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Myself

Born in Oxford.

Father a physicist, lecturer at Oxford.

Oxford High School for Girls.

Somerville College, BA mathematics.

PhD Harvard under George Mackey.

Postdocs in Berkeley and Cambridge.

Warwick University since 1979.

Worked for some years

with Joan Birman

(Columbia).



Myself and Women in Maths

As a graduate student about 1974, I went to a meeting of Boston

Women in Maths. The Boston group became part of the USA

based Association for Women in Mathematics.

In 1986, I was part of a small group of European women who

founded a similar organisation in Europe, European Women in

Mathematics.

Last year, the then President of the IMU, Ingrid Daubechies, led

an initiative to form an International Women in Maths section of

the IMU website. This is an international repository of information

about and for female mathematicians.

We were absolutely delighted that the launch of the website

coincided with the announcement that Maryam Mirzakhani had

become the first woman ever to be awarded the Fields medal.

https://sites.google.com/site/awmmath/home
http://www.europeanwomeninmaths.org
http://www.europeanwomeninmaths.org
http://www.mathunion.org/wim/home/
https://blog.wias-berlin.de/imu-wim-news/2014/08/


Mirzakhani’s Starting Point

Born in Tehran, Iran.

High school in Tehran: A special technological

school for talented students.

Gold medals at two International Mathematical Olympiads.

Sharif University of Technology, Tehran, BSc Mathematics.

PhD at Harvard under Curt McMullen, 2004.

Clay Fellowship and Assistant Professor at Princeton.

Professor at Stanford University since 2008.

I am going to be talking about the starting point of the remarkable

work in Maryam’s PhD thesis.



McShane’s Identity

∑
γ

1

1 + e`(γ)
= 1/2

where the sum is over all

simple closed curves on

a hyperbolic once punc-

tured torus and `(γ) is

the length of the geodesic

representative in the ho-

motopy class of γ.

Greg McShane, Univ. de Grenoble

Ph D Warwick 1992:

A remarkable formula for lengths of

curves on surfaces

Note: A curve is called simple if it has no self-intersections.



The meaning of McShane’s identity: the surface

A flat (Euclidean) torus is

one which looks everywhere

like a piece of Euclidean

plane. It is made by gluing

up the sides of a parallelo-

gram or rectangle.

Likewise a hyperbolic torus is one which looks everywhere like a piece of

hyperbolic plane. Such a torus has to have one missing point, a puncture

or ‘cusp’. The curve h is called a “horocycle”. Horocycles are important

in what we do.



The hyperbolic plane

A surface with constant negative curvature is called hyperbolic. There is

a unique simply connected surface of constant negative curvature −1. It

can be represented as either the unit disk D with metric

ds = |dz|/2(1− |z|2), or the upper half plane H with metric

ds = |dz|/(Imz)2. We will use both models. Both are called ‘the

hyperbolic plane’. The main points to remember are:

I The boundary is infinitely far from the ‘middle’ – either i ∈ H or

O ∈ D.

I Geodesics are represented by circular arcs perpendicular to the

boundary. In H, vertical straight lines are a special case.

I Distances are exponentially distorted as you move towards the

boundary. If points P,Q are hyperbolic distance 1 apart and

distance K from the ‘middle’ then their Euclidean distance is

O(e−K).



The meaning of McShane’s identity: the curves

The Euclidean plane is the universal cover of

the flat torus. Every closed geodesic loop on

the torus is the projection of a line of rational

slope on the plane. All parallel lines project

to the a family of homotopic geodesics of

equal length.

The universal cover of a hyperbolic once

punctured torus is the hyperbolic plane. Ho-

motopy classes of closed simple curves are

the same as on the flat torus, but there is

only one closed geodesic in each class. Its

length is denoted `(γ).



Plan of talk

I Proof of McShane’s identity.

I The Birman-Series Theorem.

I What Mirzakhani did with McShane’s identity.

I Some consquences.

I Some of her further results.

Recall: we want to prove that∑
γ

1

1 + e`(γ)
= 1/2

where the sum is over all simple closed curves on a hyperbolic once

punctured torus T and `(γ) is the length of the geodesic

representative in the homotopy class of γ.



Proof of McShane’s identity: Vertical geodesics

On the punctured torus T , consider ‘vertical’ geodesics which emanate

from the cusp and cut a horocycle H round the cusp perpendicularly.

Typically, such a geodesic cuts itself, forming a loop γ in one of the

countably many homotopy classes of closed curves we met above.

Now cut T open along the geodesic representative of γ. This makes a

sphere with two holes of equal length `(γ) and a puncture (cusp). On

each side, there are 4 special vertical geodesics which spiral into these

two boundary curves, one pair from each side.

