tutorialspoint

S I MP LY EASYLE ARNINILG

www.tutorialspoint.com

ﬁ https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

About the Tutorial

Ruby is a scripting language designed by Yukihiro Matsumoto, also known as
Matz. It runs on a variety of platforms, such as Windows, Mac OS, and the
various versions of UNIX.

This tutorial gives a complete understanding on Ruby.

Audience

This tutorial has been prepared for beginners to help them understand the basic
to advanced concepts related to Ruby Scripting languages.

Prerequisites

Before you start practicing with various types of examples given in this tutorial,
we are making an assumption that you are already aware of computer programs
and programming languages in general.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of
Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,
copy, distribute or republish any contents or a part of contents of this e-book in
any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as
precisely as possible, however, the contents may contain inaccuracies or errors.
Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,
timeliness or completeness of our website or its contents including this tutorial.
If you discover any errors on our website or in this tutorial, please notify us at
contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Table of Contents

DY o TT 4 T VLo T
T E T =T o TN i
o =T =T 1 LT3 = i
(ofeY I T- L A R D TEY o - 11 41T i
Table Of CONEENTS...ccccvieiiiiiiiiitiiictee et as e e as e s s as e s s s ann e sessane e sessnneesanns i
L OVERVIEW .ottt ettt ettt e e s s st te e e e s e s e st er e e e e e s s s ansnereneaeeesesansnsneneaeaens 1
FEATUIES Of RUDY ...uueeeeiiiiiiiiissnnnnns 1
TOOIS YOU WIll NEEMueeiiiiunniiiiiiniiiiiietiiiinieiiisnneiiiseteisssneesessneesesssnessesssnesesssssesesssssesesssnessssssnesssssnsesenss 2
LT L 1= PPN 2
2. ENVIRONMENT SETUP ...ttt ettt e e e e s e s st e e s e s e st e nene e e s e se s snnnenenens 3
LI 200 T e T 00 T 1 1T =N 3
LOCAl ENVIFONMENT SELUP .ceeeeeeeeeeiieiinnininnnnnssnsnses 3
Ruby INStallation 0N LINUX/URIX ...cccccirreeeiiiieiiiiseeeetieeeeesssneeeeessessssssnssesesssssssssnssssssssssssssnsssssssssssssnnnssssssens 4
USING YUM tO INSEAll RUDY ...ceeeeeees s ssnsnsnnnnnnnen 4
Ruby Installation 0N WINAOWSeeiiiiiiiiicciiiiiieeeesccnnrreernnessess s seesnnsssssssssssnnnssssssssssennnnsssssssssannnnssnnns 5
Ruby CommMmand Line OPtioNns.....cceeeeeiiiiiiiieieeiiiiiiiiieneneieeisiseennnssssesssseennssssssssssssnnssssssssssssnnnssssssssessnnnnssssns 5
Ruby ENVIronmMent Variables.........iiisses 8
POPUIAr RUDY EQITOrScuuueueenennniiiissns 10
Interactive RUBY (IRD)ueeeeeeeiiiiecicieeeetstsccccceereesssecesssneseese s s s s s s nnnsesssssssssssnnnessssssssssnnnnessssessssnnnnanns 10
L L V= N 11
B S N T AX ettt ettt s st e e e e e s e s bbbt e e e e e e s et bt a e e e e e s e st bebeseaeaena s nbnrreneaenenanannnrne 12
Whitespace in RUDY Programeeeeeiiiiiiieeiiiiiiieeeenniinneesee s ssss e sssss e e s s snas 12
Line ENdings in RUDY Programcccovveeeeeiiiiiiiiieeieeiiiineesresssissssssssss s ssssssssse s s ssssssssses s s sssssssssnsenes 12
[T o3V Lo 1Y 1) =T oS 13

@Wt0ria'sp°?“.'=

RESEIVEU WOKMS......ciiiiiieieniieeeteteeeeneieeeetteeeeessseeeseeeesensssssesseesssassssssssessssssssssssssssssnsssssssssssssnnnssssssssssnnnnns 13

Here DOCUMENT iN RUDYeeeeeeesssss s ssnnnns 13
RUDY BEGIN StatemMENT......cuuueeeeeeeesrrssns 15
RUDY END Stat@meNtueueeeuuieiiiisiiss 15
RUDY COMMENTS....cuuuriiniiirininnniisss 16
4. CLASSES AND OBJECTSuttitiititiiireiiriteeee e s seseirereeesesssesaserenesesesesessssneaenesesesesassnssenenenensnens 18
Defining @ Class iN RUDYuueeiiiiiiiiiiiitiiiiinieerecn s ass s e ssss s e e s s s s s snnnneens 19
Variables in @ RUDY Class....cccciiiiiiiiiiiiiiiiiiciccccirrenrinrnrnrrrrirrrrnrernss e s s e s s e e s s s s s s s s s s s s s s s s e ssssssssssssesnnnnes 19
Creating Objects in Ruby Using new Method...........cccciiiiiiiiiiiiiiircccccccccrccsscssssss s ssssnnnns 20
Custom Method to Create RUbY ODBjJECEScccciiiiiiiiiiiiicicrrrrrrcrcsrcssccsssss s s s s s s s s s sssssssssssssnnnns 20
Member FUNCLIONS iN RUBY CIASScceeieiiiiiiiiiisissnssnnns 21
Y14] o] LR ot =0 A T | Nt 22
5. VARIABLES, CONSTANTS AND LITERALSeeeitiiee ettt s e seenenene s e s s seenenene e e s e neaas 26
RUDY GIODAl Variablescuuueereeiririrssissinsssssisisissns 26
RUDBY INStANCE Variables......uuuueeueeiiiiirisirisnsisiiissisisses 27
RUDBY Class VAriablescceeeerrrrrrrrssns 28
RUDY LOCAl VAriabl@sceeeeeeiiiiiiiieieccciiiitetiecccnnrreerensssss s s sesnnsssssssssesnnsssssssssessnnnsssssssssssnnnnssssssssssnnnnns 29
RUDY CONSEANTESeiiiiiieiiiccciiirieiescces st reereeesse s s s e e e nnns s ssessesesnnssssssssesesnnnsssssssssesnnnssssssssessnnnnsssssssnnennnnns 29
RUbY PS@UAO-VAriablesuiiiiiiiiecciiiiiictiescccnnrrrereeessses s e s esnnss s essssesnnssssssssssssnnnssssssssesssnnnssssssssssnnnnns 30
RUDY BaSiC LItEralSccoeeeeeeeciiiiiiitiicciniireereesscssrseernnssssessseennnssssssssesesnnnsssssssssesnnnsssssssssessnnnssssssssssnnnnns 30
INTEEET NUMDBEISeeeeeeeeieeiieieisss 31
FlOQting NUMDEIS.....cuuueeieeiieiiinrsisss 31
R T T I =T - PPt 31
Backslash NOtations.......cccocvveiiiiiiiiiiiiitiiieeiee et as e sar e s sass e sessane s sessnneses 32
RUBY ATTQYS eeueeereennnnnnnnnnsnsnsssns 33
RUDY HASQES ...ttt cs s s reerces s se s s s s s e s nas s s e s s e s e s nansssssssesesnnnssssssssesennnsssssssseesnnnnsssssssenennanns 34
iii

@moviwspoﬁm

RUBDY RANEES ..eevvvreennnnnnnnnnnnnnnnsssnsns 34

B. OPERATORS.....c ettt ettt e e e e sttt e e e e s e s b re e e e e s e sesmsneseneeeaesssaansneneneaessassansnsnens 36
RUDY Arithmetic OPEratorscccccceeecirriressrssnnsns 36
RUDY COMPAriSON OPEIatOrS.....ccceeiiiiiss 37
RUDY ASSIZNMENT OPEIAtOrScceeiiiiiriisisss 38
Ruby Parallel ASSIZNMENt.......ceeiiiiiiiiiiiiiiiiiiierree s sass e ass s e e s s s e s sannne e s 39
RUDY BitWiS@ OPEratorsccccresssisrsss 39
[T] AV IaT={TF=1 0T« T=T - o 3 40
RUDY TEINAry OPEIatorcccceeeerccssnssnnes 41
[T AV 28T T- L0 01« =T = o] o3 41
(] 1V T3 10 T=Te JPa 0 o= =] 30 42
Ruby Dot "." and Double Colon "::" OPErators.........ccccceeererrrrssnns 43
RUDY OPerators PreCeUENCE........ccceereirrrriissisisssns 44

7. COMMENTS ..ottt e e s e s et e e e s e se s saaeaeeeeeeeaeseasneneneseeesesansnsneneneeesesanns 47
RUBY MUItIliNe COMMENES ...eeerrriiiiiiiiisiisiisissns 47

8. IF...ELSE, CASE, UNLESS ..ottt ettt e e s s s e ren e e e e s e s sneneneseaesennsnnns 49
[3T] VY =Y £ =1 =3 0 1= 3| 49
RUBY if MOIFIEF...eeeeeeeeeescs s ssnsnnnnnnnnnnnnn 50
RUby UNIess StatemeENnt oo reereeessee s s e sesnassssessesesnnssssssssssesnnnssssssssseesnnnsssssssssennnnns 50
(3] VAU T (=X s o o 11T 51
[T] AV ot TYJEY & 1 =Ty 41T 2 | 52

O. LOOPS ...ttt ettt e e e s et e e e e e e s e st a—ea e e e e e s e s bt b eaeteaeaeaaaatnereneaeeenanannne 54
RUDY WHIlE STAt@MENTceeeeeeeiiiiisssnns 54
(0] A VARV o 11 1305 s Vo e 11 7= 55
RUDY UNLil STat@ME@Nt.... ...t e ce e e e e s s s s e s s as s s s s s e s e s nnasssssssseeennnsssssssseeennnnsssssssnnsnnnnns 56

iv

@mtorialspoint

10.

11.

12.

13.

L] oA VAU T 41 Iy o o 11 56

[IT] AV {0 T &1 =T 4 1T 1 57
[T] AV =T 1T = =T 44 =T 4 59
RUDBY NEXE STAt@MENT.....cueeeeeiiiiissnsssnes 59
[T] 3V =T Lo T =1 =T 4 =T 4 60
RUDBY retry Stat@meNnteueeeeeiiniissses 61
IMETHODS ...ttt e s s et r e e e s e se st a e e e e e e e e e sa s sseaeneeeaesesansnenenenanens 63
Return Values from Methods..........coiceeiiiieiiiiiiiiiiietiieeiee s sssase s s ssase s 64
(] oAV =Y 0T] =1 = 4 =Y 4 65
Variable Number of PAarameterscccoveeiiiieiiiniieiiiiniienineeinseesssssessssseesssssesssssssessssssesssssssessenns 66
(00T 1V 1= T o LS 67
[T] AV 1T T3 = T3 0 1= 1| 67
RUDY UNdef SEatE@MENT.......uueeeeiiiisirnsssisssns 68
2T 10 1 TSRS 69
The yield STat@mMENtccueeeeeeiiiiiieieieiiiiemmeieeeeeeeeeseesesesesss 69
21 Te Tl 3 T o | =t 4 o T L 71
BEGIN and END BIOCKSuuuueeeeiiiiiiiiiniteeiiiiiiienreesiiisisessee s sssssssssee s ssssssssssessssssssssssssessssssssssnnsnenes 72
MODULES AND MIXINS ...ttt sirtrce e e s e st r e se e e s e sssnenenese s e s e saansnenenens 73
Ruby require Statementcooiiiiieeiiiiiiiiiciirccerrreereeesee s s e seenasssssessesesnnnsssssssseesnnnssssssssessnnnnsssssssssennnnns 74
Ruby include Statementot see e serrnss s e s s e s e snnsssssssssesennnssssssssssennnnsssssssesennnnns 75
IMIXINS TN RUDY cevvreiiiiiiiiiissns 76
RO I 21 R 79
EXPression SUBSTITULIONeeeiiiiiiiiiniiinrscssisisssnes 79
General Delimited StrNES ..o sssssnsnns 80
[T or: T o T 6 4 - T = Tt =] S 80

Vv

@moviwspoﬁm

(o T Tot £=T gl 3 Tolo Lo [T V- 81

String BUilt-in Methods....ccccciiiiiiiiiiccccccccrccc e e e e s e s s e e s e s s e s s s s s e s s s e ssseees 81

Y g1 T U] o T [D 1T =T ot 1YL= Nt 92

T4, ARRAYS L.ttt ettt st e e e s e s e s e e e e e e s e s et r e e e e e e e s et aeaeneeeeeaena s tneaeneees 96
(O =T 1T =Y 1V 96
Array Built-in Methodscccoiiiiiiiiiiiiiiiiiiiiiisssssssssssss s sssssssssssssssssssees 98
N VA« T T [0 1T ot Yt 107

L5, HASHES ...ttt e ettt e e e e s et r e e e e s s st rereseeeseeesannsneneaeaesssesnnnsnens 111
Creating HaShEs s sss s s s s s s s s ssssssssssssssssssssssssssssssssssnsssssssnnnnnen 111
Hash BUilt-in Methodsccceeiiiiiiiiiiiiiiitn ittt ss e s anes 112

16. DATE AND TIME ...ooeiiiieeieeeette ettt e e ettt e e e e e e s re e e e e s e sesansneneeeaesesasansnsnens 118
Getting Current Date and TIMEecccciiiiiiiiiiiiiiiiiiiiiisiisisssisss 118
Getting Components Of @ Date & TiMe......cccciiiiiiiiiiiiiiiiiiiiiiiniiisisissssissssssssssssssssssssssssssssss 118
Time.utc, Time.gm and Time.local FUNCLIONScceeveeeeeeeeeennenmenneeneeeemeeeemseesss 119
Timezones and Daylight SAVINGS TIME@.........ceeeeeeeeeemeeemmneemmeemmemeeeemieeesesssesss 121
FOormatting Times and DAtescccecerieiiiiiiissisisss 121
Time FOrmatting Dir@CHIVEScciiiiiiiiecciiiiireeiersccs e see s s s e e ernnsssse s s s eennnssssssssssssnnnssssssssesennnnssssssnnnes 122
LI =Y 4 T T=T o 123
L17.RANGES.....cc oottt ettt e e sttt et s e s e s st es e s e s e s e sasanbsebesesesesesasnsrenenesenenssansnsnens 125
RANEES QS SEQUENCESiiveeriiiieniiiiiesiiiiinsiiiiensiiiiensiiienssiiienssismensssstensssstsssssstessssstessssstsnsssstssssssssassssssnnsss 125
RaANEES AS CONAILIONS ...eevvveeennrnnnnnnnisssnss 127
RANEES QS INTEIVAIS ...cuveeeereeieeiiississnss 128

18, ITERATORS ..ottt eriiree st srer s s eer s e s en s e s e s e n e s e sene e e sesnnenesesanenesssansnenesensnnnens 129
[T] AVAT=T- 1ol o T 1 4T 1 o o 129
V] VA oo | [Tt =T - o PP 130

Vi

@moviwspoﬁm

19.

