

Tcl/Tk

i

About the Tutorial

Tcl is a general purpose multi-paradigm system programming language. It is a scripting

language that aims at providing the ability for applications to communicate with each

other.

On the other hand, Tk is a cross platform widget toolkit used for building GUI in many

languages.

This tutorial covers various topics ranging from the basics of the Tcl/ Tk to its scope in

various applications.

Audience

This tutorial is designed for all those individuals who are looking for a starting point of

learning Tcl/ Tk. Therefore, we cover all those topics that are required for a beginner and

an advanced user.

Prerequisites

Before proceeding with this tutorial, it is advisable for you to understand the basic concepts

of computer programming. This tutorial is self-contained and you will be able to learn

various concepts of Tcl/Tk even if you are a beginner. You just need to have a basic

understanding of working with a simple text editor and command line.

Disclaimer & Copyright

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute, or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness, or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Tcl/Tk

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Disclaimer & Copyright ... i

Table of Contents .. ii

1. TCL – OVERVIEW .. 1

Features of Tcl ... 1

Applications... 1

2. TCL – ENVIRONMENT SETUP .. 2

Local Environment Setup ... 2

Text Editor ... 2

The Tcl Interpreter ... 3

Installation on Windows .. 3

Installation on Linux .. 3

Installation on Debian based Systems ... 4

Installation on Mac OS X.. 4

Installation from Source Files .. 4

3. TCL – SPECIAL VARIABLES ... 6

Examples for using Tcl Special Variables .. 7

4. TCL – BASIC SYNTAX ... 9

First Tcl Program .. 9

Comments ... 9

Identifiers .. 10

Reserved Words .. 10

Tcl/Tk

iii

Whitespace in Tcl .. 11

5. TCL – COMMANDS ... 12

Command Substitution .. 13

Variable Substitution ... 13

Backslash Substitution ... 13

6. TCL – DATA TYPES .. 14

Simple Tcl Objects ... 14

String Representations .. 15

List ... 15

Associative Array ... 16

Handles ... 16

7. TCL – VARIABLES .. 17

Variable Naming .. 17

Dynamic Typing ... 17

Mathematical Expressions ... 18

8. TCL – OPERATORS .. 20

Arithmetic Operators... 20

Relational Operators ... 22

Logical Operators .. 23

Bitwise Operators .. 25

Ternary Operator ... 27

Operators Precedence in Tcl .. 27

9. TCL – DECISIONS .. 30

Tcl - If Statement ... 31

Tcl – If else Statement ... 32

Tcl/Tk

iv

The if...else if...else Statement .. 34

Tcl – Nested If Statement .. 35

Tcl – Switch Statement .. 36

Tcl – Nested Switch Statement .. 39

The? : Operator ... 40

10. TCL – LOOPS ... 42

Tcl – While Loop .. 43

Tcl – For Loops ... 44

Tcl – Nested Loops ... 46

Loop Control Statements ... 48

Tcl – Break Statement .. 48

Tcl – Continue Statement .. 50

The Infinite Loop ... 51

11. TCL – ARRAYS ... 52

Size of Array .. 52

Array Iteration ... 52

Associative Arrays ... 53

Indices of Array ... 53

Iteration of Associative Array .. 54

12. TCL – STRINGS .. 55

String Representations .. 55

String Escape Sequence ... 55

String Command .. 56

13. TCL – LISTS ... 63

Creating a List .. 63

Tcl/Tk

v

Appending Item to a List .. 64

Length of List ... 64

List Item at Index ... 64

Insert Item at Index ... 65

Replace Items at Indices .. 65

Set Item at Index ... 66

Transform List to Variables .. 66

Sorting a List .. 66

14. TCL – DICTIONARY .. 68

Size of Dict ... 68

Dictionary Iteration ... 69

Value for Key in Dict .. 69

All Keys in Dict ... 70

All Values in Dict .. 70

Key Exists in Dict .. 70

15. TCL – PROCEDURES .. 72

Procedures with Multiple Arguments .. 72

Procedures with Variable Arguments .. 73

Procedures with Default Arguments .. 73

Recursive Procedures .. 74

16. TCL – PACKAGES .. 75

Creating Package ... 75

17. TCL – NAMESPACES ... 77

Creating Namespace .. 77

Nested Namespaces .. 77

Tcl/Tk

vi

Importing and Exporting Namespace ... 78

Forget Namespace ... 79

18. TCL – FILE I/O ... 80

Opening Files ... 80

Closing a File .. 80

Writing a File ... 81

Reading a File .. 81

19. TCL – ERROR HANDLING .. 83

Error Syntax ... 83

Catch Syntax .. 83

20. TCL – BUILT-IN FUNCTIONS .. 85

Math Functions ... 85

System Functions ... 87

21. TCL – REGULAR EXPRESSIONS .. 90

Syntax ... 90

Multiple Patterns .. 91

Switches for Regex Command ... 92

22. TK – OVERVIEW .. 94

Features of Tk .. 94

Applications Built in Tk .. 94

23. TK – ENVIRONMENT ... 95

The Tk Interpreter ... 95

Installation on Windows .. 95

Installation on Linux .. 96

Tcl/Tk

vii

Installation on Debian Based Systems ... 96

Installation on Mac OS X.. 97

Installation from Source Files .. 97

Examples for Using Tcl Special Variables ... 99

24. TK – WIDGETS OVERVIEW .. 101

Creating a Widget .. 101

Widget Naming Convention ... 101

Color Naming Convention .. 101

Dimension Convention .. 101

Common Options .. 102

25. TK – BASIC WIDGETS .. 105

Tk - Label Widget ... 105

Tk – Button Widget .. 106

Tk – Entry Widgets ... 109

Tk – Message Widget ... 110

Tk – Text Widget .. 111

Tk – Top Level Widgets .. 113

26. TK – LAYOUT WIDGETS... 115

Tk – Frame Widget... 115

Tk – Place Widget .. 116

Tk – Pack Widget ... 117

Tk – Grid Widget .. 119

27. TK – SELECTION WIDGETS .. 122

Tk – Radio Button Widget .. 122

Tk – Check Button Widget ... 123

Tcl/Tk

viii

Tk – Menu Widget ... 125

Tk – Listbox Widget ... 127

28. TK – CANVAS WIDGETS .. 131

Options .. 131

Widgets for Drawing in Canvas .. 132

Tk – Canvas Line Widget .. 132

Tk - Canvas Arc Widget .. 134

Tk – Canvas Rectangle Widget ... 135

Tk – Canvas Oval Widget ... 136

Tk – Canvas Polygon Widget .. 137

Tk - Canvas Text Widget .. 138

Tk – Canvas Bitmap Widget ... 139

Tk – Canvas Image Widget ... 140

29. TK – MEGA WIDGETS ... 143

Tk – Dialog Widget... 143

Tk – Spinbox Widget .. 144

Tk – Combobox Widget ... 145

Tk – Notebook Widget ... 146

Tk – Progressbar Widget .. 147

Tk – Treeview Widget .. 148

Tk – Scrollbar Widget ... 150

Tk – Scale Widget .. 151

30. TK – FONTS .. 154

Options .. 154

31. TK – IMAGES .. 156

Tcl/Tk

ix

Options .. 156

32. TK – EVENTS ... 159

Event Binding .. 161

33. TK – WINDOWS MANAGER .. 162

Creating Window ... 164

Destroying Window ... 164

34. TK – GEOMETRY MANAGER ... 165

Positioning and Sizing .. 165

Grid Geometry ... 165

Tcl is shortened form of Tool Command Language. John Ousterhout of the University of

California, Berkeley, designed it. It is a combination of a scripting language and its own

interpreter that gets embedded to the application, we develop with it.

Tcl was developed initially for Unix. It was then ported to Windows, DOS, OS/2, and Mac

OSX. Tcl is much similar to other unix shell languages like Bourne Shell (Sh), the C Shell

(csh), the Korn Shell (sh), and Perl.

It aims at providing ability for programs to interact with other programs and also for acting

as an embeddable interpreter. Even though, the original aim was to enable programs to

interact, you can find full-fledged applications written in Tcl/Tk.

Features of Tcl

The features of Tcl are as follows:

 Reduced development time.

 Powerful and simple user interface kit with integration of TK.

 Write once, run anywhere. It runs on Windows, Mac OS X, and almost on every

Unix platform.

 Quite easy to get started for experienced programmers; since, the language is so

simple that they can learn Tcl in a few hours or days.

 You can easily extend existing applications with Tcl. Also, it is possible to include

Tcl in C, C++, or Java to Tcl or vice versa.

 Have a powerful set of networking functions.

 Finally, it’s an open source, free, and can be used for commercial applications

without any limit.

Applications

Tcl is a general-purpose language and you can find Tcl everywhere. It includes,

 Scalable websites that are often backed by databases.

 High performance web servers build with TclHttpd.

 Tcl with CGI based websites.

 Desktop GUI applications.

 Embedded applications.

1. Tcl – Overview

Tcl/Tk

2

Try it Option

You really do not need to set up your own environment to start learning Tcl

programming. Reason is very simple, we already have set up Tcl Programming

environment online, so that you can execute all the Tcl examples online at the same

time when you are doing your theory work. This gives you confidence in what you

are reading and to check the result with different options. Feel free to modify any

example and execute it online.

Try following example using ‘Try it’ option available at the top right corner of the

sample code box:

 #!/usr/bin/tclsh

 puts "Hello, World!"

For most of the Tcl examples given in this tutorial, you will find Try it option, so just

make use of it and enjoy your learning. For Tk examples, you will need to have a

console to see graphical results; so, we recommend to have your own Tk setup.

Local Environment Setup

If you are willing to set up your environment for Tcl, you need the following two software

applications available on your computer:

(a) Text Editor

(b) Tcl Interpreter.

Text Editor

This will be used to type your program. Examples of a few text editors include Windows

Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of a text editor can vary on different operating systems. For example,

Notepad will be used on Windows, and vim or vi can be used on windows as well as Linux

or UNIX.

The files you create with your text editor are called source files and contain program source

code. The source files for Tcl programs are named with the extension ".tcl".

Before starting your programming, make sure you have one text editor in place and you

have enough experience to write a computer program, save it in a file, build it, and finally

execute it.

2. Tcl – Environment Setup

Tcl/Tk

3

The Tcl Interpreter

It is just a small program that enables you to type Tcl commands and have them executed

line by line. It stops execution of a tcl file, in case, it encounters an error unlike a compiler

that executes fully.

Let’s have a helloWorld.tcl file as follows. We will use this as a first program, we run on a

platform you choose.

