 sth = dbh.prepare("DELETE FROM EMPLOYEE

 WHERE AGE > ?")

 sth.execute(20)

 sth.finish

 dbh.commit

rescue DBI::DatabaseError => e

 puts "An error occurred"

Ruby

205

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

Performing Transactions

Transactions are a mechanism that ensures data consistency. Transactions

should have the following four properties:

 Atomicity: Either a transaction completes or nothing happens at all.

 Consistency: A transaction must start in a consistent state and leave the

system is a consistent state.

 Isolation: Intermediate results of a transaction are not visible outside the

current transaction.

 Durability: Once a transaction was committed, the effects are persistent,

even after a system failure.

The DBI provides two methods to either commit or rollback a transaction. There

is one more method called transaction, which can be used to implement

transactions. There are two simple approaches to implement transactions:

Approach I

The first approach uses DBI's commit and rollback methods to explicitly commit

or cancel the transaction:

 dbh['AutoCommit'] = false # Set auto commit to false.

 begin

 dbh.do("UPDATE EMPLOYEE SET AGE = AGE+1

 WHERE FIRST_NAME = 'John'")

 dbh.do("UPDATE EMPLOYEE SET AGE = AGE+1

 WHERE FIRST_NAME = 'Zara'")

 dbh.commit

 rescue

 puts "transaction failed"

Ruby

206

 dbh.rollback

 end

 dbh['AutoCommit'] = true

Approach II

The second approach uses the transaction method. This is simpler, because it

takes a code block containing the statements that make up the transaction. The

transaction method executes the block, then invokes commit or rollback

automatically, depending on whether the block succeeds or fails:

 dbh['AutoCommit'] = false # Set auto commit to false.

 dbh.transaction do |dbh|

 dbh.do("UPDATE EMPLOYEE SET AGE = AGE+1

 WHERE FIRST_NAME = 'John'")

 dbh.do("UPDATE EMPLOYEE SET AGE = AGE+1

 WHERE FIRST_NAME = 'Zara'")

 end

 dbh['AutoCommit'] = true

COMMIT Operation

Commit is the operation, which gives a green signal to database to finalize the

changes, and after this operation, no change can be reverted back.

Here is a simple example to call the commit method.

 dbh.commit

ROLLBACK Operation

If you are not satisfied with one or more of the changes and you want to revert

back those changes completely, then use the rollback method.

Here is a simple example to call the rollback method.

 dbh.rollback

Disconnecting Database

To disconnect Database connection, use disconnect API.

Ruby

207

 dbh.disconnect

If the connection to a database is closed by the user with the disconnect

method, any outstanding transactions are rolled back by the DBI. However,

instead of depending on any of DBI's implementation details, your application

would be better off calling the commit or rollback explicitly.

Handling Errors

There are many sources of errors. A few examples are a syntax error in an

executed SQL statement, a connection failure, or calling the fetch method for an

already canceled or finished statement handle.

If a DBI method fails, DBI raises an exception. DBI methods may raise any of

several types of exception but the two most important exception classes are

DBI::InterfaceError and DBI::DatabaseError.

Exception objects of these classes have three attributes named err, errstr, and

state, which represent the error number, a descriptive error string, and a

standard error code. The attributes are explained below:

 err: Returns an integer representation of the occurred error or nil if this is

not supported by the DBD.The Oracle DBD for example returns the

numerical part of an ORA-XXXX error message.

 errstr: Returns a string representation of the occurred error.

 state: Returns the SQLSTATE code of the occurred error.The SQLSTATE is

a five-character-long string. Most DBDs do not support this and return nil

instead.

You have seen following code above in most of the examples:

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

To get debugging information about what your script is doing as it executes, you

can enable tracing. To do this, you must first load the dbi/trace module and then

call the trace method that controls the trace mode and output destination:

Ruby

208

require "dbi/trace"

..............

trace(mode, destination)

The mode value may be 0 (off), 1, 2, or 3, and the destination should be an IO

object. The default values are 2 and STDERR, respectively.

Code Blocks with Methods

There are some methods that create handles. These methods can be invoked

with a code block. The advantage of using code block along with methods is that

they provide the handle to the code block as its parameter and automatically

cleans up the handle when the block terminates. There are few examples to

understand the concept.

 DBI.connect: This method generates a database handle and it is

recommended to call disconnect at the end of the block to disconnect the

database.

 dbh.prepare: This method generates a statement handle and it is

recommended to finish at the end of the block. Within the block, you must

invoke execute method to execute the statement.

 dbh.execute: This method is similar except we don't need to invoke

execute within the block. The statement handle is automatically executed.

Example 1

DBI.connect can take a code block, passes the database handle to it, and

automatically disconnects the handle at the end of the block as follows.

dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123") do |dbh|

Example 2

dbh.prepare can take a code block, passes the statement handle to it, and

automatically calls finish at the end of the block as follows.

dbh.prepare("SHOW DATABASES") do |sth|

 sth.execute

 puts "Databases: " + sth.fetch_all.join(", ")

end

Ruby

209

Example 3

dbh.execute can take a code block, passes the statement handle to it, and

automatically calls finish at the end of the block as follows:

dbh.execute("SHOW DATABASES") do |sth|

 puts "Databases: " + sth.fetch_all.join(", ")

end

DBI transaction method also takes a code block, which has been described

above.

Driver-specific Functions and Attributes

The DBI lets the database drivers provide additional database-specific functions,

which can be called by the user through the func method of any Handle object.

Driver-specific attributes are supported and can be set or gotten using the []=

or []methods.

DBD::Mysql implements the following driver-specific functions:

S.N. Functions with Description

1 dbh.func(:createdb, db_name)

Creates a new database.

2 dbh.func(:dropdb, db_name)

Drops a database.

3 dbh.func(:reload)

Performs a reload operation.

4 dbh.func(:shutdown)

Shuts down the server.

5 dbh.func(:insert_id) => Fixnum

Returns the most recent AUTO_INCREMENT value for a connection.

6 dbh.func(:client_info) => String

Returns MySQL client information in terms of version.

Ruby

210

7 dbh.func(:client_version) => Fixnum

Returns client information in terms of version. It's similar to :client_info

but it return a fixnum instead of sting.

8 dbh.func(:host_info) => String

Returns host information.

9 dbh.func(:proto_info) => Fixnum

Returns protocol being used for the communication.

10 dbh.func(:server_info) => String

Returns MySQL server information in terms of version.

11 dbh.func(:stat) => String

Returns current state of the database.

12 dbh.func(:thread_id) => Fixnum

Returns current thread ID.

Example

#!/usr/bin/ruby

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 puts dbh.func(:client_info)

 puts dbh.func(:client_version)

 puts dbh.func(:host_info)

 puts dbh.func(:proto_info)

 puts dbh.func(:server_info)

 puts dbh.func(:thread_id)

 puts dbh.func(:stat)

rescue DBI::DatabaseError => e

 puts "An error occurred"

Ruby

211

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

ensure

 dbh.disconnect if dbh

end

This will produce the following result:

5.0.45

50045

Localhost via UNIX socket

10

5.0.45

150621

Uptime: 384981 Threads: 1 Questions: 1101078 Slow queries: 4 \

Opens: 324 Flush tables: 1 Open tables: 64 \

Queries per second avg: 2.860

Ruby

212

Ruby is a general-purpose language; it can't properly be called a web language

at all. Even so, web applications and web tools in general are among the most

common uses of Ruby.

Not only can you write your own SMTP server, FTP daemon, or Web server in

Ruby, but you can also use Ruby for more usual tasks such as CGI programming

or as a replacement for PHP.

Please spend few minutes with CGI Programming Tutorial for more detail on CGI

Programming.

Writing CGI Scripts

The most basic Ruby CGI script looks like this:

#!/usr/bin/ruby

puts "HTTP/1.0 200 OK"

puts "Content-type: text/html\n\n"

puts "<html><body>This is a test</body></html>"

If you call this script test.cgi and uploaded it to a Unix-based Web hosting

provider with the right permissions, you could use it as a CGI script.

For example, if you have the Web site http://www.example.com/ hosted with a

Linux Web hosting provider and you upload test.cgi to the main directory and

give it execute permissions, then visiting http://www.example.com/test.cgi

should return an HTML page saying This is a test.

Here when test.cgi is requested from a Web browser, the Web server looks for

test.cgi on the Web site, and then executes it using the Ruby interpreter. The

Ruby script returns a basic HTTP header and then returns a basic HTML

document.

Using cgi.rb

Ruby comes with a special library called cgi that enables more sophisticated

interactions than those with the preceding CGI script.

Let's create a basic CGI script that uses cgi:

#!/usr/bin/ruby

24. WEB APPLICATIONS

Ruby

213

require 'cgi'

cgi = CGI.new

puts cgi.header

puts "<html><body>This is a test</body></html>"

Here, you created a CGI object and used it to print the header line for you.

Form Processing

Using class CGI gives you access to HTML query parameters in two ways.

Suppose we are given a URL of /cgi-bin/test.cgi?FirstName=Zara&LastName=Ali.

You can access the parameters FirstName and LastName using CGI#[] directly as

follows:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi['FirstName'] # => ["Zara"]

cgi['LastName'] # => ["Ali"]

There is another way to access these form variables. This code will give you a

hash of all the key and values:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

h = cgi.params # => {"FirstName"=>["Zara"],"LastName"=>["Ali"]}

h['FirstName'] # => ["Zara"]

h['LastName'] # => ["Ali"]

Following is the code to retrieve all the keys:

Ruby

214

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi.keys # => ["FirstName", "LastName"]

If a form contains multiple fields with the same name, the corresponding values

will be returned to the script as an array. The [] accessor returns just the first of

these.index the result of the params method to get them all.

In this example, assume the form has three fields called "name" and we entered

three names "Zara", "Huma" and "Nuha":

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi['name'] # => "Zara"

cgi.params['name'] # => ["Zara", "Huma", "Nuha"]

cgi.keys # => ["name"]

cgi.params # => {"name"=>["Zara", "Huma", "Nuha"]}

Note: Ruby will take care of GET and POST methods automatically. There is no

separate treatment for these two different methods.

An associated, but basic, form that could send the correct data would have the

HTML code like so:

<html>

<body>

<form method="POST" action="http://www.example.com/test.cgi">

First Name :<input type="text" name="FirstName" value="" />

Last Name :<input type="text" name="LastName" value="" />

<input type="submit" value="Submit Data" />

</form>

</body>

</html>

Ruby

215

Creating Forms and HTML

CGI contains a huge number of methods used to create HTML. You will find one

method per tag. In order to enable these methods, you must create a CGI object

by calling CGI.new.

To make tag nesting easier, these methods take their content as code blocks.

The code blocks should return a String, which will be used as the content for the

tag. For example:

#!/usr/bin/ruby

require "cgi"

cgi = CGI.new("html4")

cgi.out{

 cgi.html{

 cgi.head{ "\n"+cgi.title{"This Is a Test"} } +

 cgi.body{ "\n"+

 cgi.form{"\n"+

 cgi.hr +

 cgi.h1 { "A Form: " } + "\n"+

 cgi.textarea("get_text") +"\n"+

 cgi.br +

 cgi.submit

 }

 }

 }

}

NOTE: The form method of the CGI class can accept a method parameter, which

will set the HTTP method (GET, POST, and so on...) to be used on form

submittal. The default, used in this example, is POST.

This will produce the following result:

Content-Type: text/html

Content-Length: 302

Ruby

216

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Final//EN">

<HTML>

<HEAD>

<TITLE>This Is a Test</TITLE>

</HEAD>

<BODY>

<FORM METHOD="post" ENCTYPE="application/x-www-form-urlencoded">

<HR>

<H1>A Form: </H1>

<TEXTAREA COLS="70" NAME="get_text" ROWS="10"></TEXTAREA>

<INPUT TYPE="submit">

</FORM>

</BODY>

</HTML>

Quoting Strings

When dealing with URLs and HTML code, you must be careful to quote certain

characters. For instance, a slash character (/) has special meaning in a URL, so

it must be escaped if it's not part of the pathname.

For example, any / in the query portion of the URL will be translated to the

string %2F and must be translated back to a / for you to use it. Space and

ampersand are also special characters. To handle this, CGI provides the routines

CGI.escape and CGI.unescape.

#!/usr/bin/ruby

require 'cgi'

puts CGI.escape(Zara Ali/A Sweet & Sour Girl")

This will produce the following result:

Zara+Ali%2FA Sweet+%26+Sour+Girl")

#!/usr/bin/ruby

Ruby

217

require 'cgi'

puts CGI.escapeHTML('<h1>Zara Ali/A Sweet & Sour Girl</h1>')

This will produce the following result:

<h1>Zara Ali/A Sweet & Sour Girl</h1>'

Useful Methods in CGI Class

Here is the list of methods related to CGI class:

 The Ruby CGI - Methods related to Standard CGI library.

Ruby CGI

CGI Class Methods

Here is a list of CGI Class methods:

SN Methods with Description

1 CGI::new([level="query"])

Creates a CGI object. Level may be one of the following options. If one of

the HTML levels is specified, the following methods are defined for

generating output conforming to that level:

query: No HTML output generated

html3: HTML3.2

html4: HTML4.0 Strict

html4Tr: HTML4.0 Transitional

html4Fr: HTML4.0 Frameset

2 CGI::escape(str)

Escapes an unsafe string using URL-encoding.

3 CGI::unescape(str)

Expands a string that has been escaped using URL-encoding.

Ruby

218

4 CGI::escapeHTML(str)

Escapes HTML special characters, including: & < >.

5 CGI::unescapeHTML(str)

Expands escaped HTML special characters, including: & < >.

6 CGI::escapeElement(str[, element...])

Escapes HTML special characters in the specified HTML elements.

7 CGI::unescapeElement(str, element[, element...])

Expands escaped HTML special characters in the specified HTML

elements.

8 CGI::parse(query)

Parses the query and returns a hash containing its key-value pairs.

9 CGI::pretty(string[, leader=" "])

Returns a neatly formatted version of the HTML string. If leader is

specified, it's written at the beginning of each line. The default value for

leader is two spaces.

10 CGI::rfc1123_date(time)

Formats the data and time according to RFC-1123 (for example, Tue, 2

Jun 2008 00:00:00 GMT).

CGI Instance Methods

Assuming c is an instance created by CGI::new. Now, here is a list of methods,

which can be applied to this instance:

SN Methods with Description

1 c[name]

Returns an array containing the value of the field name corresponding to

name.

Ruby

219

2 c.checkbox(name[, value[, check=false]])

c.checkbox(options)

Returns an HTML string defining a checkbox field. Tag attributes may be

specified in a hash passed as an argument.

3 c.checkbox_group(name, value...)

c.checkbox_group(options)

Returns an HTML string defining a checkbox group. Tag attributes may be

specified in a hash passed as an argument.

4 c.file_field(name[, size=20[, max]])

c.file_field(options)

Returns an HTML string defining a file field.

5 c.form([method="post"[, url]]) { ...}

c.form(options)

Returns an HTML string defining a form. If a block is specified, the string

produced by its output creates the contents of the form. Tag attributes

may be specified in a hash passed as an argument.

6 c.cookies

Returns a hash containing a CGI::Cookie object containing keys and

values from a cookie.

7 c.header([header])

Returns a CGI header containing the information in header. If header is a

hash, its key-value pairs are used to create the header.

8 c.hidden(name[, value])

c.hidden(options)

Returns an HTML string defining a HIDDEN field. Tag attributes may be

specified in a hash passed as an argument.

9 c.image_button(url[, name[, alt]])

c.image_button(options)

Returns an HTML string defining an image button. Tag attributes may be

specified in a hash passed as an argument.

Ruby

220

10 c.keys

Returns an array containing the field names from the form.

11 c.key?(name)

c.has_key?(name)

c.include?(name)

Returns true if the form contains the specified field name.

12 c.multipart_form([url[, encode]]) { ...}

c.multipart_form(options) { ...}

Returns an HTML string defining a multipart form. If a block is specified,

the string produced by its output creates the contents of the form. Tag

attributes may be specified in a hash passed as an argument.

13 c.out([header]) { ...}

Generates HTML output. Uses the string produced by the block's output

to create the body of the page.

14 c.params

Returns a hash containing field names and values from the form.

15 c.params= hash

Sets field names and values in the form using a hash.

16 c.password_field(name[, value[, size=40[, max]]])

c.password_field(options)

Returns an HTML string defining a password field. Tag attributes may be

specified in a hash passed as an argument.

17 c.popup_menu(name, value...)

c.popup_menu(options)

c.scrolling_list(name, value...)

c.scrolling_list(options)

Returns an HTML string defining a pop-up menu. Tag attributes may be

specified in a hash passed as an argument.

18 c.radio_button(name[, value[, checked=false]])

Ruby

221

c.radio_button(options)

Returns an HTML string defining a radio button. Tag attributes may be

specified in a hash passed as an argument.

19 c.radio_group(name, value...)

c.radio_group(options)

Returns an HTML string defining a radio button group. Tag attributes may

be specified in a hash passed as an argument.

20 c.reset(name[, value])

c.reset(options)

Returns an HTML string defining a reset button. Tag attributes may be

specified in a hash passed as an argument.

21 c.text_field(name[, value[, size=40[, max]]])

c.text_field(options)

Returns an HTML string defining a text field. Tag attributes may be

specified in a hash passed as an argument.

22 c.textarea(name[, cols=70[, rows=10]]) { ...}

c.textarea(options) { ...}

Returns an HTML string defining a text area. If a block is specified, the

string produced by its output creates the contents of the text area. Tag

attributes may be specified in a hash passed as an argument.

HTML Generation Methods

You can create any HTML tag by using the corresponding HTML tag name along

with any CGI instance. For example:

#!/usr/bin/ruby

require "cgi"

cgi = CGI.new("html4")

cgi.out{

 cgi.html{

 cgi.head{ "\n"+cgi.title{"This Is a Test"} } +

Ruby

222

 cgi.body{ "\n"+

 cgi.form{"\n"+

 cgi.hr +

 cgi.h1 { "A Form: " } + "\n"+

 cgi.textarea("get_text") +"\n"+

 cgi.br +

 cgi.submit

 }

 }

 }

}

CGI Object Attributes

You can access any of the following attributes using a CGI instance:

Attribute Returned Value

accept Acceptable MIME type

accept_charset Acceptable character set

accept_encoding Acceptable encoding

accept_language Acceptable language

auth_type Authentication type

raw_cookie Cookie data (raw string)

content_length Content length

content_type Content type

From Client e-mail address

Ruby

223

gateway_interface CGI version string

path_info Extra path

path_translated Converted extra path

Query_string Query string

referer Previously accessed URL

remote_addr Client host address

remote_host Client hostname

remote_ident Client name

remote_user Authenticated user

request_method Request method (GET, POST, etc.)

script_name Program name

server_name Server name

server_port Server port

server_protocol Server protocol

server_software Server software

user_agent User agent

Cookies and Sessions

We have explained these two concepts in different sections. Please follow the

sections:

 The Ruby CGI Cookies - How to handle CGI Cookies.

Ruby

224

 The Ruby CGI Sessions - How to manage CGI sessions.

Ruby CGI Cookies

HTTP protocol is a stateless protocol. But for a commercial website, it is required

to maintain session information among different pages. For example, one user

registration ends after completing many pages. But how to maintain user's

session information across all the web pages.

In many situations, using cookies is the most efficient method of remembering

and tracking preferences, purchases, commissions, and other information

required for better visitor experience or site statistics.

How It Works?

Your server sends some data to the visitor's browser in the form of a cookie. The

browser may accept the cookie. If it does, it is stored as a plain text record on

the visitor's hard drive. Now, when the visitor arrives at another page on your

site, the cookie is available for retrieval. Once retrieved, your server

knows/remembers what was stored.

Cookies are a plain text data record of five variable-length fields:

 Expires: The date the cookie will expire. If this is blank, the cookie will

expire when the visitor quits the browser.

 Domain: The domain name of your site.

 Path: The path to the directory or web page that sets the cookie. This

may be blank if you want to retrieve the cookie from any directory or

page.

 Secure: If this field contains the word "secure", then the cookie may only

be retrieved with a secure server. If this field is blank, no such restriction

exists.

 Name=Value: Cookies are set and retrieved in the form of key and value

pairs.

Handling Cookies in Ruby

You can create a named cookie object and store any textual information in it. To

send it down to the browser, set a cookie header in the call to CGI.out.

#!/usr/bin/ruby

require "cgi"

cgi = CGI.new("html4")

Ruby

225

cookie = CGI::Cookie.new('name' => 'mycookie',

 'value' => 'Zara Ali',

 'expires' => Time.now + 3600)

cgi.out('cookie' => cookie) do

 cgi.head + cgi.body { "Cookie stored" }

end

The next time the user comes back to this page, you can retrieve the cookie

values set as shown below:

#!/usr/bin/ruby

require "cgi"

cgi = CGI.new("html4")

cookie = cgi.cookies['mycookie']

cgi.out('cookie' => cookie) do

 cgi.head + cgi.body { cookie[0] }

end

Cookies are represented using a separate object of class CGI::Cookie, containing

the following accessors:

Attribute Returned Value

name Cookie name

value An array of cookie values

path The cookie's path

domain The domain

expires The expiration time (as a Time object)

secure True if secure cookie

Ruby

226

Ruby CGI Sessions

A CGI::Session maintains a persistent state for Web users in a CGI environment.

Sessions should be closed after use, as this ensures that their data is written out

to the store. When you've permanently finished with a session, you should

delete it.

#!/usr/bin/ruby

require 'cgi'

require 'cgi/session'

cgi = CGI.new("html4")

sess = CGI::Session.new(cgi, "session_key" => "a_test",

 "prefix" => "rubysess.")

lastaccess = sess["lastaccess"].to_s

sess["lastaccess"] = Time.now

if cgi['bgcolor'][0] =~ /[a-z]/

 sess["bgcolor"] = cgi['bgcolor']

end

cgi.out{

 cgi.html {

 cgi.body ("bgcolor" => sess["bgcolor"]){

 "The background of this page" +

 "changes based on the 'bgcolor'" +

 "each user has in session." +

 "Last access time: #{lastaccess}"

 }

 }

}

Accessing "/cgi-bin/test.cgi?bgcolor=red" would turn the page red for a single

user for each successive hit until a new "bgcolor" was specified via the URL.

Session data is stored in a temporary file for each session, and the prefix

parameter assigns a string to be prepended to the filename, making your

sessions easy to identify on the filesystem of the server.

Ruby

227

CGI::Session still lacks many features, such as the capability to store objects

other than Strings, session storage across multiple servers.

Class CGI::Session

A CGI::Session maintains a persistent state for web users in a CGI environment.

Sessions may be memory-resident or may be stored on disk.

Class Methods

Ruby class Class CGI::Session provides a single class method to create a

session:

CGI::Session::new(cgi[, option])

Starts a new CGI session and returns the corresponding CGI::Session object.

option may be an option hash specifying one or more of the following:

 session_key: Key name holding the session ID. Default is _session_id.

 session_id: Unique session ID. Generated automatically

 new_session: If true, create a new session id for this session. If false,

use an existing session identified by session_id. If omitted, use an

existing session if available, otherwise create a new one.

 database_manager: Class to use to save sessions; may be

CGI::Session::FileStore or CGI::Session::MemoryStore. Default is

FileStore.

 tmpdir: For FileStore, directory for session files.

 prefix: For FileStore, prefix of session filenames.

Instance Methods

SN Methods with Description

1 []

Returns the value for the given key. See example above.

2 []=

Sets the value for the given key. See example above.

3 delete

Ruby

228

Calls the delete method of the underlying database manager. For

FileStore, deletes the physical file containing the session. For

MemoryStore, removes the session from memory.

4 update

Calls the update method of the underlying database manager. For

FileStore, writes the session data out to disk. Has no effect with

MemoryStore.

Web Hosting Servers

You could check the following topic on the internet to host your website on a

Unix-based Server:

 Unix-based Web hosting

Ruby

229

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending e-mail

and routing e-mail between mail servers.

Ruby provides Net::SMTP class for Simple Mail Transfer Protocol (SMTP) client-

side connection and provides two class methods new and start.

 The new takes two parameters:

o The server name defaulting to localhost.

o The port number defaulting to the well-known port 25.

 The start method takes these parameters:

o The server - IP name of the SMTP server, defaulting to localhost.

o The port - Port number, defaulting to 25.

o The domain - Domain of the mail sender, defaulting to

ENV["HOSTNAME"].

o The account - Username, default is nil.

o The password - User password, defaulting to nil.

o The authtype - Authorization type, defaulting to cram_md5.

An SMTP object has an instance method called sendmail, which will typically be

used to do the work of mailing a message. It takes three parameters:

 The source - A string or array or anything with an each iterator returning

one string at a time.

 The sender - A string that will appear in the from field of the email.

 The recipients - A string or an array of strings representing the recipients'

addressee(s).

Example

Here is a simple way to send one email using Ruby script. Try it once:

require 'net/smtp'

message = <<MESSAGE_END

From: Private Person <me@fromdomain.com>

To: A Test User <test@todomain.com>

25. SENDING EMAIL

Ruby

230

Subject: SMTP e-mail test

This is a test e-mail message.

MESSAGE_END

Net::SMTP.start('localhost') do |smtp|

 smtp.send_message message, 'me@fromdomain.com',

 'test@todomain.com'

end

Here, you have placed a basic e-mail in message, using a document, taking care

to format the headers correctly. E-mails require a From, To, and Subject

header, separated from the body of the e-mail with a blank line.

To send the mail you use Net::SMTP to connect to the SMTP server on the local

machine and then use the send_message method along with the message, the

from address, and the destination address as parameters (even though the from

and to addresses are within the e-mail itself, these aren't always used to route

mail).

If you're not running an SMTP server on your machine, you can use the

Net::SMTP to communicate with a remote SMTP server. Unless you're using a

webmail service (such as Hotmail or Yahoo! Mail), your e-mail provider will have

provided you with outgoing mail server details that you can supply to

Net::SMTP, as follows:

Net::SMTP.start('mail.your-domain.com')

This line of code connects to the SMTP server on port 25 of mail.your-

domain.com without using any username or password. If you need to, though,

you can specify port number and other details. For example:

Net::SMTP.start('mail.your-domain.com',

 25,

 'localhost',

 'username', 'password' :plain)

This example connects to the SMTP server at mail.your-domain.com using a

username and password in plain text format. It identifies the client's hostname

as localhost.

Ruby

231

Sending an HTML e-mail using Ruby

When you send a text message using Ruby then all the content will be treated as

simple text. Even if you will include HTML tags in a text message, it will be

displayed as simple text and HTML tags will not be formatted according to HTML

syntax. But Ruby Net::SMTP provides option to send an HTML message as actual

HTML message.

While sending an email message you can specify a Mime version, content type

and character set to send an HTML email.

Example

Following is the example to send HTML content as an email. Try it once:

require 'net/smtp'

message = <<MESSAGE_END

From: Private Person <me@fromdomain.com>

To: A Test User <test@todomain.com>

MIME-Version: 1.0

Content-type: text/html

Subject: SMTP e-mail test

This is an e-mail message to be sent in HTML format

This is HTML message.