Any vertical geodesic α which meets H between a spiralling pair, cuts

itself creating a curve homotopic to γ. Such a curve α is not simple.



Proof of McShane’s identity: The gaps

We can normalise so that H has length 1 and the part of the

surface ‘above’ H has area 4. It can be calculated that the

distance along H between the two spiralling curves is 1/(1 + e`(γ)).

For each homotopy class of simple closed curves on T , we have

found a ‘gap’ along H such that no vertical geodesic from the

puncture which meets H in the gap can be simple.1 Moreover any

vertical curve meeting the gap forms a loop homotopic to γ, so

gaps corresponding to distinct γ are disjoint.

There is a second gap corresponding to γ, coming from the vertical

curves which spiral around γ in the opposite direction.

We have used up all the possible homotopy classes of loops, so any

other vertical line α from the cusp which does not cut H in one of

the gaps must be simple.

1Modulo the one exceptional curve from cusp to itself mentioned above.



Proof of McShane’s identity: The Birman-S. theorem
We claim that the set of all points in H which are outside the gaps

has measure zero. This is a special case of the Birman-S. theorem,

which states that the set of all points on a hyperbolic surface

covered by a simple curve has Hausdorff dimension zero.

The proof relies on looking

carefully at how a simple

geodesic cuts a fundamental re-

gion R which glues up to make

the torus. We can take the R

to be a quadrilateral with four

vertices on the boundary at ∞.

The images of R under the covering group tessellate the hyperbolic

plane.



Patterns of crossings.

Any simple geodesic cuts R

in a very special pattern, cor-

responding to the pattern in

which lines of a given slope cut

a square. There are only 4 basic

possible arrangements.

Consider the first n crossings of a vertical geodesic which crosses

in the pattern shown. Given the number of strands meeting each

side of the square, there is a unique way of joining them up to

recover the path up to homotopy. Thus there are at most O(n)

possible arrangements.



Proof of McShane’s identity: The Birman-S. theorem

continued.

No simple geodesic can pass too near the cusp (because if a

geodesic goes too near the cusp it must loop round and cut itself).

So every time an arc of a geodesic crosses a copy of the

fundamental domain in the universal cover, it picks up a definite

length d > 0. So if we follow a vertical line α from it first crossing

of the horocycle H through n segments, its length is at least nd.

Suppose the first n segments of two vertical simple geodesics α, α′

follow the same pattern. Then the first n sides of the tessellation

they cut are the same. The nth side must be at distance at least

dn from H, hence has Euclidean radius at most O(e−dn). Thus

α, α′ cut H at distance at most O(e−dn) apart.



Proof of McShane’s identity: Finishing the proofs.

Proof of the B-S theorem. Let S be the set of points in H met by

a simple vertical geodesic. We have just shown that S can be can

covered by O(n) intervals each of length O(e−dn). Since

ne−dn → 0 as n→∞, this proves that S can be covered by

intervals of arbitrarily small size. Hence S has measure zero.

Proof of McShane’s identity. Let H = S ∪NS be the partition of

H into points covered by simple and non-simple vertical geodesics

respectively. We showed that NS is covered by disjoint gaps of

length 1/1 + e`(γ), with 2 gaps for each γ.

So NS has total length 2
∑

γ 1/1 + e`(γ). Since H has length 1

and S has length 0, we have shown that∑
γ

1

1 + e`(γ)
= 1/2.



Background: Teichmüller space

The space of all possible hyperbolic structures on an OPT is called

Teichmüller space T . One way to describe T uses Fenchel-Nielsen

coodinates.

Fix a simple geodesic loop γ of length `. Cut T open along γ then glue

back the cut open surface with a twist t. The Fenchel-Nielsen coodinates

of T are (`, t)

Twisting once around γ gives a new torus with coordinates (`, t+ `). It

looks the same as before, but curves transverse to γ all change length.

This is called a Dehn twist Dγ about γ. Dγ is a diffeomorphism of T .

Fix a curve δ transverse to γ so that γ, δ generate π1(T ). Then

Dγ(δ) = γδ in π1(T ). So Dγ changes the marking of T : it induces an

isometry of T which changes the labels of the curves.



More background: Moduli space
Teichmüller space describes marked tori, where we label all the closed

curves (equivalently specify which curves are the generators). If we forget

the labelling, we get moduli spaceM. M is the quotient of T by the

action of the mapping class group Mod , which you can think of as the

group of possible changes of markings, generated by all possible Dehn

twists.

There is a natural volume element d`∧ dt on T called the Weil-Petersson

volume. Luckily, this is invariant under the action of Mod , hence

independent of the choice of γ. So it induces a volume on moduli space

M.