#!/usr/bin/tclsh

puts "Hello World!"

Installation on Windows

Download the latest version for windows installer from the list of Active Tcl binaries

available. The active Tcl community edition is free for personal use.

Run the downloaded executable to install the Tcl, which can be done by following the on

screen instructions.

Now, we can build and run a Tcl file say helloWorld.tcl by switching to folder containing

the file using ‘cd’ command and then execute the program using the following steps

C:\Tcl> tclsh helloWorld.tcl

We can see the following output.

C:\Tcl> helloWorld

C:\Tcl is the folder, I am using to save my samples. You can change it to the folder in

which you have saved Tcl programs.

Installation on Linux

Most of the Linux operating systems come with Tcl inbuilt and you can get started right

away in those systems. In case, it’s not available, you can use the following command to

download and install Tcl-Tk.

$ yum install tcl tk

Now, we can build and run a Tcl file say helloWorld.tcl by switching to folder containing

the file using ‘cd’ command and then execute the program using the following steps:

$ tclsh helloWorld.tcl

We can see the following output:

$ hello world

Tcl/Tk

4

Installation on Debian based Systems

In case, it’s not available in your OS, you can use the following command to download and

install Tcl-Tk:

$ sudo apt-get install tcl tk

Now, we can build and run a Tcl file say helloWorld.tcl by switching to folder containing

the file using ‘cd’ command and then execute the program using the following steps:

$ tclsh helloWorld.tcl

We can see the following output:

$ hello world

Installation on Mac OS X

Download the latest version for Mac OS X package from the list of Active Tcl binaries

available. The active Tcl community edition is free for personal use.

Run the downloaded executable to install the Active Tcl, which can be done by following

the on screen instructions.

Now, we can build and run a Tcl file say helloWorld.tcl by switching to folder containing

the file using ‘cd’ and then execute the program using the following steps:

$ tclsh helloWorld.tcl

We can see the following output:

$ hello world

Installation from Source Files

You can use the option of installing from source files when a binary package is not

available. It is generally preferred to use Tcl binaries for Windows and Mac OS X, so only

compilation of sources on unix based system is shown below.

 Download the source files.

 Now, use the following commands to extract, compile, and build after switching to

the downloaded folder.

$ tar zxf tcl8.6.1-src.tar.gz

$ cd tcl8.6.1

$ cd unix

$./configure —prefix=/opt —enable-gcc

$ make

Tcl/Tk

5

$ sudo make install

Note: Make sure, you change the file name to the version you downloaded on commands

1 and 2 given above.

Tcl/Tk

6

In Tcl, we classify some of the variables as special variables and they have a predefined

usage/functionality. The list of specials variables is listed below.

Special

Variable
Description

argc Refers to a number of command-line arguments.

argv Refers to the list containing the command-line arguments.

argv0
Refers to the file name of the file being interpreted or the name by

which we invoke the script.

env
Used for representing the array of elements that are environmental

variables.

errorCode Provides the error code for last Tcl error.

errorInfo Provides the stack trace for last Tcl error.

tcl_interactive
Used to switch between interactive and non-interactive modes by

setting this to 1 and 0 respectively.

tcl_library Used for setting the location of standard Tcl libraries.

tcl_pkgPath
Provides the list of directories where packages are generally

installed.

tcl_patchLevel Refers to the current patch level of the Tcl interpreter.

tcl_platform
Used for representing the array of elements with objects including

byteOrder, machine, osVersion, platform, and os.

tcl_precision

Refers to the precision i.e. number of digits to retain when

converting to floating-point numbers to strings. The default value is

12.

tcl_prompt1 Refers to the primary prompt.

tcl_prompt2 Refers to the secondary prompt with invalid commands.

tcl_rcFileName Provides the user specific startup file.

tcl_traceCompile
Used for controlling the tracing of bytecode compilation. Use 0 for

no output, 1 for summary, and 2 for detailed.

tcl_traceExec
Used for controlling the tracing of bytecode execution. Use 0 for no

output, 1 for summary, and 2 for detailed.

tcl_version Returns the current version of the Tcl interpreter.

The above special variables have their special meanings for the Tcl interpreter.

3. Tcl – Special Variables

Tcl/Tk

7

Examples for using Tcl Special Variables

Let's see some examples for special variables.

Tcl Version

#!/usr/bin/tclsh

puts $tcl_version

When you run the program, you will get a similar output as shown below:

8.5

Tcl Environment Path

#!/usr/bin/tclsh

puts $env(PATH)

When you run the program, you will get a similar output as shown below:

/web/com/GNUstep/Tools:/usr/GNUstep/Local/Tools:/usr/GNUstep/System/Tools:/usr/

local/sml/bin:/usr/local/flex/bin:/usr/local/gcc-

4.8.1/bin:/usr/share/java:.:/usr/share/java:/usr/lib/jvm/java/lib:/usr/lib/jvm/

java/jre/lib:/usr/local/bin:/usr/local/mozart/bin:/usr/local/go/bin:/usr/local/

factor/:/usr/local/groovy-2.1.7/bin:/opt/Pawn/bin/:/usr/local/icon-

v950/bin:/usr/local/lib/mono/4.0:/usr/lib64/qtC.3/bin:/usr/local/bin:/bin:/usr/

bin:/usr/local/sbin:/usr/sbin:/sbin:/opt/Pawn/bin:/usr/local/dart/bin:/usr/loca

l/julia/usr/bin:/usr/local/julia:/usr/local/scriptbasic/bin

Tcl Package Path

#!/usr/bin/tclsh

puts $tcl_pkgPath

When you run the program, you will get a similar output as shown below:

/usr/lib64/tcl8.5 /usr/share/tcl8.5 /usr/lib64/tk8.5 /usr/share/tk8.5

Tcl/Tk

8

Tcl Library

#!/usr/bin/tclsh

puts $tcl_library

When you run the program, you will get a similar output as shown below:

/usr/share/tcl8.5

Tcl Patch Level

#!/usr/bin/tclsh

puts $tcl_patchLevel

When you run the program, you will get a similar output as shown below:

8.5.7

Tcl Precision

#!/usr/bin/tclsh

puts $tcl_precision

When you run the program, you will get a similar output as shown below:

0

Tcl Startup File

#!/usr/bin/tclsh

puts $tcl_rcFileName

When you run the program, you will get a similar output as shown below:

~/.tclshrc

Tcl/Tk

9

Tcl is quite simple to learn and let's start creating our first Tcl program!

First Tcl Program

Let us write a simple Tcl program. All Tcl files will have an extension, i.e., .tcl. So, put the

following source code in a test.tcl file.

#!/usr/bin/tclsh

puts "Hello, World!"

Assuming, Tcl environment is setup correctly; let's run the program after switching to file's

directory and then execute the program using:

$ tclsh test.tcl

We will get the following output:

Hello, World!

Let us now see the basic structure of Tcl program, so that it will be easy for you to

understand basic building blocks of the Tcl language. In Tcl, we use new line or semicolon

to terminate the previous line of code. But semicolon is not necessary, if you are using

newline for each command.

Comments

Comments are like helping text in your Tcl program and the interpreter ignores them.

Comments can be written using a hash_(#) sign in the beginning.

#!/usr/bin/tclsh

my first program in Tcl

puts "Hello World!"

Multiline or block comment is written using ‘if’ with condition ‘0.’ An example is shown

below.

#!/usr/bin/tclsh

if 0 {

my first program in Tcl program

4. Tcl – Basic Syntax

Tcl/Tk

10

Its very simple

}

puts "Hello World!"

Inline comments use ;#. An example is given below.

#!/usr/bin/tclsh

puts "Hello World!" ;# my first print in Tcl program

Identifiers

A Tcl identifier is a name used to identify a variable, function, or any other user-defined

item. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by

zero or more letters, underscores, dollars ($), and digits (0 to 9).

Tcl does not allow punctuation characters such as @, and % within identifiers. Tcl is a case

sensitive_ language. Thus Manpower and manpower are two different identifiers in Tcl.

Here are some of the examples of acceptable identifiers:

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

Reserved Words

The following list shows a few of the reserved words in Tcl. These reserved words may not

be used as constant or variable or any other identifier names.

after append array auto_execok

auto_import auto_load auto_load_index auto_qualify

binary Bgerror break catch

cd Clock close concat

continue Dde default else

elseif Encoding eof error

eval Exec exit expr

fblocked Fconfigure fcopy file

fileevent Flush for foreach

format Gets glob global

history If info interp

Tcl/Tk

11

join Lappend lindex linsert

list Llength load lrange

lreplace Lsearch lsort namespace

open Package pid pkg_mkIndex

proc Puts pwd read

regexp Regsub rename resource

return Scan seek set

socket Source split string

subst Switch tclLog tell

time Trace unknown unset

update Uplevel upvar variable

vwait While

Whitespace in Tcl

A line containing only whitespace, possibly with a comment, is known as a blank line,

and a Tcl interpreter totally ignores it.

Whitespace is the term used in Tcl to describe blanks, tabs, newline characters, and

comments. Whitespace separates one part of a statement from another and enables the

interpreter to identify where one element in a statement, such as puts, ends and the next

element begins. Therefore, in the following statement:

#!/usr/bin/tclsh

puts "Hello World!"

There must be at least one whitespace character (usually a space) between “puts” and

"Hello World!" for the interpreter to be able to distinguish them. On the other hand, in the

following statement:

#!/usr/bin/tclsh

puts [expr 3 + 2] ;# print sum of the 3 and 2

No whitespace characters are necessary between 3 and +, or between + and 2; although,

you are free to include some if you wish for the readability purpose.

When you run the above code, it will produce the following output:

5

Tcl/Tk

12

As you know, Tcl is a Tool command language, commands are the most vital part of the

language. Tcl commands are built in-to the language with each having its own predefined

function. These commands form the reserved words of the language and cannot be used

for other variable naming. The advantage with these Tcl commands is that, you can define

your own implementation for any of these commands to replace the original built-in

functionality.

Each of the Tcl commands validates the input and it reduces the work of the interpreter.

Tcl command is actually a list of words, with the first word representing the command to

be executed. The next words represent the arguments. In order to group the words into a

single argument, we enclose multiple words with "" or {}.

The syntax of Tcl command is as follows:

commandName argument1 argument2 ... argumentN

Let's see a simple example of Tcl command:

#!/usr/bin/tclsh

puts "Hello, world!"

When the above code is executed, it produces the following result:

Hello, world!