<h1>This is headline.</h1>

MESSAGE_END

Net::SMTP.start('localhost') do |smtp|

 smtp.send_message message, 'me@fromdomain.com',

 'test@todomain.com'

end

Sending Attachments as an e-mail

To send an email with mixed content requires to set Content-type header to

multipart/mixed. Then text and attachment sections can be specified within

boundaries.

Ruby

232

A boundary is started with two hyphens followed by a unique number, which

cannot appear in the message part of the email. A final boundary denoting the

email's final section must also end with two hyphens.

Attached files should be encoded with the pack("m") function to have base64

encoding before transmission.

Example

Following is the example, which will send a file /tmp/test.txt as an attachment.

require 'net/smtp'

filename = "/tmp/test.txt"

Read a file and encode it into base64 format

filecontent = File.read(filename)

encodedcontent = [filecontent].pack("m") # base64

marker = "AUNIQUEMARKER"

body =<<EOF

This is a test email to send an attachement.

EOF

Define the main headers.

part1 =<<EOF

From: Private Person <me@fromdomain.net>

To: A Test User <test@todmain.com>

Subject: Sending Attachement

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=#{marker}

--#{marker}

EOF

Define the message action

part2 =<<EOF

Content-Type: text/plain

Content-Transfer-Encoding:8bit

Ruby

233

#{body}

--#{marker}

EOF

Define the attachment section

part3 =<<EOF

Content-Type: multipart/mixed; name=\"#{filename}\"

Content-Transfer-Encoding:base64

Content-Disposition: attachment; filename="#{filename}"

#{encodedcontent}

--#{marker}--

EOF

mailtext = part1 + part2 + part3

Let's put our code in safe area

begin

 Net::SMTP.start('localhost') do |smtp|

 smtp.sendmail(mailtext, 'me@fromdomain.net',

 ['test@todmain.com'])

 end

rescue Exception => e

 print "Exception occured: " + e

end

NOTE: You can specify multiple destinations inside the array but they should be

separated by comma.

Ruby

234

Ruby provides two levels of access to network services. At a low level, you can

access the basic socket support in the underlying operating system, which allows

you to implement clients and servers for both connection-oriented and

connectionless protocols.

Ruby also has libraries that provide higher-level access to specific application-

level network protocols, such as FTP, HTTP, and so on.

This chapter gives you an understanding on most famous concept in Networking

- Socket Programming.

What are Sockets?

Sockets are the endpoints of a bidirectional communications channel. Sockets

may communicate within a process, between processes on the same machine, or

between processes on different continents.

Sockets may be implemented over a number of different channel types: Unix

domain sockets, TCP, UDP, and so on. The socket library provides specific classes

for handling the common transports as well as a generic interface for handling

the rest.

Sockets have their own vocabulary:

Term Description

domain The family of protocols that will be used as the transport

mechanism. These values are constants such as PF_INET,

PF_UNIX, PF_X25, and so on.

type The type of communications between the two endpoints, typically

SOCK_STREAM for connection-oriented protocols and

SOCK_DGRAM for connectionless protocols.

protocol Typically zero, this may be used to identify a variant of a protocol

within a domain and type.

hostname The identifier of a network interface:

A string, which can be a host name, a dotted-quad address, or an

26. SOCKET PROGRAMMING

Ruby

235

IPV6 address in colon (and possibly dot) notation

A string "<broadcast>", which specifies an INADDR_BROADCAST

address.

A zero-length string, which specifies INADDR_ANY, or

An Integer, interpreted as a binary address in host byte order.

port Each server listens for clients calling on one or more ports. A port

may be a Fixnum port number, a string containing a port number,

or the name of a service.

A Simple Client

Here we will write a very simple client program, which will open a connection to

a given port and given host. Ruby class TCPSocket provides open function to

open such a socket.

The TCPSocket.open(hosname, port) opens a TCP connection to hostname on

the port.

Once you have a socket open, you can read from it like any IO object. When

done, remember to close it, as you would close a file.

The following code is a very simple client that connects to a given host and port,

reads any available data from the socket, and then exits:

require 'socket' # Sockets are in standard library

hostname = 'localhost'

port = 2000

s = TCPSocket.open(hostname, port)

while line = s.gets # Read lines from the socket

 puts line.chop # And print with platform line terminator

end

s.close # Close the socket when done

Ruby

236

A Simple Server

To write Internet servers, we use the TCPServer class. A TCPServer object is a

factory for TCPSocket objects.

Now call TCPServer.open(hostname, port function to specify a port for your

service and create a TCPServer object.

Next, call the accept method of the returned TCPServer object. This method

waits until a client connects to the port you specified, and then returns a

TCPSocket object that represents the connection to that client.

require 'socket' # Get sockets from stdlib

server = TCPServer.open(2000) # Socket to listen on port 2000

loop { # Servers run forever

 client = server.accept # Wait for a client to connect

 client.puts(Time.now.ctime) # Send the time to the client

 client.puts "Closing the connection. Bye!"

 client.close # Disconnect from the client

}

Now, run this server in background and then run the above client to see the

result.

Multi-Client TCP Servers

Most servers on the Internet are designed to deal with large numbers of clients

at any one time.

Ruby's Thread class makes it easy to create a multithreaded server.one that

accepts requests and immediately creates a new thread of execution to process

the connection while allowing the main program to await more connections:

require 'socket' # Get sockets from stdlib

server = TCPServer.open(2000) # Socket to listen on port 2000

loop { # Servers run forever

 Thread.start(server.accept) do |client|

 client.puts(Time.now.ctime) # Send the time to the client

 client.puts "Closing the connection. Bye!"

 client.close # Disconnect from the client

Ruby

237

 end

}

In this example, you have a permanent loop, and when server.accept responds,

a new thread is created and started immediately to handle the connection that

has just been accepted, using the connection object passed into the thread.

However, the main program immediately loops back and awaits new

connections.

Using Ruby threads in this way means the code is portable and will run in the

same way on Linux, OS X, and Windows.

A Tiny Web Browser

We can use the socket library to implement any Internet protocol. Here, for

example, is a code to fetch the content of a web page:

require 'socket'

host = 'www.tutorialspoint.com' # The web server

port = 80 # Default HTTP port

path = "/index.htm" # The file we want

This is the HTTP request we send to fetch a file

request = "GET #{path} HTTP/1.0\r\n\r\n"

socket = TCPSocket.open(host,port) # Connect to server

socket.print(request) # Send request

response = socket.read # Read complete response

Split response at first blank line into headers and body

headers,body = response.split("\r\n\r\n", 2)

print body # And display it

To implement the similar web client, you can use a pre-built library like

Net::HTTP for working with HTTP. Here is the code that does the equivalent of

the previous code:

require 'net/http' # The library we need

Ruby

238

host = 'www.tutorialspoint.com' # The web server

path = '/index.htm' # The file we want

http = Net::HTTP.new(host) # Create a connection

headers, body = http.get(path) # Request the file

if headers.code == "200" # Check the status code

 print body

else

 puts "#{headers.code} #{headers.message}"

end

Please check similar libraries to work with FTP, SMTP, POP, and IMAP protocols.

Further Readings

We have given you a quick start on Socket Programming. It is a big subject, so

it is recommended that you go through Ruby Socket Library and Class

Methods to find more details.

Ruby

239

What is XML?

The Extensible Markup Language (XML) is a markup language much like HTML or

SGML. This is recommended by the World Wide Web Consortium and available

as an open standard.

XML is a portable, open source language that allows programmers to develop

applications that can be read by other applications, regardless of operating

system and/or developmental language.

XML is extremely useful for keeping track of small to medium amounts of data

without requiring a SQL-based backbone.

XML Parser Architectures and APIs

There are two different flavors available for XML parsers:

 SAX-like (Stream interfaces): Here you register callbacks for events of

interest and then let the parser proceed through the document. This is

useful when your documents are large or you have memory limitations, it

parses the file as it reads it from disk, and the entire file is never stored in

memory.

 DOM-like (Object tree interfaces): This is World Wide Web Consortium

recommendation wherein the entire file is read into memory and stored in

a hierarchical (tree-based) form to represent all the features of an XML

document.

SAX obviously can't process information as fast as DOM can when working with

large files. On the other hand, using DOM exclusively can really kill your

resources, especially if used on a lot of small files.

SAX is read-only, while DOM allows changes to the XML file. Since these two

different APIs literally complement each other there is no reason why you can't

use them both for large projects.

Parsing and Creating XML using Ruby

The most common way to manipulate XML is with the REXML library by Sean

Russell. Since 2002, REXML has been part of the standard Ruby distribution.

27. XML, XSLT, XPATH

Ruby

240

REXML is a pure-Ruby XML processor conforming to the XML 1.0 standard. It is a

nonvalidating processor, passing all of the OASIS nonvalidating conformance

tests.

REXML parser has the following advantages over other available parsers:

 It is written 100 percent in Ruby.

 It can be used for both SAX and DOM parsing.

 It is lightweight, less than 2000 lines of code.

 Methods and classes are really easy-to-understand.

 SAX2-based API and Full XPath support.

 Shipped with Ruby installation and no separate installation is required.

For all our XML code examples, let's use a simple XML file as an input:

<collection shelf="New Arrivals">

<movie title="Enemy Behind">

 <type>War, Thriller</type>

 <format>DVD</format>

 <year>2003</year>

 <rating>PG</rating>

 <stars>10</stars>

 <description>Talk about a US-Japan war</description>

</movie>

<movie title="Transformers">

 <type>Anime, Science Fiction</type>

 <format>DVD</format>

 <year>1989</year>

 <rating>R</rating>

 <stars>8</stars>

 <description>A schientific fiction</description>

</movie>

 <movie title="Trigun">

 <type>Anime, Action</type>

 <format>DVD</format>

 <episodes>4</episodes>

 <rating>PG</rating>

Ruby

241

 <stars>10</stars>

 <description>Vash the Stampede!</description>

</movie>

<movie title="Ishtar">

 <type>Comedy</type>

 <format>VHS</format>

 <rating>PG</rating>

 <stars>2</stars>

 <description>Viewable boredom</description>

</movie>

</collection>

DOM-like Parsing

Let's first parse our XML data in tree fashion. We begin by requiring the

rexml/document library; often we do an include REXML to import into the top-

level namespace for convenience.

#!/usr/bin/ruby -w

require 'rexml/document'

include REXML

xmlfile = File.new("movies.xml")

xmldoc = Document.new(xmlfile)

Now get the root element

root = xmldoc.root

puts "Root element : " + root.attributes["shelf"]

This will output all the movie titles.

xmldoc.elements.each("collection/movie"){

 |e| puts "Movie Title : " + e.attributes["title"]

}

Ruby

242

This will output all the movie types.

xmldoc.elements.each("collection/movie/type") {

 |e| puts "Movie Type : " + e.text

}

This will output all the movie description.

xmldoc.elements.each("collection/movie/description") {

 |e| puts "Movie Description : " + e.text

}

This will produce the following result:

Root element : New Arrivals

Movie Title : Enemy Behind

Movie Title : Transformers

Movie Title : Trigun

Movie Title : Ishtar

Movie Type : War, Thriller

Movie Type : Anime, Science Fiction

Movie Type : Anime, Action

Movie Type : Comedy

Movie Description : Talk about a US-Japan war

Movie Description : A schientific fiction

Movie Description : Vash the Stampede!

Movie Description : Viewable boredom

SAX-like Parsing

To process the same data, movies.xml, file in a stream-oriented way we will

define a listener class whose methods will be the target of callbacks from the

parser.

NOTE: It is not suggested to use SAX-like parsing for a small file, this is just for

a demo example.

#!/usr/bin/ruby -w

Ruby

243

require 'rexml/document'

require 'rexml/streamlistener'

include REXML

class MyListener

 include REXML::StreamListener

 def tag_start(*args)

 puts "tag_start: #{args.map {|x| x.inspect}.join(', ')}"

 end

 def text(data)

 return if data =~ /^\w*$/ # whitespace only

 abbrev = data[0..40] + (data.length > 40 ? "..." : "")

 puts " text : #{abbrev.inspect}"

 end

end

list = MyListener.new

xmlfile = File.new("movies.xml")

Document.parse_stream(xmlfile, list)

This will produce the following result:

tag_start: "collection", {"shelf"=>"New Arrivals"}

tag_start: "movie", {"title"=>"Enemy Behind"}

tag_start: "type", {}

 text : "War, Thriller"

tag_start: "format", {}

tag_start: "year", {}

tag_start: "rating", {}

tag_start: "stars", {}

tag_start: "description", {}

 text : "Talk about a US-Japan war"

Ruby

244

tag_start: "movie", {"title"=>"Transformers"}

tag_start: "type", {}

 text : "Anime, Science Fiction"

tag_start: "format", {}

tag_start: "year", {}

tag_start: "rating", {}

tag_start: "stars", {}

tag_start: "description", {}

 text : "A schientific fiction"

tag_start: "movie", {"title"=>"Trigun"}

tag_start: "type", {}

 text : "Anime, Action"

tag_start: "format", {}

tag_start: "episodes", {}

tag_start: "rating", {}

tag_start: "stars", {}

tag_start: "description", {}

 text : "Vash the Stampede!"

tag_start: "movie", {"title"=>"Ishtar"}

tag_start: "type", {}

tag_start: "format", {}

tag_start: "rating", {}

tag_start: "stars", {}

tag_start: "description", {}

 text : "Viewable boredom"

XPath and Ruby

An alternative way to view XML is XPath. This is a kind of pseudo-language that

describes how to locate specific elements and attributes in an XML document,

treating that document as a logical ordered tree.

REXML has XPath support via the XPath class. It assumes tree-based parsing

(document object model) as we have seen above.

#!/usr/bin/ruby -w

Ruby

245

require 'rexml/document'

include REXML

xmlfile = File.new("movies.xml")

xmldoc = Document.new(xmlfile)

Info for the first movie found

movie = XPath.first(xmldoc, "//movie")

p movie

Print out all the movie types

XPath.each(xmldoc, "//type") { |e| puts e.text }

Get an array of all of the movie formats.

names = XPath.match(xmldoc, "//format").map {|x| x.text }

p names

This will produce the following result:

<movie title='Enemy Behind'> ... </>

War, Thriller

Anime, Science Fiction

Anime, Action

Comedy

["DVD", "DVD", "DVD", "VHS"]

XSLT and Ruby

There are two XSLT parsers available that Ruby can use. A brief description of

each is given here.

Ruby-Sablotron:

This parser is written and maintained by Masayoshi Takahashi. This is written

primarily for Linux OS and requires the following libraries:

 Sablot

Ruby

246

 Iconv

 Expat

You can find this module at Ruby-Sablotron.

XSLT4R

XSLT4R is written by Michael Neumann and can be found at the RAA in the

Library section under XML. XSLT4R uses a simple commandline interface, though

it can alternatively be used within a third-party application to transform an XML

document.

XSLT4R needs XMLScan to operate, which is included within the XSLT4R archive

and which is also a 100 percent Ruby module. These modules can be installed

using standard Ruby installation method (i.e., ruby install.rb).

XSLT4R has the following syntax:

ruby xslt.rb stylesheet.xsl document.xml [arguments]

If you want to use XSLT4R from within an application, you can include XSLT and

input the parameters you need. Here is the example:

require "xslt"

stylesheet = File.readlines("stylesheet.xsl").to_s

xml_doc = File.readlines("document.xml").to_s

arguments = { 'image_dir' => '/....' }

sheet = XSLT::Stylesheet.new(stylesheet, arguments)

output to StdOut

sheet.apply(xml_doc)

output to 'str'

str = ""

sheet.output = [str]

sheet.apply(xml_doc)

Ruby

247

Further Reading

 For a complete detail on REXML Parser, please refer to standard

documentation for REXML Parser Documentation.

 You can download XSLT4R from RAA Repository.

Ruby

248

What is SOAP?

The Simple Object Access Protocol (SOAP), is a cross-platform and language-

independent RPC protocol based on XML and, usually (but not necessarily) HTTP.

It uses XML to encode the information that makes the remote procedure call,

and HTTP to transport that information across a network from clients to servers

and vice versa.

SOAP has several advantages over other technologies like COM, CORBA etc: for

example, its relatively cheap deployment and debugging costs, its extensibility

and ease-of-use, and the existence of several implementations for different

languages and platforms.

Please refer to our simple tutorial SOAP to understand it in detail.

This chapter makes you familiar with the SOAP implementation for Ruby

(SOAP4R). This is a basic tutorial, so if you need a deep detail, you would need

to refer other resources.

Installing SOAP4R

SOAP4R is the SOAP implementation for Ruby developed by Hiroshi Nakamura

and can be downloaded from:

NOTE: There may be a great chance that you already have installed this

component.

Download SOAP

If you are aware of gem utility then you can use the following command to

install SOAP4R and related packages.

$ gem install soap4r --include-dependencies

If you are working on Windows, then you need to download a zipped file from

the above location and need to install it using the standard installation method

by running ruby install.rb.

28. WEB SERVICES

http://raa.ruby-lang.org/project/soap4r/

Ruby

249

Writing SOAP4R Servers

SOAP4R supports two different types of servers:

 CGI/FastCGI based (SOAP::RPC::CGIStub)

 Standalone (SOAP::RPC:StandaloneServer)

This chapter gives detail on writing a stand alone server. The following steps are

involved in writing a SOAP server.

Step 1 - Inherit SOAP::RPC::StandaloneServer Class

To implement your own stand alone server you need to write a new class, which

will be child of SOAP::StandaloneServer as follows:

class MyServer < SOAP::RPC::StandaloneServer

end

NOTE: If you want to write a FastCGI based server then you need to take

SOAP::RPC::CGIStub as parent class, rest of the procedure will remain the

same.

Step 2 - Define Handler Methods

Second step is to write your Web Services methods, which you would like to

expose to the outside world.

They can be written as simple Ruby methods. For example, let's write two

methods to add two numbers and divide two numbers:

class MyServer < SOAP::RPC::StandaloneServer

 # Handler methods

 def add(a, b)

 return a + b

 end

 def div(a, b)

 return a / b

 end

end

Ruby

250

Step 3 - Expose Handler Methods

Next step is to add our defined methods to our server. The initialize method is

used to expose service methods with one of the two following methods:

class MyServer < SOAP::RPC::StandaloneServer

 def initialize(*args)

 add_method(receiver, methodName, *paramArg)

 end

end

Here is the description of the parameters:

Paramter Description

receiver The object that contains the methodName method. You define

the service methods in the same class as the methodDef

method, this parameter is self.

methodName The name of the method that is called due to an RPC request.

paramArg Specifies, when given, the parameter names and parameter

modes.

To understand the usage of inout or out parameters, consider the following

service method that takes two parameters (inParam and inoutParam), returns

one normal return value (retVal) and two further parameters: inoutParam and

outParam:

def aMeth(inParam, inoutParam)

 retVal = inParam + inoutParam

 outParam = inParam . inoutParam

 inoutParam = inParam * inoutParam

 return retVal, inoutParam, outParam

end

Now, we can expose this method as follows:

add_method(self, 'aMeth', [

 %w(in inParam),

Ruby

251

 %w(inout inoutParam),

 %w(out outParam),

 %w(retval return)

])

Step 4 - Start the Server

The final step is to start your server by instantiating one instance of the derived

class and calling start method.

myServer = MyServer.new('ServerName',

 'urn:ruby:ServiceName', hostname, port)

myServer.start

Here is the description of required parameters :

Paramter Description

ServerName A server name, you can give what you like most.

urn:ruby:ServiceName Here urn:ruby is constant but you can give a unique

ServiceName name for this server.

hostname Specifies the hostname on which this server will

listen.

port An available port number to be used for the web

service.

Example

Now, using the above steps, let us write one standalone server:

require "soap/rpc/standaloneserver"

begin

 class MyServer < SOAP::RPC::StandaloneServer

Ruby

252

 # Expose our services

 def initialize(*args)

 add_method(self, 'add', 'a', 'b')

 add_method(self, 'div', 'a', 'b')

 end

 # Handler methods

 def add(a, b)

 return a + b

 end

 def div(a, b)

 return a / b

 end

 end

 server = MyServer.new("MyServer",

 'urn:ruby:calculation', 'localhost', 8080)

 trap('INT){

 server.shutdown

 }

 server.start

rescue => err

 puts err.message

end

When executed, this server application starts a standalone SOAP server on

localhost and listens for requests on port 8080. It exposes one service methods,

add and div, which takes two parameters and return the result.

Now, you can run this server in background as follows:

$ ruby MyServer.rb&

Writing SOAP4R Clients

The SOAP::RPC::Driver class provides support for writing SOAP client

applications. This chapter describes this class and demonstrate its usage on the

basis of an application.

Ruby

253

Following is the bare minimum information you would need to call a SOAP

service:

 The URL of the SOAP service (SOAP Endpoint URL).

 The namespace of the service methods (Method Namespace URI).

 The names of the service methods and their parameters.

Now, we will write a SOAP client which would call service methods defined in

above example, named add and div.

Here are the main steps to create a SOAP client.

Step 1 - Create a SOAP Driver Instance

We create an instance of SOAP::RPC::Driver by calling its new method as

follows:

SOAP::RPC::Driver.new(endPoint, nameSpace, soapAction)

Here is the description of required parameters :

Paramter Description

endPoint URL of the SOAP server to connect with.

nameSpace The namespace to use for all RPCs done with this

SOAP::RPC::Driver object.

soapAction A value for the SOAPAction field of the HTTP header. If nil this

defaults to the empty string "".

Step 2 - Add Service Methods

To add a SOAP service method to a SOAP::RPC::Driver, we can call the following

method using SOAP::RPC::Driver instance:

driver.add_method(name, *paramArg)

Here is the description of the parameters:

Paramter Description

name The name of the remote web service method.

Ruby

254

paramArg Specifies the names of the remote procedures' parameters.

Step 3 - Invoke SOAP service

The final step is to invoice SOAP service using SOAP::RPC::Driver instance as

follows:

result = driver.serviceMethod(paramArg...)

Here serviceMethod is the actual web service method and paramArg... is the list

parameters required to pass in the service method.

Example

Based on the above steps, we will write a SOAP client as follows:

#!/usr/bin/ruby -w

require 'soap/rpc/driver'

NAMESPACE = 'urn:ruby:calculation'

URL = 'http://localhost:8080/'

begin

 driver = SOAP::RPC::Driver.new(URL, NAMESPACE)

 # Add remote sevice methods

 driver.add_method('add', 'a', 'b')

 # Call remote service methods

 puts driver.add(20, 30)

rescue => err

 puts err.message

end

Ruby

255

Introduction

The standard graphical user interface (GUI) for Ruby is Tk. Tk started out as the

GUI for the Tcl scripting language developed by John Ousterhout.

Tk has the unique distinction of being the only cross-platform GUI. Tk runs on

Windows, Mac, and Linux and provides a native look-and-feel on each operating

system.

The basic component of a Tk-based application is called a widget. A component

is also sometimes called a window, since, in Tk, "window" and "widget" are often

used interchangeably.

Tk applications follow a widget hierarchy where any number of widgets may be

placed within another widget, and those widgets within another widget, ad

infinitum. The main widget in a Tk program is referred to as the root widget and

can be created by making a new instance of the TkRoot class.

 Most Tk-based applications follow the same cycle: create the widgets,

place them in the interface, and finally, bind the events associated with

each widget to a method.

 There are three geometry managers; place, grid and pack that are

responsible for controlling the size and location of each of the widgets in

the interface.

Installation

The Ruby Tk bindings are distributed with Ruby but Tk is a separate installation.

Windows users can download a single click Tk installation from ActiveState's

ActiveTcl.

Mac and Linux users may not need to install it because there is a great chance

that its already installed along with OS but if not, you can download prebuilt

packages or get the source from the Tcl Developer Xchange.

Simple Tk Application

A typical structure for Ruby/Tk programs is to create the main or root window

(an instance of TkRoot), add widgets to it to build up the user interface, and

then start the main event loop by calling Tk.mainloop.

The traditional Hello, World! example for Ruby/Tk looks something like this:

29. TK GUIDE

Ruby

256

require 'tk'

root = TkRoot.new { title "Hello, World!" }

TkLabel.new(root) do

 text 'Hello, World!'

 pack { padx 15 ; pady 15; side 'left' }

end

Tk.mainloop

Here, after loading the tk extension module, we create a root-level frame using

TkRoot.new. We then make a TkLabel widget as a child of the root frame, setting

several options for the label. Finally, we pack the root frame and enter the main

GUI event loop.

If you would run this script, it would produce the following result:

Ruby/Tk Widget Classes

There is a list of various Ruby/Tk classes, which can be used to create a desired

GUI using Ruby/Tk.

 TkFrame Creates and manipulates frame widgets.

 TkButton Creates and manipulates button widgets.

 TkLabel Creates and manipulates label widgets.

 TkEntry Creates and manipulates entry widgets.

 TkCheckButton Creates and manipulates checkbutton widgets.

 TkRadioButton Creates and manipulates radiobutton widgets.

 TkListbox Creates and manipulates listbox widgets.

 TkComboBox Creates and manipulates listbox widgets.

 TkMenu Creates and manipulates menu widgets.

 TkMenubutton Creates and manipulates menubutton widgets.

 Tk.messageBox Creates and manipulates a message dialog.

Ruby

257

 TkScrollbar Creates and manipulates scrollbar widgets.

 TkCanvas Creates and manipulates canvas widgets.

 TkScale Creates and manipulates scale widgets.

 TkText Creates and manipulates text widgets.

 TkToplevel Creates and manipulates toplevel widgets.

 TkSpinbox Creates and manipulates Spinbox widgets.

 TkProgressBar Creates and manipulates Progress Bar widgets.

 Dialog Box Creates and manipulates Dialog Box widgets.

 Tk::Tile::Notebook Display several windows in limited space with

notebook metaphor.

 Tk::Tile::Paned Displays a number of subwindows, stacked either

vertically or horizontally.

 Tk::Tile::Separator Displays a horizontal or vertical separator bar.

 Ruby/Tk Font, Colors and Images Understanding Ruby/Tk Fonts,

Colors and Images

TkFrame

Description

A frame is a widget that displays just as a simple rectangle. Frames are primarily

used as a container for other widgets, which are under the control of a geometry

manager such as grid.

The only features of a frame are its background color and an optional 3-D border

to make the frame appear raised or sunken.

Syntax

Here is a simple syntax to create a Frame Widget:

TkFrame.new {

 Standard Options....

 Widget-specific Options....

}

Ruby

258

Standard Options

 borderwidth

 highlightbackground

 highlightthickness

 takefocus

 highlightcolor

 relief

 cursor

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 background => String

This option is the same as the standard background option except that

its value may also be specified as an undefined value. In this case, the

widget will display no background or border, and no colors will be

consumed from its colormap for its background and border.

2 colormap => String

Specifies a colormap to use for the window. The value may be either new,

in which case a new colormap is created for the window and its children,

or the name of another window (which must be on the same screen), in

which case the new window will use the colormap from the specified

window. If the colormap option is not specified, the new window uses

the same colormap as its parent.

3 container => Boolean

The value must be a boolean. If true, it means that this window will be

used as a container in which some other application will be embedded.

The window will support the appropriate window manager protocols for

things like geometry requests. The window should not have any children

of its own in this application.

4 height => Integer

Ruby

259

Specifies the desired height for the window in pixels or points.