20.

FILE /O ettt e e e n e n e 132

LI L 1T] == 1 =T 41 N 132
L L =L T LT 4 1T 1 N 132
The PULC STAateMENtccceeeiiiiiiieiieiieieeieeeeeieeieeeeeseessnss 133
The Print StatemeNntceeeeeeiieiieiiiieiiiiieeineieieeeeeeeeeseeeesssessessmsss 133
Opening and CloSING Filesuueeeiiiiiiiiiiiiieiiiiiiierieinseeree s ss e ass s e e s s ss s ssnns 134
The File.neW Method..........ueeiiiiiiiiiiiinicetren s ass e aass s e s s 134
The File.open Methodcoeeeeeeeiieiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeessssssessssesssnnnnnnnnns 134
Reading and WItING FIleseuuesssssssssss s ssnsnsnnnns 135
The sysread Method..........ceeeeeeeeeeeieeieiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesssssasssasesassssssssssssssssssnnsnsnsnnnnnnnnnnns 135
The sysWrite Method.........cceeeeeeieieiiieeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseessssssssssssssssssssssssssssssssnssnsnnnnnnnnnnnnns 136
The each_byte Method...........eeeeeeeeeeieiieieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeesssseesssasssssssssssssssssssssssnssnnnnnnnnnns 136
The 10.readlines Methodceiiiiiiiiiiiiiiiiiiiiiir s ssse e e sssne e 137
The 10.foreach Methodcouiiiiiiiiiiiiiiiiiiii e s sse s sesssnesee 137
Renaming and Deleting Fil@Scccvvvrrriiriiiiiniiiiiiiiiiss 138
File Modes and OWNEIShIPccceeriiiiiiiiiiiiisiiississ 138
FIle INQUITIES eeeeeeeeciiiiiieiiccciieeceieee s sees s reeesnssssessseeennnssssssssesesnnssssssssesesnnssssssssssesnnssssssssesesnnnssssssssssnnnnns 140
Directories in RUDY... ..ot scee st rre e se s s s e s e nnnsssssssesennnssssssssesennnssssssssesesnnnssssssssesennnns 141
Navigating Through DireCtories. ... ciiiiiiiiiieiciiiiiiieresseerrrreeneeseeereseennsssssessesesnnssssssssssesnnnssssssssssnnnnns 141
Creating @ DIr@CTOINYceee ittt sees e reerens s sse s s s e eesnnsssssesseesnnssssssssssesnnnssssssssssennnssssssssnsennnnssnnns 142
Deleting @ DIFr@CEOIY ...ciiieieeecciiiiiiiiiescceiteeereeeseee s e reernnssseessesennnssssssssasennnssssssssesesnnssssssssssesnnnssssssssssnnnnns 142
Creating Files & Temporary Dir@CtOries......cccciiiiiiiiiiiiiiiiiiiiiisisissnss 142
BUIIt-iN FUNCHIONS ...ceiiiiiiiiiiiiiiiiiiiitiniiiteiiieie st csessnesssssresessse s sesssnessessnesesssseesesssnessssssnessssnnne 143
File Class and MEhOASccceveiueiiiineiiiiiietiiiiiiiiiee e sesre s ssssr e e ase s sessssesssssssessssanns 143
[DTTY=Tot Jo] oV XX TA Vo J (Y T=1 4 T T L3 149
EXCEPTIONS ...ttt ettt sciirer s e s e s s s et r s e s e s e sesesansseneneaesesannsnsneneseaenssansnsseneneaens 152

vii

@moviwspoﬁm

21.

22,

USING retry STatement ...t iiresssssssssstisssssssssssssisessssssssssssssssssssssssssssannnns 153

USING raise STat@MENTceeuiiiiiiiiiiieiiiiiiiiiernniiseniineeeseisssttsesnsssssssssisesnsssssssssssssnnssssssssssssnnsssssssssssannnns 154
USING @NSUre STatemMENtcciiiiiiiieiiiiiiiiiiiiiiiiiniiieeeeeieesiisesnssssissstisennsssssssssssssssssssssssssssnnssssssssssssnnnns 156
LT T EY T = 1 =Ty V=T 157
L0 1ol T T4 o I 1 4T o1 N 158
Class EXCEPLION ...uuuiiiiiiiiiiiiiiiiiiiisisisss 160
RUBY OBJECT ORIENTEDcvtiiiiiiiiiiiiiiiieee s sesciireeee e s e s sesirer s es e s s s e sessenenenesesesesssnsnenenens 162
RUDY Class DefiNitioncccccceeererceissnns 162
[0 T=Y TS YT 201 VA0 o 1=T o £ 162
The initialize Methodeeiiiiiiiiiiiiien s aar e 163
The instance Variableseiveeiiiiiiiiiiiiiiteniee e as e s s aar e 163
The accessor & setter Methods...........ccevvceiiiiiiiiiiiiiii s 163
The instance Methods...........iiiiiiiiiiiiiiiii e sss e s ssse e sessnesee 166
The class Methods and Variablescuuuiiiiiiiiiiiiinieiiiiiieneneeseeeeseeesesssee 167
The tO_S MEthOd......ccuuiieieeieeeeeieineeeieemiieeeieeeeeeeeeeeess 168
ot oL o T o] N 169
L0 LT3 1 1= 41 = 3o N 170
Methods OVerTIdiNG....ccueeeeeiiiiiiiiiiiriciirireereeeseeerreeernnsssessseeennnssssssssesennnssssssssseesnnssssssssssesnnnssssssssssnnnnns 172
0pPerator OVErloadingcccciiiiieeeiiiiiiiiiiiiiserrrreeneeessesrereennnsssssssseeennnssssssssseennsssssssssssennnsssssssssssnnnnssnnns 173
Freezing ObjJECES......cciiiiiiiecciiiiiteri ettt ss e e e e e e rens s e e s s e s e s nnssssssssesesnnssssssssesesnnssssssssssesnnnsssssssseennnnes 174
L0 ET3 o T T - T N 175
Create Object USiNg AllOCate......ccciiiiiiiiiiiiiiiiiiiiiiiiiiisissssiss 177
L0 = 1 o 44T T o N 178
REGULAR EXPRESSIONS....c.cuetitiiiiiiririncineresesrtresssintreseseineresesinenesesnsnesesensnenesessnenesssensnes 179
Regular-EXpression MOMIfIErscccceeirirriiiiiiiisisssnns 179
ReguUIar-EXpression PAtterNscccceecciiiiiieiiencieeriirereensseessesesnnssssssssesennssssssssseessnnnsssssssseesnnnssssssssesennnns 180

vili

@moviwspoﬁm

ReguUIar-EXpression EXAMPIES........ccceeeeerrrriissssisssnnns 183

3T o TN 186
Special Syntax With Parentheses.......ccoiiiiiiiiiiiiiiiiiiiiccir e e e s e s e s s s e s e s e e eeees 187
Search and RePIaCe.....cciiviiiiiiiiiiiiiiiiii s e e e 187
. TR - U SPPPPPN 189
Architecture of a DBl Application.........cceviiiiiiiiiiiiiiiiiiisssssssss s s sssssssnns 189
o T =T [0 L1 =N 190
Obtaining and INStalling RUDY/DBI..........ueutiiireeeeirreeeiesreeeeessseeeesssseessssssessssssssssssssesssssasesssssnsesssssnsesese 190
(011 o T o T =T ot o Y S 191
INSERT OPEIrationcccceeeeeeeiiiiiiiiieinnniiiiiineennnsssssesiseesmnssssssssssssnsssssssssssssnsssssssssssssnnssssssssssssnnssssssssssssnnnns 192
USING dO STAtEMENT ...t rrrrrreeesse et reeeene s sse e s s s s e snsssssssssasennsssssssssesennnnsssssssssesnnnssssssssssannnns 192
USiNg Prepare and @XECULE.....cciiiieeeeiiiiiiiiieiieiieetiieeeeneseessesesnnssssssssssennsssssssssssesnnssssssssssssnnssssssssssssnnnns 194
READ OPEratioNciiiiiieiuuiiiiiiiiiiimmmsiiiiiiiiesmssssissiiimssmsssssssiimsss 195
FEtCRING the RESUIL ...eeeeeeeee s ssnns 197
UPAate OPEratioNueeeeeeeeeeeisss 203
DELETE OPEIratioN ...ccoiiiieeeueiiiiiiiiimmnniiiiiiiiesmssssisssiimsssssssssssissnnes 204
Performing TraNSACIONScccccrrcrccrcscsssnssssssssssnnsnnnnnne 205
COMMIT OPEratioNceeeeeiiiiiiiiieeniiiiiiteennnseeesiseennnssssessesesnnssssssssssesnnssssssssssesnnssssssssssssnnnsssssssssssnnnnssnnns 206
ROLLBACK OPEIratioNccccueuiiiiiiieeenniciiiiieenmnssseesseeesnnssssssssesesnssssssssssssnnsssssssssssssnnssssssssssssnnssssssssssssnnnns 206
Disconnecting Database........cccoviiieeeiiiiiiiiiirccrrirreree e e ernee e s s s e s e sne s s e e s e s e s nnnss e e s e s e s nnnsssssseeeannnns 206
HaNAIING EITOIS ...eeeiiiiiiiiiiecciiiireeeienseeeseseennssssseeseseesnnssssssssesesnnssssssssesesnnssssssssssesnnssssssssssssnnnsssssssssssnnnns 207
Code Blocks With Methods.........couvueiiiiiiiiiiiiiiiiitiiie s ssseesesns 208
Driver-specific FUNCtioNs and ATEHDULESccceviiiiiiiiiiniinncnnnsssss s sssssssssssssssssssssssnes 209
24, WEB APPLICATIONSoieriieierirerernireseseineeesesneresssmtnesesesenenesesnenesesensnenesessnenesssensnenesonnne 212
WIEING CGI SCIIPES cevvvrrriiiiiiiiinnniiiiiiiiiennniiiiniiieesssssissiiimessssssssssiissnsnsssssss 212
LU LTy ¥ = ol - {11 « PP 212
ix

@moviwspoﬁm

FOIM PrOCESSING . cuuuiiiiiiiiiiiniiiiiiiiitnenniiiiiiieessssssisssiisssssssssssssisessssssssssstsssnnnes 213

Creating FOrmMS and HTIMIL.........iiiiiiiiiiiiiiinissnsnnnns 215
QUOTINE SEIINES «.uiiiiiiiiiiiiiiiiittreeiiieititernnesisestitesnnssssssssssassnsssssssssssssnssssssssssssnnssssssssssssnnnsssssssssssnnnnssssss 216
Useful Methods in CGI Class..........ceeivieereiiiiiiiiiiinnneiiiiniisisseeesiissssssssessssssssssssssessssssssssssssssssssssssssnssenss 217
RUBY CGl ..uereieeiiiiieiiinniinnssnsisiss 217
COOKIES AN SESSIONS ..ceeeriiiiiiiiineriiiiiiiiiiiinreetiiisisiissee s sssssssss s e e s ssssssass s e e s s sss s sssssessssesssssssnsensssssssssnns 223
RUDY CGI COOKIES ..uuuuurnnnnnnnnnnnnnnnisss 224
RUDY CGI SESSIONS ...ceuueeeennnnnnennnnnnsssnsnssnns 226
AV B LT o T =T o V=Y Nt 228

25. SENDING EMAIL ...ttt ettt ettt e e e ettt e e e e s s stner e e e s e e e s sasneneaeaesesssansnsnens 229
Sending an HTML e-mail uSINg RUDYccceiiiiiiiiicccceeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrn e e e s e s e e s e e e e s e s s s s s s e sseeees 231
Sending Attachments as an @-Mailccceeeeriiiiiiiiiicce e 231

26. SOCKET PROGRAMMING........uuttiiiiiiiiiiiiiiiieteees s e seiireree e e e s s s esisereresesesesesssnenenesesssenansnnne 234
What @re SOCKELS?cciiiiiuiiiiiiiiiiiiiiiiiiiineeiiieiiiere e ssr e e ssse e sesssnesssssssesesssnessesssnesssssnnesenss 234

YT T L= 11T 4t 235

YT 0T e LT =T VT Pt 236
MUIEI-ClIENT TCP SEIVETS ..uueeeeeeiiiiiiiiiettetiiiiiieeree s e sss s e e s sss s e e s s s s s ssssss e s s ssssssssnnnenes 236

A TINY WED BrOWSETciiiiiiiiieeiciiiiiitiiensieestiseennsssssesssssennnssssssssssesnnssssssssssssnnnssssssssssssnnsssssssssssennnnsssnns 237
FUPther REAAINGS......ciiiiiiieecciiiiiitrce e rrieereessses s s eeernnsssee s s e s esnnssssssssesesnnssssssssessnnnssssssssssennnnssssssssssennnns 238

27. XML, XSLT, XPATH ...oereiiieieieiiiretee s sttt e e e s e sirrerere e e s e sesinrreresesessseansnenenesenenesannnnne 239
L L | N 239
XML Parser Architectures and APIScoueeiiiiemiiiiieniiiiintiiiieieieeeisiesissiessssseissssesiessne s 239
Parsing and Creating XML USING RUDYuuuriiiiiiiiiiininniisnnnnsssnns 239
DOM-IIKE PArSING ...ceeeeeeeeenenennnnnssnns 241
YY1 - 1 - PNt 242

X

@moviwspoﬁm

28.