In the above code, ‘puts’ is the Tcl command and "Hello World" is the argument1. As said

before, we have used "" to group two words.

Let's see another example of Tcl command with two arguments:

#!/usr/bin/tclsh

puts stdout "Hello, world!"

When above code is executed, it produces the following result:

Hello, world!

In the above code, ‘puts’ is the Tcl command, ‘stdout’ is argument1, and "Hello World" is

argument2. Here, stdout makes the program to print in the standard output device.

5. Tcl – Commands

Tcl/Tk

13

Command Substitution

In command substitutions, square brackets are used to evaluate the scripts inside the

square brackets. A simple example to add two numbers is shown below:

#!/usr/bin/tclsh

puts [expr 1 + 6 + 9]

When the above code is executed, it produces following result:

16

Variable Substitution

In variable substitutions, $ is used before the variable name and this returns the contents

of the variable. A simple example to set a value to a variable and print it is shown below.

#!/usr/bin/tclsh

set a 3

puts $a

When the above code is executed, it produces the following result:

3

Backslash Substitution

These are commonly called escape sequences; with each backslash, followed by a letter

having its own meaning. A simple example for newline substitution is shown below:

#!/usr/bin/tclsh

puts "Hello\nWorld"

When the above code is executed, it produces following result:

Hello

World

Tcl/Tk

14

The primitive data-type of Tcl is string and often we can find quotes on Tcl as string only

language. These primitive data-types in turn create composite data-types for list and

associative array. In Tcl, data-types can represent not only the simple Tcl objects, but also

can represent complex objects such as handles, graphic objects (mostly widgets), and I/O

channels. Let's look into the details about each of the above.

Simple Tcl Objects

In Tcl, whether it is an integer number, boolean, floating point number, or a string. When

you want to use a variable, you can directly assign a value to it, there is no step of

declaration in Tcl. There can be internal representations for these different types of

objects. It can transform one data-type to another when required. The syntax for assigning

value to variable is as follows:

#!/usr/bin/tclsh

set myVariable 18

puts $myVariable

When the above code is executed, it produces the following result:

18

The above statement will create a variable name myVariable and stores it as a string even

though, we have not used double quotations. Now, if we try to make an arithmetic on the

variable, it is automatically turned to an integer. A simple example is shown below:

#!/usr/bin/tclsh

set myVariable 18

puts [expr $myVariable + 6 + 9]

When the above code is executed, it produces the following result:

33

One important thing to note is that, these variables don't have any default values and

must be assigned value before they are used.

If we try to print using puts, the number is transformed into proper string. Having two

representations, internal and external, help Tcl to create complex data structures easily

compared to other languages. Also, Tcl is more efficient due to its dynamic object nature.

6. Tcl – Data Types

Tcl/Tk

15

String Representations

Unlike other languages, in Tcl, you need not include double quotes when it's only a single

word. An example can be:

#!/usr/bin/tclsh

set myVariable hello

puts $myVariable

When the above code is executed, it produces the following result:

hello

When we want to represent multiple strings, we can use either double quotes or curly

braces. It is shown below:

#!/usr/bin/tclsh

set myVariable "hello world"

puts $myVariable

set myVariable {hello world}

puts $myVariable

When the above code is executed, it produces the following result:

hello world

hello world

List

List is nothing but a group of elements. A group of words either using double quotes or

curly braces can be used to represent a simple list. A simple list is shown below:

#!/usr/bin/tclsh

set myVariable {red green blue}

puts [lindex $myVariable 2]

set myVariable "red green blue"

puts [lindex $myVariable 1]

When the above code is executed, it produces the following result:

blue

Tcl/Tk

16

green

Associative Array

Associative arrays have an index (key) that is not necessarily an integer. It is generally a

string that acts like key value pairs. A simple example is shown below:

#!/usr/bin/tclsh

set marks(english) 80

puts $marks(english)

set marks(mathematics) 90

puts $marks(mathematics)

When the above code is executed, it produces the following result:

80

90

Handles

Tcl handles are commonly used to represent files and graphics objects. These can include

handles to network requests and also other channels like serial port communication,

sockets, or I/O devices. The following is an example where a file handle is created.

set myfile [open "filename" r]

You will see more detail on files in the Tcl file I/O chapter.

Tcl/Tk

17

In Tcl, there is no concept of variable declaration. Once, a new variable name is

encountered, Tcl will define a new variable.

Variable Naming

The name of variables can contain any characters and length. You can even have white

spaces by enclosing the variable in curly braces, but it is not preferred.

The set command is used for assigning value to a variable. The syntax for set command

is,

set variableName value

A few examples of variables are shown below:

#!/usr/bin/tclsh

set variableA 10

set {variable B} test

puts $variableA

puts ${variable B}

When the above code is executed, it produces the following result:

10

test

As you can see in the above program, the $variableName is used to get the value of the

variable.

Dynamic Typing

Tcl is a dynamically typed language. The value of the variable can be dynamically

converted to the required type when required. For example, a number 5 that is stored as

string will be converted to number when doing an arithmetic operation. It is shown below:

#!/usr/bin/tclsh

set variableA "10"

puts $variableA

set sum [expr $variableA +20];

7. Tcl – Variables

Tcl/Tk

18

puts $sum

When the above code is executed, it produces the following result:

10

30

Mathematical Expressions

As you can see in the above example, expr is used for representing mathematical

expression. The default precision of Tcl is 12 digits. In order to get floating point results,

we should add at least a single decimal digit. A simple example explains the above.

#!/usr/bin/tclsh

set variableA "10"

set result [expr $variableA / 9];

puts $result

set result [expr $variableA / 9.0];

puts $result

set variableA "10.0"

set result [expr $variableA / 9];

puts $result

When the above code is executed, it produces the following result:

1

1.1111111111111112

1.1111111111111112

In the above example, you can see three cases. In the first case, the dividend and the

divisor are whole numbers and we get a whole number as result. In the second case, the

divisor alone is a decimal number and in the third case, the dividend is a decimal number.

In both second and third cases, we get a decimal number as result.

In the above code, you can change the precision by using tcl_precision special variable. It

is shown below:

#!/usr/bin/tclsh

set variableA "10"

set tcl_precision 5

set result [expr $variableA / 9.0];

Tcl/Tk

19

puts $result

When the above code is executed, it produces the following result:

1.1111

Tcl/Tk

20

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. Tcl language is rich in built-in operators and provides the following types

of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Ternary Operator

This chapter will explain the arithmetic, relational, logical, bitwise, and ternary operators

one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by Tcl language. Assume

variable ‘A’ holds 10 and variable ‘B’ holds 20, then:

Types of
Operators

Arithmetic

Relational

LogicalBitwise

Ternary

8. Tcl – Operators

Tcl/Tk

21

Operator Description Example

+ Adds two operands
A + B will

give 30

- Subtracts second operand from the first
A - B will give

-10

* Multiplies both operands
A * B will

give 200

/ Divides numerator by de-numerator
B / A will give

2

%
Modulus Operator and remainder of after an integer

division

B % A will

give 0

Example

Try the following example to understand all the arithmetic operators available in Tcl

language:

#!/usr/bin/tclsh

set a 21

set b 10

set c [expr $a + $b]

puts "Line 1 - Value of c is $c\n"

set c [expr $a - $b]

puts "Line 2 - Value of c is $c\n"

set c [expr $a * $b]

puts "Line 3 - Value of c is $c\n"

set c [expr $a / $b]

puts "Line 4 - Value of c is $c\n"

set c [expr $a % $b]

puts "Line 5 - Value of c is $c\n"

When you compile and execute the above program, it produces the following result:

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Tcl/Tk

22

Line 4 - Value of c is 2

Line 5 - Value of c is 1

Relational Operators

Following table shows all the relational operators supported by Tcl language. Assume

variable A holds 10 and variable B holds 20, then:

Operator Description Example

==

Checks if the values of two operands are

equal or not, if yes then condition becomes

true.

(A == B) is not true.

!=

Checks if the values of two operands are

equal or not, if values are not equal then

condition becomes true.

(A != B) is true.

>

Checks if the value of left operand is

greater than the value of right operand, if

yes then condition becomes true.

(A > B) is not true.

<

Checks if the value of left operand is less

than the value of right operand, if yes then

condition becomes true.

(A < B) is true.

>=

Checks if the value of left operand is

greater than or equal to the value of right

operand, if yes then condition becomes

true.

(A >= B) is not true.

<=

Checks if the value of left operand is less

than or equal to the value of right operand,

if yes then condition becomes true.

(A <= B) is true.

Example

Try the following example to understand all the relational operators available in Tcl

language:

#!/usr/bin/tclsh

set a 21

set b 10

if { $a == $b } {

 puts "Line 1 - a is equal to b\n"

Tcl/Tk

23

} else {

 puts "Line 1 - a is not equal to b\n"

}

if { $a < $b } {

 puts "Line 2 - a is less than b\n"

} else {

 puts "Line 2 - a is not less than b\n"

}

if { $a > $b } {

 puts "Line 3 - a is greater than b\n"

} else {

 puts "Line 3 - a is not greater than b\n"

}

Lets change value of a and b

set a 5

set b 20

if { $a <= $b } {

 puts "Line 4 - a is either less than or equal to b\n"

}

if { $b >= $a } {

 puts "Line 5 - b is either greater than or equal to b\n"

}

When you compile and execute the above program it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to -b

Line 5 - b is either greater than or equal to a

Logical Operators

Following table shows all the logical operators supported by Tcl language. Assume variable

A holds 1 and variable B holds 0, then:

Tcl/Tk

24

Operator Description Example

&&

Called Logical AND operator. If both the

operands are non-zero, then condition

becomes true.

(A && B) is false.

||

Called Logical OR Operator. If any of the

two operands is non-zero, then condition

becomes true.

(A || B) is true.

!

Called Logical NOT Operator. Use to

reverses the logical state of its operand. If

a condition is true then Logical NOT

operator will make false.

!(A && B) is true.

Example

Try the following example to understand all the logical operators available in Tcl language:

#!/usr/bin/tclsh

set a 5

set b 20

if { $a && $b } {

 puts "Line 1 - Condition is true\n"

}

if { $a || $b } {

 puts "Line 2 - Condition is true\n"

}

lets change the value of a and b

set a 0

set b 10

if { $a && $b } {

 puts "Line 3 - Condition is true\n"

} else {

 puts "Line 3 - Condition is not true\n"

}

if { !($a && $b) } {

 puts "Line 4 - Condition is true\n"

}

When you compile and execute the above program, it produces the following result:

Tcl/Tk

25

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is not true

Line 4 - Condition is true

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |,

and ^ are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

The Bitwise operators supported by Tcl language are listed in the following table. Assume

variable A holds 60 and variable B holds 13, then:

Operator Description Example

&

Binary AND Operator copies a

bit to the result if it exists in

both operands.