5 width => Integer

Specifies the desired width for the window in pixels or points.

Event Bindings

When a new frame is created, it has no default event bindings: frames are not

intended to be interactive.

Examples

require "tk"

f1 = TkFrame.new {

 relief 'sunken'

 borderwidth 3

 background "red"

 padx 15

 pady 20

 pack('side' => 'left')

}

f2 = TkFrame.new {

 relief 'groove'

 borderwidth 1

 background "yellow"

 padx 10

 pady 10

 pack('side' => 'right')

}

TkButton.new(f1) {

 text 'Button1'

 command {print "push button1!!\n"}

 pack('fill' => 'x')

Ruby

260

}

TkButton.new(f1) {

 text 'Button2'

 command {print "push button2!!\n"}

 pack('fill' => 'x')

}

TkButton.new(f2) {

 text 'Quit'

 command 'exit'

 pack('fill' => 'x')

}

Tk.mainloop

This will produce the following result:

TkButton

Description

A button is very much designed for the user to interact with, and in particular,

press to perform some action. A button is a widget that displays a textual string,

bitmap or image. If text is displayed, it must all be in a single font, but it can

occupy multiple lines on the screen.

A button can display itself in either of three different ways, according to the state

option. It can be made to appear raised, sunken, or flat and it can be made to

flash.

Ruby

261

Syntax

Here is a simple syntax to create this widget:

TkButton.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 activebackground

 activeforeground

 anchor

 background

 bitmap

 borderwidth

 cursor

 disabledforeground

 font

 foreground

 highlightbackground

 highlightcolor

 highlightthickness

 image

 justify

 padx

 pady

 relief

 repeatdelay

 repeatinterval

 takefocus

 text

Ruby

262

 textvariable

 underline

 wraplength

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 command => String

Specifies a Ruby command to associate with the button. This command is

typically invoked when mouse button 1 is released over the button

window. Here you can associate a Ruby method to be executed against

mouse click. I have done it in the example given below.

2 compound => String

Specifies whether the button should display both an image and text, and

if so, where the image should be placed relative to the text. Valid values

for this option are bottom, center, left, none, right and top. The default

value is none, meaning that the button will display either an image or

text, depending on the values of theimage and bitmap options.

3 height => Integer

Specifies a desired height for the button.

4 state => String

Specifies one of three states for the button: normal, active, or disabled.

In normal state the button is displayed using the foreground and

background options. The active state is typically used when the pointer is

over the button. In active state the button is displayed using the

activeforeground and activebackground options. Disabled state means

that the button should be insensitive:

5 width => Integer

Specifies a desired width for the button.

Ruby

263

Event Bindings

Ruby/Tk automatically creates class bindings for buttons that give them the

following default behavior:

 A button activates whenever the mouse passes over it and deactivates

whenever the mouse leaves the button.

 A button's relief is changed to sunken whenever mouse button 1 is

pressed over the button, and the relief is restored to its original value

when button 1 is later released.

 If mouse button 1 is pressed over a button and later released over the

button, the button is invoked. However, if the mouse is not over the

button when button 1 is released, then no invocation occurs.

 When a button has the input focus, the space key causes the button to be

invoked.

If the button's state is disabled then none of the above actions occur: the button

is completely non-responsive.

Examples

require 'tk'

def myproc

 puts "The user says OK."

 exit

end

root = TkRoot.new

btn_OK = TkButton.new(root) do

 text "OK"

 borderwidth 5

 underline 0

 state "normal"

 cursor "watch"

 font TkFont.new('times 20 bold')

 foreground "red"

 activebackground "blue"

 relief "groove"

Ruby

264

 command (proc {myproc})

 pack("side" => "right", "padx"=> "50", "pady"=> "10")

end

Tk.mainloop

This will produce the following result if you will click over this button then ruby

method myproc would be executed.

TkLabel

Description

A label is a widget that displays text or images, typically that the user will just

view but not otherwise interact with. Labels are used for such things as

identifying controls or other parts of the user interface, providing textual

feedback or results, etc.

A label can display a textual string, bitmap or image. If text is displayed, it must

all be in a single font, but it can occupy multiple lines on the screen (if it

contains newlines or if wrapping occurs because of the wraplength option) and

one of the characters may optionally be underlined using the underline option.

Syntax

Here is a simple syntax to create this widget:

TkLabel.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 anchor

Ruby

265

 background

 bitmap

 borderwidth

 cursor

 font

 foreground

 highlightbackground

 highlightcolor

 highlightthickness

 image

 justify

 padx

 pady

 relief

 takefocus

 text

 textvariable

 underline

 wraplength

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 height => Integer

Specifies a desired height for the label.

2 width => Integer

Specifies a desired width for the label.

Ruby

266

Event Bindings

When a new label is created, it has no default event bindings: labels are not

intended to be interactive.

Examples

require 'tk'

$resultsVar = TkVariable.new

root = TkRoot.new

root.title = "Window"

Lbl = TkLabel.new(root) do

 textvariable

 borderwidth 5

 font TkFont.new('times 20 bold')

 foreground "red"

 relief "groove"

 pack("side" => "right", "padx"=> "50", "pady"=> "50")

end

Lbl['textvariable'] = $resultsVar

$resultsVar.value = 'New value to display'

Tk.mainloop

This will produce the following result:

Ruby

267

TkEntry

Description

A Entry presents the user with a single-line text field that they can use to type

in a value. These can be just about anything: their name, a city, a password,

social security number, and so on.

Syntax

Here is a simple syntax to create this widget:

TkEntry.new{

 Standard Options....

 Widget-specific Options....

}

Standard Options

 background

 borderwidth

 cursor

 exportselection

 font

 foreground

 highlightbackground

 highlightcolor

 highlightthickness

 justify

 relief

 selectbackground

 selectborderwidth

 selectforeground

 takefocus

 textvariable

Ruby

268

 xscrollcommand

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1

disabledbackground => String

Specifies the background color to use when the entry is disabled. If this

option is the empty string, the normal background color is used.

2

disabledforeground => String

Specifies the foreground color to use when the entry is disabled. If this

option is the empty string, the normal foreground color is used.

3

readonlybackground => String

Specifies the background color to use when the entry is read-only. If this

option is the empty string, the normal background color is used.

4

show => String

If this option is specified, then the true contents of the entry are not

displayed in the window. Instead, each character in the entry's value will

be displayed as the first character in the value of this option, such as ``*''.

This is useful, for example, if the entry is to be used to enter a password.

If characters in the entry are selected and copied elsewhere, the

information copied will be what is displayed, not the true contents of the

entry.

5

state => String

Specifies one of three states for the entry: normal, disabled, or

readonly. If the entry is readonly, then the value may not be changed

using widget commands and no insertion cursor will be displayed, even if

the input focus is in the widget; the contents of the widget may still be

selected. If the entry is disabled, the value may not be changed, no

insertion cursor will be displayed, the contents will not be selectable, and

the entry may be displayed in a different color.

6

validate => String

Specifies the mode in which validation should operate: none, focus,

focusin,focusout, key, or all. It defaults to none. When you want

Ruby

269

validation, you must explicitly state which mode you wish to use.

7

validatecommand => String

Specifies a script to eval when you want to validate the input into the entry

widget.

8

width => Integer

Specifies an integer value indicating the desired width of the entry window,

in average-size characters of the widget's font. If the value is less than or

equal to zero, the widget picks a size just large enough to hold its current

text.

Validation of Entry

We can validate the entered value by setting the validatecommand option to a

callback, which will be evaluated according to the validate option as follows:

 none: Default. This means no validation will occur.

 focus: validatecommand will be called when the entry receives or loses

focus.

 focusin: validatecommand will be called when the entry receives focus.

 focusout: validatecommand will be called when the entry loses focus.

 key: validatecommand will be called when the entry is edited.

 all: validatecommand will be called for all above conditions.

Manipulating Entries

The following useful methods are available to manipulate the content of an

entry:

 delete(first, ?last?): Deletes one or more elements of the entry. First is

the index of the first character to delete, and last is the index of the

character just after the last one to delete. If last isn't specified it defaults

to first+1, i.e. a single character is deleted. This command returns an

empty string.

 get: Returns the entry's string.

 icursor(index): Arrange for the insertion cursor to be displayed just

before the character given by index. Returns an empty string.

 index(index): Returns the numerical index corresponding to index.

Ruby

270

 insert(index, string): Insert the characters of string just before the

character indicated by index. Returns an empty string.

 xview(args): This command is used to query and change the horizontal

position of the text in the widget's window.

Event Bindings

Ruby/Tk automatically creates class bindings for entries that give them the

following default behavior:

 Clicking mouse button 1 positions the insertion cursor just before the

character underneath the mouse cursor, sets the input focus to this

widget, and clears any selection in the widget. Dragging with mouse

button 1 strokes out a selection between the insertion cursor and the

character under the mouse.

 Double-clicking with mouse button 1 selects the word under the mouse

and positions the insertion cursor at the beginning of the word. Dragging

after a double click will stroke out a selection consisting of whole words.

 Triple-clicking with mouse button 1 selects all of the text in the entry and

positions the insertion cursor before the first character.

 The ends of the selection can be adjusted by dragging with mouse button

1 while the Shift key is down; this will adjust the end of the selection that

was nearest to the mouse cursor when button 1 was pressed. If the

button is double-clicked before dragging then the selection will be

adjusted in units of whole words.

 Clicking mouse button 1 with the Control key down will position the

insertion cursor in the entry without affecting the selection.

 If any normal printing characters are typed in an entry, they are inserted

at the point of the insertion cursor.

 The view in the entry can be adjusted by dragging with mouse button 2. If

mouse button 2 is clicked without moving the mouse, the selection is

copied into the entry at the position of the insertion cursor.

 If the mouse is dragged out of the entry on the left or right sides while

button 1 is pressed, the entry will automatically scroll to make more text

visible (if there is more text off-screen on the side where the mouse left

the window).

 The Left and Right keys move the insertion cursor one character to the

left or right; they also clear any selection in the entry and set the

selection anchor. If Left or Right is typed with the Shift key down, then

the insertion cursor moves and the selection is extended to include the

new character. Control-Left and Control-Right move the insertion cursor

by words, and Control-Shift-Left and Control-Shift-Right move the

Ruby

271

insertion cursor by words and also extend the selection. Control-b and

Control-f behave the same as Left and Right, respectively. Meta-b and

Meta-f behave the same as Control-Left and Control-Right, respectively.

 The Home key, or Control-a, will move the insertion cursor to the

beginning of the entry and clear any selection in the entry. Shift-Home

moves the insertion cursor to the beginning of the entry and also extends

the selection to that point.

 The End key, or Control-e, will move the insertion cursor to the end of the

entry and clear any selection in the entry. Shift-End moves the cursor to

the end and extends the selection to that point.

 The Select key and Control-Space set the selection anchor to the position

of the insertion cursor. They don't affect the current selection. Shift-Select

and Control-Shift-Space adjust the selection to the current position of the

insertion cursor, selecting from the anchor to the insertion cursor if there

was not any selection previously.

 Control-/ selects all the text in the entry.

 Control-\ clears any selection in the entry.

 The F16 key (labelled Copy on many Sun workstations) or Meta-w copies

the selection in the widget to the clipboard, if there is a selection.

 The F20 key (labelled Cut on many Sun workstations) or Control-w copies

the selection in the widget to the clipboard and deletes the selection. If

there is no selection in the widget then these keys have no effect.

 The F18 key (labelled Paste on many Sun workstations) or Control-y

inserts the contents of the clipboard at the position of the insertion cursor.

 The Delete key deletes the selection, if there is one in the entry. If there

is no selection, it deletes the character to the right of the insertion cursor.

 The BackSpace key and Control-h delete the selection, if there is one in

the entry. If there is no selection, it deletes the character to the left of the

insertion cursor.

 Control-d deletes the character to the right of the insertion cursor.

 Meta-d deletes the word to the right of the insertion cursor.

 Control-k deletes all the characters to the right of the insertion cursor.

 Control-w deletes the word to the left of the insertion cursor.

 Control-t reverses the order of the two characters to the right of the

insertion cursor.

Ruby

272

If the entry is disabled using the state option, then the entry's view can still be

adjusted and text in the entry can still be selected, but no insertion cursor will

be displayed and no text modifications will take place.

Examples

require 'tk'

root = TkRoot.new

root.title = "Window"

entry1 = TkEntry.new(root)

entry2 = TkEntry.new(root) do

 show '*'

end

variable1 = TkVariable.new

variable2 = TkVariable.new

entry1.textvariable = variable1

entry2.textvariable = variable2

variable1.value = "Enter any text value"

variable2.value = "Enter any confidential value"

entry1.place('height' => 25,

 'width' => 150,

 'x' => 10,

 'y' => 10)

entry2.place('height' => 25,

 'width' => 150,

 'x' => 10,

 'y' => 40)

Tk.mainloop

Ruby

273

This will produce the following result:

TkCheckButton

Description

A Checkbutton is like a regular button, except that not only can the user press

it, which will invoke a command callback, but it also holds a binary value of

some kind (i.e., a toggle). Checkbuttons are used all the time when a user is

asked to choose between, e.g., two different values for an option.

A checkbutton can display a textual string, bitmap or image. If text is displayed,

it must all be in a single font, but it can occupy multiple lines on the screen (if it

contains newlines or if wrapping occurs because of the wraplength option) and

one of the characters may optionally be underlined using the underline option.

A checkbutton has all of the behavior of a simple button, including the following:

it can display itself in either of three different ways, according to the state

option; it can be made to appear raised, sunken, or flat; it can be made to flash;

and it invokes a Tcl command whenever mouse button 1 is clicked over the

checkbutton.

Syntax

Here is a simple syntax to create this widget:

TkCheckButton.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 activebackground

 activeforeground

 anchor

Ruby

274

 background

 bitmap

 borderwidth

 compound

 cursor

 disabledforeground

 font

 foreground

 highlightbackground

 highlightcolor

 highlightthickness

 image

 justify

 padx

 pady

 relief

 takefocus

 text

 textvariable

 underline

 wraplength

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 command => String

Specifies a Ruby command to associate with the button. This command is

typically invoked when mouse button 1 is released over the button

window. Here you can associate a Ruby method to be executed against

mouse click. Built in function which can be called using command option:

Ruby

275

deselect: Deselects the checkbutton and sets the associated variable to

its "off" value.

flash: Flashes the checkbutton. This is accomplished by redisplaying the

checkbutton several times, alternating between active and normal colors.

select: Selects the checkbutton and sets the associated variable to its

"on" value.

toggle: Toggles the selection state of the button, redisplaying it and

modifying its associated variable to reflect the new state.

2 height => Integer

Specifies a desired height for the button.

3 indicatoron => Boolean

Specifies whether or not the indicator should be drawn. Must be a proper

boolean value. If false, the relief option is ignored and the widget's relief

is always sunken if the widget is selected and raised otherwise.

4 offvalue => Integer

Specifies value to store in the button's associated variable whenever this

button is deselected. Defaults to 0.

5 onvalue => Integer

Specifies value to store in the button's associated variable whenever this

button is selected. Defaults to 1.

6 selectcolor => String

Specifies a background color to use when the button is selected. If

indicatoron is true, then the color applies to the indicator. If indicatoron is

false, this color is used as the background for the entire widget, in place

of background oractivebackground, whenever the widget is selected.

7 selectimage => Image

Specifies an image to display (in place of the image option) when the

checkbutton is selected. This option is ignored unless the image option

has been specified.

8 state => String

Ruby

276

Specifies one of three states for the button: normal, active, or disabled.

In normal state the button is displayed using the foreground and

background options. The active state is typically used when the pointer is

over the button. In active state the button is displayed using the

activeforeground and activebackground options. Disabled state means

that the button should be insensitive.

9 variable => Variable

Specifies name of global variable to set to indicate whether or not this

button is selected. Defaults to the name of the button within its parent.

10 width => Integer

Specifies a desired width for the button.

Event Bindings

Ruby/Tk automatically creates class bindings for checkbuttons that give them

the following default behavior:

 A checkbutton activates whenever the mouse passes over it and

deactivates whenever the mouse leaves the checkbutton.

 When mouse button 1 is pressed over a checkbutton it is invoked (its

selection state toggles and the command associated with the button is

invoked, if there is one).

 When a checkbutton has the input focus, the space key causes the

checkbutton to be invoked.

If the checkbutton's state is disabled then none of the above actions occur: the

checkbutton is completely non-responsive.

Examples

require 'tk'

root = TkRoot.new

root.title = "Window"

CkhButton1 = TkCheckButton.new(root) do

 text "Orange"

 indicatoron "true"

Ruby

277

 background "red"

 relief "groove"

 height 2

 width 2

 onvalue 'Orange'

 place('height' => 25,'width' => 100, 'x' => 10, 'y'=> 10)

 command (select)

end

CkhButton2 = TkCheckButton.new(root) do

 text "Banana"

 background "red"

 relief "groove"

 height 2

 width 2

 onvalue 'Banana'

 place('height' => 25,'width' => 100, 'x' => 10, 'y'=> 40)

end

Tk.mainloop

This will produce the following result:

TkRadioButton

Description

A radiobutton lets you choose between one of a number of mutually exclusive

choices, unlike a checkbutton, it is not limited to just two choices. Radiobuttons

are always used together in a set and are good when the number of choices is

fairly small.

Ruby

278

A radiobutton can display a textual string, bitmap or image and a diamond or

circle called an indicator. If text is displayed, it must all be in a single font, but it

can occupy multiple lines on the screen (if it contains newlines or if wrapping

occurs because of the wraplength option) and one of the characters may

optionally be underlined using the underline option.

A checkbutton has all of the behavior of a simple button, including the following:

it can display itself in either of three different ways, according to the state

option; it can be made to appear raised, sunken, or flat; it can be made to flash;

and it invokes a Tcl command whenever mouse button 1 is clicked over the

checkbutton.

Syntax

Here is a simple syntax to create this widget:

TkRadiobutton.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 activebackground

 activeforeground

 anchor

 background

 bitmap

 borderwidth

 compound

 cursor

 disabledforeground

 font

 foreground

 highlightbackground

 highlightcolor

 highlightthickness

Ruby

279

 image

 justify

 padx

 pady

 relief

 takefocus

 text

 textvariable

 underline

 wraplength

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 command => String

Specifies a Ruby command to associate with the button. This command is

typically invoked when mouse button 1 is released over the button

window. Here you can associate a Ruby method to be executed against

mouse click. Built in function which can be called using command option:

deselect: Deselects the checkbutton and sets the associated variable to

its "off" value.

flash: Flashes the checkbutton. This is accomplished by redisplaying the

checkbutton several times, alternating between active and normal colors.

select: Selects the checkbutton and sets the associated variable to its

"on" value.

toggle: Toggles the selection state of the button, redisplaying it and

modifying its associated variable to reflect the new state.

2 height => Integer

Specifies a desired height for the button.

3 indicatoron => Boolean

Specifies whether or not the indicator should be drawn. Must be a proper

Ruby

280

boolean value. If false, the relief option is ignored and the widget's relief

is always sunken if the widget is selected and raised otherwise.

4 offvalue => Integer

Specifies value to store in the button's associated variable whenever this

button is deselected. Defaults to 0.

5 onvalue => Integer

Specifies value to store in the button's associated variable whenever this

button is selected. Defaults to 1.

6 selectcolor => String

Specifies a background color to use when the button is selected. If

indicatoron is true then the color applicies to the indicator. If indicatoron

is false, this color is used as the background for the entire widget, in

place of background oractivebackground, whenever the widget is

selected.

7 selectimage => Image

Specifies an image to display (in place of the image option) when the

checkbutton is selected. This option is ignored unless the image option

has been specified.

8 state => String

Specifies one of three states for the button: normal, active, or disabled.

In normal state the button is displayed using the foreground and

background options. The active state is typically used when the pointer is

over the button. In active state the button is displayed using the

activeforeground and activebackground options. Disabled state means

that the button should be insensitive.

9 variable => Variable

Specifies name of global variable to set to indicate whether or not this

button is selected. Defaults to the name of the button within its parent.

10 width => Integer

Specifies a desired width for the button.

Ruby

281

Event Bindings

Ruby/Tk automatically creates class bindings for Radiobutton that gives them

the following default behavior:

 A Radiobutton activates whenever the mouse passes over it and

deactivates whenever the mouse leaves the radiobutton.

 When mouse button 1 is pressed over a radiobutton it is invoked (its

selection state toggles and the command associated with the button is

invoked, if there is one).

 When a radiobutton has the input focus, the space key causes the

checkbutton to be invoked.

If the radiobutton's state is disabled then none of the above actions occur: the

radiobutton is completely non-responsive.

Examples

require "tk"

def print_v

 print $v, "\n"

end

$v = TkVariable.new

TkRadioButton.new {

 text 'top'

 variable $v

 value 'top'

 anchor 'w'

 pack('side' => 'top', 'fill' => 'x')

}

TkRadioButton.new {

 text 'middle'

 variable $v

 value 'middle'

 anchor 'w'

 pack('side' => 'top', 'fill' => 'x')

Ruby

282

}

TkRadioButton.new {

 text 'bottom'

 variable $v

 value 'bottom'

 anchor 'w'

 pack('side' => 'top', 'fill' => 'x')

}

TkButton.new {

 text 'Quit'

 command 'exit'

 pack

}

Tk.root.bind "1", proc{print_v}

Tk.mainloop

This will produce the following result:

TkListbox

Description

A radiobutton displays a list of single-line text items, usually lengthy, and

allows the user to browse through the list, selecting one or more.

When first created, a new listbox has no elements. Elements may be added or

deleted using provided methods. In addition, one or more elements may be

selected from the listed items.

Ruby

283

It is not necessary for all the elements to be displayed in the listbox window at

once. Listboxes allow scrolling in both directions using the standard

xscrollcommand and yscrollcommand options.

Syntax

Here is a simple syntax to create this widget:

TkListbox.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 background

 borderwidth

 cursor

 disabledforeground

 exportselection

 font

 foreground

 hight

 highlightbackground

 highlightcolor

 highlightthickness

 offset

 relief

 selectbackground

 selectborderwidth

 selectforeground

 setgrid

 takefocus

 tile

Ruby

284

 width

 xscrollcommand

 yscrollcommand

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 activestyle => String

Specifies the style in which to draw the active element. This must be one

of dotbox,none or underline. The default is underline.

2 height => Integer

Specifies the desired height for the window, in lines. If zero or less, then

the desired height for the window is made just large enough to hold all

the elements in the listbox.

3 listvariable => Variable

Specifies the reference of a variable. The value of the variable is an array

to be displayed inside the widget; if the variable value changes then the

widget will automatically update itself to reflect the new value.

4 selectmode => String

Specifies one of several styles for manipulating the selection. The value

of the option may be arbitrary, but the default bindings expect it to be

either single,browse, multiple, or extended; the default value is

browse.

5 state => String

Specifies one of two states for the listbox: normal or disabled. If the

listbox is disabled then items may not be inserted or deleted.

6 width => Integer

Specifies the desired width for the window in characters. If the font

doesn't have a uniform width then the width of the character "0" is used

in translating from character units to screen units. If zero or less, then

the desired width for the window is made just large enough to hold all the

Ruby

285

elements in the listbox.

Manipulating the Listbox Items

There are various ways to play with a list box:

 The listvariable: variable allows you to link a variable (which must hold a

list) to the listbox. Each element of this list is a string representing one

item in the listbox. So to add, remove, or rearrange items in the listbox,

you can simply manipulate this variable as you would any other list.

 The insert idx item ?item... ? method is used to add one or more items

to the list; "idx" is a 0-based index indicating the position of the item

before which the item(s) should be added; specify "end" to put the new

items at the end of the list.

 The delete first ?last? method is used to delete one or more items from

the list; "first" and "last" are indices as per the "insert" method.

 The get first ?last? method returns the contents of a single item at the

given position, or a list of the items between "first" and "last".

 The size method returns the number of items in the list.

 The curselection method is used to find out which item or items in the

listbox the user has currently selected. This will return the list of indices of

all items currently selected; this may be an empty list.

 The selection clear first ?last? method is used to deselect either a

single item, or any within the range of indices specified.

 The selection set first ?last? method is used to select an item, or all

items in a range.

 The xview(args) method is used to query and change the horizontal

position of the information in the widget's window.

 The yview(?args?) method is used to query and change the vertical

position of the text in the widget's window.

Indices

Many of the methods for listboxes take one or more indices as arguments. An

index specifies a particular element of the listbox, in any of the following ways:

 number: A decimal number giving the position of the desired character

within the text item. 0 refers to the first character, 1 to the next

character, and so on.

Ruby

286

 active: Indicates the element that has the location cursor. This element

will be displayed with an underline when the listbox has the keyboard

focus, and it is specified with the activate method.

 anchor: Indicates the anchor point for the selection, which is set with the

selection anchor method.

 end: Indicates the end of the listbox. For some commands this means just

after the last element; for other commands it means the last element.

Event Bindings

Ruby/Tk creates class bindings for listboxes that give them Motif-like behavior.

Much of the behavior of a listbox is determined by its selectmode option, which

selects one of four ways of dealing with the selection.

 If the selection mode is single or browse, at most one element can be

selected in the listbox at once. In both modes, clicking button 1 on an

element selects it and deselects any other selected item. In browse

mode, it is also possible to drag the selection with button 1.

 If the selection mode is multiple or extended, any number of elements

may be selected at once, including discontiguous ranges. In multiple

mode, clicking button 1 on an element toggles its selection state without

affecting any other elements. In extended mode, pressing button 1 on an

element selects it, deselects everything else, and sets the anchor to the

element under the mouse; dragging the mouse with button 1 down

extends the selection to include all the elements between the anchor and

the element under the mouse, inclusive.

Most people will probably want to use the browse mode for single selections and

the extended mode for multiple selections; the other modes appear to be useful

only in special situations.

In addition to the above behavior, there are many other additional behaviors

associated with a listbox, which are not covered in this tutorial:

Example 1

require "tk"

root = TkRoot.new

root.title = "Window"

list = TkListbox.new(root) do

Ruby

287

 width 20

 height 10

 setgrid 1

 selectmode 'multiple'

 pack('fill' => 'x')

end

list.insert 0, "yellow", "gray", "green",

 "blue", "red", "black", "white", "cyan",

 "pink", "yellow", "orange", "gray"

Tk.mainloop

This will produce the following result:

Example 2

Following is the example using listvariable option to populate list items:

require "tk"

$names = %w{ yellow gray green

 blue red black white cyan

 pink yellow orange gray}

$colornames = TkVariable.new($names)

root = TkRoot.new

root.title = "Window"

Ruby

288

list = TkListbox.new(root) do

 width 20

 height 10

 setgrid 1

 listvariable $colornames

 pack('fill' => 'x')

end

Tk.mainloop

This will produce the following result:

Example 3

Following example explains how to use TkScrollbar widget along with list box.

require "tk"

$names = %w{ yellow gray green

 blue red black white cyan

 pink yellow orange gray}

$colornames = TkVariable.new($names)

root = TkRoot.new

root.title = "Window"

list = TkListbox.new(root) do

Ruby

289

 listvariable $colornames

 pack('fill' => 'x')

end

list.place('height' => 150,

 'width' => 100,

 'x' => 10,

 'y' => 10)

scroll = TkScrollbar.new(root) do

 orient 'vertical'

 place('height' => 150, 'x' => 110)

end

list.yscrollcommand(proc { |*args|

 scroll.set(*args)

})

scroll.command(proc { |*args|

 list.yview(*args)

})

Tk.mainloop

This will produce the following result:

Ruby

290

TkComboBox

Description

A Combobox combines an entry with a list of choices available to the user. This

lets them either choose from a set of values you've provided (e.g., typical

settings), but also put in their own value.