29.

XPath and RUDYccciiiiiiiiicciccccccccrrnnrr s e s s s s s s e s s s s e s e e se s e e e e nnnnns 244

DGR I 1T I 2 {0 3V TNt 245
[T d 0 T=T gl =T 1o 11 T 247
WEB SERVICES.......oeeeeeeee ettt sttt et e e e s e s e st ae e e e e s e s e s e snsneneneeenenanans 248
WHQt iS SOAP? ...cciiiiiiietettiiiiieeere s sss e e s s ssas s e s s s e s aas s e e s s s s s aas s e e e s s ss s sssnnseessssssssssnnnnsnnssses 248
INSEAllING SOAPAR........coiiiiiitiiiiiiinrree s sass e s s s ass s e e s s s s s sas s e e s s s s s snnsneessssssssssnnsenes 248
WIIting SOAPAR SEIVEIS...ciiissississississsssesiseessesssssesessssssssssssssssssssssssssssssssens 249
WIting SOAPAR ClIENtS....cccciiiiiiiiiiiiiciciiiicninnnnnnrrernnnsesse s s s s s e e s e s s s e e s s s s s s s s s s s s s s s s sesssssssssssssssssssensnnnnns 252
TIGUIDE. ... ettt ettt ettt e e e e e sttt e e e e s s saantber e e e e e e e s ansreneaeaeeesesansnsneneaaeens 255
3T T T T T Y 255
LT = | o S 255
Simple TK ApPlIcation ..o s s s e s e e s e e e 255
RUDY/TK Widget Class@S....ccccreerrerreerrersueeeeesseeeesessseesesssneesesssssssessssesssssnesssssasssssssnsssssssnsessssasssssssnsassssanes 256
LI 11 1= 257
L= 10 o P 260
LI T < - 264
TKENRIY .ceeeiiiiiiieieccieseieeereesssesseseennnssssessesennnssssssssessennssssssssssessnnssssssssssennnssssssssssssnnnssssssssssennnnssssssnnnes 267
LI 1o 05T o TR 273
LI Lo FTe 5T o 277
LI« o 282
IO T4 T P 290
LI LT T 291
LI LT T0 T o 298
TK.MESSAZEBOX .ccevvrrrrrerrreeeeeeeeeeeeeeeeeemessessnnnns 303
LIS o 1 T 304
LI T4 Y T 310

xi

@Wt0ria'sp°?“.'=

30.

1LY o=] L= RIS 320

LTI 326
LI <113V N 331
TKSPINDOX cevvrerrrrereeeeeeneeeeeemeeeeeemmsmsesss 333
QLI == 5 - 340
0T L Y= o Y 343
TK::Tile::NOTEDOOK ...ttt aas s e s 345
LTS T T=E - T2 1= 348
LG L (SRR YT e =T 1 (o N 351
Ruby/Tk Font, Colors, and IMaGEes.......ccceeerereeciirreeeetieiecesssneeeeeeeseesssssssessesssssssssnsesssssssssssnnssssssessssssnnneens 353
Standard Configuration OPLtioNSccceeeeiiiiiiiiiiicci e e e e e e s s e s e s s s s s s s s s e sssssesnnnnnnnns 357
Ruby/Tk Geometry ManagemENtcceeeeeeeeceirreeeeeeeeeesssssneeeeeseessssssssessssssssssssnsssssssssssssnnsssssssssssssnnnsens 362
{4 Tt 363
o Lo PN 364
[- 1= PPN 366
RUDY/TK EVENt HANAIING ccocueeeieeieeeieiineeeeeseeeeecseeeeesssneesesseessessneesssssnesssssasesssssnsssssssnsssssssnesssssnsessssanes 367
The configure IMetROdccoeeeeeeeeeeeiieeeeeeieeessssessesssssssssssssssssnssnsnnnnnnnnnnnnns 369
The €8et MOot reres s e s s s e e e s na s s s e s s e sennnssssssssssssnnnssssssssesennnnssssssnanes 370
LDAP ettt ettt e e st e e e e st r e s e e e s e st eb e s e e e e e e e hnrrereseeene s antrenenens 371
RUDY/LDAP INSEAllationueeeeeeiiiieiiiireeeeteieeeciisneeetteeeesssssssseseeseessssssnsessessesssssnnsssssssssssssnnssssssesssssnnsenes 371
Establish LDAP CONNECHION......ccciiiiiiiiieeteeiiiiiiirree s iisseesre e ssssssre e ssss s e s s s s s sssss e e s s ssssssssnnnenes 371
Adding an LDAP ENTIY cocciiiiiiiiiiiiiiiiiiiiiiiiiiisisinisssnns 373
MOdIfYING AN LDAP ENLIY ...ceueeeeeeeennninnnnnsss 375
Deleting AN LDAP ENEIYcueeeeeeeirissns 376
Modifying the Distinguished NamME@.........ccceeririiiiiiiiiiiiiinirsssrrsrrsssssssssssssss s s sssssssssssssssssssssssssssnnns 377
=T (o1 o1 T4 T =TT] TP 378

xii

@moviwspoﬁm

31.

32.

33.

34.

35.

(2 =10 T 1T =38 =15 o &3

[T d o V=T g 2 T=T T 11 TS

MULTITHREADING.......coociiirieeeee e eeenerereeee e
Creating Ruby Threads..........ccoceeeeiiiiiiiiinneeeiiiiiiiiieenennnnseeeeenns
Thread LIfeCyCleueeeeeeeeeeeeeeeeeeeeneeenenmeneeeemessmmsesessssssssssssssssssssssees
Threads and EXCEPLIONScceeeeeeeeeeeeeeeeeeeeeeneeenemesseessssssssssssssssssssees
Thread Variables.........cccovereiiiiiiiiierreiiiiicneeeneeee e
Thread Prioritiesceeeiineeeiiineeniiineeeiineeniseesseeesssseesssnnees
Thread EXClUSIONcccuuueiiiiiiiiietniceennte e
Handling DeadlocKccccceeveeirrricrcnccrsscssnnsssnsnsnnnnnes
Thread States.......cccviiveeiiiiieeiniittenee s
Thread Class Methods...........cccoveveeiiiiieeiiiineeiiiieeeee e

Thread Instance Methodscooeeeeeeieiiiirieeeeiieennenreeeeereeeeeeeeeeens

BUILT-IN FUNCTIONS ... e
Functions for Numbers..........ccccvineiiiiiniiininineininnnennneseeenne.
Functions for Float.........cccevueiiiiniriiiiieiininenennienennecneeennnnene
Functions for Mathccceveiiiiiiniiiiienieee e
Conversion Field Specifier.......cccccccrrrrrrrieriiirrrrrccccsrsscscccssssecsseeennns

Test Function Argumentsccoereeeeeeiceiiiieeeeensscesneneennnsssssesseeennnns

PREDEFINED VARIABLES.........cocviiriiiiiiiiiciiccice e,

PREDEFINED CONSTANTS.......ooiiiiriririr e,

ASSOCIATED TOOLS......coeeeeeeccceeeeeeeeeeetcee e
Standard Ruby TOOIScccceviiiiiiiiiiiiiiiiiiiin e
RUBYGEMS.....ceeeeeeeennnnnnnnnnnnnnnssses

1] VA 1T o T -1 U

@mtorialspoint

INTErACIVE RUDY...cuueeeeeieieiieiiesssnnnns 425

L] <LV 2 o 1 =T 428
Additional RUDY TOOISccoiiiiiiiiccccccccccrcccrrrr e e e e e e e s s s s s s s s s s s s e s s s e s e sesssnenes 429
€RUbY: EMbBeded RUDYccciiiiiiiiiiiiiiiinininiininisisississ 429
ri: RUDY INteractive REFErENCE..... .. sssssssssssssssssssssssssssnns 431

Xiv

1. OVERVIEW

Ruby is a pure object-oriented programming language. It was created in 1993
by Yukihiro Matsumoto of Japan.

You can find the name Yukihiro Matsumoto on the Ruby mailing list at
www.ruby-lang.org. Matsumoto is also known as Matz in the Ruby community.

Ruby is "A Programmer's Best Friend".

Ruby has features that are similar to those of Smalltalk, Perl, and Python. Perl,
Python, and Smalltalk are scripting languages. Smalltalk is a true object-
oriented language. Ruby, like Smalltalk, is a perfect object-oriented language.
Using Ruby syntax is much easier than using Smalltalk syntax.

Features of Ruby

e Ruby is an open-source and is freely available on the Web, but it is
subject to a license.

e Ruby is a general-purpose, interpreted programming language.

e Ruby is a true object-oriented programming language.

e Ruby is a server-side scripting language similar to Python and PERL.
e Ruby can be used to write Common Gateway Interface (CGI) scripts.
e Ruby can be embedded into Hypertext Markup Language (HTML).

e Ruby has a clean and easy syntax that allows a new developer to learn
very quickly and easily.

e Ruby has similar syntax to that of many programming languages such as
C++ and Perl.

e Ruby is very much scalable and big programs written in Ruby are easily
maintainable.

e Ruby can be used for developing Internet and intranet applications.
e Ruby can be installed in Windows and POSIX environments.

e Ruby support many GUI tools such as Tcl/Tk, GTK, and OpenGL.

e Ruby can easily be connected to DB2, MySQL, Oracle, and Sybase.

e Ruby has a rich set of built-in functions, which can be used directly into
Ruby scripts.

@wto"ialqui"t

Ruby

Tools You Will Need

For performing the examples discussed in this tutorial, you will need a latest
computer like Intel Core i3 or i5 with a minimum of 2GB of RAM (4GB of RAM
recommended). You also will need the following software:

e Linux or Windows 95/98/2000/NT or Windows 7 operating system
e Apache 1.3.19-5 Web server

e Internet Explorer 5.0 or above Web browser

e Ruby 1.8.5

This tutorial will provide the necessary skills to create GUI, networking, and Web
applications using Ruby. It also will talk about extending and embedding Ruby
applications.

What is Next?

The next chapter guides you to where you can obtain Ruby and its
documentation. Finally, it instructs you on how to install Ruby and prepare an
environment to develop Ruby applications.

@wwialspo?nt

2. ENVIRONMENT SETUP

Try it Option Online

We already have set up Ruby Programming environment online, so that you can
execute almost all the tutorial examples online at the same time when you are
doing your theory work. This gives you confidence in what you are reading and
to check the result with different options. Feel free to modify any example and
execute it online.

Try the following example using the Try it option available on our website at the
top right corner of the sample code box given below:

#!/usr/bin/ruby -w

puts "Hello, Ruby!";

For most of the examples given in this tutorial, you will find a Try it option on
our website code sections at the top right corner that will take you to the online
compiler. So just make use of it and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for Ruby programming
language, then let's proceed. This tutorial will teach you all the important topics
related to environment setup. We would recommend you to go through the
following topics first and then proceed further:

e Ruby Installation on Linux/Unix : If you are planning to have your
development environment on Linux/Unix Machine, then go through this
chapter.

e Ruby Installation on Windows : If you are planning to have your
development environment on Windows Machine, then go through this
chapter.

e Ruby Command Line Options : This chapter list out all the command
line options, which you can use along with Ruby interpreter.

e Ruby Environment Variables : This chapter has a list of all the
important environment variables to be set to make Ruby Interpreter
works.

@wto"ialquim

Ruby

Ruby Installation on Linux/Unix

Here are the steps to be followed to install Ruby on a Unix machine:

NOTE: Before proceeding, make sure you have root privilege.

Download a zipped file having latest version of Ruby. Follow Download
Link.

After having downloaded the Ruby archive, unpack it and change into the
newly created directory:

$ tar -xvzf ruby-1.6.7.tgz

$ cd ruby-1.6.7

Now, configure and compile the source code as follows:

$./configure

$ make

Finally, install Ruby interpreter as follows:

$ su -1 root # become a root user
$ make install

$ exit # become the original user again

After installation, make sure everything is working fine by issuing the
following command on the command-line:

$ruby -v
ruby 1.6.7 (2002-06-04) [i386-netbsd]

If everything is fine, this should output the version of the installed Ruby
interpreter as shown above. You may have installed different version, so it
will display a different version.

Using yum to Install Ruby

If your computer is connected to the Internet, then the easiest way to install
Ruby or any other other RPM is using the yum utility. Give the following
command at the command prompt and you will find Ruby gets installed on your
computer.

$ yum install ruby

@wwialspo?nt

Ruby

Ruby Installation on Windows

Here are the steps to install Ruby on a Windows machine.

NOTE: You may have different versions available at the time of installation.

Download a zipped file having latest version of Ruby. Follow Download
Link.