(A & B) will give 12, which is 0000 1100

Tcl/Tk

26

|
Binary OR Operator copies a bit

if it exists in either operand.
(A | B) will give 61, which is 0011 1101

^

Binary XOR Operator copies the

bit if it is set in one operand

but not both.

(A ^ B) will give 49, which is 0011 0001

<<

Binary Left Shift Operator. The

left operands value is moved

left by the number of bits

specified by the right operand.

A << 2 will give 240, which is 1111 0000

>>

Binary Right Shift Operator.

The left operands value is

moved right by the number of

bits specified by the right

operand.

A >> 2 will give 15, which is 0000 1111

Example

Try the following example to understand all the bitwise operators available in Tcl language:

#!/usr/bin/tclsh

set a 60 ;# 60 = 0011 1100

set b 13 ;# 13 = 0000 1101

set c [expr $a & $b] ;# 12 = 0000 1100

puts "Line 1 - Value of c is $c\n"

set c [expr $a | $b;] ;# 61 = 0011 1101

puts "Line 2 - Value of c is $c\n"

set c [expr $a ^ $b;] ;# 49 = 0011 0001

puts "Line 3 - Value of c is $c\n"

set c [expr $a << 2] ;# 240 = 1111 0000

puts "Line 4 - Value of c is $c\n"

set c [expr $a >> 2] ;# 15 = 0000 1111

puts "Line 5 - Value of c is $c\n"

When you compile and execute the above program, it produces the following result:

Line 1 - Value of c is 12

Tcl/Tk

27

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is 240

Line 5 - Value of c is 15

Ternary Operator

Operator Description Example

? : Ternary If Condition is true? Then value X : Otherwise value Y

Example

Try the following example to understand ternary operator available in Tcl language:

#!/usr/bin/tclsh

set a 10;

set b [expr $a == 1 ? 20: 30]

puts "Value of b is $b\n"

set b [expr $a == 10 ? 20: 30]

puts "Value of b is $b\n"

When you compile and execute the above program it produces the following result:

Value of b is 30

Value of b is 20

Operators Precedence in Tcl

Operator precedence determines the grouping of terms in an expression. This affects how

an expression is evaluated. Certain operators have higher precedence than others; for

example, the multiplication operator has higher precedence than the addition operator.

For example: x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so it first gets multiplied with 3 * 2 and then adds into 7.

Tcl/Tk

28

Here, operators with the highest precedence appear at the top of the table, those with the

lowest appear at the bottom. Within an expression, higher precedence operators will be

evaluated first.

Category Operator Associativity

Unary + - Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Ternary ?: Right to left

Example

Try the following example to understand the operator precedence available in Tcl

language:

#!/usr/bin/tclsh

set a 20

set b 10

set c 15

set d 5

set e [expr [expr $a + $b] * $c / $d] ;# (30 * 15) / 5

puts "Value of (a + b) * c / d is : $e\n"

set e [expr [expr [expr $a + $b] * $c] / $d] ;# (30 * 15) / 5]

puts "Value of ((a + b) * c) / d is : $e\n"

set e [expr [expr $a + $b] * [expr $c / $d]] ;# (30) * (15/5)

puts "Value of (a + b) * (c / d) is : $e\n"

Tcl/Tk

29

set e [expr $a + [expr $b * $c] / $d] ;# 20 + (150/5)

puts "Value of a + (b * c) / d is : $e\n"

When you compile and execute the above program, it produces the following result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

Tcl/Tk

30

Decision making structures require that the programmer specifies one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be

executed if the condition is determined to be true, and optionally, other statements to be

executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages:

Tcl language uses the expr command internally and hence it’s not required for us to use

expr statement explicitly.

Tcl language provides following types of decision making statements:

Statement Description

if statement
An ‘if’ statement consists of a Boolean expression

followed by one or more statements.

if...else statement

An ‘if’ statement can be followed by an optional ‘else’

statement, which executes when the Boolean

expression is false.

nested if statements
You can use one ‘if’ or ‘else’ if statement inside

another ‘if’ or ‘else’ if statement(s).

9. Tcl – Decisions

Tcl/Tk

31

switch statement
A switch statement allows a variable to be tested for

equality against a list of values.

nested switch statements
You can use one switch statement inside another switch

statement(s).

Tcl - If Statement

An if statement consists of a Boolean expression followed by one or more statements.

Syntax

The syntax of an ‘if’ statement in Tcl language is:

if {boolean_expression} {

 # statement(s) will execute if the Boolean expression is true

}

If the Boolean expression evaluates to true, then the block of code inside the if statement

will be executed. If Boolean expression evaluates to false, then the first set of code after

the end of the ‘if’ statement (after the closing curly brace) will be executed.

Tcl language uses the expr command internally and hence it's not required for us to use

expr statement explicitly.

Flow Diagram

Tcl/Tk

32

Example

#!/usr/bin/tclsh

set a 10

#check the boolean condition using if statement

if { $a < 20 } {

 # if condition is true then print the following

 puts "a is less than 20"

}

puts "value of a is : $a"

When the above code is compiled and executed, it produces the following result:

a is less than 20

value of a is : 10

Tcl – If else Statement

An if statement can be followed by an optional else statement, which executes when the

Boolean expression is false.

Syntax

The syntax of an ‘if...else’ statement in Tcl language is:

if {boolean_expression} {

 # statement(s) will execute if the boolean expression is true

} else {

 # statement(s) will execute if the boolean expression is false

}

If the Boolean expression evaluates to true, then the if block of code will be executed,

otherwise else block of code will be executed.

Tcl language uses the expr command internally and hence it's not required for us to use

expr statement explicitly.

Tcl/Tk

33

Flow Diagram

Example

#!/usr/bin/tclsh

set a 100

#check the boolean condition

if {$a < 20 } {

 #if condition is true then print the following

 puts "a is less than 20"

} else {

 #if condition is false then print the following

 puts "a is not less than 20"

}

puts "value of a is : $a"

When the above code is compiled and executed, it produces the following result:

a is not less than 20;

value of a is : 100

Tcl/Tk

34

The if...else if...else Statement

An ‘if’ statement can be followed by an optional else if...else statement, which is very

useful to test various conditions using single if...else if statement.

When using if, else if, else statements there are few points to keep in mind:

 An ‘if’ can have zero or one else's and it must come after any else if's.

 An ‘if’ can have zero to many else if's and they must come before the else.

 Once an ‘else if’ succeeds, none of the remaining else if's or else's will be tested.

Syntax

The syntax of an ‘if...else if...else’ statement in Tcl language is:

if {boolean_expression 1} {

 # Executes when the boolean expression 1 is true

} elseif {boolean_expression 2} {

 # Executes when the boolean expression 2 is true

} elseif {boolean_expression 3} {

 # Executes when the boolean expression 3 is true

} else {

 # executes when the none of the above condition is true

}

Example

#!/usr/bin/tclsh

set a 100

#check the boolean condition

if { $a == 10 } {

 # if condition is true then print the following

 puts "Value of a is 10"

} elseif { $a == 20 } {

 # if else if condition is true

 puts "Value of a is 20"

} elseif { $a == 30 } {

 # if else if condition is true

 puts "Value of a is 30"

} else {

Tcl/Tk

35

 # if none of the conditions is true

 puts "None of the values is matching"

}

puts "Exact value of a is: $a"

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

Tcl – Nested If Statement

It is always legal in Tcl to nest if-else statements, which means you can use one if or else

if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows:

if { boolean_expression 1 } {

 # Executes when the boolean expression 1 is true

 if {boolean_expression 2} {

 # Executes when the boolean expression 2 is true

 }

}

You can nest else if...else in the similar way as you have nested if statement.

Example

#!/usr/bin/tclsh

set a 100

set b 200

check the boolean condition

if { $a == 100 } {

 # if condition is true then check the following

 if { $b == 200 } {

 #if condition is true then print the following

 puts "Value of a is 100 and b is 200"

Tcl/Tk

36

 }

}

puts "Exact value of a is : $a"

puts "Exact value of b is : $b"

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Tcl – Switch Statement

A switch statement allows a variable to be tested for equality against a list of values. Each

value is called a case, and the variable being switched on is checked for each switch case.

Syntax

The syntax for unquoted switch statement in Tcl language is as follows:

switch switchingString matchString1 {body1} matchString2 {body2} ...

matchStringn {bodyn}

The syntax for unquoted switch statement in Tcl language is as follows:

switch switchingString {

 matchString1 {

 body1

 }

 matchString2 {

 body2

 }

...

 matchStringn {

 bodyn

 }

}

Tcl/Tk

37

The following rules apply to a switch statement:

 The switchingString is used in a switch statement; used between the different

blocks by comparing to the matchString.

 You can have any number of matchString blocks within a switch.

 A switch statement can have an optional default block, which must appear at the

end of the switch. The default case can be used for performing a task when none

of the cases is true.

Flow Diagram

Example: Unquoted Version

#!/usr/bin/tclsh

set grade C;

Tcl/Tk

38

switch $grade A { puts "Well done!" } B { puts "Excellent!" } C { puts "You

passed!" } F { puts "Better try again" } default { puts "Invalid

grade" }

puts "Your grade is $grade"

When the above code is compiled and executed, it produces the following result:

You passed!

Your grade is C

Example: Quoted Version

#!/usr/bin/tclsh

set grade B;

switch $grade {

 A {

 puts "Well done!"

 }

 B {

 puts "Excellent!"

 }

 C {

 puts "You passed!"

 }

 F {

 puts "Better try again"

 }

 default {

 puts "Invalid grade"

 }

}

puts "Your grade is $grade"

Tcl/Tk

39

When the above code is compiled and executed, it produces the following result:

Well done

Your grade is B

Tcl – Nested Switch Statement

It is possible to have a switch as part of the statement sequence of an outer switch. Even

if the case constants of the inner and outer switch contain common values, no conflicts

will arise.

Syntax

The syntax for a nested switch statement is as follows:

switch switchingString {

 matchString1 {

 body1

 switch switchingString {

 matchString1 {

 body1

 }

 matchString2 {

 body2

 }

 ...

 matchStringn {

 bodyn

 }

 }

 }

 matchString2 {

 body2

 }

...

 matchStringn {

 bodyn

 }

}

Tcl/Tk

40

Example

#!/usr/bin/tclsh

set a 100

set b 200

switch $a {

 100 {

 puts "This is part of outer switch"

 switch $b {

 200 {

 puts "This is part of inner switch!"