Syntax

Here is a simple syntax to create this widget:

Tk::BWidget::ComboBox.new(root){

 Options....

}

Options

Combobox combines the options related to TkEntry and TkListbox widgets.

Event Bindings

Combobox inherits event bindings from TkEntry and TkListbox widgets.

Examples

require 'tk'

require 'tkextlib/bwidget'

root = TkRoot.new

root.title = "Window"

Ruby

291

combobox = Tk::BWidget::ComboBox.new(root)

combobox.values = [1, 2, 3, 4]

combobox.place('height' => 25,

 'width' => 100,

 'x' => 10,

 'y' => 10)

Tk.mainloop

This will produce the following result:

TkMenu

Description

A menu is a widget that displays a collection of one-line entries arranged in one

or more columns. There exist several different types of entries, each with

different properties. Entries of different types may be combined in a single

menu. Menu entries are not the same as entry widgets. In fact, menu entries are

not even distinct widgets; the entire menu is one widget.

When first created, a new listbox has no elements. Elements may be added or

deleted using provided methods. In addition, one or more elements may be

selected from the listed items.

It is not necessary for all the elements to be displayed in the listbox window at

once. Listboxes allow scrolling in both directions using the standard

xscrollcommand and yscrollcommand options.

Ruby

292

Syntax

Here is a simple syntax to create this widget:

TkMenu.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 activebackground

 background

 disabledforeground

 relief

 activeborderwidth

 borderwidth

 font

 takefocus

 activeforeground

 cursor

 foreground

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 postcommand => String

If this option is specified then it provides a callback to execute each time

the menu is posted. The callback is invoked by the post method before

posting the menu.

2 selectcolor => String

For menu entries that are check buttons or radio buttons, this option

specifies the color to display in the indicator when the check button or

Ruby

293

radio button is selected.

3 tearoff => Integer

This option must have a proper boolean value, which specifies whether or

not the menu should include a tear-off entry at the top. If so, it will exist

as entry 0 of the menu and the other entries will number starting at 1.

The default menu bindings arrange for the menu to be torn off when the

tear-off entry is invoked.

4 tearoffcommand => String

If this option has a non-empty value, then it specifies a Ruby/Tk callback

to invoke whenever the menu is torn off. The actual command will consist

of the value of this option, followed by a space, followed by the name of

the menu window, followed by a space, followed by the name of the

name of the torn off menu window. For example, if the option's is "a b"

and menu .x.y is torn off to create a new menu .x.tearoff1, then the

command "a b .x.y .x.tearoff1" will be invoked.

5 title => String

The string will be used to title the window created when this menu is torn

off. If the title is NULL, then the window will have the title of the

menubutton or the text of the cascade item from which this menu was

invoked.

6 type => String

This option can be one of menubar,tearoff, or normal, and is set when

the menu is created.

Manipulating the Menus

There are various ways to play with a Menus:

 The activate(index) method is used to change the state of the entry

indicated byindex to active and redisplay it using its active colors.

 The add(type, ?option, value, option, value, ...?) method is used to

add a new entry to the bottom of the menu. The new entry's type is given

by type and must be one of cascade, checkbutton, command,

radiobutton, or separator, or a unique abbreviation of one of the above.

Ruby

294

 The delete(index1?, index2?) method is used to delete all of the menu

entries between index1 and index2 inclusive. If index2 is omitted then it

defaults toindex1.

 The index(index) method returns the numerical index corresponding to

index, ornone if index was specified as none.

 The insert(index, type?, option=>value, ...?) method is same as the

add method except that it inserts the new entry just before the entry

given by index, instead of appending to the end of the menu. The type,

option, and value arguments have the same interpretation as for the add

widget method.

 The invoke(index) method is used to invoke the action of the menu

entry.

 The post(x, y) method is used to arrange for the menu to be displayed on

the screen at the root-window coordinates given by x and y.

 The postcascade(index) method posts the submenu associated with the

cascade entry given by index, and unposts any previously posted

submenu.

 The type(index) method returns the type of the menu entry given by

index. This is the type argument passed to the add widget method when

the entry was created, such as command or separator, or tearoff for a

tear-off entry.

 The unpost method unmaps the window so that it is no longer displayed.

If a lower-level cascaded menu is posted, unpost that menu. Returns an

empty string.

 The yposition(index) method returns a decimal string giving the y-

coordinate within the menu window of the topmost pixel in the entry

specified by index.

Menu Configuration

The default bindings support four different ways of using menus:

 Pulldown Menus: This is the most common case. You create one

menubutton widget for each top-level menu, and typically you arrange a

series of menubuttons in a row in a menubar window. You also create the

top-level menus and any cascaded submenus, and tie them together with

menu options in menubuttons and cascade menu entries.

 Popup Menus: Popup menus typically post in response to a mouse button

press or keystroke. You create the popup menus and any cascaded

submenus, then you call the Popup method at the appropriate time to

post the top-level menu.

Ruby

295

 Option Menus: An option menu consists of a menubutton with an

associated menu that allows you to select one of several values. The

current value is displayed in the menubutton and is also stored in a global

variable. Use the Optionmenu class to create option menubuttons and

their menus.

 Torn-off Menus: You create a torn-off menu by invoking the tear-off

entry at the top of an existing menu. The default bindings will create a

new menu that is a copy of the original menu and leave it permanently

posted as a top-level window. The torn-off menu behaves just the same

as the original menu.

Event Bindings

Ruby/Tk automatically creates class bindings for menus that give them the

following default behavior:

 When the mouse enters a menu, the entry underneath the mouse cursor

activates; as the mouse moves around the menu, the active entry

changes to track the mouse.

 When the mouse leaves a menu all of the entries in the menu deactivate,

except in the special case where the mouse moves from a menu to a

cascaded submenu.

 When a button is released over a menu, the active entry (if any) is

invoked. The menu also unposts unless it is a torn-off menu.

 The Space and Return keys invoke the active entry and unpost the menu.

 If any of the entries in a menu have letters underlined with underline

option, then pressing one of the underlined letters (or its upper-case or

lower-case equivalent) invokes that entry and unposts the menu.

 The Escape key aborts a menu selection in progress without invoking any

entry. It also unposts the menu unless it is a torn-off menu.

 The Up and Down keys activate the next higher or lower entry in the

menu. When one end of the menu is reached, the active entry wraps

around to the other end.

 The Left key moves to the next menu to the left. If the current menu is a

cascaded submenu, then the submenu is unposted and the current menu

entry becomes the cascade entry in the parent. If the current menu is a

top-level menu posted from a menubutton, then the current menubutton

is unposted and the next menubutton to the left is posted. Otherwise the

key has no effect. The left-right order of menubuttons is determined by

their stacking order: Tk assumes that the lowest menubutton (which by

default is the first one created) is on the left.

Ruby

296

 The Right key moves to the next menu to the right. If the current entry is

a cascade entry, then the submenu is posted and the current menu entry

becomes the first entry in the submenu. Otherwise, if the current menu

was posted from a menubutton, then the current menubutton is unposted

and the next menubutton to the right is posted.

Disabled menu entries are non-responsive. They don't activate and ignore the

mouse button presses and releases.

Examples

require "tk"

root = TkRoot.new

root.title = "Window"

menu_click = Proc.new {

 Tk.messageBox(

 'type' => "ok",

 'icon' => "info",

 'title' => "Title",

 'message' => "Message"

)

}

file_menu = TkMenu.new(root)

file_menu.add('command',

 'label' => "New...",

 'command' => menu_click,

 'underline' => 0)

file_menu.add('command',

 'label' => "Open...",

 'command' => menu_click,

 'underline' => 0)

file_menu.add('command',

Ruby

297

 'label' => "Close",

 'command' => menu_click,

 'underline' => 0)

file_menu.add('separator')

file_menu.add('command',

 'label' => "Save",

 'command' => menu_click,

 'underline' => 0)

file_menu.add('command',

 'label' => "Save As...",

 'command' => menu_click,

 'underline' => 5)

file_menu.add('separator')

file_menu.add('command',

 'label' => "Exit",

 'command' => menu_click,

 'underline' => 3)

menu_bar = TkMenu.new

menu_bar.add('cascade',

 'menu' => file_menu,

 'label' => "File")

root.menu(menu_bar)

Tk.mainloop

This will produce the following result:

Ruby

298

TkMenubutton

Description

A menubutton is a widget that displays a textual string, bitmap, or image and is

associated with a menu widget. If text is displayed, it must all be in a single

font, but it can occupy multiple lines on the screen (if it contains newlines or if

wrapping occurs because of the wraplength option) and one of the characters

may optionally be underlined using the underline option.

In normal usage, pressing mouse button 1 over the menubutton causes the

associated menu to be posted just underneath the menubutton. If the mouse is

moved over the menu before releasing the mouse button, the button release

causes the underlying menu entry to be invoked. When the button is released,

the menu is unposted.

Menubuttons are typically organized into groups called menu bars that allow

scanning: if the mouse button is pressed over one menubutton and the mouse is

moved over another menubutton in the same menu bar without releasing the

mouse button, then the menu of the first menubutton is unposted and the menu

of the new menubutton is posted instead.

Syntax

Here is a simple syntax to create this widget:

TkMenubutton.new(root) {

 Standard Options....

 Widget-specific Options....

}

Ruby

299

Standard Options

 activebackground

 cursor

 highlightthickness

 takefocus

 activeforeground

 disabledforeground

 image

 text

 anchor

 font

 justify

 textvariable

 background

 foreground

 padx

 underline

 bitmap

 highlightbackground

 pady

 wraplength

 borderwidth

 highlightcolor

 relief

These options have been described in previous chapter.

Widget-Specific Options

SN Options with Description

1 compound => String

Ruby

300

Specifies whether the button should display both an image and text, and

if so, where the image should be placed relative to the text. Valid values

for this option are bottom, center, left, none, right and top. The default

value is none, meaning that the button will display either an image or

text, depending on the values of the image and bitmap options.

2 direction => String

Specifies where the menu is going to be popup up. above tries to pop the

menu above the menubutton. below tries to pop the menu below the

menubutton. Left tries to pop the menu to the left of the menubutton.

right tries to pop the menu to the right of the menu button. flush pops

the menu directly over the menubutton.

3 height => Integer

Specifies a desired height for the menubutton.

4 indicatoron => Boolean

The value must be a proper boolean value. If it is true, then a small

indicator rectangle will be displayed on the right side of the menubutton

and the default menu bindings will treat this as an option menubutton. If

false then no indicator will be displayed.

5 menu => String

Specifies the path name of the menu associated with this menubutton.

The menu must be a child of the menubutton.

6 state => String

Specifies one of three states for the menubutton: normal, active, or

disabled. In normal state the menubutton is displayed using the

foreground and background options.

7 width => Integer

Specifies a desired width for the menubutton.

Event Bindings

Ruby/Tk automatically creates class bindings for menubuttons that give them

the following default behavior:

Ruby

301

 A menubutton activates whenever the mouse passes over it and

deactivates whenever the mouse leaves it.

 Pressing mouse button 1 over a menubutton posts the menubutton: its

relief changes to raised and its associated menu is posted under the

menubutton. If the mouse is dragged down into the menu with the button

still down, and if the mouse button is then released over an entry in the

menu, the menubutton is unposted and the menu entry is invoked.

 If button 1 is pressed over a menubutton and then released over that

menubutton, the menubutton stays posted: you can still move the mouse

over the menu and click button 1 on an entry to invoke it. Once a menu

entry has been invoked, the menubutton unposts itself.

 If button 1 is pressed over a menubutton and then dragged over some

other menubutton, the original menubutton unposts itself and the new

menubutton posts.

 If button 1 is pressed over a menubutton and released outside any

menubutton or menu, the menubutton unposts without invoking any

menu entry.

 When a menubutton is posted, its associated menu claims the input focus

to allow keyboard traversal of the menu and its submenus.

 If the underline option has been specified for a menubutton then keyboard

traversal may be used to post the menubutton: Alt+x, where x is the

underlined character (or its lower-case or upper-case equivalent), may be

typed in any window under the menubutton's toplevel to post the

menubutton.

 The F10 key may be typed in any window to post the first menubutton

under its toplevel window that isn't disabled.

 If a menubutton has the input focus, the space and return keys post the

menubutton.

If the menubutton's state is disabled then none of the above actions occur: the

menubutton is completely non-responsive.

Examples

require "tk"

mbar = TkFrame.new {

 relief 'raised'

 borderwidth 2

}

Ruby

302

mbar.pack('fill' => 'x')

TkMenubutton.new(mbar) {|mb|

 text "File"

 underline 0

 menu TkMenu.new(mb) {

 add 'command', 'label' => 'New...', 'underline' => 0,

 'command' => proc {print "opening new file\n"}

 add 'command', 'label' => 'Quit',

 'underline' => 0, 'command' => proc{exit}

 }

 pack('side' => 'left', 'padx' => '1m')

}

TkMenubutton.new(mbar) {|mb|

 text "Help"

 underline 0

 menu TkMenu.new(mb) {

 add 'command', 'label' => 'About', 'underline' => 0,

 'command' => proc {print "This is menu example.\n"}

 }

 pack('side' => 'left', 'padx' => '1m')

}

Tk.mainloop

This will produce the following result:

Ruby

303

Tk.messageBox

Standard Options

NA

Widget-Specific Options

SN Options with Description

1 icon => String

Specify the icon of the messageBox. Valid values are error, info,

question, orwarning.

2 type => String

Specify the type of the messageBox. Valid values are abortretryignore,

ok,okcancel, retrycancel, yesno, or yesnocancel. The type

determines the buttons to be shown.

3 default => String

Specify the default button. This must be one of abort, retry, ignore, ok,

cancel,yes, or no, depending on the type of the messageBox previously

specified.

4 detail => String

Specify text for the detail region of the messageBox.

5 message => String

Specify the message text of the messageBox.

6 title => String

Specify the title of the messageBox.

Ruby

304

Event Bindings

NA

Examples

require 'tk'

root = TkRoot.new

root.title = "Window"

msgBox = Tk.messageBox(

 'type' => "ok",

 'icon' => "info",

 'title' => "This is title",

 'message' => "This is message"

)

Tk.mainloop

This will produce the following result:

TkScrollbar

Description

A Scrollbar helps the user to see all parts of another widget, whose content is

typically much larger than what can be shown in the available screen space.

Ruby

305

A scrollbar displays two arrows, one at each end of the scrollbar, and a slider in

the middle portion of the scrollbar. The position and size of the slider indicate

which portion of the document is visible in the associated window.

Syntax

Here is a simple syntax to create this widget:

TkScrollbar.new{

 Standard Options....

 Widget-specific Options....

}

Standard Options

 activebackground

 highlightbackground

 orient

 takefocus

 background

 highlightcolor

 relief

 troughcolor

 borderwidth

 highlightthickness

 repeatdelay

 cursor

 jump

 repeatinterval

These options have been described in the previous chapter.

Ruby

306

Widget-Specific Options

SN Options with Description

1 activerelief => String

Specifies the relief to use when displaying the element that is active, if

any. Elements other than the active element are always displayed with a

raised relief.

2 command => String

Specifies a callback to invoke to change the view in the widget associated

with the scrollbar. When a user requests a view change by manipulating

the scrollbar, the callback is invoked.

3 elementborderwidth => Integer

Specifies the width of borders drawn around the internal elements of the

scrollbar.

4 width => Integer

Specifies the desired narrow dimension of the scrollbar window, not

including 3-D border, if any. For vertical scrollbars this will be the width

and for horizontal scrollbars this will be the height.

Elements of Scrollbar

A scrollbar displays five elements, which are referred in the methods for the

scrollbar:

 arrow1: The top or left arrow in the scrollbar.

 trough1: The region between the slider and arrow1.

 slider: The rectangle that indicates what is visible in the associated

widget.

 trough2: The region between the slider and arrow2.

 arrow2: The bottom or right arrow in the scrollbar.

Manipulating Scrollbar

The following useful methods to manipulate the content of a scrollbar:

Ruby

307

 activate(?element?): Marks the element indicated by element as active,

which causes it to be displayed as specified by the activebackground

and activerelief options. The only element values understood by this

command are arrow1, slider, or arrow2.

 delta(deltaX, deltaY): Returns a real number indicating the fractional

change in the scrollbar setting that corresponds to a given change in

slider position.

 fraction(x, y): Returns a real number between 0 and 1 indicating where

the point given by x and y lies in the trough area of the scrollbar. The

value 0 corresponds to the top or left of the trough, the value 1

corresponds to the bottom or right, 0.5 corresponds to the middle, and so

on.

 get:Returns the scrollbar settings in the form of a list whose elements are

the arguments to the most recent set method.

 identify(x, y): Returns the name of the element under the point given by

x and y (such as arrow1), or an empty string if the point does not lie in

any element of the scrollbar. X and y must be pixel coordinates relative to

the scrollbar widget.

 set(first, last): This command is invoked by the scrollbar's associated

widget to tell the scrollbar about the current view in the widget. The

command takes two arguments, each of which is a real fraction between 0

and 1. The fractions describe the range of the document that is visible in

the associated widget.

Event Bindings

Ruby/Tk automatically creates class bindings for scrollbars that gives them the

following default behavior. If the behavior is different for vertical and horizontal

scrollbars, the horizontal behavior is described in parentheses:

 Pressing button 1 over arrow1 causes the view in the associated widget to

shift up (left) by one unit so that the document appears to move down

(right) one unit. If the button is held down, the action auto-repeats.

 Pressing button 1 over trough1 causes the view in the associated widget

to shift up (left) by one screenful so that the document appears to move

down (right) one screenful. If the button is held down, the action auto-

repeats.

 Pressing button 1 over the slider and dragging causes the view to drag

with the slider. If the jump option is true, then the view doesn't drag

along with the slider; it changes only when the mouse button is released.

 Pressing button 1 over trough2 causes the view in the associated widget

to shift down (right) by one screenful so that the document appears to

Ruby

308

move up (left) one screenful. If the button is held down, the action auto-

repeats.

 Pressing button 1 over arrow2 causes the view in the associated widget to

shift down (right) by one unit so that the document appears to move up

(left) one unit. If the button is held down, the action auto-repeats.

 If button 2 is pressed over the trough or the slider, it sets the view to

correspond to the mouse position; dragging the mouse with button 2

down causes the view to drag with the mouse. If button 2 is pressed over

one of the arrows, it causes the same behavior as pressing button 1.

 If button 1 is pressed with the Control key down, then if the mouse is over

arrow1 or trough1 the view changes to the very top (left) of the

document; if the mouse is over arrow2 or trough2 the view changes to

the very bottom (right) of the document; if the mouse is anywhere else

then the button press has no effect.

 In vertical scrollbars the Up and Down keys have the same behavior as

mouse clicks over arrow1 and arrow2, respectively. In horizontal

scrollbars these keys have no effect.

 In vertical scrollbars Control-Up and Control-Down have the same

behavior as mouse clicks over trough1 and trough2, respectively. In

horizontal scrollbars these keys have no effect.

 In horizontal scrollbars the Up and Down keys have the same behavior as

mouse clicks over arrow1 and arrow2, respectively. In vertical scrollbars

these keys have no effect.

 In horizontal scrollbars Control-Up and Control-Down have the same

behavior as mouse clicks over trough1 and trough2, respectively. In

vertical scrollbars these keys have no effect.

 The Prior and Next keys have the same behavior as mouse clicks over

trough1 and trough2, respectively.

 The Home key adjusts the view to the top (left edge) of the document.

 The End key adjusts the view to the bottom (right edge) of the document.

Examples

require "tk"

list = scroll = nil

list = TkListbox.new {

 yscroll proc{|idx|

Ruby

309

 scroll.set *idx

 }

 width 20

 height 16

 setgrid 1

 pack('side' => 'left', 'fill' => 'y', 'expand' => 1)

}

scroll = TkScrollbar.new {

 command proc{|idx|

 list.yview *idx

 }

 pack('side' => 'left', 'fill' => 'y', 'expand' => 1)

}

for f in Dir.glob("*")

 list.insert 'end', f

end

Tk.mainloop

This will produce the following result:

Ruby

310

TkCanvas

Description

A Canvas widget implements structured graphics. A canvas displays any number

of items, which may be things like rectangles, circles, lines, and text.

Items may be manipulated (e.g., moved or re-colored) and callbacks may be

associated with items in much the same way that the bind method allows

callbacks to be bound to widgets.

Syntax

Here is a simple syntax to create this widget:

TkCanvas.new{

 Standard Options....

 Widget-specific Options....

}

Standard Options

 background

 borderwidth

 cursor

 highlightbackground

 highlightcolor

 highlightthickness

 relief

 selectbackground

 selectborderwidth

 selectforeground

 state

 takefocus

 tile

 xscrollcommand

 yscrollcommand

Ruby

311

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 closeenough =>Integer

Specifies a floating-point value indicating how close the mouse cursor

must be to an item before it is considered to be inside the item. Defaults

to 1.0.

2 confine =>Boolean

Specifies a boolean value that indicates whether or not it should be

allowable to set the canvas's view outside the region defined by the

scrollregion argument. Defaults to true, which means that the view will be

constrained within the scroll region.

3 height =>Integer

Specifies a desired window height that the canvas widget should request

from its geometry manager.

4 scrollregion =>Coordinates

Specifies a list with four coordinates describing the left, top, right, and

bottom coordinates of a rectangular region. This region is used for

scrolling purposes and is considered to be the boundary of the

information in the canvas.

5 state =>String

Modifies the default state of the canvas where state may be set to one of:

normal, disabled, or hidden. Individual canvas objects all have their

own state option, which overrides the default state.

6 width =>Integer

Specifies a desired window width that the canvas widget should request

from its geometry manager.

7 xscrollincrement =>Integer

Specifies an increment for horizontal scrolling, in any of the usual forms

Ruby

312

permitted for screen distances. If the value of this option is greater than

zero, the horizontal view in the window will be constrained so that the

canvas x coordinate at the left edge of the window is always an even

multiple of xscrollincrement; furthermore, the units for scrolling will also

be xscrollincrement.

8 yscrollincrement =>Integer

Specifies an increment for vertical scrolling, in any of the usual forms

permitted for screen distances. If the value of this option is greater than

zero, the vertical view in the window will be constrained so that the

canvas y coordinate at the top edge of the window is always an even

multiple of yscrollincrement; furthermore, the units for scrolling will also

be yscrollincrement.

Indices

Indices are used for methods such as inserting text, deleting a range of

characters, and setting the insertion cursor position. An index may be specified

in any of a number of ways, and different types of items may support different

forms for specifying indices.

Text items support the following forms for an index:

 number: A decimal number giving the position of the desired character

within the text item. 0 refers to the first character, 1 to the next

character, and so on.

 end: Refers to the character or coordinate just after the last one in the

item (same as the number of characters or coordinates in the item).

 insert: Refers to the character just before which the insertion cursor is

drawn in this item. Not valid for lines and polygons.

Creating Items

When you create a new canvas widget, it will essentially be a large rectangle

with nothing on it; truly a blank canvas in other words. To do anything useful

with it, you'll need to add items to it.

There are a wide variety of different types of items you can add. Following

methods will be used to create different items inside a canvas:

Ruby

313

Arc Items

Items of type arc appear on the display as arc-shaped regions. An arc is a

section of an oval delimited by two angles. Arcs are created with methods of the

following form:

The TkcArc.new(canvas, x1, y1, x2, y2, ?option, value, option, value, ...?)

method will be used to create an arc.

The arguments x1, y1, x2, and y2 give the coordinates of two diagonally

opposite corners of a rectangular region enclosing the oval that defines the arc.

Here is the description of other options:

 extent => degrees: Specifies the size of the angular range occupied by

the arc. If it is greater than 360 or less than -360, then degrees modulo

360 is used as the extent.

 fill => color: Fills the region of the arc with color.

 outline => color: Color specifies a color to use for drawing the arc's

outline.

 start => degrees: Specifies the beginning of the angular range occupied

by the arc.

 style => type: Specifies how to draw the arc. If type is pieslice (the

default) then the arc's region is defined by a section of the oval's

perimeter plus two line segments, one between the center of the oval and

each end of the perimeter section. If type is chord then the arc's region is

defined by a section of the oval's perimeter plus a single line segment

connecting the two end points of the perimeter section. If type is arc then

the arc's region consists of a section of the perimeter alone.

 tags => tagList: Specifies a set of tags to apply to the item. TagList

consists of a list of tag names, which replace any existing tags for the

item. TagList may be an empty list.

 width => outlineWidth: Specifies the width of the outline to be drawn

around the arc's region.

Bitmap Items

Items of type bitmap appear on the display as images with two colors,

foreground and background. Bitmaps are created with methods of the following

form:

The TkcBitmap.new(canvas, x, y, ?option, value, option, value, ...?)

method will be used to create a bitmap.

The arguments x and y specify the coordinates of a point used to position the

bitmap on the display. Here is the description of other options:

Ruby

314

 anchor => anchorPos: AnchorPos tells how to position the bitmap

relative to the positioning point for the item. For example, if anchorPos is

center then the bitmap is centered on the point; if anchorPos is n then the

bitmap will be drawn so that its top center point is at the positioning

point. This option defaults to center.

 background => color: Specifies a color to use for each of the bitmap

pixels whose value is 0.

 bitmap => bitmap: Specifies the bitmap to display in the item.

 foreground => color: Specifies a color to use for each of the bitmap

pixels whose value is 1.

 tags => tagList: Specifies a set of tags to apply to the item. TagList

consists of a list of tag names, which replace any existing tags for the

item. TagList may be an empty list.

Image Items

Items of type image are used to display images on a canvas. Images are created

with methods of the following form: :

The TkcImage.new(canvas,x, y, ?option, value, option, value, ...?) method

will be used to create an image.

The arguments x and y specify the coordinates of a point used to position the

image on the display. Here is the description of other options:

 anchor => anchorPos: AnchorPos tells how to position the bitmap

relative to the positioning point for the item. For example, if anchorPos is

center then the bitmap is centered on the point; if anchorPos is n then the

bitmap will be drawn so that its top center point is at the positioning

point. This option defaults to center.

 image => name: Specifies the name of the image to display in the item.

This image must have been created previously with the image create

command.

 tags => tagList: Specifies a set of tags to apply to the item. TagList

consists of a list of tag names, which replace any existing tags for the

item. TagList may be an empty list.

Line items

Items of type line appear on the display as one or more connected line segments

or curves. Lines are created with methods of the following form:

The TkcLine.new(canvas, x1, y1..., xn, yn, ?option, value, ...?) method will

be used to create a line.