After having downloaded the Ruby archive, unpack it and change into the
newly created directory:

Double-click the Ruby1.6.7.exe file. The Ruby installation wizard starts.

Click Next to move to the Important Information page of the wizard and
keep moving till Ruby installer completes installing Ruby.

You may need to set some environment variables if your installation has not
setup them appropriately.

If you use Windows 9x, add the following lines to your c:\autoexec.bat:
set PATH="D:\(ruby install directory)\bin;%PATH%"

Windows NT/2000 users need to modify their registries.
o Click Control Panel | System Properties | Environment Variables.
o Under System Variables, select Path and click EDIT.

o Add your Ruby directory to the end of the Variable Value list and click
OK.

o Under System Variables, select PATHEXT and click EDIT.
o Add .RB and .RBW to the Variable Value list and click OK.

After installation, make sure everything is working fine by issuing the
following command on the command-line:

$ruby -v
ruby 1.6.7

If everything is fine, this should output the version of the installed Ruby
interpreter as shown above. You may have installed different version, so it
will display a different version.

Ruby Command Line Options

Ruby is generally run from the command line in the following way:

$ ruby [options] [.] [programfile] [arguments ...]

@wcorialspoint

Ruby

The interpreter can be invoked with any of the following options to control the
environment and behavior of the interpreter.

Option

-F pat

-e prog

-i [ext]

-I dir

-K [kcode]

-0[octal]

Description

Used with -n or -p to split each line. Check -n and -p options.

Checks syntax only, without executing program.

Changes directory before executing (equivalent to -X).

Enables debug mode (equivalent to -debug).

Specifies pat as the default separator pattern ($;) used by split.

Specifies prog as the program from the command line. Specify
multiple -e options for multiline programs.

Displays an overview of command-line options.

Overwrites the file contents with program output. The original
file is saved with the extension ext. If ext isn't specified, the
original file is deleted.

Adds dir as the directory for loading libraries.

Specifies the multibyte character set code (e or E for EUC
(extended Unix code); s or S for SJIS (Shift-JIS); u or U for UTF-
8; and a, A, n, or N for ASCII).

Enables automatic line-end processing. Chops a newline from
input lines and appends a newline to output lines.

Places code within an input loop (as in while gets; ... end).

Sets default record separator ($/) as an octal. Defaults to \0 if
octal not specified.

Places code within an input loop. Writes $_ for each iteration.

@wcorialspoint

-r lib

-T [level]

-X [dir]

-X dir

-y

--copyright

--debug

--help

--version

--verbose

--yydebug

Ruby

Uses require to load /ib as a library before executing.

Interprets any arguments between the program name and
filename arguments fitting the pattern -xxx as a switch and
defines the corresponding variable.

Sets the level for tainting checks (1 if level not specified).

Displays version and enables verbose mode

Enables verbose mode. If program file not specified, reads from
STDIN.

Strips text before #!ruby line. Changes directory to dir before
executing if dir is specified.

Changes directory before executing (equivalent to -C).

Enables parser debug mode.

Displays copyright notice.

Enables debug mode (equivalent to -d).

Displays an overview of command-line options (equivalent to -
h).

Displays version.

Enables verbose mode (equivalent to -v). Sets $VERBOSE to
true.

Enables parser debug mode (equivalent to -y).

@wcorialspoint

Ruby

Single character command-line options can be combined. The following two lines
express the same meaning:

$ruby -ne 'print if /Ruby/' /usr/share/bin

$ruby -n -e 'print if /Ruby/' /usr/share/bin

Ruby Environment Variables

Ruby interpreter uses the following environment variables to control its

behavior. The ENV object
set.

Variable
DLN_LIBRARY_PATH

HOME

LOGDIR

PATH

RUBYLIB
RUBYLIB_PREFIX

RUBYOPT

@Wtorialspoinp

contains a list of all the current environment variables

Description

Search path for dynamically loaded modules.

Directory moved to when no argument is passed to
Dir::chdir. Also used by File::expand_path to expand

n n
~ .

Directory moved to when no arguments are passed
to Dir::chdir and environment variable HOME isn't
set.

Search path for executing subprocesses and
searching for Ruby programs with the -S option.
Separate each path with a colon (semicolon in DOS
and Windows).

Search path for libraries. Separate each path with a
colon (semicolon in DOS and Windows).

Used to modify the RUBYLIB search path by replacing
prefix of library pathl with path2 using the format
pathl;path2 or pathlpath2.

Command-line options passed to Ruby interpreter.
Ignored in taint mode (Where $SAFE is greater than
0).

Ruby

RUBYPATH With -S option, search path for Ruby programs.
Takes precedence over PATH. Ignored in taint mode
(where $SAFE is greater than 0).

RUBYSHELL Specifies shell for spawned processes. If not set,
SHELL or COMSPEC are checked.

For Unix, use env command to see a list of all the environment variables.

HOSTNAME=1ip-72-167-112-17.ip.secureserver.net
RUBYPATH=/usr/bin

SHELL=/bin/bash

TERM=xterm

HISTSIZE=1000

SSH CLIENT=122.169.131.179 1742 22
SSH_TTY=/dev/pts/1

USER=amrood

JRE_HOME=/usr/java/jdk/jre
J2RE_HOME=/usr/java/jdk/jre
PATH=/usr/local/bin:/bin:/usr/bin:/home/guest/bin
MAIL=/var/spool/mail/guest

PWD=/home/amrood

INPUTRC=/etc/inputrc

JAVA HOME=/usr/java/jdk

LANG=C

HOME=/root

SHLVL=2

JDK_HOME=/usr/java/jdk

LOGDIR=/usr/log/ruby

LOGNAME=amrood

SSH_CONNECTION=122.169.131.179 1742 72.167.112.17 22
LESSOPEN=|/usr/bin/lesspipe.sh %s
RUBYLIB=/usr/lib/ruby

G_BROKEN_FILENAMES=1

@wwialspo?nt

Ruby

_=/bin/env

Popular Ruby Editors

To write your Ruby programs, you will need an editor:

e If you are working on Windows machine, then you can use any simple text
editor like Notepad or Edit plus.

e VIM (Vi IMproved) is a very simple text editor. This is available on almost
all Unix machines and now Windows as well. Otherwise, your can use your

favorite vi editor to write Ruby programs.

e RubyWin is a Ruby Integrated Development Environment (IDE) for

Windows.

e Ruby Development Environment (RDE) is also a very good IDE for
windows users.

Interactive Ruby (IRb)

Interactive Ruby (IRb) provides a shell for experimentation. Within the IRb shell,

you can immediately view expression results, line by line.

This tool comes along with Ruby installation so you have nothing to do extra to

have IRb working.

Just type irb at your command prompt and an Interactive Ruby Session will start

as given below:

$irb

irb 0.6.1(99/09/16)

irb(main):001:0>
irb(main):002:1>
irb(main):003:1>
irb(main):004:1>
nil
irb(main):005:0>
Hello World

nil

irb(main):006:0>

def hello
out = "Hello World"
puts out

end

hello

Do not worry about what we did here. You will learn all these steps in
subsequent chapters.

@wcorialspoint

10

Ruby

What is Next?

We assume now you have a working Ruby Environment and you are ready to

write the first Ruby Program. The next chapter will teach you how to write Ruby
programs.

11

@., tutorialspoint

3. SYNTAX

Let us write a simple program in ruby. All ruby files will have extension .rb. So,
put the following source code in a test.rb file.

#!/usr/bin/ruby -w

puts "Hello, Ruby!";

Here, we assumed that you have Ruby interpreter available in /usr/bin directory.
Now, try to run this program as follows:

$ ruby test.rb

This will produce the following result:

Hello, Ruby!

You have seen a simple Ruby program, now let us see a few basic concepts
related to Ruby Syntax.

Whitespace in Ruby Program

Whitespace characters such as spaces and tabs are generally ignored in Ruby
code, except when they appear in strings. Sometimes, however, they are used
to interpret ambiguous statements. Interpretations of this sort produce warnings
when the -w option is enabled.

Example

a + b is interpreted as a+b (Here a is a local variable)

a +b is interpreted as a(+b) (Here a is a method call)

Line Endings in Ruby Program

Ruby interprets semicolons and newline characters as the ending of a statement.
However, if Ruby encounters operators, such as +, -, or backslash at the end of
a line, they indicate the continuation of a statement.

12

@wtorialspoim

Ruby

Ruby Identifiers

Identifiers are names of variables, constants, and methods. Ruby identifiers are
case sensitive. It means Ram and RAM are two different identifiers in Ruby.

Ruby identifier names may consist of alphanumeric characters and the
underscore character (_).

Reserved Words

The following list shows the reserved words in Ruby. These reserved words may
not be used as constant or variable names. They can, however, be used as
method names.

BEGIN do next then

END else nil true

alias elsif not undef
and end or unless
begin ensure redo until
break false rescue when
case for retry while
class if return while

def in self __FILE___
defined? module super __LINE___

Here Document in Ruby

"Here Document" refers to build strings from multiple lines. Following a << you
can specify a string or an identifier to terminate the string literal, and all lines
following the current line up to the terminator are the value of the string.

@wwialspo?nt

13

Ruby

If the terminator is quoted, the type of quotes determines the type of the line-
oriented string literal. Notice there must be no space between << and the
terminator.

Here are different examples:

#!/usr/bin/ruby -w

print <<EOF
This is the first way of creating

here document ie. multiple line string.

EOF

print <<"EOF"; # same as above
This is the second way of creating
here document ie. multiple line string.

EOF

print << EOC’ # execute commands
echo hi there
echo lo there

EOC

print <<"foo", <<"bar" # you can stack them
I said foo.

foo
I said bar.

bar

This will produce the following result:

This is the first way of creating

her document ie. multiple line string.

This is the second way of creating

her document ie. multiple line string.
hi there

lo there

14

@woria'spoint

Ruby

I said foo.

I said bar.

Ruby BEGIN Statement

Syntax

BEGIN {

code

}

Declares code to be called before the program is run.

Example

#!/usr/bin/ruby

puts "This is main Ruby Program"

BEGIN {

puts "Initializing Ruby Program"

}

This will produce the following result:

Initializing Ruby Program

This is main Ruby Program

Ruby END Statement

Syntax

END {

code

}

Declares code to be called at the end of the program.

@woria'spoint

15

Ruby

Example

#!/usr/bin/ruby

puts "This is main Ruby Program"

END {

puts "Terminating Ruby Program"

}
BEGIN {

puts "Initializing Ruby Program”
}

This will produce the following result:

Initializing Ruby Program
This is main Ruby Program

Terminating Ruby Program

Ruby Comments

A comment hides a line, part of a line, or several lines from the Ruby interpreter.
You can use the hash character (#) at the beginning of a line:

I am a comment. Just ignore me.

Or, a comment may be on the same line after a statement or expression:

name = "Madisetti" # This is again comment

You can comment multiple lines as follows:

This is a comment.
This is a comment, too.
This is a comment, too.

I said that already.

16

@moviwsmﬁm

Ruby

Here is another form. This block comment conceals several lines from the
interpreter with =begin/=end:

=begin

This is a comment.

This is a comment, too.
This is a comment, too.
I said that already.

=end

17

My tutorialspoint

4. CLASSES AND OBJECTS

Ruby is a perfect Object Oriented Programming Language. The features of the
object-oriented programming language include:

e Data Encapsulation
e Data Abstraction
e Polymorphism
e Inheritance
These features have been discussed in the chapter Object Oriented Ruby.

An object-oriented program involves classes and objects. A class is the blueprint
from which individual objects are created. In object-oriented terms, we say that
your bicycle is an instance of the class of objects known as bicycles.

Take the example of any vehicle. It comprises wheels, horsepower, and fuel or
gas tank capacity. These characteristics form the data members of the class
Vehicle. You can differentiate one vehicle from the other with the help of these
characteristics.

A vehicle can also have certain functions, such as halting, driving, and speeding.
Even these functions form the data members of the class Vehicle. You can,
therefore, define a class as a combination of characteristics and functions.

A class Vehicle can be defined as:

Class Vehicle

{
Number no_of wheels
Number horsepower
Characters type_of_tank
Number Capacity

Function speeding

{
}
Function driving
{
}

Function halting

10

@wtorialspoim

Ruby

}

By assigning different values to these data members, you can form several
instances of the class Vehicle. For example, an airplane has three wheels,
horsepower of 1,000, fuel as the type of tank, and a capacity of 100 liters. In
the same way, a car has four wheels, horsepower of 200, gas as the type of
tank, and a capacity of 25 liters.

Defining a Class in Ruby

To implement object-oriented programming by using Ruby, you need to first
learn how to create objects and classes in Ruby.

A class in Ruby always starts with the keyword class followed by the name of the
class. The name should always be in initial capitals. The class Customer can be
displayed as:

class Customer

end

You terminate a class by using the keyword end. All the data members in the
class are between the class definition and the end keyword.

Variables in a Ruby Class

Ruby provides four types of variables:

e Local Variables: Local variables are the variables that are defined in a
method. Local variables are not available outside the method. You will see
more details about method in subsequent chapter. Local variables begin
with a lowercase letter or _.

¢ Instance Variables: Instance variables are available across methods for
any particular instance or object. That means that instance variables
change from object to object. Instance variables are preceded by the at
signh (@) followed by the variable name.

¢ Class Variables: Class variables are available across different objects. A
class variable belongs to the class and is a characteristic of a class. They
are preceded by the sigh @@ and are followed by the variable name.

e Global Variables: Class variables are not available across classes. If you
want to have a single variable, which is available across classes, you need
to define a global variable. The global variables are always preceded by
the dollar sign ($).