 }

 }

 }

}

puts "Exact value of a is : $a"

puts "Exact value of a is : $b"

When the above code is compiled and executed, it produces the following result:

This is part of outer switch

This is part of inner switch!

Exact value of a is : 100

Exact value of a is : 200

The? : Operator

We have covered conditional operator?: in previous chapter, which can be used to

replace if...else statements. It has the following general form:

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ‘? expression’ is determined like this: Exp1 is evaluated. If it is true, then

Exp2 is evaluated and becomes the value of the entire ‘? expression.’ If Exp1 is false, then

Exp3 is evaluated and its value becomes the value of the expression. An example is shown

below.

#!/usr/bin/tclsh

Tcl/Tk

41

set a 10;

set b [expr $a == 1 ? 20: 30]

puts "Value of b is $b\n"

set b [expr $a == 10 ? 20: 30]

puts "Value of b is $b\n"

When you compile and execute the above program, it produces the following result:

Value of b is 30

Value of b is 20

Tcl/Tk

42

There may be a situation where you need to execute a block of code several number of

times. In general, statements are executed sequentially: The first statement in a function

is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming

languages:

Tcl language provides the following types of loops to handle looping requirements.

Loop Type Description

while loop
Repeats a statement or group of statements while a given condition

is true. It tests the condition before executing the loop body.

for loop
Executes a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

nested loops
You can use one or more loop inside any another while, for or

do..while loop.

10. Tcl – Loops

Tcl/Tk

43

Tcl – While Loop

A while loop statement in Tcl language repeatedly executes a target statement as long as

a given condition is true.

Syntax

The syntax of a while loop in Tcl language is:

while {condition} {

 statement(s)

}

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any nonzero value. The loop iterates

while the condition is true.

When the condition becomes false, program control passes to the line immediately

following the loop.

Flow Diagram

The point to note about the while loop is that the loop might not ever run. When the

condition is tested and the result is false, the loop body will be skipped and the first

statement after the while loop will be executed.

Tcl/Tk

44

Example

#!/usr/bin/tclsh

set a 10

#while loop execution

while { $a < 20 } {

 puts "value of a: $a"

 incr a

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Tcl – For Loops

A for loop is a repetition control structure that allows you to efficiently write a code that

needs to be executed for a specific number of times.

Syntax

The syntax of a for loop in Tcl language is:

for {initialization} {condition} {increment} {

 statement(s);

}

Tcl/Tk

45

Here is the flow of control in a for loop:

 The initialization step is executed first, and only once. This step allows you to

declare and initialize any loop control variables. You are not required to put a

statement here, as long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If

it is false, the body of the loop does not execute and flow of control jumps to the

next statement just after the for loop.

 After the body of the for loop executes, the flow of control jumps back up to the

increment statement. This statement allows you to update any loop control

variables. This statement can be left blank, as long as a semicolon appears after

the condition.

 The condition is now evaluated again. If it is true, the loop executes and the process

repeats itself (body of loop, then increment step, and then again condition). After

the condition becomes false, the for loop terminates.

Flow Diagram

Tcl/Tk

46

Example

#!/usr/bin/tclsh

for loop execution

for { set a 10} {$a < 20} {incr a} {

 puts "value of a: $a"

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Tcl – Nested Loops

Tcl allows to use one loop inside another loop. The following section shows a few examples

to illustrate the concept.

Syntax

The syntax for a nested for loop statement in Tcl language is as follows:

for {initialization} {condition} {increment} {

 for {initialization} {condition} {increment} {

 statement(s);

 }

 statement(s);

}

Tcl/Tk

47

The syntax for a nested while loop statement in Tcl language is as follows:

while {condition} {

 while {condition} {

 statement(s);

 }

 statement(s);

}

A final note on loop nesting is that you can put any type of loop inside of any other type

of loop. For example, a for loop can be inside a while loop or vice versa.

Example

The following program uses a nested for loop to find the prime numbers from 2 to 100:

#!/usr/bin/tclsh

set j 0;

for {set i 2} {$i<100} {incr i} {

 for {set j 2} {$j <= [expr $i/$j] } {incr j} {

 if { [expr $i%$j] == 0 } {

 break

 }

 }

 if {$j >[expr $i/$j] } {

 puts "$i is prime"

 }

}

When the above code is compiled and executed, it produces the following result:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

Tcl/Tk

48

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

Tcl supports the following control statements.

Control Statement Description

break statement

Terminates the loop or switch statement and transfers

execution to the statement immediately following the loop or

switch.

continue statement
Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

Tcl – Break Statement

The break statement in Tcl language is used for terminating a loop. When the break

statement is encountered inside a loop, the loop is immediately terminated and program

control resumes at the next statement following the loop.

If you are using nested loops (i.e., one loop inside another loop), the break statement will

stop the execution of the innermost loop and start executing the next line of code after

the block.

Tcl/Tk

49

Syntax

The syntax for a break statement in Tcl is as follows:

break;

Flow Diagram

Example

#!/usr/bin/tclsh

set a 10

while loop execution

while {$a < 20 } {

 puts "value of a: $a"

 incr a

 if { $a > 15} {

 # terminate the loop using break statement

 break

 }

}

Tcl/Tk

50

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Tcl – Continue Statement

The continue statement in Tcl language works somewhat like the break statement.

Instead of forcing termination, however, continue forces the next iteration of the loop to

take place, skipping any code in between.

For the for loop, continue statement causes the conditional test and increment portions

of the loop to execute. For the while loop, continue statement passes the program

control to the conditional tests.

Syntax

The syntax for a continue statement in Tcl is as follows:

continue;

Flow Diagram

Tcl/Tk

51

Example

#!/usr/bin/tclsh

set a 10

do loop execution

while { $a < 20 } {

 if { $a == 15} {

 #skip the iteration

 incr a

 continue

 }

 puts "value of a: $a"

 incr a

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The while loop is

traditionally used for this purpose. You can make an endless loop by leaving the conditional

expression as 1.

while {1} {

 puts "This loop will run forever."

}

When the conditional expression is absent, it is assumed to be true. Tcl programmers more

commonly use the while {1} construct to signify an infinite loop.

NOTE: You can terminate an infinite loop by pressing Ctrl + C keys.

Tcl/Tk

52

An array is a systematic arrangement of a group of elements using indices. The syntax for

the conventional array is shown below.

set ArrayName(Index) value

An example for creating simple array is shown below.

#!/usr/bin/tclsh

set languages(0) Tcl

set languages(1) "C Language"

puts $languages(0)

puts $languages(1)

When the above code is executed, it produces the following result:

Tcl

C Language

Size of Array

The syntax for calculating size array is shown below.

[array size variablename]

An example for printing the size is shown below.

#!/usr/bin/tclsh

set languages(0) Tcl

set languages(1) "C Language"

puts [array size languages]

When the above code is executed, it produces the following result:

2

Array Iteration

Though, array indices can be non-continuous like values specified for index 1 then index

10 and so on. But, in case they are continuous, we can use array iteration to access

11. Tcl – Arrays

Tcl/Tk

53

elements of the array. A simple array iteration for printing elements of the array is shown

below.

#!/usr/bin/tclsh

set languages(0) Tcl

set languages(1) "C Language"

for { set index 0 } { $index < [array size languages] } { incr index } {

 puts "languages($index) : $languages($index)"

}

When the above code is executed, it produces the following result:

languages(0) : Tcl

languages(1) : C Language

Associative Arrays

In Tcl, all arrays by nature are associative. Arrays are stored and retrieved without any

specific order. Associative arrays have an index that is not necessarily a number, and can

be sparsely populated. A simple example for associative array with non-number indices is

shown below.

#!/usr/bin/tclsh

set personA(Name) "Dave"

set personA(Age) 14

puts $personA(Name)

puts $personA(Age)

When the above code is executed, it produces the following result:

Dave

14

Indices of Array

The syntax for retrieving indices of array is shown below.

[array names variablename]

Tcl/Tk

54

An example for printing the size is shown below.

#!/usr/bin/tclsh

set personA(Name) "Dave"

set personA(Age) 14

puts [array names personA]

When the above code is executed, it produces the following result:

Age Name

Iteration of Associative Array

You can use the indices of array to iterate through the associative array. An example is

shown below.

#!/usr/bin/tclsh

set personA(Name) "Dave"

set personA(Age) 14

foreach index [array names personA] {

 puts "personA($index): $personA($index)"

}

When the above code is executed, it produces the following result:

personA(Age): 14

personA(Name): Dave

Tcl/Tk

55

The primitive data-type of Tcl is string and often we can find quotes on Tcl as string only

language. These strings can contain alphanumeric character, just numbers, Boolean, or

even binary data. Tcl uses 16 bit unicode characters and alphanumeric characters can

contain letters including non-Latin characters, number or punctuation.

Boolean value can be represented as 1, yes or true for true and 0, no, or false for false.

String Representations

Unlike other languages, in Tcl, you need not include double quotes when it's only a single

word. An example can be:

#!/usr/bin/tclsh

set myVariable hello

puts $myVariable

When the above code is executed, it produces the following result:

hello

When we want to represent multiple strings, we can use either double quotes or curly

braces. It is shown below:

#!/usr/bin/tclsh

set myVariable "hello world"

puts $myVariable

set myVariable {hello world}

puts $myVariable

When the above code is executed, it produces the following result:

hello world

hello world

String Escape Sequence

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), or a

universal character (e.g., '\u02C0').

12. Tcl – Strings

Tcl/Tk

56

There are certain characters in Tcl when they are preceded by a backslash they will have

special meaning and they are used to represent like newline (\n) or tab (\t). Here, you

have a list of some of such escape sequence codes:

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

Following is the example to show a few escape sequence characters:

#!/usr/bin/tclsh

puts("Hello\tWorld\n\nTutorialspoint");

When the above code is compiled and executed, it produces the following result:

Hello World

Tutorialspoint

String Command

The list of subcommands for string command is listed in the following table:

SN Methods with Description

1

compare string1 string2

Compares string1 and string2 lexographically. Returns 0 if equal, -1 if string1

comes before string2, else 1.

2
string1 string2

Returns the index first occurrence of string1 in string2. If not found, returns -1.

Tcl/Tk

57

3
index string index

Returns the character at index.

4
last string1 string2

Returns the index last occurrence of string1 in string2. If not found, returns -1.

5
length string

Returns the length of string.