Ruby

315

The arguments x1 through yn give the coordinates for a series of two or more

points that describe a series of connected line segments. Here is the description

of other options:

 arrow => where: Indicates whether or not arrowheads are to be drawn

at one or both ends of the line. Where must have one of the values none

(for no arrowheads), first (for an arrowhead at the first point of the line),

last (for an arrowhead at the last point of the line), or both (for

arrowheads at both ends). This option defaults to none.

 arrowshape => shape: This option indicates how to draw arrowheads. If

this option isn't specified then Tk picks a reasonable shape.

 dash => pattern: Specifies a pattern to draw the line.

 capstyle => style: Specifies the ways in which caps are to be drawn at

the endpoints of the line. Possible values are butt, projecting, or round.

 fill => color: Color specifies a color to use for drawing the line.

 joinstyle => style: Specifies the ways in which joints are to be drawn at

the vertices of the line. Possible values are bevel, miter, or round.

 smooth => boolean: It indicates whether or not the line should be

drawn as a curve.

 splinesteps => number: Specifies the degree of smoothness desired for

curves: each spline will be approximated with number line segments. This

option is ignored unless the smooth option is true.

 stipple => bitmap: Indicates that the line should be filled in a stipple

pattern; bitmap specifies the stipple pattern to use.

 tags => tagList: Specifies a set of tags to apply to the item. TagList

consists of a list of tag names, which replace any existing tags for the

item. TagList may be an empty list.

 width => lineWidth: Specifies the width of the line.

Rectangle Items

Items of type rectangle appear as rectangular regions on the display. Each

rectangle may have an outline, a fill, or both. Rectangles are created with

methods of the following form:

The TkcRectangle.new(canvas, x1, y1, x2, y2, ?option, value,...?) method

will be used to create a Rectangle.

The arguments x1, y1, x2, and y2 give the coordinates of two diagonally

opposite corners of the rectangle. Here is the description of other options:

 fill => color: Fills the area of the rectangle with color.

Ruby

316

 outline => color: Draws an outline around the edge of the rectangle in

color.

 stipple => bitmap: Indicates that the rectangle should be filled in a

stipple pattern; bitmap specifies the stipple pattern to use.

 tags => tagList: Specifies a set of tags to apply to the item. TagList

consists of a list of tag names, which replace any existing tags for the

item. TagList may be an empty list.

 width => outlineWidth: Specifies the width of the outline to be drawn

around the rectangle.

Event Bindings

Canvas has the default bindings to allow scrolling if necessary: <Up>, <Down>,

<Left> and <Right> (and their <Control-*> counter parts). Further <Prior>,

<Next>, <Home> and <End>. These bindings allow you to navigate the same

way as in other widgets that can scroll.

Example 1

require "tk"

canvas = TkCanvas.new

TkcRectangle.new(canvas, '1c', '2c', '3c', '3c',

 'outline' => 'black', 'fill' => 'blue')

TkcLine.new(canvas, 0, 0, 100, 100,

 'width' => '2', 'fill' => 'red')

canvas.pack

Tk.mainloop

This will produce the following result:

Ruby

317

Example 2

require 'tk'

root = TkRoot.new

root.title = "Window"

canvas = TkCanvas.new(root) do

 place('height' => 170, 'width' => 100,

 'x' => 10, 'y' => 10)

end

TkcLine.new(canvas, 0, 5, 100, 5)

TkcLine.new(canvas, 0, 15, 100, 15, 'width' => 2)

TkcLine.new(canvas, 0, 25, 100, 25, 'width' => 3)

TkcLine.new(canvas, 0, 35, 100, 35, 'width' => 4)

TkcLine.new(canvas, 0, 55, 100, 55, 'width' => 3,

 'dash' => ".")

TkcLine.new(canvas, 0, 65, 100, 65, 'width' => 3,

 'dash' => "-")

TkcLine.new(canvas, 0, 75, 100, 75, 'width' => 3,

 'dash' => "-.")

TkcLine.new(canvas, 0, 85, 100, 85, 'width' => 3,

 'dash' => "-..")

TkcLine.new(canvas, 0, 105, 100, 105, 'width' => 2,

 'arrow' => "first")

TkcLine.new(canvas, 0, 115, 100, 115, 'width' => 2,

Ruby

318

 'arrow' => "last")

TkcLine.new(canvas, 0, 125, 100, 125, 'width' => 2,

 'arrow' => "both")

TkcLine.new(canvas, 10, 145, 90, 145, 'width' => 15,

 'capstyle' => "round")

Tk.mainloop

This will produce the following result:

Example 3

require 'tk'

root = TkRoot.new

root.title = "Window"

canvas = TkCanvas.new(root) do

 place('height' => 170, 'width' => 100,

 'x' => 10, 'y' => 10)

end

TkcRectangle.new(canvas, 10, 5, 55, 50,

 'width' => 1)

TkcRectangle.new(canvas, 10, 65, 55, 110,

 'width' => 5)

TkcRectangle.new(canvas, 10, 125, 55, 170,

Ruby

319

 'width' => 1, 'fill' => "red")

Tk.mainloop

This will produce the following result:

Example 4

require 'tk'

root = TkRoot.new

root.title = "Window"

canvas = TkCanvas.new(root) do

 place('height' => 170, 'width' => 100,

 'x' => 10, 'y' => 10)

end

TkcLine.new(canvas, 0, 10, 100, 10,

 'width' => 10, 'fill' => "blue")

TkcLine.new(canvas, 0, 30, 100, 30,

 'width' => 10, 'fill' => "red")

TkcLine.new(canvas, 0, 50, 100, 50,

 'width' => 10, 'fill' => "green")

TkcLine.new(canvas, 0, 70, 100, 70,

 'width' => 10, 'fill' => "violet")

Ruby

320

TkcLine.new(canvas, 0, 90, 100, 90,

 'width' => 10, 'fill' => "yellow")

TkcLine.new(canvas, 0, 110, 100, 110,

 'width' => 10, 'fill' => "pink")

TkcLine.new(canvas, 0, 130, 100, 130,

 'width' => 10, 'fill' => "orange")

TkcLine.new(canvas, 0, 150, 100, 150,

 'width' => 10, 'fill' => "grey")

Tk.mainloop

This will produce the following result:

TkScale

Description

A Scale is a widget that displays a rectangular trough and a small slider. The

trough corresponds to a range of real values (determined by the from, to, and

resolution options), and the position of the slider selects a particular real value.

Three annotations may be displayed in a scale widget:

 A label appearing at the top right of the widget (top left for horizontal

scales).

 A number displayed just to the left of the slider (just above the slider for

horizontal scales).

 A collection of numerical tick marks just to the left of the current value

(just below the trough for horizontal scales).

Ruby

321

Each of these three annotations may be enabled or disabled using the

configuration options.

Syntax

Here is a simple syntax to create this widget:

TkScale.new{

 Standard Options....

 Widget-specific Options....

}

Standard Options

 activebackground

 background

 borderwidth

 cursor

 font

 foreground

 highlightbackground

 highlightcolor

 highlightthickness

 orient

 relief

 repeatdelay

 repeatinterval

 takefocus

 troughcolor

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

Ruby

322

1 bigincrement =>Integer

Some interactions with the scale cause its value to change by large

increments; this option specifies the size of the large increments. If

specified as 0, the large increments default to 1/10 the range of the

scale.

2 command =>String

Specifies the prefix of a Ruby/Tk callback to invoke whenever the scale's

value is changed via a method.

3 digits =>Integer

An integer specifying how many significant digits should be retained when

converting the value of the scale to a string. If the number is less than or

equal to zero, then the scale picks the smallest value that guarantees

that every possible slider position prints as a different string.

4 from =>Integer

A real value corresponding to the left or top end of the scale.

5 label =>String

A string to display as a label for the scale. For vertical scales the label is

displayed just to the right of the top end of the scale. For horizontal

scales the label is displayed just above the left end of the scale.

6 length =>Integer

Specifies the desired long dimension of the scale in screen units

7 resolution =>Integer

A real value specifying the resolution for the scale. If this value is greater

than zero then the scale's value will always be rounded to an even

multiple of this value, as will tick marks and the endpoints of the scale. If

the value is less than zero then no rounding occurs. Defaults to 1

8 showvalue =>Boolean

Specifies a boolean value indicating whether or not the current value of

the scale is to be displayed.

Ruby

323

9 sliderlength =>Integer

Specfies the size of the slider, measured in screen units along the slider's

long dimension.

10 sliderrelief =>String

Specifies the relief to use when drawing the slider, such as raised or

sunken.

11 state =>String

Specifies one of three states for the scale: normal, active, or disabled.

12 tickinterval =>Integer

Must be a real value. Determines the spacing between numerical tick

marks displayed below or to the left of the slider. If 0, no tick marks will

be displayed.

13 to =>Integer

Specifies a real value corresponding to the right or bottom end of the

scale. This value may be either less than or greater than the from option.

14 variable =>Variable

Specifies the name of a global variable to link to the scale. Whenever the

value of the variable changes, the scale will update to reflect this value.

Whenever the scale is manipulated interactively, the variable will be

modified to reflect the scale's new value.

15 width =>Integer

Specifies the desired narrow dimension of the trough in screen units

Manipulating Scales

The following methods are available for scale widgets:

 coords(?value?) Returns a list whose elements are the x and y

coordinates of the point along the centerline of the trough that

corresponds to value. If value is omitted then the scale's current value is

used.

Ruby

324

 get(?x, y?) If x and y are omitted, returns the current value of the scale.

If x and y are specified, they give pixel coordinates within the widget; the

command returns the scale value corresponding to the given pixel.

 identify(x, y) Returns a string indicating what part of the scale lies under

the coordinates given by x and y. A return value of slider means that the

point is over the slider; trough1 means that the point is over the portion

of the slider above or to the left of the slider; and trough2 means that the

point is over the portion of the slider below or to the right of the slider.

 set(value) This command is invoked to change the current value of the

scale, and hence the position at which the slider is displayed. Value gives

the new value for the scale. The command has no effect if the scale is

disabled.

Event Bindings

Ruby/Tk automatically creates class bindings for scales that give them the

following default behavior. Where the behavior is different for vertical and

horizontal scales, the horizontal behavior is described in parentheses.

 If button 1 is pressed in the trough, the scale's value will be incremented

or decremented by the value of the resolution option so that the slider

moves in the direction of the cursor. If the button is held down, the action

auto-repeats.

 If button 1 is pressed over the slider, the slider can be dragged with the

mouse.

 If button 1 is pressed in the trough with the Control key down, the slider

moves all the way to the end of its range, in the direction towards the

mouse cursor.

 If button 2 is pressed, the scale's value is set to the mouse position. If the

mouse is dragged with button 2 down, the scale's value changes with the

drag.

 The Up and Left keys move the slider up (left) by the value of the

resolution option.

 The Down and Right keys move the slider down (right) by the value of the

resolution option.

 Control-Up and Control-Left move the slider up (left) by the value of the

bigIncrement option.

 Control-Down and Control-Right move the slider down (right) by the value

of the bigIncrement option.

 Home moves the slider to the top (left) end of its range.

 End moves the slider to the bottom (right) end of its range.

Ruby

325

If the scale is disabled using the state option, then none of the above bindings

have any effect.

Examples

require "tk"

$scale = TkScale.new {

 orient 'horizontal'

 length 280

 from 0

 to 250

 command (proc {printheight})

 tickinterval 50

 pack

}

def printheight

 height = $scale.get()

 print height, "\n"

end

Tk.mainloop

This will produce the following result:

Ruby

326

TkText

Description

A Text widget provides users with an area so that they can enter multiple lines

of text. Text widgets are part of the classic Tk widgets, not the themed Tk

widgets.

Text widgets support three different kinds of annotations on the text:

 Tags - allow different portions of the text to be displayed with different

fonts and colors. In addition, Tcl commands can be associated with tags

so that scripts are invoked when particular actions such as keystrokes and

mouse button presses occur in particular ranges of the text.

 Marks - The second form of annotation consists of marks, which are

floating markers in the text. Marks are used to keep track of various

interesting positions in the text as it is edited.

 Embedded windows - The third form of annotation allows arbitrary

windows to be embedded in a text widget.

A label can display a textual string, bitmap or image. If text is displayed, it must

all be in a single font, but it can occupy multiple lines on the screen (if it

contains newlines or if wrapping occurs because of the wraplength option) and

one of the characters may optionally be underlined using the underline option.

Syntax

Here is a simple syntax to create this widget:

TkText.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 background

 borderwidth

 cursor

 exportselection

 font

 foreground

Ruby

327

 highlightbackground

 highlightcolor

 highlightthickness

 insertbackground

 insertborderwidth

 insertofftime

 insertontime

 insertwidth

 padx

 pady

 relief

 selectbackground

 selectborderwidth

 selectforeground

 setgrid

 takefocus

 xscrollcommand

 yscrollcommand

These options have been described in previous chapter.

Widget-Specific Options

SN Options with Description

1 height => Integer

Specifies the desired height for the window, in units of characters. Must

be at least one.

2 spacing1 => Integer

Requests additional space above each text line in the widget, using any of

the standard forms for screen distances. If a line wraps, this option only

applies to the first line on the display. This option may be overriden with

spacing1 options in tags.

Ruby

328

3 spacing2 => Integer

For lines that wrap (so that they cover more than one line on the display)

this option specifies additional space to provide between the display lines

that represent a single line of text. The value may have any of the

standard forms for screen distances. This option may be overriden with

spacing options in tags.

4 spacing3 => Integer

Requests additional space below each text line in the widget, using any of

the standard forms for screen distances. If a line wraps, this option only

applies to the last line on the display. This option may be overriden with

spacing3 options in tags.

5 state => String

Specifies one of two states for the text: normal or disabled. If the text is

disabled then characters may not be inserted or deleted and no insertion

cursor will be displayed, even if the input focus is in the widget.

6 tabs => String

Specifies a set of tab stops for the window. The option's value consists of

a list of screen distances giving the positions of the tab stops. Each

position may optionally be followed in the next list element by one of the

keywords left, right, center, ornumeric, which specifies how to justify

text relative to the tab stop. Left is the default.

7 width => Integer

Specifies the desired width for the window in units of characters. If the

font doesn't have a uniform width then the width of the character "0" is

used in translating from character units to screen units.

8 wrap => String

Specifies how to handle lines in the text that are too long to be displayed

in a single line of the text's window. The value must be none or char or

word.

Manipulating Test

The following useful methods are available to manipulate the content of a text:

Ruby

329

 delete(index1, ?index2?): Deletes a range of characters from the text.

If both index1 and index2 are specified, then deletes all the characters

starting with the one given by index1 and stopping just before index2. If

index2 doesn't specify a position later in the text than index1 then no

characters are deleted. If index2 isn't specified then the single character at

index1 is deleted.

 get(index1, ?index2?): Returns a range of characters from the text.

The return value will be all the characters in the text starting with the one

whose index is index1 and ending just before the one whose index is

index2 (the character at index2 will not be returned). If index2 is omitted

then the single character at index1 is returned.

 index(index) : Returns the position corresponding to index in the form

line.charwhere line is the line number and char is the character number.

 insert(index, chars, ?tagList, chars, tagList, ...?) : Inserts all of the

chars arguments just before the character at index. If index refers to the

end of the text (the character after the last newline) then the new text is

inserted just before the last newline instead. If there is a single chars

argument and no tagList, then the new text will receive any tags that are

present on both the character before and the character after the insertion

point; if a tag is present on only one of these characters then it will not be

applied to the new text. If tagList is specified then it consists of a list of

tag names; the new characters will receive all of the tags in this list and

no others, regardless of the tags present around the insertion point. If

multiple chars-tagList argument pairs are present, they produce the same

effect as if a separate insert widget command had been issued for each

pair, in order. The last tagList argument may be omitted.

 xview(option, args) : This command is used to query and change the

horizontal position of the text in the widget's window.

 yview(?args?) : This command is used to query and change the vertical

position of the text in the widget's window.

Event Bindings

Ruby/Tk automatically creates class bindings for texts. Here are few important

bindings listed.

 Clicking mouse button 1 positions the insertion cursor just before the

character underneath the mouse cursor, sets the input focus to this

widget, and clears any selection in the widget. Dragging with mouse

button 1 strokes out a selection between the insertion cursor and the

character under the mouse.

Ruby

330

 Double-clicking with mouse button 1 selects the word under the mouse

and positions the insertion cursor at the beginning of the word. Dragging

after a double click will stroke out a selection consisting of whole words.

 Triple-clicking with mouse button 1 selects the line under the mouse and

positions the insertion cursor at the beginning of the line. Dragging after a

triple click will stroke out a selection consisting of whole lines.

 Clicking mouse button 1 with the Control key down will reposition the

insertion cursor without affecting the selection.

 The Left and Right keys move the insertion cursor one character to the

left or right; they also clear any selection in the text.

 The Up and Down keys move the insertion cursor one line up or down and

clear any selection in the text. If Up or Right is typed with the Shift key

down, then the insertion cursor moves and the selection is extended to

include the new character.

 Control-x deletes whatever is selected in the text widget.

 Control-o opens a new line by inserting a newline character in front of the

insertion cursor without moving the insertion cursor.

 Control-d deletes the character to the right of the insertion cursor.

Examples

require 'tk'

root = TkRoot.new

root.title = "Window"

text = TkText.new(root) do

 width 30

 height 20

 borderwidth 1

 font TkFont.new('times 12 bold')

 pack("side" => "right", "padx"=> "5", "pady"=> "5")

end

text.insert 'end', "Hello!\n\ntext widget example"

Tk.mainloop

Ruby

331

This will produce the following result:

TkToplevel

Description

A Toplevel is similar to a frame except that it is created as a top-level window.

Its X parent is the root window of a screen rather than the logical parent from its

path name.

The primary purpose of a toplevel is to serve as a container for dialog boxes and

other collections of widgets. The only visible features of a toplevel are its

background color and an optional 3-D border to make the toplevel appear raised

or sunken.

Syntax

Here is a simple syntax to create this widget:

TkToplevel.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 borderwidth

 cursor

 highlightbackground

 highlightcolor

 highlightthickness

 relief

Ruby

332

 takefocus

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 background => String

This option is the same as the standard background option except that

its value may also be specified as an empty string. In this case, the

widget will display no background or border, and no colors will be

consumed from its colormap for its background and border.

2 class => String

Specifies a class for the window. This class will be used when querying

the option database for the window's other options, and it will also be

used later for other purposes such as bindings. The class option may not

be changed with theconfigure method.

3 colormap => String

Specifies a colormap to use for the window. The value may be either

new, in which case a new colormap is created for the window and its

children, or the name of another window.

4 height => Integer

Specifies the desired height for the window.

5 width => Integer

Specifies the desired width for the window.

Event Bindings

When a new toplevel is created, it has no default event bindings: toplevels are

not intended to be interactive.

Examples

require 'tk'

Ruby

333

def make_win

 begin

 $win.destroy

 rescue

 end

 $win = TkToplevel.new

 TkButton.new($win) {

 text 'Window Dismiss'

 command "$win.destroy"

 pack

 }

end

TkButton.new {

 text 'make Window'

 command 'make_win'

 pack('fill' => 'x')

}

Tk.mainloop

This will produce the following result:

TkSpinbox

Description

A Spinbox widget allows users to choose numbers (or in fact, items from an

arbitrary list). It does this by combining an entry-like widget showing the current

Ruby

334

value with a pair of small up/down arrows which can be used to step through the

range of possible choices.

Spinboxes are capable of displaying strings that are too long to fit entirely within

the widget's window. In this case, only a portion of the string will be displayed;

commands described below may be used to change the view in the window.

Spinboxes use the standard xscrollcommand mechanism for interacting with

scrollbars.

Syntax

Here is a simple syntax to create this widget:

TkSpinbox.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 activebackground

 background

 borderwidth

 cursor

 exportselection

 font

 foreground

 highlightbackground

 highlightcolor

 highlightthickness

 justify

 relief

 repeatdelay

 repeatinterval

 selectbackground

 selectborderwidth

Ruby

335

 selectforeground

 takefocus

 textvariable

 xscrollcommand

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

1 buttonbackground => String

The background color to be used for the spin buttons.

2 buttoncursor => String

The cursor to be used for over the spin buttons. If this is empty (the

default), a default cursor will be used.

3 buttondownrelief => String

The relief to be used for the upper spin button.

4 command => String

Specifies a Ruby/Tk callback to invoke whenever a Spinbutton is invoked.

The callback has these two arguments appended to any existing callback

arguments: the current value of the widget and the direction of the

button press (up or down).

5 disabledbackground => String

Specifies the background color to use when the Spinbox is disabled. If

this option is the empty string, the normal background color is used.

6 disabledforeground => String

Specifies the foreground color to use when the Spinbox is disabled. If this

option is the empty string, the normal foreground color is used.

7 format => String

Specifies an alternate format to use when setting the string value when

Ruby

336

using the from and to range.

8 from => Integer

A floating-point value corresponding to the lowest value for a Spinbox, to

be used in conjunction with to and increment.

9 increment => String

A floating-point value specifying the increment. When used with from and

to, the value in the widget will be adjusted by increment when a spin

button is pressed (up adds the value, down subtracts the value).

10 state => String

Specifies one of three states for the Spinbox: normal, disabled, or

readonly.

11 to => Integer

A floating-point value corresponding to the highest value for the Spinbox,

to be used in conjunction with from and increment. When all are

specified correctly, the Spinbox will use these values to control its

contents. This value must be greater than the from option. If values is

specified, it supercedes this option.

12 validate => String

Specifies the mode in which validation should operate: none, focus,

focusin,focusout, key, or all. It defaults to none. When you want

validation, you must explicitly state which mode you wish to use.

13 validatecommand => String

Specifies a script to evaluate when you want to validate the input in the

widget.

14 values => Integer

Must be a proper list value. If specified, the Spinbox will use these values

as to control its contents, starting with the first value. This option has

precedence over the from and to range.

15 width => Integer

Ruby

337

Specifies an integer value indicating the desired width of the Spinbox

window, in average-size characters of the widget's font.

16 wrap => Boolean

Must be a proper boolean value. If on, the Spinbox will wrap around the

values of data in the widget.

Validation Stages

Validation works by setting the validatecommand option to a callback, which

will be evaluated according to the validate option as follows:

 none: Default. This means no validation will occur.

 focus: validatecommand will be called when the Spinbox receives or loses

focus.

 focusin: validatecommand will be called when the Spinbox receives focus.

 focusout: validatecommand will be called when the Spinbox loses focus.

 key: validatecommand will be called when the Spinbox is edited.

 all: validatecommand will be called for all above conditions.

Manipulating Spinbox

Here is a list of few important methods to play with Spinbox:

 delete(first, ?last?) : Deletes one or more elements of the Spinbox. First

is the index of the first character to delete, and last is the index of the

character just after the last one to delete. If last isn't specified it defaults

to first+1, i.e. a single character is deleted. This command returns an

empty string.

 get : Returns the Spinbox's string.

 icursor(index) : Arrange for the insertion cursor to be displayed just

before the character given by index. Returns an empty string.

 identify(x, y) : Returns the name of the window element corresponding

to coordinates x and y in the Spinbox. Return value is one of: none,

buttondown,buttonup, entry.

 index(index) : Returns the numerical index corresponding to index.

 insert(index, string) : Insert the characters of string just before the

character indicated by index. Returns an empty string.

Ruby

338

 invoke(element) : Causes the specified element, either buttondown

orbuttonup, to be invoked, triggering the action associated with it.

 set(?string?) : f string is specified, the Spinbox will try and set it to this

value, otherwise it just returns the Spinbox's string. If validation is on, it

will occur when setting the string.

 validate : This command is used to force an evaluation of the

validatecommand independent of the conditions specified by the

validate option. This is done by temporarily setting the validate option to

all. It returns 0 or 1.

 xview(args) : This command is used to query and change the horizontal

position of the text in the widget's window.

Event Bindings

Tk automatically creates class bindings for Spinboxes that gives them the default

behavior. Few important behaviors are given below:

 Clicking mouse button 1, positions the insertion cursor just before the

character underneath the mouse cursor, sets the input focus to this

widget, and clears any selection in the widget. Dragging with mouse

button 1, strokes out a selection between the insertion cursor and the

character under the mouse.

 Double-clicking with mouse button 1, selects the word under the mouse

and positions the insertion cursor at the beginning of the word. Dragging

after a double click will stroke out a selection consisting of whole words.

 Triple-clicking with mouse button 1, selects all of the text in the Spinbox

and positions the insertion cursor before the first character.

 The ends of the selection can be adjusted by dragging with mouse button

1, while the Shift key is down; this will adjust the end of the selection that

was nearest to the mouse cursor when button 1 was pressed. If the

button is double-clicked before dragging then the selection will be

adjusted in units of whole words.

 Clicking mouse button 1 with the Control key down, will position the

insertion cursor in the Spinbox without affecting the selection.

 If any normal printing characters are typed in a Spinbox, they are inserted

at the point of the insertion cursor.

 The view in the Spinbox can be adjusted by dragging with mouse button

2. If mouse button 2 is clicked without moving the mouse, the selection is

copied into the Spinbox at the position of the mouse cursor.

 If the mouse is dragged out of the Spinbox on the left or right sides while

button 1 is pressed, the Spinbox will automatically scroll to make more

Ruby

339

text visible (if there is more text off-screen on the side where the mouse

left the window).

 The End key, or Control-e, will move the insertion cursor to the end of the

Spinbox and clear any selection in the Spinbox. Shift-End moves the

cursor to the end and extends the selection to that point.

 The Home key, or Control-a, will move the insertion cursor to the

beginning of the Spinbox and clear any selection in the Spinbox. Shift-

Home moves the insertion cursor to the beginning of the Spinbox and also

extends the selection to that point.

 Control-/ selects all the text in the Spinbox.

 Control-\ clears any selection in the Spinbox.

 The Delete key deletes the selection, if there is one in the Spinbox. If

there is no selection, it deletes the character to the right of the insertion

cursor.

 The BackSpace key and Control-h delete the selection, if there is one in

the Spinbox. If there is no selection, it deletes the character to the left of

the insertion cursor.

 Control-d deletes the character to the right of the insertion cursor.

 Meta-d deletes the word to the right of the insertion cursor.

 Control-k deletes all the characters to the right of the insertion cursor.

Examples

require 'tk'

root = TkRoot.new

root.title = "Window"

Sb = TkSpinbox.new(root) do

 to 100

 from 5

 increment 5

 pack("side" => "left", "padx"=> "50", "pady"=> "50")

end

Tk.mainloop

This will produce the following result:

Ruby

340

TkProgressBar

Description

A ProgressBar provides a widget, which will show a graphical representation of

a value, given maximum and minimum reference values.

Syntax

Here is a simple syntax to create this widget:

Tk::ProgressBar.new(root) {

 Standard Options....

 Widget-specific Options....

}

Standard Options

 borderwidth

 highlightthickness

 padx

 pady

 relief

 troughcolor

These options have been described in the previous chapter.

Widget-Specific Options

SN Options with Description

Ruby

341

1 anchor => String

This can be used to position the start point of the bar. Default is 'w'

(horizontal bar starting from the left). A vertical bar can be configured by

using either 's' or 'n'.

2 blocks => Integer

This controls the number of blocks to be used to construct the progress

bar. The default is to break the bar into 10 blocks.

3 colors => String

Controls the colors to be used for different positions of the progress bar.