@Wtorialspoint

19

Ruby

Example

Using the class variable @@no_of_customers, you can determine the number of
objects that are being created. This enables in deriving the number of
customers.

class Customer
@@no_of_customers=0

end

Creating Objects in Ruby Using new Method

Objects are instances of the class. You will how learn how to create objects of a
class in Ruby. You can create objects in Ruby by using the method new of the
class.

The method new is a unique type of method, which is predefined in the Ruby
library. The new method belongs to the c/ass methods.

Here is the example to create two objects custl and cust2 of the class
Customer:

Customer. new

custl

cust2 Customer. new

Here, custl and cust2 are the names of two objects. You write the object name
followed by the equal to sign (=) after which the class name will follow. Then,
the dot operator and the keyword new will follow.

Custom Method to Create Ruby Objects

You can pass parameters to method new and those parameters can be used to
initialize class variables.

When you plan to declare the new method with parameters, you need to declare
the method initialize at the time of the class creation.

The initialize method is a special type of method, which will be executed when
the new method of the class is called with parameters.

Here is the example to create initialize method:

class Customer

@wcorialspoint

N
(=)

Ruby

@@no_of_customers=0

def initialize(id, name, addr)
@cust_id=id
@cust_name=name
@cust_addr=addr

end

end

In this example, you declare the initialize method with id, name, and addr as
local variables. Here, def and end are used to define a Ruby method initialize. You
will learn more about methods in subsequent chapters.

In the initialize method, you pass on the values of these local variables to the
instance variables @cust_id, @cust_name, and @cust_addr. Here local variables
hold the values that are passed along with the new method.

Now, you can create objects as follows:

custl=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Member Functions in Ruby Class

In Ruby, functions are called methods. Each method in a class starts with the
keyword def followed by the method name.

The method name always preferred in lowercase letters. You end a method in
Ruby by using the keyword end.

Here is the example to define a Ruby method:

class Sample
def function
statement 1
statement 2
end

end

Here, statement 1 and statement 2 are part of the body of the method function
inside the class Sample. These statements could be any valid Ruby statement.
For example, we can put a method puts to print Hello Ruby as follows:

class Sample

@wwialspo?nt

21

Ruby

def hello
puts "Hello Ruby!"
end

end

Now in the following example, create one object of Sample class and call hello
method and see the result:

#!/usr/bin/ruby

class Sample
def hello
puts "Hello Ruby!"
end

end

Now using above class to create objects

object = Sample. new

object.hello

This will produce the following result:

Hello Ruby!

Simple Case Study

Here is a case study if you want to do more practice with class and objects.

Ruby Class Case Study

For your case study, you will create a Ruby Class called Customer and you will
declare two methods:

e display_details: This method will display the details of the customer.

e total _no_of _customers: This method will display the total number of
customers created in the system.

#!/usr/bin/ruby

class Customer

@woria'spoint

22

Ruby

@@no_of_customers=0
def initialize(id, name, addr)
@cust_id=id
@cust_name=name
@cust_addr=addr
end
def display details()
puts "Customer id #@cust_id"
puts "Customer name #@cust_name"
puts "Customer address #@cust_addr"
end
def total no_of_ customers()
@@no_of_customers += 1
puts "Total number of customers: #@@no_of_customers"”
end

end

The display details method contains three puts statements, displaying the
Customer ID, the Customer name, and the Customer address. The puts
statement will display the text Customer id followed by the value of the variable
@cust_id in a single line as follows:

puts "Customer id #@cust_id"

When you want to display the text and the value of the instance variable in a
single line, you need to precede the variable nhame with the hash symbol (#) in
the puts statement. The text and the instance variable along with the hash
symbol (#) should be enclosed in double quotation marks.

The second method, total_no_of_customers, is a method that contains the class
variable @@no_of_customers. The expression @@no_of_ customers+=1 adds 1
to the variable no_of_customers each time the method total_no_of_customers is
called. In this way, you will always have the total number of customers in the
class variable.

Now, create two customers as follows:

custl=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

@wwialspo?nt

23

Ruby

Here, we create two objects of the Customer class as custl and cust2 and pass
the necessary parameters with the new method. The initialize method is
invoked, and the necessary properties of the object are initialized.

Once the objects are created, you need to call the methods of the class by using
the two objects. If you want to call a method or any data member, you write the
following:

custl.display_details()

custl.total no_of_customers()

The object name should always be followed by a dot, which is in turn followed by
the method name or any data member. We have seen how to call the two
methods by using the custl object. Using the cust2 object, you can call both
methods as shown below:

cust2.display_details()

cust2.total no _of customers()

Save and Execute the Code

Now, put all this source code in the main.rb file as follows:

#!/usr/bin/ruby

class Customer

@@no_of_customers=0

def initialize(id, name, addr)
@cust_id=id
@cust_name=name
@cust_addr=addr

end

def display details()
puts "Customer id #@cust_id"
puts "Customer name #@cust name"
puts "Customer address #@cust_addr"

end

def total_no_of_customers()
@@no_of_customers += 1

puts "Total number of customers: #@@no_of_ customers"

@woria'spoint

N
H

Ruby

end

end

Create Objects
custl=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Call Methods
custl.display_details()
custl.total no_of_customers()
cust2.display_details()

cust2.total no _of customers()

Now, run this program as follows:

$ ruby main.rb

This will produce the following result:

Customer id 1

Customer name John

Customer address Wisdom Apartments, Ludhiya
Total number of customers: 1

Customer id 2

Customer name Poul

Customer address New Empire road, Khandala

Total number of customers: 2

wy tutorialspoint

25

5. VARIABLES, CONSTANTS AND LITERALS

Variables are the memory locations, which hold any data to be used by any
program.

There are five types of variables supported by Ruby. You already have gone
through a small description of these variables in the previous chapter as well.
These five types of variables are explained in this chapter.

Ruby Global Variables

Global variables begin with $. Uninitialized global variables have the value nil and
produce warnings with the -w option.

Assignment to global variables alters the global status. It is nhot recommended to
use global variables. They make programs cryptic.

Here is an example showing the usage of global variable.

#!/usr/bin/ruby

$global variable = 10
class Classil
def print_global
puts "Global variable in Classl is #$global variable"
end
end
class Class2
def print_global
puts "Global variable in Class2 is #$global variable"
end

end

classlobj = Classl.new
classlobj.print_global
class2obj = Class2.new

class2obj.print_global

@morialspoint

26

Ruby

Here $global_variable is a global variable. This will produce the following result:

NOTE: In Ruby, you CAN access value of any variable or constant by putting a
hash (#) character just before that variable or constant.

Global variable in Classl is 10

Global variable in Class2 is 10

Ruby Instance Variables

Instance variables begin with @. Uninitialized instance variables have the value
nil and produce warnings with the -w option.

Here is an example showing the usage of Instance Variables.

#!/usr/bin/ruby

class Customer

def initialize(id, name, addr)
@cust_id=id
@cust_name=name
@cust_addr=addr

end

def display details()
puts "Customer id #@cust_id"
puts "Customer name #@cust_name"
puts "Customer address #@cust_addr"

end

end

Create Objects
custl=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")
Call Methods

custl.display_details()
cust2.display_details()

@woria'spoint

27

Ruby

Here, @cust_id, @cust_name and @cust_addr are instance variables. This will
produce the following result:

Customer
Customer
Customer
Customer
Customer

Customer

id 1

name John

address Wisdom Apartments, Ludhiya
id 2

name Poul

address New Empire road, Khandala

Ruby Class Variables

Class variables begin with @@ and must be initialized before they can be used in
method definitions.

Referencing an uninitialized class variable produces an error. Class variables are
shared among descendants of the class or module in which the class variables
are defined.

Overriding class variables produce warnings with the -w option.

Here is an example showing the usage of class variable:

#!/usr/bin/ruby

class Customer

@@no_of_customers=0

def initialize(id, name, addr)

@cust_id=id

@cust_name=name

@cust_addr=addr

end

def display details()

puts "Customer id #@cust_id"

puts "Customer name #@cust_name"

puts "Customer address #@cust_addr

end

def total no_of customers()

@@no_of_customers += 1

@wwialspo?nt

28

Ruby

puts "Total number of customers: #@@no of customers”
end

end

Create Objects
custl=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Call Methods
custl.total no_of_customers()

cust2.total no _of customers()

Here @@no_of_customers is a class variable. This will produce the following
result:

Total number of customers: 1

Total number of customers: 2

Ruby Local Variables

Local variables begin with a lowercase letter or _. The scope of a local variable
ranges from class, module, def, or do to the corresponding end or from a block's
opening brace to its close brace {}.

When an uninitialized local variable is referenced, it is interpreted as a call to a
method that has no arguments.

Assignment to uninitialized local variables also serves as variable declaration.
The variables start to exist until the end of the current scope is reached. The
lifetime of local variables is determined when Ruby parses the program.

In the above example, local variables are id, name and addr.

Ruby Constants

Constants begin with an uppercase letter. Constants defined within a class or
module can be accessed from within that class or module, and those defined
outside a class or module can be accessed globally.

Constants may not be defined within methods. Referencing an uninitialized
constant produces an error. Making an assignment to a constant that is already
initialized produces a warning.

@wcorialspoint

29

Ruby

#!/usr/bin/ruby

class Example

VAR1 = 100
VAR2 = 200
def show

puts "Value of first Constant is #{VAR1}"
puts "Value of second Constant is #{VAR2}"
end

end

Create Objects

object=Example.new()

object.show

Here VAR1 and VAR2 are constants. This will produce the following result:

Value of first Constant is 100

Value of second Constant is 200

Ruby Pseudo-Variables

They are special variables that have the appearance of local variables but
behave like constants. You cannot assign any value to these variables.

¢ self: The receiver object of the current method.
e true: Value representing true.
o false: Value representing false.

¢ nil: Value representing undefined.

__FILE__: The name of the current source file.

__LINE__ :The current line number in the source file.

Ruby Basic Literals

The rules Ruby uses for literals are simple and intuitive. This section explains all
basic Ruby Literals.

@wwialspo?nt

30

Ruby

Integer Numbers

Ruby supports integer numbers. An integer number can range from -230 to 230!
or -2%2 to 2627', Integers within this range are objects of class Fixnum and
integers outside this range are stored in objects of class Bignum.

You write integers using an optional leading sign, an optional base indicator (0
for octal, Ox for hex, or Ob for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string.

You can also get the integer value, corresponding to an ASCII character or
escape the sequence by preceding it with a question mark.

Example
123 # Fixnum decimal
1 234 # Fixnum decimal with underline
-500 # Negative Fixnum
0377 # octal
oxff # hexadecimal
oblol1l # binary
?a # character code for 'a’
?\n # code for a newline (©@x0a)
12345678901234567890 # Bignum

NOTE: Class and Objects are explained in a separate chapter of this tutorial.

Floating Numbers

Ruby supports integer numbers. They are also numbers but with decimals.
Floating-point numbers are objects of class Float and can be any of the following:

Example
123.4 # floating point value
1.0e6 # scientific notation
4E20 # dot not required
4e+20 # sign before exponential
String Literals

Ruby strings are simply sequences of 8-bit bytes and they are objects of class
String. Double-quoted strings allow substitution and backslash notation but

31
@mtorialspoint

Ruby

single-quoted strings don't allow substitution and allow backslash notation only

for \\ and \

Example

#!/usr/bin/ruby -w

puts 'escape using "\\"';

puts 'That\'s right’;

This will produce the following result:

escape using "\"

That's right

You can substitute the value of any Ruby expression into a string using the

sequence #{ expr }. Here, expr could be any ruby expression.

#!/usr/bin/ruby -w

puts "Multiplication Value : #{24*60*60}";

This will produce the following result:

Multiplication Value : 86400

Backslash Notations

Following is the list of Backslash notations supported by Ruby:

Notation Character represented
\n Newline (0x0a)
\r Carriage return (0x0d)
\f Formfeed (0xO0c)
\b Backspace (0x08)
\a Bell (0x07)

@wwialspo?nt

32

Ruby

\e Escape (0x1b)
\s Space (0x20)
\nnn Octal notation (n being 0-7)
\Xnn Hexadecimal notation (n being 0-9, a-f, or A-F)
\cx, \C-x Control-x
\M-x Meta-x (c | 0x80)
\M-\C-x Meta-Control-x
\X Character x
Ruby Arrays

Literals of Ruby Array are created by placing a comma-separated series of object
references between the square brackets. A trailing comma is ignored.

Example

#!/usr/bin/ruby

ary = ["fred", 10, 3.14, "This is a string", "last element",]
ary.each do |i]
puts i

end

This will produce the following result:

fred

10

3.14

This is a string

last element

33

@moviwsmﬁm

Ruby

Ruby Hashes

A literal Ruby Hash is created by placing a list of key/value pairs between
braces, with either a comma or the sequence => between the key and the
value. A trailing comma is ignored.

Example

#!/usr/bin/ruby

hsh = colors = { "red" => 0xf00, "green" => 0x0f0, "blue" => 0x00f }
hsh.each do |key, value]
print key, " is ", value, "\n"

end

This will produce the following result:

green is 240

red is 3840

blue is 15

Ruby Ranges

A Range represents an interval.a set of values with a start and an end. Ranges
may be constructed using the s..e and s...e literals, or with Range.new.

Ranges constructed using .. run from the start to the end inclusively. Those
created using ... exclude the end value. When used as an iterator, ranges return
each value in the sequence.

A range (1..5) means it includes 1, 2, 3, 4, 5 values and a range (1...5) means it
includes 1, 2, 3, 4 values.