6
match pattern string

Returns 1 if the string matches the pattern.

7
range string index1 index2

Return the range of characters in string from index1 to index2.

8
tolower string

Returns the lowercase string.

9
toupper string

Returns the uppercase string.

10

trim string ?trimcharacters?

Removes trimcharacters in both ends of string. The default trimcharacters is

whitespace.

11

trimleft string ?trimcharacters?

Removes trimcharacters in left beginning of string. The default trimcharacters is

whitespace.

12

trimright string ?trimcharacters?

Removes trimcharacters in left end of string. The default trimcharacters is

whitespace.

13

wordend findstring index

Return the index in findstring of the character after the word containing the

character at index.

14

wordstart findstring index

Return the index in findstring of the first character in the word containing the

character at index.

Examples of some the commonly used Tcl string sub commands are given below.

Tcl/Tk

58

String Comparison

#!/usr/bin/tclsh

set s1 "Hello"

set s2 "World"

set s3 "World"

puts [string compare s1 s2]

if {[string compare s2 s3] == 0} {

puts "String \'s1\' and \'s2\' are same.";

}

if {[string compare s1 s2] == -1} {

puts "String \'s1\' comes before \'s2\'.";

}

if {[string compare s2 s1] == 1} {

puts "String \'s2\' comes before \'s1\'.";

}

When the above code is compiled and executed, it produces the following result:

-1

String 's1' comes before 's2'.

String 's2' comes before 's1'.

Index of String

#!/usr/bin/tclsh

set s1 "Hello World"

set s2 "o"

puts "First occurrence of $s2 in s1"

puts [string first $s2 $s1]

puts "Character at index 0 in s1"

puts [string index $s1 0]

puts "Last occurrence of $s2 in s1"

puts [string last $s2 $s1]

puts "Word end index in s1"

Tcl/Tk

59

puts [string wordend $s1 20]

puts "Word start index in s1"

puts [string wordstart $s1 20]

When the above code is compiled and executed, it produces the following result:

First occurrence of o in s1

4

Character at index 0 in s1

H

Last occurrence of o in s1

7

Word end index in s1

11

Word start index in s1

6

Length of String

#!/usr/bin/tclsh

set s1 "Hello World"

puts "Length of string s1"

puts [string length $s1]

When the above code is compiled and executed, it produces the following result:

Length of string s1

11

Handling Cases

#!/usr/bin/tclsh

set s1 "Hello World"

puts "Uppercase string of s1"

puts [string toupper $s1]

puts "Lowercase string of s1"

puts [string tolower $s1]

Tcl/Tk

60

When the above code is compiled and executed, it produces the following result:

Uppercase string of s1

HELLO WORLD

Lowercase string of s1

hello world

Trimming Characters

#!/usr/bin/tclsh

set s1 "Hello World"

set s2 "World"

puts "Trim right $s2 in $s1"

puts [string trimright $s1 $s2]

set s2 "Hello"

puts "Trim left $s2 in $s1"

puts [string trimleft $s1 $s2]

set s1 " Hello World "

set s2 " "

puts "Trim characters s1 on both sides of s2"

puts [string trim $s1 $s2]

When the above code is compiled and executed, it produces the following result:

Trim right World in Hello World

Hello

Trim left Hello in Hello World

 World

Trim characters s1 on both sides of s2

Hello World

Matching Strings

Tcl/Tk

61

#!/usr/bin/tclsh

set s1 "test@test.com"

set s2 "*@*.com"

puts "Matching pattern s2 in s1"

puts [string match "*@*.com" $s1]

puts "Matching pattern tcl in s1"

puts [string match {tcl} $s1]

When the above code is compiled and executed, it produces the following result:

Matching pattern s2 in s1

1

Matching pattern tcl in s1

0

Append Command

#!/usr/bin/tclsh

set s1 "Hello"

append s1 " World"

puts $s1

When the above code is compiled and executed, it produces the following result:

Hello World

Format Command

The following table shows the list of format specifiers available in Tcl:

Specifier Use

%s String representation

%d Integer representation

%f Floating point representation

%e Floating point representation with mantissa-exponent form

%x Hexa decimal representation

Some simple examples are given below:

Tcl/Tk

62

#!/usr/bin/tclsh

puts [format "%f" 43.5]

puts [format "%e" 43.5]

puts [format "%d %s" 4 tuts]

puts [format "%s" "Tcl Language"]

puts [format "%x" 40]

When the above code is compiled and executed, it produces the following result:

43.500000

4.350000e+01

4 tuts

Tcl Language

28

Scan Command

Scan command is used for parsing a string based to the format specifier. Some examples

are shown below.

#!/usr/bin/tclsh

puts [scan "90" {%[0-9]} m]

puts [scan "abc" {%[a-z]} m]

puts [scan "abc" {%[A-Z]} m]

puts [scan "ABC" {%[A-Z]} m]

When the above code is compiled and executed, it produces the following result:

1

1

0

1

Tcl/Tk

63

List is one of the basic data-type available in Tcl. It is used for representing an ordered

collection of items. It can include different types of items in the same list. Further, a list

can contain another list.

An important thing that needs to be noted is that these lists are represented as strings

completely and processed to form individual items when required. So, avoid large lists and

in such cases; use array.

Creating a List

The general syntax for list is given below:

set listName { item1 item2 item3 .. itemn }

or

set listName [list item1 item2 item3]

or

set listName [split "items separated by a character" split_character]

Some examples are given below:

#!/usr/bin/tclsh

set colorList1 {red green blue}

set colorList2 [list red green blue]

set colorList3 [split "red_green_blue" _]

puts $colorList1

puts $colorList2

puts $colorList3

When the above code is executed, it produces the following result:

red green blue

red green blue

red green blue

13. Tcl – Lists

Tcl/Tk

64

Appending Item to a List

The syntax for appending item to a list is given below:

append listName split_character value

or

lappend listName value

Some examples are given below:

#!/usr/bin/tclsh

set var orange

append var " " "blue"

lappend var "red"

lappend var "green"

puts $var

When the above code is executed, it produces the following result:

orange blue red green

Length of List

The syntax for length of list is given below:

llength listName

Example for length of list is given below:

#!/usr/bin/tclsh

set var {orange blue red green}

puts [llength $var]

When the above code is executed, it produces the following result:

4

List Item at Index

The syntax for selecting list item at specific index is given below:

lindex listname index

Tcl/Tk

65

Example for list item at index is given below:

#!/usr/bin/tclsh

set var {orange blue red green}

puts [lindex $var 1]

When the above code is executed, it produces the following result:

blue

Insert Item at Index

The syntax for inserting list items at specific index is given below.

linsert listname index value1 value2..valuen

Example for inserting list item at specific index is given below.

#!/usr/bin/tclsh

set var {orange blue red green}

set var [linsert $var 3 black white]

puts $var

When the above code is executed, it produces the following result:

orange blue red black white green

Replace Items at Indices

The syntax for replacing list items at specific indices is given below:

lreplace listname firstindex lastindex value1 value2..valuen

Example for replacing list items at specific indices is given below.

#!/usr/bin/tclsh

set var {orange blue red green}

set var [lreplace $var 2 3 black white]

puts $var

When the above code is executed, it produces the following result:

Tcl/Tk

66

orange blue black white

Set Item at Index

The syntax for setting list item at specific index is given below:

lset listname index value

Example for setting list item at specific index is given below:

#!/usr/bin/tclsh

set var {orange blue red green}

lset var 0 black

puts $var

When the above code is executed, it produces the following result:

black blue red green

Transform List to Variables

The syntax for copying values to variables is given below:

lassign listname variable1 variable2.. variablen

Example for transforming list into variables is given below:

#!/usr/bin/tclsh

set var {orange blue red green}

lassign $var colour1 colour2

puts $colour1

puts $colour2

When the above code is executed, it produces the following result:

orange

blue

Sorting a List

The syntax for sorting a list is given below:

Tcl/Tk

67

lsort listname

An example for sorting a list is given below:

#!/usr/bin/tclsh

set var {orange blue red green}

set var [lsort $var]

puts $var

When the above code is executed, it produces the following result:

blue green orange red

Tcl/Tk

68

A dictionary is an arrangement for mapping values to keys. The syntax for the conventional

dictionary is shown below:

dict set dictname key value

or

dict create dictname key1 value1 key2 value2 .. keyn valuen

Some examples for creating a dictionary are shown below:

#!/usr/bin/tclsh

dict set colours colour1 red

puts $colours

dict set colours colour2 green

puts $colours

set colours [dict create colour1 "black" colour2 "white"]

puts $colours

When the above code is executed, it produces the following result:

colour1 red

colour1 red colour2 green

colour1 black colour2 white

Size of Dict

The syntax for getting size of dict is shown below:

[dict size dictname]

An example for printing the size is shown below:

#!/usr/bin/tclsh

set colours [dict create colour1 "black" colour2 "white"]

puts [dict size $colours]

14. Tcl – Dictionary

Tcl/Tk

69

When the above code is executed, it produces the following result:

2

Dictionary Iteration

A simple dictionary iteration for printing keys and valued of the dictionary is shown below:

#!/usr/bin/tclsh

set colours [dict create colour1 "black" colour2 "white"]

foreach item [dict keys $colours] {

 set value [dict get $colours $item]

 puts $value

}

When the above code is executed, it produces the following result:

black

white

Value for Key in Dict

The syntax for retrieving value for key in dict is shown below:

[dict get $dictname $keyname]

An example for retrieving value for key is given below:

#!/usr/bin/tclsh

set colours [dict create colour1 "black" colour2 "white"]

set value [dict get $colours colour1]

puts $value

When the above code is executed, it produces the following result:

black

Tcl/Tk

70

All Keys in Dict

The syntax for retrieving all keys in dict is shown below:

[dict keys $dictname]

An example for printing all keys is shown below:

#!/usr/bin/tclsh

set colours [dict create colour1 "black" colour2 "white"]

set keys [dict keys $colours]

puts $keys

When the above code is executed, it produces the following result:

colour1 colour2

All Values in Dict

The syntax for retrieving all values in dict is shown below:

[dict values $dictname]

An example for printing all values is shown below:

#!/usr/bin/tclsh

set colours [dict create colour1 "black" colour2 "white"]

set values [dict values $colours]

puts $values

When the above code is executed, it produces the following result:

black white

Key Exists in Dict

The syntax for checking if a key exists in dict is shown below:

[dict values $dictname]

Tcl/Tk

71

An example for checking if a key exists in dict is shown below:

#!/usr/bin/tclsh

set colours [dict create colour1 "black" colour2 "white"]

set result [dict exists $colours colour1]

puts $result

When the above code is executed, it produces the following result:

1

Tcl/Tk

72

Procedures are nothing but code blocks with series of commands that provide a specific

reusable functionality. It is used to avoid same code being repeated in multiple locations.