4 from => Integer

This sets the lower limit of the progress bar. If the bar is set to a value

below the lower limit no bar will be displayed. Defaults to 0.

5 gap => Integer

This is the spacing (in pixels) between each block. Defaults to 1. Use 0 to

get a continuous bar.

6 length => Integer

Specifies the desired long dimension of the ProgressBar in screen units.

7 resolution => Integer

A real value specifying the resolution for the scale. If this value is greater

than zero, then the scale's value will always be rounded to an even

multiple of this value, as will tick marks and the endpoints of the scale.

Defaults to 1.

8 to => Integer

This sets the upper limit of the progress bar. If a value is specified (for

example, using the value method) that lies above this value the full

progress bar will be displayed. Defaults to 100.

9 variable => Variable

Specifies the reference to a scalar variable to link to the ProgressBar.

Whenever the value of the variable changes, the ProgressBar will update

Ruby

342

to reflect this value.

10 value => Integer

The can be used to set the current position of the progress bar when

used in conjunction with the standard configure. It is usually

recommended to use thevalue method instead.

11 width => Integer

Specifies the desired narrow dimension of the ProgressBar in screen units

Manipulating Progress Bar

You can use value(?value?) method along with ProgressBar instance to get

current value of the ProgressBar. If value is given, the value of the ProgressBar

is set.

Examples

require 'tk'

require 'tkextlib/bwidget'

root = TkRoot.new

root.title = "Window"

progressBar = Tk::BWidget::ProgressBar.new(root)

variable = TkVariable.new

progressBar.variable = variable

variable.value = 33

progressBar.maximum = 100

progressBar.place('height' => 25,

 'width' => 100,

 'x' => 10,

 'y' => 10)

Ruby

343

Tk.mainloop

This will produce the following result:

Dialog Box

Description

Dialog boxes are a type of window used in applications to get some information

from the user, inform them that some event has occurred, confirm an action and

more.

The appearance and usage of dialog boxes is usually quite specifically detailed in

a platform's style guide. Tk comes with a number of dialog boxes built-in for

common tasks, and which help you conform to platform specific style guidelines.

File, Directory and Color Dialog Box

Ruby/Tk provides several dialogs to let the user select files or directories. The

open variant on the dialog is used when you want the user to select an existing

file, while the save variant is used to choose a file to save. There are four

variants, which can be used:

 Tk.getOpenFile: To have one open file dialog box.

 Tk.getSaveFile: To have one save file dialog box.

 Tk.chooseDirectory To have one choose directory dialog box.

 Tk.chooseColor To have one choose color dialog box.

Examples

Following example will explain how to create Open file dialog box.

require 'tk'

root = TkRoot.new

Ruby

344

root.title = "Window"

button_click = Proc.new {

 Tk.getOpenFile

}

button = TkButton.new(root) do

 text "button"

 pack("side" => "left", "padx"=> "50", "pady"=> "50")

end

button.comman = button_click

Tk.mainloop

This will produce the following result:

Following example will explain how to create Choose Color dialog box.

require 'tk'

root = TkRoot.new

root.title = "Window"

button_click = Proc.new {

 Tk.chooseColor

}

Ruby

345

button = TkButton.new(root) do

 text "button"

 pack("side" => "left", "padx"=> "50", "pady"=> "50")

end

button.comman = button_click

Tk.mainloop

This will produce the following result:

Tk::Tile::Notebook

The NoteBook widget provides a notebook metaphor to display several windows

in limited space. The notebook is divided into a stack of pages of which only one

is displayed at any time.

The other pages can be selected by means of choosing the visual tabs at the top

of the widget. Additionally, the <Tab> key may be used to traverse the pages. If

underline option is used, Alt-bindings will also work.

Syntax

Here is a simple syntax to create this widget:

Tk::Tile::Notebook.new(root) {

 Standard Options....

 Widget Specific Options....

Ruby

346

}

Standard Options

 class

 cursor

 state

 style

 takefocus

Widget-Specific Options

SN Options with Description

1 height => Integer

If present and greater than zero, specifies the desired height of the pane

area (not including internal padding or tabs). Otherwise, the maximum

height of all panes is used.

2 padding => Integer

Specifies the amount of extra space to add around the outside of the

notebook. The padding is a list of up to four length specifications left top

right bottom. If fewer than four elements are specified, bottom defaults to

top, right defaults to left, andtop defaults to left.

3 width => Integer

If present and greater than zero, specifies the desired width of the pane

area (not including internal padding). Otherwise, the maximum width of

all panes is used.

Manipulating Notebook

There are various ways to play with Notebook:

 Each page on a Notebook is typically a frame, a direct child (subwindow)

of the notebook itself. A new page and its associated tab are added to the

end of the list of tabs with the "add subwindow ?option value...?"

method.

Ruby

347

 The text tab option is used to set the label on the tab; also useful is the

state tab option, which can have the value normal, disabled (not

selectable), or hidden.

 To insert a tab at somewhere other than the end of the list, you can use

the"insert position subwindow ?option value...?", and to remove a

given tab, use the forget method, passing it either the position (0..n-1) or

the tab's subwindow. You can retrieve the list of all subwindows contained

in the notebook via the tabs method.

 To retrieve the subwindow that is currently selected, call the selected

method, and change the selected tab by calling the select method,

passing it either the tab's position or the subwindow itself as a parameter.

 To change a tab option you can use the "itemconfigure tabid, :option

=> value"method. Where tabid is the tab's position or subwindow. You

can use the"itemcget tabid, :option" to return the current value of the

option.

Examples

require 'tk'

require 'tkextlib/tile'

root = TkRoot.new

root.title = "Window"

n = Tk::Tile::Notebook.new(root)do

 height 110

 place('height' => 100, 'width' => 200, 'x' => 10, 'y' => 10)

end

f1 = TkFrame.new(n)

f2 = TkFrame.new(n)

f3 = TkFrame.new(n)

n.add f1, :text => 'One', :state =>'disabled'

n.add f2, :text => 'Two'

n.add f3, :text => 'Three'

Ruby

348

Tk.mainloop

This will produce the following result:

Tk::Tile::Paned

The Panedwindow widget lets you stack two or more resizable widgets above

and below each other (or to the left and right).

The user can adjust the relative heights (or widths) of each pane by dragging a

sash located between them. Typically, the widgets you're adding to a

panedwindow will be frames containing many other widgets.

Syntax

Here is a simple syntax to create this widget:

Tk::Tile::Paned.new(root) {

 Standard Options....

 Widget Specific Options....

}

Standard Options

 class

 cursor

 style

 takefocus

Widget-Specific Options

SN Options with Description

Ruby

349

1 orient => String

One of horizontal or vertical. Specifies the orientation of the separator.

2 width => Integer

If present and greater than zero, specifies the desired width of the widget

in pixels. Otherwise, the requested width is determined by the width of

the managed windows.

3 height => Integer

If present and greater than zero, specifies the desired height of the

widget in pixels. Otherwise, the requested height is determined by the

height of the managed windows.

Manipulating Paned

 Calling the "add" method will add a new pane at the end of the list of

panes. The"insert position subwindow" method allows you to place the

pane at the given position in the list of panes (0..n-1); if the pane is

already managed by the panedwindow, it will be moved to the new

position. You can use the "forgetsubwindow" to remove a pane from

the panedwindow; you can also pass a position instead of a subwindow.

 Other options let you sign relative weights to each pane so that if the

overall panedwindow resizes, certain panes will get more space than

others. As well, you can adjust the position of each sash between items in

the panedwindow. See the command reference for details.

Examples

require 'tk'

require 'tkextlib/tile'

$resultsVar = TkVariable.new

root = TkRoot.new

root.title = "Window"

p = Tk::Tile::Paned.new(root)do

 height 110

 place('height' => 100, 'width' => 200, 'x' => 10, 'y' => 10)

Ruby

350

end

f1 = TkFrame.new(p) {

 relief 'groove'

 borderwidth 3

 background "red"

 padx 30

 pady 30

 pack('side' => 'left', 'pady' => 100)

}

f2 = TkFrame.new (p){

 relief 'groove'

 borderwidth 3

 background "yellow"

 padx 30

 pady 30

 pack('side' => 'right', 'pady' => 100)

}

p.add f1, nil

p.add f2, nil

Tk.mainloop

This will produce the following result:

Ruby

351

Tk::Tile::Separator

The Separator widget provides a convenient way of dividing a window into

logical parts. You can group widgets in one display using a thin horizontal or

vertical rule between groups of widgets.

Syntax

Here is a simple syntax to create this widget:

Tk::Tile::Separator.new(root) {

 Standard Options....

 Widget Specific Options....

}

Standard Options

 class

 cursor

 state

 style

 takefocus

Widget-Specific Options

SN Options with Description

1 orient => String

One of horizontal or vertical. Specifies the orientation of the separator.

Ruby

352

Examples

require 'tk'

require 'tkextlib/tile'

$resultsVar = TkVariable.new

root = TkRoot.new

root.title = "Window"

n = Tk::Tile::Notebook.new(root)do

 height 110

 place('height' => 100, 'width' => 200, 'x' => 10, 'y' => 10)

end

f1 = TkFrame.new(n)

f2 = TkFrame.new(n)

f3 = TkFrame.new(n)

n.add f1, :text => 'One'

n.add f2, :text => 'Two'

n.add f3, :text => 'Three'

s1 = Tk::Tile::Separator.new(f1) do

 orient 'vertical'

 place('height' => 200, 'x' => 40, 'y' => 10)

end

s2 = Tk::Tile::Separator.new(f1) do

 orient 'vertical'

 place('height' => 200, 'x' => 80, 'y' => 10)

end

Tk.mainloop

Ruby

353

This will produce the following result:

Ruby/Tk Font, Colors, and Images

Ruby/Tk Fonts

Several Tk widgets, such as the label, text, and canvas, allow you to specify the

fonts used to display text, typically via a font configuration option.

There is already a default list of fonts, which can be used for different

requirements:

Font Name Description

TkDefaultFont The default for all GUI items not otherwise specified.

TkTextFont Used for entry widgets, listboxes, etc.

TkFixedFont A standard fixed-width font.

TkMenuFont The font used for menu items.

TkHeadingFont
The font typically used for column headings in lists and

tables.

TkCaptionFont A font for window and dialog caption bars.

TkSmallCaptionFont A smaller caption font for subwindows or tool dialogs

TkIconFont A font for icon captions.

TkTooltipFont A font for tooltips.

You can use any of these fonts in the following way:

Ruby

354

TkLabel.new(root) {text 'Attention!'; font TkCaptionFont}

If you are willing to create your new font using different family and font type,

then here is a simple syntax to create a font:

TkFont.new(

 Standard Options....

)

Standard Options

You can specify one or more standard option separated by comma.

 Foundry

 Family

 Weight

 Slant

 Swidth

 Pixel

 Point

 Xres

 Yres

 Space

 Avgwidth

 Registry

 Encoding

Ruby/Tk Colors

There are various ways to specify colors. Full details can be found in the colors

command reference.

The system will provide the right colors for most things. Like with fonts, both

Mac and Windows specifies a large number of system-specific color names (see

the reference).

You can also specify fonts via RGB, like in HTML, e.g. "#3FF" or "#FF016A".

Finally, Tk recognizes the set of color names defined by X11; normally these are

not used, except for very common ones such as "red", "black", etc.

Ruby

355

For themed Tk widgets, colors are often used in defining styles that are applied

to widgets, rather than applying the color to a widget directly.

Examples

require 'tk'

$resultsVar = TkVariable.new

root = TkRoot.new

root.title = "Window"

myFont = TkFont.new("family" => 'Helvetica',

 "size" => 20,

 "weight" => 'bold')

Lbl = TkLabel.new(root) do

 textvariable

 borderwidth 5

 font myFont

 foreground "red"

 relief "groove"

 pack("side" => "right", "padx"=> "50", "pady"=> "50")

end

Lbl['textvariable'] = $resultsVar

$resultsVar.value = 'New value to display'

Tk.mainloop

This will produce the following result:

Ruby

356

Ruby/Tk Images

Ruby/Tk includes support for GIF and PPM/PNM images. However, there is a Tk

extension library called "Img", which adds support for many others: BMP, XBM,

XPM, PNG, JPEG, TIFF, etc. Though not included directly in the Tk core, Img is

usually included with other packaged distributions.

Here, we will see the basics of how to use images, displaying them in labels or

buttons for example. We create an image object, usually from a file on disk.

Examples

require 'tk'

$resultsVar = TkVariable.new

root = TkRoot.new

root.title = "Window"

image = TkPhotoImage.new

image.file = "zara.gif"

label = TkLabel.new(root)

label.image = image

label.place('height' => image.height,

 'width' => image.width,

 'x' => 10, 'y' => 10)

Tk.mainloop

This will produce the following result:

Ruby

357

Tk's images are actually quite powerful and sophisticated and provide a wide

variety of ways to inspect and modify images. You can find out more from the

image command reference and the photo command reference.

Standard Configuration Options

All widgets have a number of different configuration options, which generally

control how they are displayed or how they behave. The options that are

available depend upon the widget class of course.

Here is a list of all the standard configuration options, which could be applicable

to any Ruby/Tk widget. There are other widget specific options also, which would

be explained along with widgets.

SN Options with Description

1 activebackground => String

Specifies background color to use when drawing active elements. An

element is active if the mouse cursor is positioned over the element and

pressing a mouse button will cause some action to occur. You can use

color names like "red", "blue", "pink", "yellow" etc.

2 activeborderwidth => Integer

Specifies a non-negative value indicating the width of the 3-D border

drawn around active elements.

3 activeforeground => String

Specifies foreground color to use when drawing active elements.

4 anchor => String

Ruby

358

Specifies how the information in a widget (e.g. text or a bitmap) is to be

displayed in the widget. Must be one of the values n, ne, e, se, s, sw, w,

nw, or center. For example, nw means display the information such that

its top-left corner is at the top-left corner of the widget.

5 background or bg => String

Specifies the normal background color to use when displaying the widget.

6 bitmap => Bitmap

Specifies a bitmap to display in the widget. The exact way in which the

bitmap is displayed may be affected by other options such as anchor or

justify.

7 borderwidth or bd => Integer

Specifies a non-negative value indicating the width of the 3-D border to

draw around the outside of the widget.

8 compound => String

Specifies if the widget should display text and bitmaps/images at the

same time, and if so, where the bitmap/image should be placed relative

to the text. Must be one of the values none, bottom, top, left, right, or

center.

9 cursor => String

Specifies the mouse cursor to be used for the widget. Possible values

could be "watch", "arrow" etc.

10 disabledforeground => String

Specifies foreground color to use when drawing a disabled element.

11 exportselection => Boolean

Specifies whether or not a selection in the widget should also be the X

selection. The value may have any of the true, false, 0, 1, yes, or no. If

the selection is exported, then selecting in the widget deselects the

current X selection, selecting outside the widget deselects any widget

selection, and the widget will respond to selection retrieval requests when

it has a selection.

Ruby

359

12 font => String

Specifies the font to use when drawing text inside the widget.

13 foreground or fg => String

Specifies the normal foreground color to use when displaying the widget.

14 highlightbackground => String

Specifies the color to display in the traversal highlight region when the

widget does not have the input focus.

15 highlightcolor => String

Specifies the color to use for the traversal highlight rectangle that is

drawn around the widget when it has the input focus.

16 highlightthickness => Integer

Specifies a non-negative value indicating the width of the highlight

rectangle to draw around the outside of the widget when it has the input

focus.

17 image => Image

Specifies an image to display in the widget, which must have been

created with an image create. Typically, if the image option is specified

then it overrides other options that specify a bitmap or textual value to

display in the widget; the image option may be reset to an empty string

to re-enable a bitmap or text display.

18 jump => String

For widgets with a slider that can be dragged to adjust a value, such as

scrollbars and scales, this option determines when notifications are made

about changes in the value. The option's value must be a boolean. If the

value is false, updates are made continuously as the slider is dragged. If

the value is true, updates are delayed until the mouse button is released

to end the drag; at that point a single notification is made.

19 justify => String

When there are multiple lines of text displayed in a widget, this option

determines how the lines line up with each other. Must be one of left,

center, or right. Leftmeans that the lines' left edges all line up, center

Ruby

360

means that the lines' centers are aligned, and right means that the lines'

right edges line up.

20 offset => String

Specifies the offset of tiles (see also tile option). It can have two different

formatsoffset x,y or offset side, where side can be n, ne, e, se, s, sw,

w, nw, or center.

21 orient => String

For widgets that can lay themselves out with either a horizontal or

vertical orientation, such as scrollbars, this option specifies which

orientation should be used. Must be either horizontal or vertical or an

abbreviation of one of these.

22 padx => Integer

Specifies a non-negative value indicating how much extra space to

request for the widget in the X-direction.

23 pady => Integer

Specifies a non-negative value indicating how much extra space to

request for the widget in the Y-direction.

24 relief => Integer

Specifies the 3-D effect desired for the widget. Acceptable values are

raised,sunken, flat, ridge, and groove.

25 repeatdelay => Integer

Specifies the number of milliseconds a button or key must be held down

before it begins to auto-repeat. Used, for example, on the up- and down-

arrows in scrollbars.

26 repeatinterval => Integer

Used in conjunction with repeatdelay: once auto-repeat begins, this

option determines the number of milliseconds between auto-repeats.

27 selectbackground => String

Specifies the background color to use when displaying selected items.

Ruby

361

28 selectborderwidth => Integer

Specifies a non-negative value indicating the width of the 3-D border to

draw around selected items.

29 selectforeground => String

Specifies the foreground color to use when displaying selected items.

30 setgrid => Boolean

Specifies a boolean value that determines whether this widget controls

the resizing grid for its top-level window. This option is typically used in

text widgets, where the information in the widget has a natural size (the

size of a character) and it makes sense for the window's dimensions to be

integral numbers of these units.

31 takefocus => Integer

Provides information used when moving the focus from window to

window via keyboard traversal (e.g., Tab and Shift-Tab). Before setting

the focus to a window, the traversal scripts first check whether the

window is viewable (it and all its ancestors are mapped); if not, the

window is skipped. A value of 0 means that this window should be

skipped entirely during keyboard traversal. 1 means that the this window

should always receive the input focus.

32 text => String

Specifies a string to be displayed inside the widget. The way in which the

string is displayed depends on the particular widget and may be

determined by other options, such as anchor or justify.

33 textvariable => Variable

Specifies the name of a variable. The value of the variable is a text string

to be displayed inside the widget; if the variable value changes then the

widget will automatically update itself to reflect the new value. The way

in which the string is displayed in the widget depends on the particular

widget and may be determined by other options, such as anchor or

justify.

34 tile => Image

Specifies image used to display the widget. If image is the empty string,

Ruby

362

then the normal background color is displayed.

35 troughcolor => String

Specifies the color to use for the rectangular trough areas in widgets such

as scrollbars and scales.

36 troughtile => Image

Specifies image used to display in the rectangular trough areas in widgets

such as scrollbars and scales.

37 underline => Integer

Specifies the integer index of a character to underline in the widget. This

option is used by the default bindings to implement keyboard traversal

for menu buttons and menu entries. 0 corresponds to the first character

of the text displayed in the widget, 1 to the next character, and so on.

38 wraplength => Integer

For widgets that can perform word-wrapping, this option specifies the

maximum line length.

39 xscrollcommand => function

Specifies a callback used to communicate with horizontal scrollbars.

40 yscrollcommand => function

Specifies a callback used to communicate with vertical scrollbars.

Ruby/Tk Geometry Management

Geometry Management deals with positioning different widgets as per

requirement. Geometry management in Tk relies on the concept of master and

slave widgets.

A master is a widget, typically a top-level window or a frame, which will contain

other widgets, which are called slaves. You can think of a geometry manager as

taking control of the master widget, and deciding what will be displayed within.

The geometry manager will ask each slave widget for its natural size, or how

large it would ideally like to be displayed. It then takes that information and

Ruby

363

combines it with any parameters provided by the program when it asks the

geometry manager to manage that particular slave widget.

There are three geometry managers place, grid and pack that are responsible for

controlling the size and location of each of the widgets in the interface.

 grid Geometry manager that arranges widgets in a grid.

 pack Geometry manager that packs around edges of cavity.

 place Geometry manager for fixed or rubber-sheet placement.

grid

Description

The grid geometry manager is the most flexible and easy-to-use geometry

manager. It logically divides the parent window or the widget into rows and

columns in a two-dimensional table.

You can then place a widget in an appropriate row and column format by using

the row and column options, respectively. To understand the use of row and

column options, consider the following example.

Syntax

Here is a simple syntax to create a grid Widget:

grid('row'=>x, 'column'=>y)

Examples

Following is the code to display the Label and an Entry widget using the grid

geometry manager:

require 'tk'

top = TkRoot.new {title "Label and Entry Widget"}

#code to add a label widget

lb1=TkLabel.new(top){

 text 'Hello World'

 background "yellow"

 foreground "blue"

 grid('row'=>0, 'column'=>0)

Ruby

364

}

#code to add an entry widget

e1 = TkEntry.new(top){

 background "red"

 foreground "blue"

 grid('row'=>0, 'column'=>1)

}

Tk.mainloop

This will produce the following result:

Pack

Description

The pack geometry manager organizes widgets in rows or columns inside the

parent window or the widget. To manage widgets easily, the pack geometry

manager provides various options, such as fill, expand, and side.

 fill: The fill option is used to specify whether a widget should occupy all

the space given to it by the parent window or the widget. Some of the

possible values that can be used with this option are none, x, y, or both.

By default, the fill option is set to none.

 expand: The expand option is used to specify whether a widget should

expand to fill any extra space available. The default value is 0, which

means that the widget is not expanded. The other value is 1.

 side: The side option is used to specify the side against which the widget

is to be packed. Some of the possible values that can be used with this

option are top, left, bottom, or right. By default, the widgets are packed

against the top edge of the parent window.

Syntax

Here is a simple syntax to create a pack Widget:

Ruby

365

 pack('padx'=>10, 'pady'=>10, 'side'=>'left')

Examples

Following is the code to display the Label and an Entry widget using the pack

geometry manager:

require 'tk'

top = TkRoot.new {title "Label and Entry Widget"}

#code to add a label widget

lb1 = TkLabel.new(top){

 text 'Hello World'

 background "yellow"

 foreground "blue"

 pack('padx'=>10, 'pady'=>10, 'side'=>'left')

}

#code to add an entry widget

e1 = TkEntry.new(top){

 background "red"

 foreground "blue"

 pack('padx'=>10, 'pady'=>10, 'side'=>'left')

}

Tk.mainloop

This will produce the following result:

Ruby

366

Place

Description

The place geometry manager allows you to place a widget at the specified

position in the window. You can specify the position either in absolute terms or

relative to the parent window or the widget.

To specify an absolute position, use the x and y options. To specify a position

relative to the parent window or the widget, use the relx and rely options.

In addition, you can specify the relative size of the widget by using the relwidth

and relheight options provided by this geometry manager.

Syntax

Here is a simple syntax to create a place Widget:

place(relx'=>x, 'rely'=>y)

Examples

Following is the code, which implements the place geometry manager:

require 'tk'

top = TkRoot.new {title "Label and Entry Widget"}

#code to add a label widget

lb1=TkLabel.new(top){

 text 'Hello World'

 background "yellow"

 foreground "blue"

 place('relx'=>0.0,'rely'=>0.0)

}

#code to add an entry widget

e1 = TkEntry.new(top){

 background "red"

 foreground "blue"

 place('relx'=>0.4,'rely'=>0.0)

Ruby

367

}

Tk.mainloop

This will produce the following result:

Ruby/Tk Event Handling

Ruby/Tk supports event loop, which receives events from the operating system.

These are things like button presses, keystrokes, mouse movement, window

resizing, and so on.

Ruby/Tk takes care of managing this event loop for you. It will figure out what

widget the event applies to (did the user click on this button? if a key was

pressed, which textbox had the focus?), and dispatch it accordingly. Individual

widgets know how to respond to events, so for example a button might change

color when the mouse moves over it, and revert back when the mouse leaves.

At a higher level, Ruby/Tk invokes callbacks in your program to indicate that

something significant happened to a widget For either case, you can provide a

code block or a Ruby Proc object that specifies how the application responds to

the event or callback.

Let's take a look at how to use the bind method to associate basic window

system events with the Ruby procedures that handle them. The simplest form of

bind takes as its inputs a string indicating the event name and a code block that

Tk uses to handle the event.

Ruby

368

For example, to catch the ButtonRelease event for the first mouse button on

some widget, you'd write:

someWidget.bind('ButtonRelease-1') {

 code block to handle this event...

}

An event name can include additional modifiers and details. A modifier is a string

like Shift, Control or Alt, indicating that one of the modifier keys was pressed.

So, for example, to catch the event that's generated when the user holds down

the Ctrl key and clicks the right mouse button

someWidget.bind('Control-ButtonPress-3', proc { puts "Ouch!" })

Many Ruby/Tk widgets can trigger callbacks when the user activates them, and

you can use the command callback to specify that a certain code block or

procedure is invoked when that happens. As seen earlier, you can specify the

command callback procedure when you create the widget:

helpButton = TkButton.new(buttonFrame) {

 text "Help"

 command proc { showHelp }

}

Or you can assign it later, using the widget's command method:

helpButton.command proc { showHelp }

Since the command method accepts either procedures or code blocks, you could

also write the previous code example as:

helpButton = TkButton.new(buttonFrame) {

 text "Help"

 command { showHelp }

}

You can use the following basic event types in your Ruby/Tk application:

Tag Event Description

"1" (one) Clicked left mouse button.

Ruby

369

"ButtonPress-1" Clicked left mouse button.

"Enter" Moved mouse inside.

"Leave" Moved mouse outside.

"Double-1" Double clicked.

"B3-Motion" Right button drag from one position to another.

Control-ButtonPress-3 Right button is pressed along with Ctrl Key.

Alt-ButtonPress-1 Let button is pressed along with Alt Key.

The configure Method

The configure method can be used to set and retrieve any widget configuration

values. For example, to change the width of a button you can call configure

method any time as follows:

require "tk"

button = TkButton.new {

 text 'Hello World!'

 pack

}

button.configure('activebackground', 'blue')

Tk.mainloop

To get the value for a current widget, just supply it without a value as follows:

color = button.configure('activebackground')

You can also call configure without any options at all, which will give you a listing

of all options and their values.

Ruby

370

The cget Method

For simply retrieving the value of an option, configure returns more information

than you generally want. The cget method returns just the current value.

color = button.cget('activebackground')

Ruby

371

Ruby/LDAP is an extension library for Ruby. It provides the interface to some

LDAP libraries like OpenLDAP, UMich LDAP, Netscape SDK, ActiveDirectory.

The common API for application development is described in RFC1823 and is

supported by Ruby/LDAP.

Ruby/LDAP Installation

You can download and install a complete Ruby/LDAP package from

SOURCEFORGE.NET.

Before installing Ruby/LDAP, make sure you have the following components:

 Ruby 1.8.x (at least 1.8.2 if you want to use ldap/control).

 OpenLDAP, Netscape SDK, Windows 2003 or Windows XP.

Now, you can use standard Ruby Installation method. Before starting, if you'd

like to see the available options for extconf.rb, run it with '--help' option.