Example

#!/usr/bin/ruby

(10..15).each do |n]|

print n,

@woria'spoint

34

Ruby

end

This will produce the following result:

10 11 12 13 14 15

35

6. OPERATORS

Ruby supports a rich set of operators, as you'd expect from a modern language.
Most operators are actually method calls. For example, a + b is interpreted as
a.+(b), where the + method in the object referred to by variable a is called with
b as its argument.

For each operator (+ - * / % ** & | ~ << >> && ||), there is a corresponding

form of abbreviated assignment operator (+= -= etc.).

Ruby Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

+ Addition - Adds values on either side of the a + b will give
operator. 30

- Subtraction - Subtracts right hand operand from a - b will give -
left hand operand. 10

* Multiplication - Multiplies values on either side of a * b will give
the operator. 200

/ Division - Divides left hand operand by right hand b / a will give
operand. 2

% Modulus - Divides left hand operand by right b % a will give
hand operand and returns remainder. 0

*ok Exponent - Performs exponential (power) a**b will give
calculation on operators. 10 to the

power 20

@wtorialspoim

36

Ruby Comparison Operators

Ruby

Assume variable a holds 10 and variable b holds 20, then:

Operator

Description

Checks if the value of two operands are equal or
not, if yes then condition becomes true.

Checks if the value of two operands are equal or
not, if values are not equal then condition
becomes true.

Checks if the value of left operand is greater
than the value of right operand, if yes then
condition becomes true.

Checks if the value of left operand is less than
the value of right operand, if yes then condition
becomes true.

Checks if the value of left operand is greater
than or equal to the value of right operand, if
yes then condition becomes true.

Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

Combined comparison operator. Returns 0 if first
operand equals second, 1 if first operand is
greater than the second and -1 if first operand is
less than the second.

Used to test equality within a when clause of a
case statement.

True if the receiver and argument have both the
same type and equal values.

@Wtorialspoint

Example

(a == Db) is not
true.

(a'=b) is true.

(a > b) is not
true.

(a < b) is true.

(a >=Db) is not
true.

(a<=Db)is
true.

(a <=>Db)
returns -1.

(1...10)
returns true.

1==1.0
returns true,
but 1.eql?(1.0)
is false.

37

equal?

True if the receiver and argument have the
same object id.

Ruby Assignment Operators

Ruby

if aObj is
duplicate of
bObj then aObj
== bODbj is
true,
a.equal?bObj is
false but
a.equal?albj is
true.

Assume variable a holds 10 and variable b holds 20, then:

Operator

%=

Description

Simple assignment operator, assigns values
from right side operands to left side operand.

Add AND assignment operator, adds right
operand to the left operand and assign the result
to left operand.

Subtract AND assignment operator, subtracts
right operand from the left operand and assign
the result to left operand.

Multiply AND assignment operator, multiplies
right operand with the left operand and assign
the result to left operand.

Divide AND assignment operator, divides left
operand with the right operand and assign the
result to left operand.

Modulus AND assignment operator, takes
modulus using two operands and assign the
result to left operand.

@Wtorialspoinp

Example
c=a+ bwill
assign the

valueofa + b
into ¢

c+=ais
equivalent to c
=c+a

c-=ais
equivalent to c
=cCc-a

c*=ais
equivalent to c
=c*a

c/=ais
equivalent to c
=c/a

c%=ais
equivalent to c
=c%a

38

Ruby

ok = Exponent AND assignment operator, performs c **=ais
exponential (power) calculation on operators and equivalent to c
assign value to the left operand. =C**a
Ruby Parallel Assignment

Ruby also supports the parallel assignment of variables. This enables multiple
variables to be initialized with a single line of Ruby code. For example:

a =10
b = 20
c = 30

This may be more quickly declared using parallel assignment:

a, b, c =10, 20, 30

Parallel assignment is also useful for swapping the values held in two variables:

a, b =>b, c

Ruby Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation.

Assume if a = 60; and b = 13; now in binary format they will be as follows:
a =00111100

b = 0000 1101

a&b = 0000 1100

alb =0011 1101

a”~b = 0011 0001

~a = 1100 0011

39

@wwialspo?nt

Ruby

The following Bitwise operators are supported by Ruby language.

Operator

&

<<

>>

Description

Binary AND Operator copies a bit to the result
if it exists in both operands.

Binary OR Operator copies a bit if it exists in
either operand.

Binary XOR Operator copies the bit if it is set
in one operand but not both.

Binary Ones Complement Operator is unary
and has the effect of 'flipping' bits.

Binary Left Shift Operator. The left operands
value is moved left by the number of bits
specified by the right operand.

Binary Right Shift Operator. The left operands
value is moved right by the number of bits
specified by the right operand.

Ruby Logical Operators

Example

(a & b) will give
12, which is 0000
1100

(a | b) will give
61, which is 0011
1101

(a ™ b) will give
49, which is 0011
0001

(~a) will give -
61, which is 1100
0011 in 2's
complement form
due to a signed
binary number.

a << 2 will give
240, which is
1111 0000

a >> 2 will give
15, which is 0000
1111

The following logical operators are supported by Ruby language

Assume variable a holds 10 and variable b holds 20, then:

Operator

and

Description
Called Logical AND operator. If both the
operands are true, then the condition

@Wtorialspoint

Example

(a and b) is true.

40

Ruby

becomes true.

or Called Logical OR Operator. If any of the two (a or b) is true.
operands are non zero, then the condition
becomes true.

&& Called Logical AND operator. If both the (a &&b) is true.
operands are non zero, then the condition
becomes true.

[Called Logical OR Operator. If any of the two (a || b) is true.
operands are non zero, then the condition
becomes true.

! Called Logical NOT Operator. Use to reverses !(a && b) is false.
the logical state of its operand. If a condition
is true, then Logical NOT operator will make
false.

not Called Logical NOT Operator. Use to reverses not(a && b) is
the logical state of its operand. If a condition false.
is true, then Logical NOT operator will make
false.

Ruby Ternary Operator

There is one more operator called Ternary Operator. It first evaluates an
expression for a true or false value and then executes one of the two given
statements depending upon the result of the evaluation. The conditional
operator has this syntax:

Operator Description Example

7 Conditional Expression If Condition is true ? Then value X
: Otherwise value Y

Ruby Range Operators

Sequence ranges in Ruby are used to create a range of successive values -
consisting of a start value, an end value, and a range of values in between.

@Wtorialspoint

41

Ruby

In Ruby, these sequences are created using the and "..." range operators.
The two-dot form creates an inclusive range, while the three-dot form creates a
range that excludes the specified high value.

Operator Description Example

Creates a range from start point to 1..10 Creates a range from
end point inclusive. 1 to 10 inclusive.

Creates a range from start point to 1...10 Creates a range
end point exclusive. from 1 to 9.

Ruby defined? Operators

defined? is a special operator that takes the form of a method call to determine
whether or not the passed expression is defined. It returns a description string
of the expression, or nil if the expression isn't defined.

There are various usage of defined? Operator.

Usage 1

defined? variable # True if variable is initialized

For Example

foo = 42

defined? foo # => "local-variable”

defined? $_ # => "global-variable"

defined? bar # => nil (undefined)
Usage 2

defined? method_call # True if a method is defined

For Example

defined? puts # => "method"

@wwialspo?nt

42

Ruby

defined? puts(bar) # => nil (bar is not defined here)

defined? unpack # => nil (not defined here)

Usage 3

True if a method exists that can be called with super user

defined? super

For Example

defined? super # => "super" (if it can be called)
defined? super # => nil (if it cannot be)
Usage 4

defined? yield # True if a code block has been passed

For Example

defined? yield # => "yield" (if there is a block passed)
defined? yield # => nil (if there is no block)

Ruby Dot "'." and Double Colon "::"" Operators

You call a module method by preceding its name with the module's name and a
period, and you reference a constant using the module nhame and two colons.

The :: is a unary operator that allows: constants, instance methods and class
methods defined within a class or module, to be accessed from anywhere
outside the class or module.

Remember in Ruby, classes and methods may be considered constants too.

You need to just prefix the :: Const_name with an expression that returns the
appropriate class or module object.

If no prefix expression is used, the main Object class is used by default.

Here are two examples:

MR_COUNT = © # constant defined on main Object class

43

@wwialspo?nt

Ruby

module Foo

MR_COUNT = ©
::MR_COUNT = 1 # set global count to 1
MR_COUNT = 2 # set local count to 2

end

puts MR_COUNT # this is the global constant

puts Foo::MR_COUNT # this is the local "Foo" constant

Second Example

CONST = ' out there’
class Inside_one
CONST = proc {' in there'}
def where_is_my_CONST
::CONST + ' inside one'
end
end
class Inside_two
CONST = ' inside two'
def where_is _my_ CONST
CONST
end
end
puts Inside_one.new.where_is_my_ CONST
puts Inside_two.new.where_is_my_ CONST
puts Object::CONST + Inside_two::CONST
puts Inside_two::CONST + CONST
puts Inside_one::CONST

puts Inside_one::CONST.call + Inside_two: :CONST

Ruby Operators Precedence

The following table lists all operators from highest precedence to lowest.

Method Operator Description

@wwialspo?nt

44

Ruby

Yes i Constant resolution operator

Yes [1] 1= Element reference, element set

Yes *x Exponentiation (raise to the power)

Yes I~ o+ - Not, complement, unary plus and minus
(method names for the last two are +@
and -@)

Yes */ % Multiply, divide, and modulo

Yes + - Addition and subtraction

Yes >> << Right and left bitwise shift

Yes & Bitwise 'AND'

Yes A Bitwise exclusive "OR' and regular "OR'

Yes <=< >>= Comparison operators

Yes <=> == === I|= =~ I~ Equality and pattern match operators
('= and '~ may not be defined as
methods)

&& Logical 'AND'
| Logical 'OR!

..... Range (inclusive and exclusive)
2. Ternary if-then-else

=%={/=-=+=|= Assignment
[]= **=

@wwialspo?nt

45

Ruby

defined? Check if specified symbol defined
not Logical negation
or and Logical composition

NOTE: Operators with a Yes in the method column are actually methods, and as
such may be overridden.

46

@wwialsmint

7. COMMENTS

Comments are lines of annotation within Ruby code that are ignored at runtime.
A single line comment starts with # character and they extend from # to the
end of the line as follows:

#!/usr/bin/ruby -w

This is a single line comment.

puts "Hello, Ruby!"

When executed, the above program produces the following result:

Hello, Ruby!

Ruby Multiline Comments

You can comment multiple lines using =begin and =end syntax as follows:

#!/usr/bin/ruby -w

puts "Hello, Ruby!"

=begin
This is a multiline comment and con spwan as many lines as you
like. But =begin and =end should come in the first line only.

=end

When executed, the above program produces the following result:

Hello, Ruby!

47

@morialspoint

Ruby

Make sure trailing comments are far enough from the code and that they are
easily distinguished. If more than one trailing comment exists in a block, align
them. For example:

@counter # keeps track times page has been hit

@siteCounter # keeps track of times all pages have been hit

48

My tutorialspoint

8. IF...ELSE, CASE, UNLESS

Ruby offers conditional structures that are pretty common to modern languages.
Here, we will explain all the conditional statements and modifiers available in
Ruby.

Ruby if...else Statement

Syntax

if conditional [then]
code...

[elsif conditional [then]
code...]...

[else
code...]

end

if expressions are used for conditional execution. The values false and nil are
false, and everything else are true. Notice, Ruby uses elsif, not else if nor elif.

Executes code if the conditional is true. If the conditional is not true, code
specified in the else clause is executed.

An if expression's conditional is separated from code by the reserved word then,
a newline, or a semicolon.

Example

#!/usr/bin/ruby

x=1

if x > 2

puts "x is greater than 2"

elsif x <= 2 and x!=0

puts "x is 1"
else

puts "I can't guess the number"

49

@morialspoint

Ruby

end

x is 1

Ruby if modifier

Syntax

code if condition

Executes code if the conditional is true.

Example

#!/usr/bin/ruby

$debug=1
print "debug\n" if $debug

This will produce the following result:

debug

Ruby unless Statement

Syntax

unless conditional [then]
code

[else
code]

end

Executes code if conditional is false. If the conditional is true, code specified in
the else clause is executed.

50

@woria'spoint

Example

Ruby

#!/usr/bin/ruby

x=1
unless x>2
puts "x is less than 2"
else
puts "x is greater than 2"

end

This will produce the following result:

X is less than 2

Ruby unless modifier

Syntax

code unless conditional

Executes code if conditional is false.

Example

#!/usr/bin/ruby

$var = 1
print "1 -- Value is set\n" if $var
print "2 -- Value is set\n" unless $var

$var = false

print "3 -- Value is set\n" unless $var

This will produce the following result:

1 -- Value is set

3 -- Value is set

@moviwsmﬁm

51

Ruby

Ruby case Statement

Syntax

case expression

[when expression [, expression ...] [then]
code]...

[else
code]

end

Compares the expression specified by case and that specified by when using the
=== operator and executes the code of the when clause that matches.

The expression specified by the when clause is evaluated as the left operand. If
no when clauses match, case executes the code of the else clause.

A when statement's expression is separated from code by the reserved word
then, a newline, or a semicolon. Thus:

case expro

when exprl, expr2
stmtl

when expr3, expr4
stmt2

else
stmt3

end

is basically similar to the following:

_tmp = expro

if exprl === _tmp || expr2 === _tmp

stmtl

elsif expr3 === _tmp || expr4d === _tmp
stmt2

else
stmt3

end

@woria'spoint

52

Example

Ruby

#!/usr/bin/ruby

$age =

case $age

when 0 ..

puts

when 3 ..

puts

when 7 ..

puts

when 13 ..

puts
else
puts

end

2

"baby"

6

"little child"
12

"child"

18

"youth"

"adult"

This will produce the following result:

little child

My tutorialspoint

53

9. LOOPS

Loops in Ruby are used to execute the same block of code a specified number of
times. This chapter details all the loop statements supported by Ruby.