Procedures are equivalent to the functions used in many programming languages and are

made available in Tcl with the help of proc command.

The syntax of creating a simple procedure is shown below:

proc procedureName {arguments} {

 body

}

A simple example for procedure is given below:

#!/usr/bin/tclsh

proc helloWorld {} {

 puts "Hello, World!"

}

helloWorld

When the above code is executed, it produces the following result:

Hello, World!

Procedures with Multiple Arguments

An example for procedure with arguments is shown below:

#!/usr/bin/tclsh

proc add {a b} {

 return [expr $a+$b]

}

puts [add 10 30]

When the above code is executed, it produces the following result:

40

15. Tcl – Procedures

Tcl/Tk

73

Procedures with Variable Arguments

An example for procedure with arguments is shown below:

#!/usr/bin/tclsh

proc avg {numbers} {

 set sum 0

 foreach number $numbers {

 set sum [expr $sum + $number]

 }

 set average [expr $sum/[llength $numbers]]

 return $average

}

puts [avg {70 80 50 60}]

puts [avg {70 80 50 }]

When the above code is executed, it produces the following result:

65

66

Procedures with Default Arguments

Default arguments are used to provide default values that can be used if no value is

provided. An example for procedure with default arguments, which is sometimes referred

as implicit arguments is shown below:

#!/usr/bin/tclsh

proc add {a {b 100} } {

 return [expr $a+$b]

}

puts [add 10 30]

puts [add 10]

When the above code is executed, it produces the following result:

40

110

Tcl/Tk

74

Recursive Procedures

An example for recursive procedures is shown below:

#!/usr/bin/tclsh

proc factorial {number} {

 if {$number <= 1} {

 return 1

 }

 return [expr $number * [factorial [expr $number - 1]]]

}

puts [factorial 3]

puts [factorial 5]

When the above code is executed, it produces the following result:

6

120

Tcl/Tk

75

Packages are used for creating reusable units of code. A package consists of a collection

of files that provide specific functionality. This collection of files is identified by a package

name and can have multiple versions of same files. The package can be a collection of Tcl

scripts, binary library, or a combination of both.

Package uses the concept of namespace to avoid collision of variable names and procedure

names. Check out more in our next ‘namespace’ tutorial.

Creating Package

A package can be created with the help of minimum two files. One file contains the package

code. Other file contains the index package file for declaring your package.

The list of steps for creating and using package is given below.

Step 1: Creating Code

Create code for package inside a folder say HelloWorld. Let the file be named HelloWorld.tcl

with the code as shown below:

/Users/rajkumar/Desktop/helloworld/HelloWorld.tcl

Create the namespace

namespace eval ::HelloWorld {

 # Export MyProcedure

 namespace export MyProcedure

 # My Variables

 set version 1.0

 set MyDescription "HelloWorld"

 # Variable for the path of the script

 variable home [file join [pwd] [file dirname [info script]]]

}

Definition of the procedure MyProcedure

proc ::HelloWorld::MyProcedure {} {

 puts $HelloWorld::MyDescription

}

16. Tcl – Packages

Tcl/Tk

76

package provide HelloWorld $HelloWorld::version

package require Tcl 8.0

Step 2: Creating Package Index

Open tclsh. Switch to HelloWorld directory and use the pkg_mkIndex command to create

the index file as shown below:

% cd /Users/rajkumar/Desktop/helloworld

% pkg_mkIndex . *.tcl

Step 3: Adding Directory to Autopath

Use the lappend command to add the package to the global list as shown below:

% lappend auto_path "/Users/rajkumar/Desktop/helloworld"

Step 4: Adding Package

Next add package to program using package require statement as shown below:

% package require HelloWorld 1.0

Step 5: Invoking Procedure

Now, everything being setup, we can invoke our procedure as shown below:

% puts [HelloWorld::MyProcedure]

You will get the following result:

HelloWorld

First two steps create the package. Once package is created, you can use it in any Tcl file

by adding the last three statements as shown below:

lappend auto_path "/Users/rajkumar/Desktop/helloworld"

package require HelloWorld 1.0

puts [HelloWorld::MyProcedure]

You will get the following result.

HelloWorld

Tcl/Tk

77

Namespace is a container for set of identifiers that is used to group variables and

procedures. Namespaces are available from Tcl version 8.0. Before the introduction of the

namespaces, there was single global scope. Now with namespaces, we have additional

partitions of global scope.

Creating Namespace

Namespaces are created using the namespace command. A simple example for creating

namespace is shown below

#!/usr/bin/tclsh

namespace eval MyMath {

 # Create a variable inside the namespace

 variable myResult

}

Create procedures inside the namespace

proc MyMath::Add {a b } {

 set ::MyMath::myResult [expr $a + $b]

}

MyMath::Add 10 23

puts $::MyMath::myResult

When the above code is executed, it produces the following result:

33

In the above program, you can see there is a namespace with a variable myResult and a

procedure Add. This makes it possible to create variables and procedures with the same

names under different namespaces.

Nested Namespaces

Tcl allows nesting of namespaces. A simple example for nesting namespaces is given

below:

#!/usr/bin/tclsh

17. Tcl – Namespaces

Tcl/Tk

78

namespace eval MyMath {

 # Create a variable inside the namespace

 variable myResult

}

namespace eval extendedMath {

 # Create a variable inside the namespace

 namespace eval MyMath {

 # Create a variable inside the namespace

 variable myResult

 }

}

set ::MyMath::myResult "test1"

puts $::MyMath::myResult

set ::extendedMath::MyMath::myResult "test2"

puts $::extendedMath::MyMath::myResult

When the above code is executed, it produces the following result:

test1

test2

Importing and Exporting Namespace

You can see in the previous namespace examples, we use a lot of scope resolution operator

and it's more complex to use. We can avoid this by importing and exporting namespaces.

An example is given below:

#!/usr/bin/tclsh

namespace eval MyMath {

 # Create a variable inside the namespace

 variable myResult

 namespace export Add

}

Create procedures inside the namespace

proc MyMath::Add {a b } {

 return [expr $a + $b]

Tcl/Tk

79

}

namespace import MyMath::*

puts [Add 10 30]

When the above code is executed, it produces the following result:

40

Forget Namespace

You can remove an imported namespace by using forget subcommand. A simple example

is shown below:

#!/usr/bin/tclsh

namespace eval MyMath {

 # Create a variable inside the namespace

 variable myResult

 namespace export Add

}

Create procedures inside the namespace

proc MyMath::Add {a b } {

 return [expr $a + $b]

}

namespace import MyMath::*

puts [Add 10 30]

namespace forget MyMath::*

When the above code is executed, it produces the following result:

40

Tcl/Tk

80

Tcl supports file handling with the help of the built in commands open, read, puts, gets,

and close.

A file represents a sequence of bytes, does not matter if it is a text file or binary file.

Opening Files

Tcl uses the open command to open files in Tcl. The syntax for opening a file is as follows:

open fileName accessMode

Here, filename is string literal, which you will use to name your file and accessMode can

have one of the following values:

Mode Description

r
Opens an existing text file for reading purpose and the file must exist. This is

the default mode used when no accessMode is specified.

w
Opens a text file for writing, if it does not exist, then a new file is created else

existing file is truncated.

a
Opens a text file for writing in appending mode and file must exist. Here, your

program will start appending content in the existing file content.

r+ Opens a text file for reading and writing both. File must exist already.

w+
Opens a text file for reading and writing both. It first truncate the file to zero

length if it exists otherwise create the file if it does not exist.

a+

Opens a text file for reading and writing both. It creates the file if it does not

exist. The reading will start from the beginning, but writing can only be

appended.

Closing a File

To close a file, use the close command. The syntax for close is as follows:

close fileName

Any file that has been opened by a program must be closed when the program finishes

using that file. In most cases, the files need not be closed explicitly; they are closed

automatically when File objects are terminated automatically.

18. Tcl – File I/O

Tcl/Tk

81

Writing a File

Puts command is used to write to an open file.

puts $filename "text to write"

A simple example for writing to a file is shown below.

#!/usr/bin/tclsh

set fp [open "input.txt" w+]

puts $fp "test"

close $fp

When the above code is compiled and executed, it creates a new file input.txt in the

directory that it has been started under (in the program's working directory).

Reading a File

Following is the simple command to read from a file:

set file_data [read $fp]

A complete example of read and write is shown below:

#!/usr/bin/tclsh

set fp [open "input.txt" w+]

puts $fp "test"

close $fp

set fp [open "input.txt" r]

set file_data [read $fp]

puts $file_data

close $fp

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

test

Here is another example for reading file till end of file line by line:

#!/usr/bin/tclsh

set fp [open "input.txt" w+]

Tcl/Tk

82

puts $fp "test\ntest"

close $fp

set fp [open "input.txt" r]

while { [gets $fp data] >= 0 } {

 puts $data

}

close $fp

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

test

test

Tcl/Tk

83

Error handling in Tcl is provided with the help of error and catch commands. The syntax

for each of these commands is shown below.

Error Syntax

error message info code

In the above error command syntax, message is the error message, info is set in the global

variable errorInfo and code is set in the global variable errorCode.

Catch Syntax

catch script resultVarName

In the above catch command syntax, script is the code to be executed, resultVarName is

variable that holds the error or the result. The catch command returns 0 if there is no

error, and 1 if there is an error.

An example for simple error handling is shown below:

#!/usr/bin/tclsh

proc Div {a b} {

 if {$b == 0} {

 error "Error generated by error" "Info String for error" 401

 } else {

 return [expr $a/$b]

 }

}

if {[catch {puts "Result = [Div 10 0]"} errmsg]} {

 puts "ErrorMsg: $errmsg"

 puts "ErrorCode: $errorCode"

 puts "ErrorInfo:\n$errorInfo\n"

}

19. Tcl – Error Handling

Tcl/Tk

84

if {[catch {puts "Result = [Div 10 2]"} errmsg]} {

 puts "ErrorMsg: $errmsg"

 puts "ErrorCode: $errorCode"

 puts "ErrorInfo:\n$errorInfo\n"

}

When the above code is executed, it produces the following result:

ErrorMsg: Error generated by error

ErrorCode: 401

ErrorInfo:

Info String for error

 (procedure "Div" line 1)

 invoked from within

"Div 10 0"

Result = 5

As you can see in the above example, we can create our own custom error messages.