Mirzakhani found a very clever way to calculate V ol(M). The sum in

McShane’s identity is over all simple geodesics so it doesn’t depend on

the marking. So if you want to find V ol(M) you can integrate over M.

Since the RHS of the identity is constant, this would give a formula for

V ol(M).



What Mirzakhani did: Setting up the integration
Note that McShane’s identity holds on any hyperbolic once punctured

torus.

The term 1/(1 + e`(γ)) in McShane’s identity depends on γ, but not on

the twist t and hence not on the marking of the curves which cross γ. So

Mirzakhani integrated over a space M∗ intermediate between T and M.

In this space we record the labelled curve γ but we don’t label the

transverse curves which cross it. M∗ is the set of pairs (X, γ) where

X ∈M and γ is a simple closed curve on T .

Fix γ = γ0 and let Stab(γ0) be the stabiliser of γ0 in Mod . Stab(γ0)

consists of the powers of the twist Dγ0 . Dγ0 acts on T by translation by

`.

We can identify M∗ with the subset of T with Fenchel-Nielsen

coordinates {(`, t) : 0 < ` <∞, 0 ≤ t < `(γ)}.

We can identify M with a choice of fundamental domain ∆ ⊂M∗ for

the action of Mod on T . Then we can choose coset representatives

gStab(γ0) ∈ Γ = Mod /Stab(γ0) so that M∗ = ∪g∆.



What Mirzakhani did: The integration trick

For any simple closed curve on T , set f(γ) = 1/1 + e`(γ). Since a point

in M∗ is a pair (X, γ), we see that f(γ) is a function on M∗. On the

other hand,
∑
γ f(γ) can be viewed as a function on M. Note that∑

γ f(γ) =
∑
g∈Γ f(g · γ0) where Γ = Mod /Stab(γ0).

Identifying M with ∆ ⊂M∗ as before, we have:∫
M

∑
γ

f(γ) =

∫
∆

∑
γ

f(γ) =
∑
g∈Γ

∫
∆

f(g · γ0) =
∑
g∈Γ

∫
g∆

f(γ0)

=

∫
M∗

f(γ0) =

∫ ∞
0

∫ `(γ0)

t=0

f(γ0)dtd` =

∫ ∞
0

`/(1 + e`)d`.

On the other hand, by McShane’s identity
∫
M

∑
γ f(γ) = 1/2V ol(M).

So all that remains is to work out
∫∞

0
`/(1 + e`)d`.



The final step!

We want calculate V ol(M) = I =
∫∞

0
`/(1 + e`)d`.

Integrate by parts to get I =
∫∞

0
log(1 + e−`)d`.

Expand the integrand as a Taylor series to get

I =

∞∑
n=1

∫ ∞
0

(−1)n+1(e−n`/n)d` =

∞∑
n=1

(−1)n+1/n2 = π2/12,

where the last identity is found either by Fourier series or complex

analysis.

(The Fourier series for x2 on (−π, π) is

x2 = π2/3− 4(cosx− cos 2x

22
+

cos 3x

32
− . . .).

Now substitute x = 0.)

Thus we conclude: V ol(M) = π2/6.



Mirzakhani’s further development of her idea
I Extended McShane’s identity to hyperbolic surfaces of any genus

with boundary curves of arbitrary lengths L1, . . . , Ln. Found

recursive formulae to calculate V ol(M) for the corresponding

moduli spaces; showed it is polynomial in L1, . . . , Ln with

coefficients which rational multiples of powers of π.

I Let X be a hyperbolic surface of genus g. Used the volume

integration to show that the number of simple closed curves on X

of length at most L is asymptotic to cXL
6g−6. (Birman-S methods

prove the upper bound, but not the lower.)

The method actually gives asymptotic formulae for the frequencies

of different topological types of simple curves. Eg: There is chance

1/7 that a random simple closed curve on a genus 2 surface cuts it

into two one holed tori.

I Also used the recursive volume formulae to give a completely new

proof of the Kontsevich-Witten conjecture about intersection

numbers between certain line bundles over M.



Other results by Mirzakhani

I Complex geodesics in moduli space are algebraic varieties.

I Classified orbits and ergodic invariant measures of SL(2,R) action

on the tangent space to T .

I Applications to billiards.

I Dynamics on moduli space: Thurston’s earthquake flow – the flow

induced by Dehn twisting along either curves or laminations – is

ergodic on the space of laminations as a space over moduli space.

For more information and comment about Maryam, see the IMU WIM

webpages (under News, August 2014) and in particular for a good blog

about her work see Mathoverflow, linked to the bottom of the IMU news

page here.

https://blog.wias-berlin.de/imu-wim-news/2014/08/
https://blog.wias-berlin.de/imu-wim-news/2014/08/
http://mathoverflow.net/questions/199212/maryam-mirzakhanis-works