$ ruby extconf.rb [--with-openldap1|--with-openldap2| \

 --with-netscape|--with-wldap32]

$ make

$ make install

NOTE: If you're building the software on Windows, you may need to use nmake

instead of make.

Establish LDAP Connection

This is a two-step process:

Step 1: Create Connection Object

Following is the syntax to create a connection to a LDAP directory.

LDAP::Conn.new(host='localhost', port=LDAP_PORT)

 host: This is the host ID running LDAP directory. We will take it as

localhost.

30. LDAP

Ruby

372

 port: This is the port being used for LDAP service. Standard LDAP ports

are 636 and 389. Make sure which port is being used at your server

otherwise you can use LDAP::LDAP_PORT.

This call returns a new LDAP::Conn connection to the server, host, on port port.

Step 2: Binding

This is where we usually specify the username and password we will use for the

rest of the session.

Following is the syntax to bind an LDAP connection, using the DN, dn, the

credential, pwd, and the bind method, method:

conn.bind(dn=nil, password=nil, method=LDAP::LDAP_AUTH_SIMPLE)do

....

end

You can use the same method without a code block. In this case, you would

need to unbind the connection explicitly as follows:

conn.bind(dn=nil, password=nil, method=LDAP::LDAP_AUTH_SIMPLE)

....

conn.unbind

If a code block is given, self is yielded to the block.

We can now perform search, add, modify or delete operations inside the block of

the bind method (between bind and unbind), provided we have the proper

permissions.

Example

Assuming we are working on a local server, let's put things together with

appropriate host, domain, user id and password, etc.

#/usr/bin/ruby -w

require 'ldap'

$HOST = 'localhost'

$PORT = LDAP::LDAP_PORT

$SSLPORT = LDAP::LDAPS_PORT

Ruby

373

conn = LDAP::Conn.new($HOST, $PORT)

conn.bind('cn=root, dc=localhost, dc=localdomain','secret')

....

conn.unbind

Adding an LDAP Entry

Adding an LDPA entry is a two step process:

Step 1: Creating LDAP::Mod object

We need LDAP::Mod object pass to conn.add method to create an entry. Here is

a simple syntax to create LDAP::Mod object:

Mod.new(mod_type, attr, vals)

 mod_type: One or more option LDAP_MOD_ADD, LDAP_MOD_REPLACE

or LDAP_MOD_DELETE.

 attr: should be the name of the attribute on which to operate.

 vals: is an array of values pertaining to attr. If vals contains binary data,

mod_typeshould be logically OR'ed (|) with LDAP_MOD_BVALUES.

This call returns LDAP::Mod object, which can be passed to methods in the

LDAP::Conn class, such as Conn#add, Conn#add_ext, Conn#modify and

Conn#modify_ext.

Step 2: Calling conn.add Method

Once we are ready with LDAP::Mod object, we can call conn.add method to

create an entry. Here is a syntax to call this method:

conn.add(dn, attrs)

This method adds an entry with the DN, dn, and the attributes, attrs. Here, attrs

should be either an array of LDAP::Mod objects or a hash of attribute/value array

pairs.

Example

Here is a complete example, which will create two directory entries:

Ruby

374

#/usr/bin/ruby -w

require 'ldap'

$HOST = 'localhost'

$PORT = LDAP::LDAP_PORT

$SSLPORT = LDAP::LDAPS_PORT

conn = LDAP::Conn.new($HOST, $PORT)

conn.bind('cn=root, dc=localhost, dc=localdomain','secret')

conn.perror("bind")

entry1 = [

 LDAP.mod(LDAP::LDAP_MOD_ADD,'objectclass',['top','domain']),

 LDAP.mod(LDAP::LDAP_MOD_ADD,'o',['TTSKY.NET']),

 LDAP.mod(LDAP::LDAP_MOD_ADD,'dc',['localhost']),

}

entry2 = [

 LDAP.mod(LDAP::LDAP_MOD_ADD,'objectclass',['top','person']),

 LDAP.mod(LDAP::LDAP_MOD_ADD, 'cn', ['Zara Ali']),

 LDAP.mod(LDAP::LDAP_MOD_ADD | LDAP::LDAP_MOD_BVALUES, 'sn',

 ['ttate','ALI', "zero\000zero"]),

]

begin

 conn.add("dc=localhost, dc=localdomain", entry1)

 conn.add("cn=Zara Ali, dc=localhost, dc=localdomain", entry2)

rescue LDAP::ResultError

 conn.perror("add")

 exit

end

conn.perror("add")

Ruby

375

conn.unbind

Modifying an LDAP Entry

Modifying an entry is similar to adding one. Just call the modify method instead

of add with the attributes to modify. Here is a simple syntax of modify method.

conn.modify(dn, mods)

This method modifies an entry with the DN, dn, and the attributes, mods. Here,

mods should be either an array of LDAP::Mod objects or a hash of

attribute/value array pairs.

Example

To modify the surname of the entry, which we added in the previous section, we

would write:

#/usr/bin/ruby -w

require 'ldap'

$HOST = 'localhost'

$PORT = LDAP::LDAP_PORT

$SSLPORT = LDAP::LDAPS_PORT

conn = LDAP::Conn.new($HOST, $PORT)

conn.bind('cn=root, dc=localhost, dc=localdomain','secret')

conn.perror("bind")

entry1 = [

 LDAP.mod(LDAP::LDAP_MOD_REPLACE, 'sn', ['Mohtashim']),

]

begin

 conn.modify("cn=Zara Ali, dc=localhost, dc=localdomain", entry1)

rescue LDAP::ResultError

 conn.perror("modify")

 exit

Ruby

376

end

conn.perror("modify")

conn.unbind

Deleting an LDAP Entry

To delete an entry, call the delete method with the distinguished name as

parameter. Here is a simple syntax of delete method.

conn.delete(dn)

This method deletes an entry with the DN, dn.

Example

To delete Zara Mohtashim entry, which we added in the previous section, we

would write:

#/usr/bin/ruby -w

require 'ldap'

$HOST = 'localhost'

$PORT = LDAP::LDAP_PORT

$SSLPORT = LDAP::LDAPS_PORT

conn = LDAP::Conn.new($HOST, $PORT)

conn.bind('cn=root, dc=localhost, dc=localdomain','secret')

conn.perror("bind")

begin

 conn.delete("cn=Zara-Mohtashim, dc=localhost, dc=localdomain")

rescue LDAP::ResultError

 conn.perror("delete")

 exit

end

conn.perror("delete")

conn.unbind

Ruby

377

Modifying the Distinguished Name

It's not possible to modify the distinguished name of an entry with the modify

method. Instead, use the modrdn method. Here is simple syntax of modrdn

method:

conn.modrdn(dn, new_rdn, delete_old_rdn)

This method modifies the RDN of the entry with DN, dn, giving it the new RDN,

new_rdn. Ifdelete_old_rdn is true, the old RDN value will be deleted from the

entry.

Example

Suppose we have the following entry:

dn: cn=Zara Ali,dc=localhost,dc=localdomain

cn: Zara Ali

sn: Ali

objectclass: person

Then, we can modify its distinguished name with the following code:

#/usr/bin/ruby -w

require 'ldap'

$HOST = 'localhost'

$PORT = LDAP::LDAP_PORT

$SSLPORT = LDAP::LDAPS_PORT

conn = LDAP::Conn.new($HOST, $PORT)

conn.bind('cn=root, dc=localhost, dc=localdomain','secret')

conn.perror("bind")

begin

 conn.modrdn("cn=Zara Ali, dc=localhost, dc=localdomain",

 "cn=Zara Mohtashim", true)

rescue LDAP::ResultError

 conn.perror("modrdn")

Ruby

378

 exit

end

conn.perror("modrdn")

conn.unbind

Performing a Search

To perform a search on a LDAP directory, use the search method with one of the

three different search modes:

 LDAP_SCOPE_BASEM: Search only the base node.

 LDAP_SCOPE_ONELEVEL: Search all children of the base node.

 LDAP_SCOPE_SUBTREE: Search the whole subtree including the base

node.

Example

Here, we are going to search the whole subtree of entry dc=localhost,

dc=localdomain forperson objects:

#/usr/bin/ruby -w

require 'ldap'

$HOST = 'localhost'

$PORT = LDAP::LDAP_PORT

$SSLPORT = LDAP::LDAPS_PORT

base = 'dc=localhost,dc=localdomain'

scope = LDAP::LDAP_SCOPE_SUBTREE

filter = '(objectclass=person)'

attrs = ['sn', 'cn']

conn = LDAP::Conn.new($HOST, $PORT)

conn.bind('cn=root, dc=localhost, dc=localdomain','secret')

conn.perror("bind")

begin

Ruby

379

 conn.search(base, scope, filter, attrs) { |entry|

 # print distinguished name

 p entry.dn

 # print all attribute names

 p entry.attrs

 # print values of attribute 'sn'

 p entry.vals('sn')

 # print entry as Hash

 p entry.to_hash

 }

rescue LDAP::ResultError

 conn.perror("search")

 exit

end

conn.perror("search")

conn.unbind

This invokes the given code block for each matching entry where the LDAP entry

is represented by an instance of the LDAP::Entry class. With the last parameter

of search, you can specify the attributes in which you are interested, omitting all

others. If you pass nil here, all attributes are returned same as "SELECT *" in

relational databases.

The dn method (alias for get_dn) of the LDAP::Entry class returns the

distinguished name of the entry, and with the to_hash method, you can get a

hash representation of its attributes (including the distinguished name). To get a

list of an entry's attributes, use the attrs method (alias for get_attributes). Also,

to get the list of one specific attribute's values, use the vals method (alias for

get_values).

Handling Errors

Ruby/LDAP defines two different exception classes:

 In case of an error, the new, bind or unbind methods raise an LDAP::Error

exception.

 In case of add, modify, delete or searching an LDAP directory raise an

LDAP::ResultError.

Ruby

380

Further Reading

For complete details on LDAP methods, please refer to the standard

documentation for LDAP Documentation.

Ruby

381

Traditional programs have a single thread of execution: the statements or

instructions that comprise the program are executed sequentially until the

program terminates.

A multithreaded program has more than one thread of execution. Within each

thread, statements are executed sequentially, but the threads themselves may

be executed in parallel on a multicore CPU, for example. Often on a single CPU

machine, multiple threads are not actually executed in parallel, but parallelism is

simulated by interleaving the execution of the threads.

Ruby makes it easy to write multi-threaded programs with the Thread class.

Ruby threads are a lightweight and efficient way to achieve concurrency in your

code.

Creating Ruby Threads

To start a new thread, just associate a block with a call to Thread.new. A new

thread will be created to execute the code in the block, and the original thread

will return from Thread.new immediately and resume execution with the next

statement:

Thread #1 is running here

Thread.new {

 # Thread #2 runs this code

}

Thread #1 runs this code

Example

Here is an example, which shows how we can use multi-threaded Ruby program.

#!/usr/bin/ruby

def func1

 i=0

 while i<=2

 puts "func1 at: #{Time.now}"

 sleep(2)

31. MULTITHREADING

Ruby

382

 i=i+1

 end

end

def func2

 j=0

 while j<=2

 puts "func2 at: #{Time.now}"

 sleep(1)

 j=j+1

 end

end

puts "Started At #{Time.now}"

t1=Thread.new{func1()}

t2=Thread.new{func2()}

t1.join

t2.join

puts "End at #{Time.now}"

This will produce following result:

Started At Wed May 14 08:21:54 -0700 2008

func1 at: Wed May 14 08:21:54 -0700 2008

func2 at: Wed May 14 08:21:54 -0700 2008

func2 at: Wed May 14 08:21:55 -0700 2008

func1 at: Wed May 14 08:21:56 -0700 2008

func2 at: Wed May 14 08:21:56 -0700 2008

func1 at: Wed May 14 08:21:58 -0700 2008

End at Wed May 14 08:22:00 -0700 2008

Thread Lifecycle

A new threads are created with Thread.new. You can also use the synonyms

Thread.start and Thread.fork.

Ruby

383

There is no need to start a thread after creating it, it begins running

automatically when CPU resources become available.

The Thread class defines a number of methods to query and manipulate the

thread while it is running. A thread runs the code in the block associated with

the call to Thread.new and then it stops running.

The value of the last expression in that block is the value of the thread, and can

be obtained by calling the value method of the Thread object. If the thread has

run to completion, then the value returns the thread's value right away.

Otherwise, the value method blocks and does not return until the thread has

completed.

The class method Thread.current returns the Thread object that represents the

current thread. This allows threads to manipulate themselves. The class method

Thread.main returns the Thread object that represents the main thread. This is

the initial thread of execution that began when the Ruby program was started.

You can wait for a particular thread to finish by calling that thread's Thread.join

method. The calling thread will block until the given thread is finished.

Threads and Exceptions

If an exception is raised in the main thread, and is not handled anywhere, the

Ruby interpreter prints a message and exits. In threads, other than the main

thread, unhandled exceptions cause the thread to stop running.

If a thread t exits because of an unhandled exception, and another thread s calls

t.join or t.value, then the exception that occurred in t is raised in the thread s.

If Thread.abort_on_exception is false, the default condition, an unhandled

exception simply kills the current thread and all the rest continue to run.

If you would like any unhandled exception in any thread to cause the interpreter

to exit, set the class method Thread.abort_on_exception to true.

t = Thread.new { ... }

t.abort_on_exception = true

Thread Variables

A thread can normally access any variables that are in scope when the thread is

created. Variables local to the block of a thread are local to the thread, and are

not shared.

Thread class features a special facility that allows thread-local variables to be

created and accessed by name. You simply treat the thread object as if it were a

Hash, writing to elements using []= and reading them back using [].

Ruby

384

In this example, each thread records the current value of the variable count in a

threadlocal variable with the key mycount.

#!/usr/bin/ruby

count = 0

arr = []

10.times do |i|

 arr[i] = Thread.new {

 sleep(rand(0)/10.0)

 Thread.current["mycount"] = count

 count += 1

 }

end

arr.each {|t| t.join; print t["mycount"], ", " }

puts "count = #{count}"

This produces the following result:

8, 0, 3, 7, 2, 1, 6, 5, 4, 9, count = 10

The main thread waits for the subthreads to finish and then prints out the value

of count captured by each.

Thread Priorities

The first factor that affects the thread scheduling is the thread priority: high-

priority threads are scheduled before low-priority threads. More precisely, a

thread will only get CPU time if there are no higher-priority threads waiting to

run.

You can set and query the priority of a Ruby Thread object with priority= and

priority. A newly created thread starts at the same priority as the thread that

created it. The main thread starts off at priority 0.

There is no way to set the priority of a thread before it starts running. A thread

can, however, raise or lower its own priority as the first action it takes.

Ruby

385

Thread Exclusion

If two threads share access to the same data, and at least one of the threads

modifies that data, you must take special care to ensure that no thread can ever

see the data in an inconsistent state. This is called thread exclusion.

Mutex is a class that implements a simple semaphore lock for mutually

exclusive access to some shared resource. That is, only one thread may hold the

lock at a given time. Other threads may choose to wait in line for the lock to

become available, or may simply choose to get an immediate error indicating

that the lock is not available.

By placing all accesses to the shared data under control of a mutex, we ensure

consistency and atomic operation. Let's try to examples, first one without mutax

and second one with mutax:

Example without Mutax

#!/usr/bin/ruby

require 'thread'

count1 = count2 = 0

difference = 0

counter = Thread.new do

 loop do

 count1 += 1

 count2 += 1

 end

end

spy = Thread.new do

 loop do

 difference += (count1 - count2).abs

 end

end

sleep 1

puts "count1 : #{count1}"

puts "count2 : #{count2}"

puts "difference : #{difference}"

Ruby

386

This will produce the following result:

count1 : 1583766

count2 : 1583766

difference : 0

#!/usr/bin/ruby

require 'thread'

mutex = Mutex.new

count1 = count2 = 0

difference = 0

counter = Thread.new do

 loop do

 mutex.synchronize do

 count1 += 1

 count2 += 1

 end

 end

end

spy = Thread.new do

 loop do

 mutex.synchronize do

 difference += (count1 - count2).abs

 end

 end

end

sleep 1

mutex.lock

puts "count1 : #{count1}"

puts "count2 : #{count2}"

puts "difference : #{difference}"

This will produce the following result:

Ruby

387

count1 : 696591

count2 : 696591

difference : 0

Handling Deadlock

When we start using Mutex objects for thread exclusion we must be careful to

avoid deadlock. Deadlock is the condition that occurs when all threads are

waiting to acquire a resource held by another thread. Because all threads are

blocked, they cannot release the locks they hold. And because they cannot

release the locks, no other thread can acquire those locks.

This is where condition variables come into picture. A condition variable is simply

a semaphore that is associated with a resource and is used within the protection

of a particular mutex. When you need a resource that's unavailable, you wait on

a condition variable. That action releases the lock on the corresponding mutex.

When some other thread signals that the resource is available, the original

thread comes off the wait and simultaneously regains the lock on the critical

region.

Example

#!/usr/bin/ruby

require 'thread'

mutex = Mutex.new

cv = ConditionVariable.new

a = Thread.new {

 mutex.synchronize {

 puts "A: I have critical section, but will wait for cv"

 cv.wait(mutex)

 puts "A: I have critical section again! I rule!"

 }

}

puts "(Later, back at the ranch...)"

b = Thread.new {

 mutex.synchronize {

Ruby

388

 puts "B: Now I am critical, but am done with cv"

 cv.signal

 puts "B: I am still critical, finishing up"

 }

}

a.join

b.join

This will produce the following result:

A: I have critical section, but will wait for cv

(Later, back at the ranch...)

B: Now I am critical, but am done with cv

B: I am still critical, finishing up

A: I have critical section again! I rule!

Thread States

There are five possible return values corresponding to the five possible states as

shown in the following table. The status method returns the state of the thread.

Thread state Return value

Runnable run

Sleeping Sleeping

Aborting aborting

Terminated normally false

Terminated with exception nil

Thread Class Methods

Following methods are provided by Thread class and they are applicable to all

the threads available in the program. These methods will be called as using

Thread class name as follows:

Ruby

389

Thread.abort_on_exception = true

Here is the complete list of all the class methods available:

SN Methods with Description

1 Thread.abort_on_exception

Returns the status of the global abort on exception condition. The default

is false. When set to true, will cause all threads to abort (the process will

exit(0)) if an exception is raised in any thread.

2 Thread.abort_on_exception=

When set to true, all threads will abort if an exception is raised. Returns

the new state.

3 Thread.critical

Returns the status of the global thread critical condition.

4 Thread.critical=

Sets the status of the global thread critical condition and returns it. When

set to true, prohibits scheduling of any existing thread. Does not block

new threads from being created and run. Certain thread operations (such

as stopping or killing a thread, sleeping in the current thread, and raising

an exception) may cause a thread to be scheduled even when in a critical

section.

5 Thread.current

Returns the currently executing thread.

6 Thread.exit

Terminates the currently running thread and schedules another thread to

be run. If this thread is already marked to be killed, exit returns the

Thread. If this is the main thread, or the last thread, exit the process.

7 Thread.fork { block }

Synonym for Thread.new.

Ruby

390

8 Thread.kill(aThread)

Causes the given aThread to exit.

9 Thread.list

Returns an array of Thread objects for all threads that are either runnable

or stopped. Thread.

10 Thread.main

Returns the main thread for the process.

11 Thread.new([arg]*) {| args | block }

Creates a new thread to execute the instructions given in block, and

begins running it. Any arguments passed to Thread.new are passed into

the block.

12 Thread.pass

Invokes the thread scheduler to pass execution to another thread.

13 Thread.start([args]*) {| args | block }

Basically the same as Thread.new . However, if class Thread is

subclassed, then calling start in that subclass will not invoke the

subclass's initialize method.

14 Thread.stop

Stops execution of the current thread, putting it into a sleep state, and

schedules execution of another thread. Resets the critical condition to

false.

Thread Instance Methods

These methods are applicable to an instance of a thread. These methods will be

called as using an instance of a Thread as follows:

#!/usr/bin/ruby

thr = Thread.new do # Calling a class method new

 puts "In second thread"

Ruby

391

 raise "Raise exception"

end

thr.join # Calling an instance method join

Here is the complete list of all the instance methods available:

SN Methods with Description

1 thr[aSymbol]

Attribute Reference - Returns the value of a thread-local variable, using

either a symbol or an aSymbol name. If the specified variable does not

exist, returns nil.

2 thr[aSymbol] =

Attribute Assignment - Sets or creates the value of a thread-local

variable, using either a symbol or a string.

3 thr.abort_on_exception

Returns the status of the abort on exception condition for thr. The default

is false.

4 thr.abort_on_exception=

When set to true, causes all threads (including the main program) to

abort if an exception is raised in thr. The process will effectively exit(0).

5 thr.alive?

Returns true if thr is running or sleeping.

6 thr.exit

Terminates thr and schedules another thread to be run. If this thread is

already marked to be killed, exit returns the Thread. If this is the main

thread, or the last thread, exits the process.

7 thr.join

The calling thread will suspend execution and run thr. Does not return

until thr exits. Any threads not joined will be killed when the main

Ruby

392

program exits.

8 thr.key?

Returns true if the given string (or symbol) exists as a thread-local

variable.

9 thr.kill

Synonym for Thread.exit .

10 thr.priority

Returns the priority of thr. Default is zero; higher-priority threads will run

before lower priority threads.

11 thr.priority=

Sets the priority of thr to an Integer. Higher-priority threads will run

before lower priority threads.

12 thr.raise(anException)

Raises an exception from thr. The caller does not have to be thr.

13 thr.run

Wakes up thr, making it eligible for scheduling. If not in a critical section,

then invokes the scheduler.

14 thr.safe_level

Returns the safe level in effect for thr.

15 thr.status

Returns the status of thr: sleep if thr is sleeping or waiting on I/O, run if

thr is executing, false if thr terminated normally, and nil if thr terminated

with an exception.

16 thr.stop?

Returns true if thr is dead or sleeping.

Ruby

393

17 thr.value

Waits for thr to complete via Thread.join and returns its value.

18 thr.wakeup

Marks thr as eligible for scheduling, it may still remain blocked on I/O,

however.

Ruby

394

Since the Kernel module is included by Object class, its methods are available

everywhere in the Ruby program. They can be called without a receiver

(functional form). Therefore, they are often called functions.

A complete list of Built-in Functions is given here for your reference:

SN Methods with Description

1 abort

Terminates program. If an exception is raised (i.e., $! isn't nil), its error

message is displayed.

2 Array(obj)

Returns obj after converting it to an array using to_ary or to_a.

3 at_exit {...}

Registers a block for execution when the program exits. Similar to END

statement, but END statement registers the block only once.

4 autoload(classname, file)

Registers a class classname to be loaded from file the first time it's used.

classname may be a string or a symbol.

5 binding

Returns the current variable and method bindings. The Binding object that

is returned may be passed to the eval method as its second argument.

6 block_given?

Returns true if the method was called with a block.

7 callcc {| c|...}

Passes a Continuation object c to the block and executes the block. callcc

can be used for global exit or loop construct.

32. BUILT-IN FUNCTIONS

Ruby

395

8 caller([n])

Returns the current execution stack in an array of the strings in the form

file:line. If n is specified, returns stack entries from nth level on down.

9 catch(tag) {...}

Catches a nonlocal exit by a throw called during the execution of its

block.

10 chomp([rs=$/])

Returns the value of variable $_ with the ending newline removed,

assigning the result back to $_. The value of the newline string can be

specified with rs.

11 chomp!([rs=$/])

Removes newline from $_, modifying the string in place.

12 chop

Returns the value of $_ with its last character (one byte) removed,

assigning the result back to $_.

13 chop!

Removes the last character from $_, modifying the string in place.

14 eval(str[, scope[, file, line]])

Executes str as Ruby code. The binding in which to perform the evaluation

may be specified with scope. The filename and line number of the code to

be compiled may be specified using file and line.

15 exec(cmd[, arg...])

Replaces the current process by running the command cmd. If multiple

arguments are specified, the command is executed with no shell

expansion.

16 exit([result=0])

Exits program, with result as the status code returned.

Ruby

396

17 exit!([result=0])

Kills the program bypassing exit handling such as ensure, etc.

18 fail(...)

See raise(...).

19 Float(obj)

Returns obj after converting it to a float. Numeric objects are converted

directly; nil is converted to 0.0; strings are converted considering 0x, 0b

radix prefix. The rest are converted using obj.to_f.

20 fork

fork {...}

Creates a child process. nil is returned in the child process and the child

process' ID (integer) is returned in the parent process. If a block is

specified, it's run in the child process.

21 format(fmt[, arg...])

See sprintf.

22 gets([rs=$/])

Reads the filename specified in the command line or one line from

standard input. The record separator string can be specified explicitly

with rs.

23 global_variables

Returns an array of global variable names.

24 gsub(x, y)

gsub(x) {...}

Replaces all strings matching x in $_ with y. If a block is specified,

matched strings are replaced with the result of the block. The modified

result is assigned to $_.

25 gsub!(x, y)

gsub!(x) {...}

Performs the same substitution as gsub, except the string is changed in

Ruby

397

place.

26 Integer(obj)

Returns obj after converting it to an integer. Numeric objects are

converted directly; nil is converted to 0; strings are converted

considering 0x, 0b radix prefix. The rest are converted using obj.to_i.

27 lambda {| x|...}

proc {| x|...}

lambda

proc

Converts a block into a Proc object. If no block is specified, the block

associated with the calling method is converted.

28 load(file[, private=false])

Loads a Ruby program from file. Unlike require, it doesn't load extension

libraries. If private is true, the program is loaded into an anonymous

module, thus protecting the namespace of the calling program.

29 local_variables

Returns an array of local variable names.

30 loop {...}

Repeats a block of code.

31 open(path[, mode="r"])

open(path[, mode="r"]) {| f|...}

Opens a file. If a block is specified, the block is executed with the opened

stream passed as an argument. The file is closed automatically when the

block exits. If pathbegins with a pipe |, the following string is run as a

command, and the stream associated with that process is returned.

32 p(obj)

Displays obj using its inspect method (often used for debugging).

Ruby

398

33 print([arg...])

Prints arg to $defout. If no arguments are specified, the value of $_ is

printed.

34 printf(fmt[, arg...])

Formats arg according to fmt using sprintf and prints the result to $defout.

For formatting specifications, see sprintf for detail.

35 proc {| x|...}

proc

See lamda.

36 putc(c)

Prints one character to the default output ($defout).

37 puts([str])

Prints string to the default output ($defout). If the string doesn't end with

a newline, a newline is appended to the string.

38 raise(...)

fail(...)

Raises an exception. Assumes RuntimeError if no exception class is

specified. Calling raise without arguments in a rescue clause re-raises the

exception. Doing so outside a rescue clause raises a message-less

RuntimeError. fail is an obsolete name for raise.

39 rand([max=0])

Generates a pseudo-random number greater than or equal to 0 and less

than max. If max is either not specified or is set to 0, a random number

is returned as a floating-point number greater than or equal to 0 and less

than 1. srand may be used to initialize pseudo-random stream.

40 readline([rs=$/])

Equivalent to gets except it raises an EOFError exception on reading EOF.