Ruby while Statement

Syntax

while conditional [do]
code

end

Executes code while conditional is true. A while loop's conditional is separated
from code by the reserved word do, a newline, backslash \, or a semicolon ;.

Example

#!/usr/bin/ruby

$i =10

$num = 5

while $i < $num do
puts("Inside the loop i = #$i")
$i +=1

end

This will produce the following result:

Inside the loop i =
Inside the loop i =
Inside the loop i =

Inside the loop i =

A W N R O

Inside the loop i =

@moria!spom

54

Ruby

Ruby while modifier

Syntax

code while condition

OR

begin

code

end while conditional

Executes code while conditional is true.

If a while modifier follows a begin statement with no rescue or ensure clauses,
code is executed once before conditional is evaluated.

Example

#!/usr/bin/ruby

$i

$num = 5

0

begin
puts("Inside the loop i = #$i")
$i +=1

end while $i < $num

This will produce the following result:

A W N R O

Inside the loop i
Inside the loop i =
Inside the loop i =
Inside the loop i =

Inside the loop i =

55

@moviwsmﬁm

Ruby

Ruby until Statement

until conditional [do]
code

end

Executes code while conditional is false. An until statement's conditional is
separated from code by the reserved word do, a newline, or a semicolon.

Example

#!/usr/bin/ruby

$i =0

$num = 5

until $i > $num do
puts("Inside the loop i = #$i")
$1i +=1;

end

This will produce the following result:

Inside the loop i =
Inside the loop i =
Inside the loop i =
Inside the loop i =

Inside the loop i =

vi b W N RO

Inside the loop i =

Ruby until modifier

Syntax

code until conditional

OR

56

@moviwsmﬁm

Ruby

begin
code

end until conditional

Executes code while conditional is false.

If an until modifier follows a begin statement with no rescue or ensure clauses,
code is executed once before conditional is evaluated.

Example

#!/usr/bin/ruby

$i = o

$num = 5

begin
puts("Inside the loop i = #$i")
$1i +=1;

end until $i > $num

This will produce the following result:

vi p W N RO

Inside the loop i
Inside the loop i =
Inside the loop i =
Inside the loop i =
Inside the loop i =

Inside the loop i =

Ruby for Statement

Syntax

for variable [, variable ...] in expression [do]
code

end

Executes code once for each element in expression.

Example

@woria'spoint

57

Ruby

#!/usr/bin/ruby

for i in 0..5
puts "Value of local variable is #{i}"

end

Here, we have defined the range 0..5. The statement for j in 0..5 will allow j to
take values in the range from 0 to 5 (including 5). This will produce the following
result:

Value of local variable is
Value of local variable is
Value of local variable is
Value of local variable is

Value of local variable is

i A W N R O

Value of local variable is

A for...in loop is almost exactly equivalent to the following:

(expression).each do |variable[, variable...]| code end

except that a for loop doesn't create a new scope for the local variables. A for
loop's expression is separated from code by the reserved word do, a newline, or
a semicolon.

Example

#!/usr/bin/ruby

(0..5).each do |i]
puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is
Value of local variable is
Value of local variable is

Value of local variable is

A W N R O

Value of local variable is

@woria'spoint

58

Ruby

Value of local variable is 5

Ruby break Statement

Syntax

break

Terminates the most internal loop. Terminates a method with an associated
block if called within the block (with the method returning nil).

Example

#!/usr/bin/ruby

for i in 0..5
if i > 2 then
break
end
puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is ©
Value of local variable is 1

Value of local variable is 2

Ruby next Statement

Syntax

next

Jumps to the next iteration of the most internal loop. Terminates execution of a
block if called within a block (with yield or call returning nil).

Example

@woria'spoint

59

Ruby

#!/usr/bin/ruby

for i in 0..5
if i < 2 then
next
end
puts "Value of local variable is #{i}"

end

This will produce the following result:

Value of local variable is
Value of local variable is

Value of local variable is

ui b~ W N

Value of local variable is

Ruby redo Statement

Syntax

redo

Restarts this iteration of the most internal loop, without checking loop condition.
Restarts yield or call if called within a block.

Example

#!/usr/bin/ruby

for 1 in 0..5
if i < 2 then
puts "Value of local variable is #{i}"
redo
end

end

This will produce the following result and will go in an infinite loop:

@moviwsmﬁm

60

Ruby

Value of local variable is ©

Value of local variable is ©

Ruby retry Statement

Syntax

retry

If retry appears in rescue clause of begin expression, restart from the beginning
of the begin body.

begin

do_something # exception raised
rescue

handles error

retry # restart from beginning

end

If retry appears in the iterator, the block, or the body of the for expression,
restarts the invocation of the iterator call. Arguments to the iterator is re-
evaluated.

for i in 1..5
retry if some_condition # restart from i == 1

end

Example

#!/usr/bin/ruby

for i in 1..5
retry if i > 2
puts "Value of local variable is #{i}"

end

This will produce the following result and will go in an infinite loop:

@woria'spoint

61

Ruby

Value
Value
Value
Value
Value
Value

of
of
of
of
of
of

local
local
local
local
local

local

variable
variable
variable
variable
variable

variable

is
is
is
is
is

is

@v tutorialspoint

62

10. METHODS

Ruby methods are very similar to functions in any other programming language.
Ruby methods are used to bundle one or more repeatable statements into a
single unit.

Method names should begin with a lowercase letter. If you begin a method name
with an uppercase letter, Ruby might think that it is a constant and hence can
parse the call incorrectly.

Methods should be defined before calling them, otherwise Ruby will raise an
exception for undefined method invoking.

Syntax

def method_name [([arg [= default]]...[, * arg [, &expr]1])]

expr. .

end

So, you can define a simple method as follows:

def method_name
expr. .

end

You can represent a method that accepts parameters like this:

def method_name (varl, var2)
expr..

end

You can set default values for the parameters, which will be used if method is
called without passing the required parameters:

def method name (varl=valuel, var2=value2)
expr..

end

63

@morialspoint

Ruby

Whenever you call the simple method, you write only the method name as
follows:

method_name

However, when you call a method with parameters, you write the method name
along with the parameters, such as:

method_name 25, 30

The most important drawback to using methods with parameters is that you
need to remember the number of parameters whenever you call such methods.
For example, if a method accepts three parameters and you pass only two, then
Ruby displays an error.

Example

#!/usr/bin/ruby

def test(al="Ruby", a2="Perl")
puts "The programming language is #{al}"
puts "The programming language is #{a2}"
end
test "C", "C++"
test

This will produce the following result:

The programming language is C
The programming language is C++
The programming language is Ruby

The programming language is Perl

Return Values from Methods

Every method in Ruby returns a value by default. This returned value will be the
value of the last statement. For example:

def test
i = 100
j =10
k =0

@woria'spoint

Ruby

end

This method, when called, will return the last declared variable k.

Ruby return Statement

The return statement in ruby is used to return one or more values from a Ruby
Method.

Syntax

return [expr[,"' expr...]]

If more than two expressions are given, the array containing these values will be
the return value. If no expression given, nil will be the return value.

Example

return

OR

return 12

OR

return 1,2,3

Have a look at this example:

#!/usr/bin/ruby

def test
i= 100
j = 200
k = 300

return i, j, k
end

var = test

65

@woria'spoint

Ruby

puts var

This will produce the following result:

100
200
300

Variable Number of Parameters

Suppose you declare a method that takes two parameters, whenever you call
this method, you need to pass two parameters along with it.

However, Ruby allows you to declare methods that work with a variable nhumber
of parameters. Let us examine a sample of this:

#!/usr/bin/ruby

def sample (*test)
puts "The number of parameters is #{test.length}"
for i in @...test.length
puts "The parameters are #{test[i]}"
end
end
sample "Zara", "6", "F"

Sample "MaC", ll36ll’ "M", "MCA"

In this code, you have declared a method sample that accepts one parameter
test. However, this parameter is a variable parameter. This means that this
parameter can take in any nhumber of variables. So, the above code will produce
the following result:

The number of parameters is 3
The parameters are Zara

The parameters are 6

The parameters are F

The number of parameters is 4
The parameters are Mac

The parameters are 36

@wwialspo?nt

66

Ruby

The parameters are M

The parameters are MCA

Class Methods

When a method is defined outside of the class definition, the method is marked
as private by default. On the other hand, the methods defined in the class
definition are marked as public by default. The default visibility and the private
mark of the methods can be changed by public or private of the Module.

Whenever you want to access a method of a class, you first need to instantiate
the class. Then, using the object, you can access any member of the class.

Ruby gives you a way to access a method without instantiating a class. Let us
see how a class method is declared and accessed:

class Accounts
def reading_charge
end
def Accounts.return_date
end

end

See how the method return_date is declared. It is declared with the class name
followed by a period, which is followed by the name of the method. You can
access this class method directly as follows:

Accounts.return_date

To access this method, you need not create objects of the class Accounts.

Ruby alias Statement

This gives alias to methods or global variables. Aliases cannot be defined within
the method body. The alias of the method keeps the current definition of the
method, even when methods are overridden.

Making aliases for the numbered global variables ($1, $2,...) is prohibited.
Overriding the built-in global variables may cause serious problems.

Syntax

alias method-name method-name

@wcorialspoint

67

Ruby

alias global-variable-name global-variable-name

Example

alias foo bar

alias $MATCH $&

Here, we have defined foo alias for bar, and $MATCH is an alias for $&

Ruby undef Statement

This cancels the method definition. An undef cannot appear in the method body.

By using undef and alias, the interface of the class can be modified independently
from the superclass, but notice it may be broke programs by the internal
method call to self.

Syntax

undef method-name

Example
To undefine a method called bar, do the following:

undef bar

68

@woria'spoint

11. BLOCKS

You have seen how Ruby defines methods where you can put number of
statements and then you call that method. Similarly, Ruby has a concept of
Block.

e A block consists of chunks of code.
e You assign a name to a block.
e The code in the block is always enclosed within braces ({}).

e A block is always invoked from a function with the same name as that of
the block. This means that if you have a block with the name test, then
you use the function test to invoke this block.

e You invoke a block by using the yield statement.

Syntax

block_name{

statementl

statement2

Here, you will learn to invoke a block by using a simple yield statement. You will
also learn to use a yield statement with parameters for invoking a block. You will
check the sample code with both types of yield statements.

The yield Statement

Let's look at an example of the yield statement:

#!/usr/bin/ruby

def test
puts "You are in the method"
yield
puts "You are again back to the method”

yield

69

@morialspoint

Ruby

end

test {puts "You are in the block"}

This will produce the following result:

You are in the method
You are in the block
You are again back to the method

You are in the block

You also can pass parameters with the yield statement. Here is an example:

#!/usr/bin/ruby

def test
yield 5
puts "You are in the method test"
yield 100

end

test {|i| puts "You are in the block #{i}"}

This will produce the following result:

You are in the block 5
You are in the method test

You are in the block 100

Here, the yield statement is written followed by parameters. You can even pass
more than one parameter. In the block, you place a variable between two
vertical lines (||) to accept the parameters. Therefore, in the preceding code,
the yield 5 statement passes the value 5 as a parameter to the test block.

Now, look at the following statement:

test {|i| puts "You are in the block #{i}"}

Here, the value 5 is received in the variable i. Now, observe the following puts
statement:

puts "You are in the block #{i}"

@woria'spoint

70

Ruby

The output of this puts statement is:

You are in the block 5

If you want to pass more than one parameters, then the yield statement
becomes:

yield a, b

and the block is:

test {|a, b| statement}

The parameters will be separated by commas.

Blocks and Methods

You have seen how a block and a method can be associated with each other.
You normally invoke a block by using the yield statement from a method that
has the same name as that of the block. Therefore, you write:

#!/usr/bin/ruby

def test
yield
end

test{ puts "Hello world"}

This example is the simplest way to implement a block. You call the test block by
using the yield statement.

But if the last argument of a method is preceded by &, then you can pass a
block to this method and this block will be assigned to the last parameter. In
case both * and & are present in the argument list, & should come later.

#!/usr/bin/ruby

def test(&block)
block.call
end

test { puts "Hello World!"}

@woria'spoint

71

Ruby

This will produce the following result:

Hello World!

BEGIN and END Blocks

Every Ruby source file can declare blocks of code to be run as the file is being
loaded (the BEGIN blocks) and after the program has finished executing (the
END blocks).

#!/usr/bin/ruby

BEGIN {
BEGIN block code
puts "BEGIN code block"

END {
END block code
puts "END code block"

MAIN block code
puts "MAIN code block"

A program may include multiple BEGIN and END blocks. BEGIN blocks are
executed in the order they are encountered. END blocks are executed in reverse
order. When executed, the above program produces the following result:

BEGIN code block
MAIN code block
END code block

72

w., tutorialspoint

12. MODULES AND MIXINS

Modules are a way of grouping together methods, classes, and constants.
Modules give you two major benefits.

e Modules provide a namespace and prevent name clashes.
e Modules implement the mixin facility.

Modules define a namespace, a sandbox in which your methods and constants
can play without having to worry about being stepped on by other methods and
constants.

Syntax

module Identifier
statementl

statement2

Module constants are named just like class constants, with an initial uppercase
letter. The method definitions look similar, too: Module methods are defined just
like class methods.

As with class methods, you call a module method by preceding its name with the
module's name and a period, and you reference a constant using the module
name and two colons.