41 readlines([rs=$/])

Ruby

399

Returns an array of strings holding either the filenames specified as

command-line arguments or the contents of standard input.

42 require(lib)

Loads the library (including extension libraries) lib when it's first called.

require will not load the same library more than once. If no extension is

specified in lib, require tries to add .rb,.so, etc., to it.

43 scan(re)

scan(re) {|x|...}

Equivalent to $_.scan.

44 select(reads[, writes=nil[, excepts=nil[, timeout=nil]]])

Checks for changes in the status of three types of IO objects input,

output, and exceptions which are passed as arrays of IO objects. nil is

passed for arguments that don't need checking. A three-element array

containing arrays of the IO objects for which there were changes in status

is returned. nil is returned on timeout.

45 set_trace_func(proc)

Sets a handler for tracing. proc may be a string or proc object.

set_trace_func is used by the debugger and profiler.

46 sleep([sec])

Suspends program execution for sec seconds. If sec isn't specified, the

program is suspended forever.

47 split([sep[, max]])

Equivalent to $_.split.

48 sprintf(fmt[, arg...])

format(fmt[, arg...])

Returns a string in which arg is formatted according to fmt. Formatting

specifications are essentially the same as those for sprintf in the C

programming language. Conversion specifiers (% followed by conversion

field specifier) in fmt are replaced by formatted string of corresponding

argument. A list of conversion filed is given below in next section.

Ruby

400

49 srand([seed])

Initializes an array of random numbers. If seed isn't specified,

initialization is performed using the time and other system information for

the seed.

50 String(obj)

Returns obj after converting it to a string using obj.to_s.

51 syscall(sys[, arg...])

Calls an operating system call function specified by number sys. The

numbers and meaning of sys is system-dependant.

52 system(cmd[, arg...])

Executes cmd as a call to the command line. If multiple arguments are

specified, the command is run directly with no shell expansion. Returns

true if the return status is 0 (success).

53 sub(x, y)

sub(x) {...}

Replaces the first string matching x in $_ with y. If a block is specified,

matched strings are replaced with the result of the block. The modified

result is assigned to $_.

54 sub!(x, y)

sub!(x) {...}

Performs the same replacement as sub, except the string is changed in

place.

55 test(test, f1[, f2])

Performs various file tests specified by the character test. In order to

improve readability, you should use File class methods (for example

File::readable?) rather than this function. A list of arguments is given

below in next section.

56 throw(tag[, value=nil])

Jumps to the catch function waiting with the symbol or string tag. value is

Ruby

401

the return value to be used by catch.

57 trace_var(var, cmd)

trace_var(var) {...}

Sets tracing for a global variable. The variable name is specified as a

symbol. cmdmay be a string or Proc object.

58 trap(sig, cmd)

trap(sig) {...}

Sets a signal handler. sig may be a string (like SIGUSR1) or an integer.

SIG may be omitted from signal name. Signal handler for EXIT signal or

signal number 0 is invoked just before process termination.

59 untrace_var(var[, cmd])

Removes tracing for a global variable. If cmd is specified, only that

command is removed.

Functions for Numbers

Here is a list of Built-in Functions related to number. They should be used as

follows:

#!/usr/bin/ruby

num = 12.40

puts num.floor # 12

puts num + 10 # 22.40

puts num.integer? # false as num is a float.

This will produce the following result:

12

22.4

false

Ruby

402

Assuming, n is a number:

SN Methods with Description

1 n + num

n - num

n * num

n / num

Performs arithmetic operations: addition, subtraction, multiplication,

and division.

2 n % num

Returns the modulus of n.

3 n ** num

Exponentiation.

4 n.abs

Returns the absolute value of n.

5 n.ceil

Returns the smallest integer greater than or equal to n.

6 n.coerce(num)

Returns an array containing num and n both possibly converted to a

type that allows them to be operated on mutually. Used in automatic

type conversion in numeric operators.

7 n.divmod(num)

Returns an array containing the quotient and modulus from dividing n

by num.

8 n.floor

Returns the largest integer less than or equal to n.

Ruby

403

9 n.integer?

Returns true if n is an integer.

10 n.modulo(num)

Returns the modulus obtained by dividing n by num and rounding the

quotient with floor

11 n.nonzero?

Returns n if it isn't zero, otherwise nil.

12 n.remainder(num)

Returns the remainder obtained by dividing n by num and removing

decimals from the quotient. The result and n always have same sign.

13 n.round

Returns n rounded to the nearest integer.

14 n.truncate

Returns n as an integer with decimals removed.

15 n.zero?

Returns zero if n is 0.

16 n & numn | num

n ^ num

Bitwise operations: AND, OR, XOR, and inversion.

17 n << num

n >> num

Bitwise left shift and right shift.

18 n[num]

Returns the value of the numth bit from the least significant bit, which

is n[0].

Ruby

404

19 n.chr

Returns a string containing the character for the character code n.

20 n.next

n.succ

Returns the next integer following n. Equivalent to n + 1.

21 n.size

Returns the number of bytes in the machine representation of n.

22 n.step(upto, step) {|n| ...}

Iterates the block from n to upto, incrementing by step each time.

23 n.times {|n| ...}

Iterates the block n times.

24 n.to_f

Converts n into a floating point number. Float conversion may lose

precision information.

25 n.to_int

Returns n after converting into interger number.

Functions for Float

Here is a list of Ruby Built-in functions especially for float numbers. Assuming

we have a float number f:

SN Methods with Description

1 Float::induced_from(num)

Returns the result of converting num to a floating-point number.

2 f.finite?

Ruby

405

Returns true if f isn't infinite and f.nan is false.

3 f.infinite?

Returns 1 if f is positive infinity, -1 if negative infinity, or nil if anything

else.

4 f.nan?

Returns true if f isn't a valid IEEE floating point number.

Functions for Math

Here is a list of Ruby Built-in math functions:

SN Methods with Description

1 atan2(x, y)

Calculates the arc tangent.

2 cos(x)

Calculates the cosine of x.

3 exp(x)

Calculates an exponential function (e raised to the power of x).

4 frexp(x)

Returns a two-element array containing the nominalized fraction and

exponent of x.

5 ldexp(x, exp)

Returns the value of x times 2 to the power of exp.

6 log(x)

Calculates the natural logarithm of x.

7 log10(x)

Ruby

406

Calculates the base 10 logarithm of x.

8 sin(x)

Calculates the sine of x.

9 sqrt(x)

Returns the square root of x. x must be positive.

10 tan(x)

Calculates the tangent of x.

Conversion Field Specifier

The function sprintf(fmt[, arg...]) and format(fmt[, arg...]) returns a string in

which arg is formatted according to fmt. Formatting specifications are essentially

the same as those for sprintf in the C programming language. Conversion

specifiers (% followed by conversion field specifier) in fmt are replaced by

formatted string of corresponding argument.

The following conversion specifiers are supported by Ruby's format:

Specifier Description

b Binary integer

c Single character

d,i Decimal integer

e Exponential notation (e.g., 2.44e6)

E Exponential notation (e.g., 2.44E6)

f Floating-point number (e.g., 2.44)

g use %e if exponent is less than -4, %f otherwise

Ruby

407

G use %E if exponent is less than -4, %f otherwise

o Octal integer

s String or any object converted using to_s

u Unsigned decimal integer

x Hexadecimal integer (e.g., 39ff)

X Hexadecimal integer (e.g., 39FF)

Following is the usage example:

#!/usr/bin/ruby

str = sprintf("%s\n", "abc") # => "abc\n" (simplest form)

puts str

str = sprintf("d=%d", 42) # => "d=42" (decimal output)

puts str

str = sprintf("%04x", 255) # => "00ff" (width 4, zero padded)

puts str

str = sprintf("%8s", "hello") # => " hello" (space padded)

puts str

str = sprintf("%.2s", "hello") # => "he" (trimmed by precision)

puts str

Ruby

408

This will produce the following result:

abc

d=42

00ff

 hello

he

Test Function Arguments

The function test (test, f1[, f2]) performs one of the following file tests specified

by the character test. In order to improve readability, you should use File class

methods (for example, File::readable?) rather than this function. Here are the

file tests with one argument:

Argument Description

?r Is f1 readable by the effective uid of caller?

?w Is f1 writable by the effective uid of caller?

?x Is f1 executable by the effective uid of caller?

?o Is f1 owned by the effective uid of caller?

?R Is f1 readable by the real uid of caller?

?W Is f1 writable by the real uid of caller?

?X Is f1 executable by the real uid of caller?

?O Is f1 owned by the real uid of caller?

?e Does f1 exist?

?z Does f1 have zero length?

?s File size of f1(nil if 0)

Ruby

409

?f Is f1 a regular file?

?d Is f1 a directory?

?l Is f1 a symbolic link?

?p Is f1 a named pipe (FIFO)?

?S Is f1 a socket?

?b Is f1 a block device?

?c Is f1 a character device?

?u Does f1 have the setuid bit set?

?g Does f1 have the setgid bit set?

?k Does f1 have the sticky bit set?

?M Last modification time for f1.

?A Last access time for f1.

?C Last inode change time for f1.

File tests with two arguments are as follows:

Argument Description

?= Are modification times of f1 and f2 equal?

?> Is the modification time of f1 more recent than f2 ?

?< Is the modification time of f1 older than f2 ?

Ruby

410

?- Is f1 a hard link to f2 ?

Following is the usage example. Assuming main.rb exist with read, write and not

execute permissions:

#!/usr/bin/ruby

puts test(?r, "main.rb") # => true

puts test(?w, "main.rb") # => true

puts test(?x, "main.rb") # => false

This will produce the following result:

true

true

false

Ruby

411

Ruby's predefined variables affect the behavior of the entire program, so their

use in libraries is not recommended.

The values in most predefined variables can be accessed by alternative means.

Following table lists all the Ruby's predefined variables.

Variable Name Description

$! The last exception object raised. The exception object can

also be accessed using => in rescue clause.

$@ The stack backtrace for the last exception raised. The

stack backtrace information can retrieved by

Exception#backtrace method of the last exception.

$/ The input record separator (newline by default). gets,

readline, etc., take their input record separator as optional

argument.

$\ The output record separator (nil by default).

$, The output separator between the arguments to print and

Array#join (nil by default). You can specify separator

explicitly to Array#join.

$; The default separator for split (nil by default). You can

specify separator explicitly for String#split.

$. The number of the last line read from the current input

file. Equivalent to ARGF.lineno.

$< Synonym for ARGF.

$> Synonym for $defout.

$0 The name of the current Ruby program being executed.

33. PREDEFINED VARIABLES

Ruby

412

$$ The process pid of the current Ruby program being

executed.

$? The exit status of the last process terminated.

$: Synonym for $LOAD_PATH.

$DEBUG True if the -d or --debug command-line option is specified.

$defout The destination output for print and printf ($stdout by

default).

$F The variable that receives the output from split when -a is

specified. This variable is set if the -a command-line

option is specified along with the -p or -n option.

$FILENAME The name of the file currently being read from ARGF.

Equivalent to ARGF.filename.

$LOAD_PATH An array holding the directories to be searched when

loading files with the load and require methods.

$SAFE The security level

0 --> No checks are performed on externally supplied

(tainted) data. (default)

1 --> Potentially dangerous operations using tainted data

are forbidden.

2 --> Potentially dangerous operations on processes and

files are forbidden.

3 --> All newly created objects are considered tainted.

4 --> Modification of global data is forbidden.

$stdin Standard input (STDIN by default).

$stdout Standard output (STDOUT by default).

$stderr Standard error (STDERR by default).

Ruby

413

$VERBOSE True if the -v, -w, or --verbose command-line option is

specified.

$- x The value of interpreter option -x (x=0, a, d, F, i, K, l, p,

v). These options are listed below

$-0 The value of interpreter option -x and alias of $/.

$-a The value of interpreter option -x and true if option -a is

set. Read-only.

$-d The value of interpreter option -x and alias of $DEBUG

$-F The value of interpreter option -x and alias of $;.

$-i The value of interpreter option -x and in in-place-edit

mode, holds the extension, otherwise nil. Can enable or

disable in-place-edit mode.

$-I The value of interpreter option -x and alias of $:.

$-l The value of interpreter option -x and true if option -lis

set. Read-only.

$-p The value of interpreter option -x and true if option -pis

set. Read-only.

$_ The local variable, last string read by gets or readline in

the current scope.

$~ The local variable, MatchData relating to the last match.

Regex#match method returns the last match information.

$ n ($1, $2, $3...) The string matched in the nth group of the last pattern

match. Equivalent to m[n], where m is a MatchData

object.

$& The string matched in the last pattern match. Equivalent

to m[0], where m is a MatchData object.

Ruby

414

$` The string preceding the match in the last pattern match.

Equivalent to m.pre_match, where m is a MatchData

object.

$' The string following the match in the last pattern match.

Equivalent to m.post_match, where m is a MatchData

object.

$+ The string corresponding to the last successfully matched

group in the last pattern match.

Ruby

415

The following table lists all the Ruby's Predefined Constants:

NOTE: TRUE, FALSE, and NIL are backward-compatible. It's preferable to use

true, false, and nil.

Constant Name Description

TRUE Synonym for true.

FALSE Synonym for false.

NIL Synonym for nil.

ARGF An object providing access to virtual concatenation of

files passed as command-line arguments or standard

input if there are no command-line arguments. A

synonym for $<.

ARGV An array containing the command-line arguments

passed to the program. A synonym for $*.

DATA An input stream for reading the lines of code following

the __END__ directive. Not defined if __END__ isn't

present in code.

ENV A hash-like object containing the program's

environment variables. ENV can be handled as a hash.

RUBY_PLATFORM A string indicating the platform of the Ruby

interpreter.

RUBY_RELEASE_DATE A string indicating the release date of the Ruby

interpreter

RUBY_VERSION A string indicating the version of the Ruby interpreter.

34. PREDEFINED CONSTANTS

Ruby

416

STDERR Standard error output stream. Default value of

$stderr.

STDIN Standard input stream. Default value of $stdin.

STDOUT Standard output stream. Default value of $stdout.

TOPLEVEL_BINDING A binding object at Ruby's top level.

Ruby

417

Standard Ruby Tools

The standard Ruby distribution contains useful tools along with the interpreter

and standard libraries:

These tools help you debug and improve your Ruby programs without spending

much effort. This tutorial will give you a very good start with these tools.

 RubyGems:

RubyGems is a package utility for Ruby, which installs Ruby software

packages and keeps them up-to-date.

 Ruby Debugger:

To help deal with bugs, the standard distribution of Ruby includes a

debugger. This is very similar to gdb utility, which can be used to debug

complex programs.

 Interactive Ruby (irb):

irb (Interactive Ruby) was developed by Keiju Ishitsuka. It allows you to

enter commands at the prompt and have the interpreter respond as if you

were executing a program. irb is useful to experiment with or to explore

Ruby.

 Ruby Profiler:

Ruby profiler helps you to improve the performance of a slow program by

finding the bottleneck.

RubyGems

RubyGems is a package utility for Ruby, which installs Ruby software packages

and keeps them up-to-date.

Usage Syntax

$ gem command [arguments...] [options...]

Example

Check to see whether RubyGems is installed:

$ gem --version

0.9.0

35. ASSOCIATED TOOLS

Ruby

418

RubyGems Commands

Here is a list of all important commands for RubyGems:

SN Command with Description

1
build

Builds a gem from a gemspec.

2
cert

Adjusts RubyGems certificate settings.

3
check

Checks installed gems.

4
cleanup

Cleans up old versions of installed gems in the local repository.

5
contents

Displays the contents of the installed gems.

6
dependency

Shows the dependencies of an installed gem.

7
environment

Displays RubyGems environmental information.

8
help

Provides help on the 'gem' command.

9
install

Installs a gem into the local repository.

10
list

Displays all gems whose name starts with STRING.

11
query

Queries gem information in local or remote repositories.

12
rdoc

Generates RDoc for pre-installed gems.

13
search

Displays all gems whose name contains STRING.

Ruby

419

14
specification

Displays gem specification (in yaml).

15
uninstall

Uninstalls a gem from the local repository.

16
unpack

Unpacks an installed gem to the current directory.

17
update

Updates the named gem (or all installed gems) in the local repository.

RubyGems Common Command Options

Following is the list of common options:

SN Command with Description

1
--source URL

Uses URL as the remote source for gems.

2
-p, --[no-]http-proxy [URL]

Uses HTTP proxy for remote operations.

3
-h, --help

Gets help on this command.

4
--config-file FILE

Uses this config file instead of default.

5
--backtrace

Shows stack backtrace on errors.

6
--debug

Turns on Ruby debugging.

RubyGems Install Command Options

This is a list of the options, which use most of the time when you use RubyGems

while installing any Ruby package:

Ruby

420

SN Command with Description

1
-v, --version VERSION

Specifies version of gem to install.

2
-l, --local

Restricts operations to the LOCAL domain (default).

3
-r, --remote

Restricts operations to the REMOTE domain.

4
-b, --both

Allows LOCAL and REMOTE operations.

5
-i, --install-dir DIR

Where to install.

6
-d, --[no-]rdoc

Generates RDoc documentation for the gem on install.

7
-f, --[no-]force

Forces gem to install, bypassing dependency checks.

8
-t, --[no-]test

Runs unit tests prior to installation.

9
-w, --[no-]wrappers

Uses bin wrappers for executables.

10
-P, --trust-policy POLICY

Specifies gem trust policy.

11
--ignore-dependencies

Do not install any required dependent gems.

12
-y, --include-dependencies

Unconditionally installs the required dependent gems.

Examples

This will install 'SOAP4R', either from local directory or remote server including

all the dependencies:

gem install soap4r --include-dependencies

Ruby

421

This will install 'rake', only from remote server:

gem install rake --remote

This will install 'rake' from remote server, and run unit tests, and generate

RDocs:

gem install --remote rake --test --rdoc --ri

Further Readings

 The RubyGems User Guide gives you almost everything you need to

know about using RubyGems.

 The RubyGems Command Reference for RubyGems.

Ruby Debugger

It doesn't matter how easy a language is to use, it usually contains some bugs if

it is more than a few lines long. To help deal with bugs, the standard distribution

of Ruby includes a debugger.

In order to start the Ruby debugger, load the debug library using the command-

line option -r debug. The debugger stops before the first line of executable code

and asks for the input of user commands.

Usage Syntax

Here is the usage syntax to use ruby debugger:

$ ruby -r debug filename[, ...]

Ruby Debugger Commands

Here is a complete list of commands, which you can use while debugging your

program. Here, it is not necessary to use complete keyword to give a command,

part given inside [...] is option.

SN Command with Description

1 b[reak] [< file| class>:]< line| method>

Sets breakpoint to some position. Breakpoint is a place where you want

to pause program execution for debugging purpose.

Ruby

422

2 wat[ch] expression

Sets watchpoints.

3 cat[ch] (exception|off)

Sets catchpoint to an exception.

4 b[reak]

Displays breakpoints and watchpoints.

5 del[ete] [n]

Deletes breakpoints.

6 disp[lay] expression

Displays value of expression.

7 undisp[lay] [n]

Removes display of n.

8 c[ont]

Continues execution.

9 s[tep] [n]

Executes next n lines stepping into methods.

10 n[ext] [n]

Executes next n lines stepping over methods.

11 w[here]

Displays stack frame.

12 f[rame]

Synonym for where.

13 l[ist][<-| n- m>]

Ruby

423

Displays source lines from n to m.

14 up [n]

Moves up n levels in the stack frame.

15 down [n]

Moves down n levels in the stack frame.

16 fin[ish]

Finishes execution of the current method.

17 tr[ace] [on|off]

Toggles trace mode on and off.

18 q[uit]

Exits debugger.

19 v[ar] g[lobal]

Displays global variables.

20 v[ar] l[ocal]

Displays local variables.

21 v[ar] i[instance] object

Displays instance variables of object.

22 v[ar] c[onst] object

Displays constants of object.

23 m[ethod] i[instance] object

Displays instance methods of object.

24 m[ethod] class| module

Displays instance methods of the class or module.

Ruby

424

25 th[read] l[ist]

Displays threads.

26 th[read] c[ur[rent]]

Displays current thread.

27 th[read] n

Stops specified thread.

28 th[read] stop >

Synonym for th[read] n.

29 th[read] c[ur[rent]] n>

Synonym for th[read] n.

30 th[read] resume >

Resumes thread n.

31 p expression

Evaluates the expression.

32 h[elp]

Displays help message.

33 everything else

Evaluates.

Example

Consider the following file hello.rb, which needs to be debugged:

#!/usr/bin/env ruby

class Hello

 def initialize(hello)

 @hello = hello

 end

Ruby

425

 def hello

 @hello

 end

end

salute = Hello.new("Hello, Mac!")

puts salute.hello

Here is one interactive session captured. Given commands are written in bold:

[root@ruby]# ruby -r debug hello.rb

Debug.rb

Emacs support available.

hello.rb:3:class Hello

(rdb:1) v l

 salute => nil

(rdb:1) b 10

Set breakpoint 1 at hello.rb:10

(rdb:1) c

Hello, Mac!

[root@ruby]#

Interactive Ruby

Interactive Ruby or irb is an interactive programming environment that comes

with Ruby. It was written by Keiju Ishitsuka.

Usage Syntax

To invoke it, type irb at a shell or command prompt, and begin entering Ruby

statements and expressions. Use exit or quit to exit irb.

$ irb[.rb] [options] [programfile] [arguments]

Here is a complete list of options:

Ruby

426

SN Command with Description

1 -f

Suppress reading of the file ~/.irbrc.

2 -m

bc mode (load mathn library so fractions or matrix are available).

3 -d

Sets $DEBUG to true (same as ruby -d).

4 -r load-module

Same as ruby -r.

5 -I path

Specifies $LOAD_PATH directory.

6 --inspect

Uses inspect for output (default except for bc mode).

7 --noinspect

Doesn't use inspect for output.

8 --readline

Uses Readline extension module.

9 --noreadline

Doesn't use Readline extension module.

10 --prompt prompt-mode (--prompt-mode prompt-mode)

Switches prompt mode. Predefined prompt modes are default, simple,

xmp, and inf-ruby.

11 --inf-ruby-mode

Ruby

427

Uses prompt appropriate for inf-ruby-mode on Emacs. Suppresses --

readline.

12 --simple-prompt

Simple prompt mode.

13 --noprompt

No prompt mode.

14 --tracer

Displays trace for each execution of commands.

15 --back-trace-limit n

Displays backtrace top n and tail n. The default value is 16.

16 --irb_debug n

Sets internal debug level to n (not for popular use).

17 -v (--version).

Prints the version of irb.

Example

Here is a sample of irb evaluating a variety of expressions::

$ irb

irb(main):001:0> 23 + 27

=> 50

irb(main):002:0> 50 - 23

=> 27

irb(main):003:0> 10 * 5

=> 50

irb(main):004:0> 10**5

=> 100000

irb(main):006:0> x = 1

=> 1

Ruby

428

irb(main):007:0> x + 59

=> 60

irb(main):005:0> 50 / 5

=> 10

irb(main):008:0> hi = "Hello, Mac!"

=> "Hello, Mac!"

You can also invoke a single program with irb. After running the program, irb

exits. Let's call our hello.rb program:

$ irb hello.rb

hello.rb(main):001:0> #!/usr/bin/env ruby

hello.rb(main):002:0*

hello.rb(main):003:0* class Hello

hello.rb(main):004:1> def initialize(hello)

hello.rb(main):005:2> @hello = hello

hello.rb(main):006:2> end

hello.rb(main):007:1> def hello

hello.rb(main):008:2> @hello

hello.rb(main):009:2> end

hello.rb(main):010:1> end

=> nil

hello.rb(main):011:0>

hello.rb(main):012:0* salute = Hello.new("Hello, Mac!")

=> #<Hello:0x319f20 @hello="Hello, Mac!">

hello.rb(main):013:0> puts salute.hello

Hello, Mac!

=> nil

hello.rb(main):014:0> $

Ruby Profiler

In most cases, you can improve the performance of a slow program by removing

the bottleneck. The profiler is a tool that finds the bottleneck.

In order to add profiling to your Ruby program, you need to first load the Profile

library using the command-line option -r profile.

Ruby

429

Usage Syntax

$ ruby -r profile [programfile] [arguments]

Example

Here is the output generated from hello.rb file but this would not give you much

idea so, you can try using a bigger program. Output is shown with small font.

[root@ruby]# ruby -r profile hello.rb

Hello, Mac!

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 0.00 0.00 0.00 2 0.00 0.00 IO#write

 0.00 0.00 0.00 2 0.00 0.00

Module#method_added

 0.00 0.00 0.00 1 0.00 0.00 Hello#hello

 0.00 0.00 0.00 1 0.00 0.00 Hello#initialize

 0.00 0.00 0.00 1 0.00 0.00 Class#inherited

 0.00 0.00 0.00 1 0.00 0.00 Kernel.puts

 0.00 0.00 0.00 1 0.00 0.00 Class#new

 0.00 0.01 0.00 1 0.00 10.00 #toplevel

Additional Ruby Tools

There are other useful tools that don't come bundled with the Ruby standard

distribution. However, you do need to install them yourself.

 eRuby: Embeded Ruby:

eRuby stands for embedded Ruby. It's a tool that embeds fragments of

Ruby code in other files, such as HTML files similar to ASP, JSP and PHP.

 ri: Ruby Interactive Reference:

When you have a question about the behavior of a certain method, you

can invoke ri to read the brief explanation of the method.

eRuby: Embeded Ruby

eRuby stands for embedded Ruby. It's a tool that embeds fragments of Ruby

code in other files such as HTML files similar to ASP, JSP and PHP.

Ruby

430

eRuby allows Ruby code to be embedded within (delimited by) a pair of <% and

%> delimiters. These embedded code blocks are then evaluated in-place, i.e.,

they are replaced by the result of their evaluation.

Syntax

Here is a syntax to write single line of eRuby code:

<% ruby code %>

They function like blocks in Ruby and are terminated by <% end %>.

<% 3.times do %>

 list item

<% end %>

All Ruby code after the # is ignored and treated as comments.

<%# ruby code %>

Example

Here's a sample eRuby file:

This is sample eRuby file

The current time here is <%=Time.now%>.

<%[1,2,3].each{|x|print x,"
\n"}%>

Here's the output from this sample file:

This is sample eRuby file

The current time here is Wed Aug 29 18:54:45 JST 2001.

1

2

3

Ruby

431

For complete details on eRuby, refer to eRuby Home.

ri: Ruby Interactive Reference

ri is an online reference tool developed by Dave Thomas, the famous pragmatic

programmer.

When you have a question about the behavior of a certain method, you can

invoke ri to read the brief explanation of the method.

You can get ri from ri: Ruby Interactive

Usage Syntax

Here is simple syntax to use ri

ri [options] [methodname...]

Here is a complete list of options:

SN Command with Description

1 --version,

-v

Displays version and exits.

2 --line-length=n

-l n

Sets the line length for the output (minimum is 30 characters).

3 --synopsis

-s

Displays just a synopsis.

4 --format= name

-f name

Uses the name module (default is Plain) for output formatting. Here are

the available modules:

Tagged: Simple tagged output

Plain: Default plain output

name should be specified in any of the following forms:

Class

Ruby

432

Class::method

Class#method

Class.method

Method.