Example

#!/usr/bin/ruby

Module defined in trig.rb file

module Trig
PI = 3.141592654
def Trig.sin(x)
..

end

73

@morialspoint

Ruby

def Trig.cos(x)
..
end

end

We can define one more module with the same function name but different
functionality:

#!/usr/bin/ruby

Module defined in moral.rb file

module Moral
VERY_BAD = 0
BAD =1
def Moral.sin(badness)
...
end

end

Like class methods, whenever you define a method in a module, you specify the
module name followed by a dot and then the method name.

Ruby require Statement

The require statement is similar to the include statement of C and C++ and the
import statement of Java. If a third program wants to use any defined module, it
can simply load the module files using the Ruby require statement:

Syntax

require filename

Here, it is not required to give .rb extension along with a file name.

Example:

$LOAD_PATH << '.'

require 'trig.rb'’

@woria'spoint

74

Ruby

require 'moral’

y = Trig.sin(Trig::PI/4)
wrongdoing = Moral.sin(Moral::VERY_BAD)

Here we are using $LOAD_PATH << '."to make Ruby aware that included files
must be searched in the current directory. If you do not want to use
$LOAD_PATH then you can use require_relative to include files from a relative
directory.

IMPORTANT: Here, both the files contain the same function name. So, this will
result in code ambiguity while including in calling program but modules avoid
this code ambiguity and we are able to call appropriate function using module
name.

Ruby include Statement

You can embed a module in a class. To embed a module in a class, you use the
include statement in the class:

Syntax

include modulename

If a module is defined in a separate file, then it is required to include that file
using require statement before embedding module in a class.

Example
Consider the following module written in support.rb file.

module Week
FIRST DAY = "Sunday"
def Week.weeks_ in_month
puts "You have four weeks in a month"
end
def Week.weeks in_year
puts "You have 52 weeks in a year"
end

end

75

@wwialspo?nt

Ruby

Now, you can include this module in a class as follows:

#!/usr/bin/ruby
$LOAD_PATH << '.'

require "support”

class Decade
include Week
no_of yrs=10
def no_of months
puts Week::FIRST_DAY
number=10%*12
puts number
end
end
dl=Decade.new
puts Week::FIRST_DAY
Week.weeks_in_month

Week.weeks_in_year

dl.no_of_months

This will produce the following result:

Sunday
You have four weeks in a month
You have 52 weeks in a year

Sunday

120

Mixins in Ruby

Before going through this section, we assume you have the knowledge of Object
Oriented Concepts.

When a class can inherit features from more than one parent class, the class is
supposed to show multiple inheritance.

@woria'spoint

76

Ruby

Ruby does not support multiple inheritance directly but Ruby Modules have
another wonderful use. At a stroke, they pretty much eliminate the need for
multiple inheritance, providing a facility called a mixin.

Mixins give you a wonderfully controlled way of adding functionality to classes.
However, their true power comes out when the code in the mixin starts to
interact with code in the class that uses it.

Let us examine the following sample code to gain an understand of mixin:

module A
def al
end
def a2
end

end

module B
def bl
end
def b2
end

end

class Sample

include A

include B
def sl
end

end

samp=Sample.new
samp.al
samp.a2
samp.bl
samp.b2

samp.sl

77

@moviwsmﬁm

Ruby

Module A consists of the methods al and a2. Module B consists of the methods
bl and b2. The class Sample includes both modules A and B. The class Sample
can access all four methods, namely, al, a2, bl, and b2. Therefore, you can see
that the class Sample inherits from both the modules. Thus, you can say the
class Sample shows multiple inheritance or a mixin.

78

@moviwsmﬁm

13. STRINGS

A String object in Ruby holds and manipulates an arbitrary sequence of one or
more bytes, typically representing characters that represent human language.

The simplest string literals are enclosed in single quotes (the apostrophe
character). The text within the quote marks is the value of the string:

'This is a simple Ruby string literal’

If you need to place an apostrophe within a single-quoted string literal, precede
it with a backslash, so that the Ruby interpreter does not think that it terminates
the string:

"Won\'t you read O\'Reilly\'s book?'

The backslash also works to escape another backslash, so that the second
backslash is not itself interpreted as an escape character.

Following are the string-related features of Ruby.

Expression Substitution

Expression substitution is a means of embedding the value of any Ruby
expression into a string using #{ and }:

#!/usr/bin/ruby

X, Yy, z =12, 36, 72

puts "The value of x is #{ x }."

puts "The sum of x and y is #{ x + y }."
puts "The average was #{ (x +y + z)/3 }."

This will produce the following result:

The value of x is 12.

The sum of x and y is 48.

The average was 490.

79

@wtorialspoim

Ruby

General Delimited Strings

With general delimited strings, you can create strings inside a pair of matching
though arbitrary delimiter characters, e.g., !, (, {, <, etc., preceded by a
percent character (%). Q, g, and x have special meanings. General delimited
strings can be:

%{Ruby is fun.} equivalent to "Ruby is fun."
%Q{ Ruby is fun. } equivalent to " Ruby is fun. "
%q[Ruby is fun.] -equivalent to a single-quoted string

%x11s! equivalent to back tick command output "1ls°

Escape Characters

Following table is a list of escape or non-printable characters that can be
represented with the backslash notation.

NOTE: In a double-quoted string, an escape character is interpreted; in a single-
quoted string, an escape character is preserved.

Backslash Hexadecimal Description
notation character

\a 0x07 Bell or alert

\b 0x08 Backspace

\CX Control-x

\C-x Control-x

\e Ox1b Escape

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n 0x0a Newline

\nnn Octal notation, where n is in the range 0.7

80

'@ tutorialspoint

Ruby

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\X Character x

\xnn Hexadecimal notation, where n is in the

range 0.9, a.f, or A.F

Character Encoding

The default character set for Ruby is ASCII, whose characters may be
represented by single bytes. If you use UTF-8, or another modern character set,
characters may be represented in one to four bytes.

You can change your character set using $KCODE at the beginning of your
program, like this:

$KCODE = 'u'’

Following are the possible values for $KCODE.

Code Description
a ASCII (same as none). This is the default.
e EUC.
n None (same as ASCII).
u UTF-8.

String Built-in Methods

We need to have an instance of String object to call a String method. Following
is the way to create an instance of String object:

@wcorialspoint

81

Ruby

new [String.new(str="")]

This will return a new string object containing a copy of str. Now, using str
object, we can all use any available instance methods. For example:

#!/usr/bin/ruby

myStr = String.new("THIS IS TEST")

foo = myStr.downcase

puts "#{foo}"

This will produce the following result:

this is test

Following are the public String methods (Assuming str is a String object):

SN Methods with Description

1 str % arg

Formats a string using a format specification. arg must be an array if it
contains more than one substitution. For information on the format
specification, see sprintf under "Kernel Module."

2 str * integer

Returns a new string containing integer times str. In other words, str is
repeated integer imes.

3 str + other_str

Concatenates other_str to str.

4 str << obj

Concatenates an object to str. If the object is a Fixnum in the range
0.255, it is converted to a character. Compare it with concat.

5 str <=> other_str

Compares str with other_str, returning -1 (less than), 0 (equal), or 1

@wcorialspoint

82

10

11

12

13

14

15

Ruby

(greater than). The comparison is case-sensitive.

str == obj

Tests str and obj for equality. If obj is not a String, returns false; returns
true if str <=> obj returns 0.

str =~ obj

Matches str against a regular expression pattern obj. Returns the position
where the match starts; otherwise, false.

str.capitalize

Capitalizes a string.

str.capitalize!

Same as capitalize, but changes are made in place.

str.casecmp

Makes a case-insensitive comparison of strings.

str.center

Centers a string.

str.chomp

Removes the record separator ($/), usually \n, from the end of a string.
If no record separator exists, does nothing.

str.chomp!

Same as chomp, but changes are made in place.

str.chop

Removes the last character in str.

str.chop!

Same as chop, but changes are made in place.

83

@wcorialspoint

16

17

18

19

20

21

22

23

24

25

Ruby

str.concat(other_str)

Concatenates other_str to str.

str.count(str, ...)

Counts one or more sets of characters. If there is more than one set of
characters, counts the intersection of those sets

str.crypt(other_str)

Applies a one-way cryptographic hash to str. The argument is the salt
string, which should be two characters long, each character in the range
a.z, A.Z, 0.9, . or/.

str.delete(other_str, ...)

Returns a copy of str with all characters in the intersection of its
arguments deleted.

str.delete!(other_str, ...)

Same as delete, but changes are made in place.

str.downcase

Returns a copy of str with all uppercase letters replaced with lowercase.

str.downcase!

Same as downcase, but changes are made in place.

str.dump

Returns a version of str with all nonprinting characters replaced by \nnn
notation and all special characters escaped.

str.each(separator=$/) { |substr| block }

Splits str using argument as the record separator ($/ by default), passing
each substring to the supplied block.

str.each_byte { |fixnum]| block }

Passes each byte from str to the block, returning each byte as a decimal

84

@Wtorialspoint

26

27

28

29

30

31

32

Ruby

representation of the byte.

str.each_line(separator=$/) { |substr| block }

Splits str using argument as the record separator ($/ by default), passing
each substring to the supplied block.

str.empty?

Returns true if str is empty (has a zero length).

str.eql?(other)

Two strings are equal if they have the same length and content.

str.gsub(pattern, replacement) [or]
str.gsub(pattern) { |[match| block }

Returns a copy of str with all occurrences of pattern replaced with either
replacement or the value of the block. The pattern will typically be a
Regexp; if it is a String then no regular expression metacharacters will be
interpreted (that is, /\d/ will match a digit, but "\d"' will match a backslash
followed by a 'd")

str[fixnum] [or] str[fixnum,fixnum] [or] str[range] [or]
str[regexp] [or] str[regexp, fixnum] [or] str[other_str]

References str, using the following arguments: one Fixnum, returns a
character code at fixnum; two Fixnums, returns a substring starting at an
offset (first fixnum) to length (second fixnum); range, returns a substring
in the range; regexp returns portion of matched string; regexp with
fixnum, returns matched data at fixnum; other_str returns substring
matching other_str. A negative Fixnum starts at end of string with -1.

str[fixnum] = fixnum [or] str[fixnum] = new_str [or] str[fixnum,
fixnum] = new_str [or] str[range] = aString [or] str[regexp]
=new_str [or] str[regexp, fixnum] =new_str [or] str[other_str]
= new_str]

Replace (assign) all or part of a string. Synonym of slice!.

str.gsub!(pattern, replacement) [or] str.gsub!(pattern) { |match|
block }

Performs the substitutions of String#gsub in place, returning str, or nil if

85

@mtorjalspoint

33

34

35

36

37

38

39

40

Ruby

no substitutions were performed.

str.hash

Returns a hash based on the string's length and content.

str.hex

Treats leading characters from str as a string of hexadecimal digits (with
an optional sign and an optional 0x) and returns the corresponding
number. Zero is returned on error.

str.include? other_str [or] str.include? fixnum

Returns true if str contains the given string or character.

str.index(substring [, offset]) [or]
str.index(fixnum [, offset]) [or]
str.index(regexp [, offset])

Returns the index of the first occurrence of the given substring, character
(fixnum), or pattern (regexp) in str. Returns nil if not found. If the
second parameter is present, it specifies the position in the string to
begin the search.

str.insert(index, other_str)

Inserts other_str before the character at the given index, modifying str.
Negative indices count from the end of the string, and insert after the
given character. The intent is to insert a string so that it starts at the
given index.

str.inspect

Returns a printable version of str, with special characters escaped.

str.intern [or] str.to_sym

Returns the Symbol corresponding to str, creating the symbol if it did not
previously exist.

str.length

Returns the length of str. Compare size.

86

@Wtorialspoint

41

42

43

44

45

46

47

48

49

Ruby

str.ljust(integer, padstr="")

If integer is greater than the length of str, returns a new String of length
integer with str left-justified and padded with padstr; otherwise, returns
str.

str.Istrip

Returns a copy of str with leading whitespace removed.

str.Istrip!

Removes leading whitespace from str, returning nil if no change was
made.

str.match(pattern)

Converts pattern to a Regexp (if it isn't already one), then invokes its
match method on str.

str.oct

Treats leading characters of str as a string of octal digits (with an optional
sign) and returns the corresponding number. Returns 0 if the conversion
fails.

str.replace(other_str)

Replaces the contents and taintedness of str with the corresponding
values in other_str.

str.reverse

Returns a new string with the characters from str in reverse order.

str.reverse!

Reverses str in place.

str.rindex(substring [, fixnum]) [or]
str.rindex(fixnum [, fixnum]) [or]
str.rindex(regexp [, fixnum])

Returns the index of the last occurrence of the given substring, character
(fixnum), or pattern (regexp) in str. Returns nil if not found. If the

87

@Wtorialspoint

50

51

52

53

54

Ruby

second parameter is present, it specifies the position in the string to end
the search.characters beyond this point won't be considered.

str.rjust(integer, padstr="")

If integer is greater than the length of str, returns a new String of length
integer with str right-justified and padded with padstr; otherwise, returns
str.

str.rstrip

Returns a copy of str with trailing whitespace removed.

str.rstrip!

Removes trailing whitespace from str, returning nil if no change was
made.

str.scan(pattern) [or]
str.scan(pattern) { |match, ...| block }

Both forms iterate through str, matching the pattern (which may be a
Regexp or a String). For each match, a result is generated and either
added to the result array or passed to the block. If the pattern contains
no groups, each individual result consists of the matched string, $&. If
the pattern contains groups, each individual result is itself an array
containing one entry per group.

str.slice(fixnum) [or] str.slice(fixnum, fixnum) [or]
str.slice(range) [or] str.slice(regex