Similarly, it is possible to catch the error generated by Tcl. An example is shown below:

#!/usr/bin/tclsh

catch {set file [open myNonexistingfile.txt]} result

puts "ErrorMsg: $result"

puts "ErrorCode: $errorCode"

puts "ErrorInfo:\n$errorInfo\n"

When the above code is executed, it produces the following result:

ErrorMsg: couldn't open "myNonexistingfile.txt": no such file or directory

ErrorCode: POSIX ENOENT {no such file or directory}

ErrorInfo:

couldn't open "myNonexistingfile.txt": no such file or directory

 while executing

"open myNonexistingfile.txt"

Tcl/Tk

85

Tcl provides a number of built-in functions (procedures) for various operations. This

includes:

 Functions for list handling.

 Functions for string handling.

 Functions for array handling.

 Functions for dictionary handling.

 Functions for File I/O handling.

 Functions for creating namespaces and packages.

 Functions for Math operations.

 Functions for System operations.

Each of the above except for math and system functions are covered in earlier chapters.

Math and system built-in functions are explained below.

Math Functions

The math functions available in Tcl are listed in the following table:

SN Method Name Description

1 abs arg Calculates the absolute value of arg.

2 acos arg Calculates the arccosine of arg.

3 asin arg Calculates the arcsine of arg.

4 atan arg Calculates the arctangent of arg.

5 atan2 y x
Calculates the arctangent of the quotient of its

arguments(y/x).

6 ceil arg
Calculates the smallest integer greater than or equal to a

number.

7 cos arg Calculates the cosine of arg.

8 cosh arg Calculates the hyperbolic cosine of arg.

9 double arg

Calculates if arg is a floating-point value, returns arg,

otherwise converts arg to floating-point, and returns the

converted value.

20. Tcl – Built-in Functions

Tcl/Tk

86

10 exp arg
Calculates an exponential function (e raised to the power of

arg).

11 floor arg Calculates the largest integer less than or equal to arg.

12 fmod x y
Calculates the floating-point remainder of the division of x by

y. If y is 0, an error is returned.

13 hypot x y
Calculates the length of the hypotenuse of a right-angled

triangle sqrt(x*x+y*y).

14 int arg

Calculates if arg is an integer value of the same width as the

machine word, returns arg, otherwise converts arg to an

integer.

15 log arg Calculates the natural logarithm of arg.

16 log10 arg Calculates the base 10 logarithm of arg.

17 pow x y
Calculates the value of x raised to the power y. If x is

negative, y must be an integer value.

18 rand Calculates a pseudo-random number between 0 and 1.

19 round arg Calculates the value of arg rounded to the nearest integer.

20 sin arg Calculates the sine of arg.

21 sinh arg Calculates the hyperbolic sine of arg.

22 sqrt arg Calculates the square root of arg. arg must be positive.

23 srand arg

Calculates a pseudo-random number between 0 and 1. The

arg, which must be an integer, is used to reset the seed for

the random number generator of rand.

24 tan arg Calculates the tangent of arg.

25 tanh arg Calculates the hyperbolic tangent of arg.

26 wide arg

Calculates integer value at least 64-bits wide (by sign-

extension if arg is a 32-bit number) for arg if it is not one

already.

Some examples using math functions are given below.

#!/usr/bin/tclsh

namespace import ::tcl::mathfunc::*

puts [tan 10]

puts [pow 10 2]

puts [ceil 10.34]

puts [hypot 10 20]

Tcl/Tk

87

puts [srand 45]

puts [log 10]

puts [srand 45]

When the above code is executed, it produces the following result.

0.6483608274590866

100.0

11.0

22.360679774997898

0.0003521866166741525

2.302585092994046

0.0003521866166741525

System Functions

The important system functions in Tcl includes,

 clock - seconds function, which returns current time in seconds.

 clock - format function, which formats the seconds into date and time.

 clock - scan function, which scans the input string and converts it into seconds.

 open – function, which is used to open a file.

 exec – function, which is used to execute a system command.

 close – function, which is used to close a file.

Some examples for the above functions are listed below:

#!/usr/bin/tclsh

#get seconds

set currentTime [clock seconds]

puts $currentTime

#get format

puts "The time is: [clock format $currentTime -format %H:%M:%S]"

puts "The date is: [clock format $currentTime -format %D]"

set date "Jun 15, 2014"

puts [clock scan $date -format {%b %d, %Y}]

Tcl/Tk

88

puts [exec ls]

puts [exec dir]

set a [open input.txt]

puts [read $a];

puts $a

close $a

When the above code is executed, it produces the following result:

1402819756

The time is: 03:09:16

The date is: 06/15/2014

1402808400

input.txt

main.tcl

input.txt main.tcl

This is the file you can use to provide input to your program and later on open

it inside your program to process the input.

file3

The following table provides the list strings that can be used to format the date and time.

SN Format Description

1 %a Day in short form, eg:Sun.

2 %A Day in full form eg:Sunday.

3 %b Month in short form.

4 %B Month in full form.

5 %d Day of month

6 %j Julian day of year.

7 %m Month in number.

8 %y Year in two digits.

9 %Y Year in four digits.

10 %H Hour in 24 hour clock.

Tcl/Tk

89

11 %I Hour in 12 hour clock.

12 %M Minutes.

13 %S Seconds.

14 %p AM or PM.

15 %D Date in number, mm/dd/yy.

16 %r Time in 12 hour clock.

17 %R Time in 24 hour clock without seconds.

18 %T Time in 24 hour clock with seconds.

19 %Z Time Zone Name like GMT, IST, EST, and so on.

Tcl/Tk

90

The "regexp" command is used to match a regular expression in Tcl. A regular expression

is a sequence of characters that contains a search pattern. It consists of multiple rules and

the following table explains these rules and corresponding use.

SN Rule Description

1 x Exact match.

2 [a-z] Any lowercase letter from a-z.

3 . Any character.

4 ^ Beginning string should match.

5 $ Ending string should match.

6 \^
Backlash sequence to match special character ^.Similarly you

can use for other characters.

7 ()
Add the above sequences inside parenthesis to make a regular

expression.

8 x* Should match 0 or more occurrences of the preceding x.

9 x+ Should match 1 or more occurrences of the preceding x.

10 [a-z]? Should match 0 or 1 occurrence of the preceding x.

11 {digit}
Matches exactly digit occurrences of previous regex expression.

Digit that contains 0-9.

12 {digit,}
Matches 3 or more digit occurrences of previous regex

expression. Digit that contains 0-9.

13 {digit1,digit2}
Occurrences matches the range between digit1 and digit2

occurrences of previous regex expression.

Syntax

The syntax for regex is given below:

regexp optionalSwitches patterns searchString fullMatch subMatch1 ... subMatchn

Here, regex is the command. We will see about optional switches later. Patterns are the

rules as mentioned earlier. Search string is the actual string on which the regex is

performed. Full match is any variable to hold the result of matched regex result.

Submatch1 to SubMatchn are optional subMatch variable that holds the result of sub match

patterns.

21. Tcl – Regular Expressions

Tcl/Tk

91

Let's look at some simple examples before diving into complex ones. A simple example for

a string with any alphabets. When any other character is encountered the regex, search

will be stopped and returned.

#!/usr/bin/tclsh

regexp {([A-Z,a-z]*)} "Tcl Tutorial" a b

puts "Full Match: $a"

puts "Sub Match1: $b"

When the above code is executed, it produces the following result:

Full Match: Tcl

Sub Match1: Tcl

Multiple Patterns

The following example shows how to search for multiple patterns. This is example pattern

for any alphabets followed by any character followed by any alphabets.

#!/usr/bin/tclsh

regexp {([A-Z,a-z]*).([A-Z,a-z]*)} "Tcl Tutorial" a b c

puts "Full Match: $a"

puts "Sub Match1: $b"

puts "Sub Match2: $c"

When the above code is executed, it produces the following result:

Full Match: Tcl Tutorial

Sub Match1: Tcl

Sub Match2: Tutorial

A modified version of the above code to show that a sub pattern can contain multiple

patterns is shown below:

#!/usr/bin/tclsh

regexp {([A-Z,a-z]*.([A-Z,a-z]*))} "Tcl Tutorial" a b c

puts "Full Match: $a"

puts "Sub Match1: $b"

puts "Sub Match2: $c"

When the above code is executed, it produces the following result:

Tcl/Tk

92

Full Match: Tcl Tutorial

Sub Match1: Tcl Tutorial

Sub Match2: Tutorial

Switches for Regex Command

The list of switches available in Tcl are,

 nocase: Used to ignore case.

 indices: Store location of matched sub patterns instead of matched characters.

 line: New line sensitive matching. Ignores the characters after newline.

 start index: Sets the offset of start of search pattern.

 Marks the end of switches

In the above examples, I have deliberately used [A-Z, a-z] for all alphabets, you can easily

use -nocase instead of as shown below:

#!/usr/bin/tclsh

regexp -nocase {([A-Z]*.([A-Z]*))} "Tcl Tutorial" a b c

puts "Full Match: $a"

puts "Sub Match1: $b"

puts "Sub Match2: $c"

When the above code is executed, it produces the following result:

Full Match: Tcl Tutorial

Sub Match1: Tcl Tutorial

Sub Match2: Tutorial

Another example using switches is shown below:

#!/usr/bin/tclsh

regexp -nocase -line -- {([A-Z]*.([A-Z]*))} "Tcl \nTutorial" a b

puts "Full Match: $a"

puts "Sub Match1: $b"

regexp -nocase -start 4 -line -- {([A-Z]*.([A-Z]*))} "Tcl \nTutorial" a b

puts "Full Match: $a"

puts "Sub Match1: $b"

Tcl/Tk

93

When the above code is executed, it produces the following result:

Full Match: Tcl

Sub Match1: Tcl

Full Match: Tutorial

Sub Match1: Tutorial

Tcl/Tk

94

Tk refers to Toolkit and it provides cross platform GUI widgets, which helps you in building

a Graphical User Interface. It was developed as an extension to Tcl scripting language by

John Ousterhout. Tk remained in development independently from Tcl with version being

different to each other, before, it was made in sync with Tcl in v8.0.

Features of Tk

It is cross platform with support for Linux, Mac OS, Unix, and Microsoft Windows operating

systems.

 It is an open source.

 It provides high level of extendibility.

 It is customizable.

 It is configurable.

 It provides a large number of widgets.

 It can be used with other dynamic languages and not just Tcl.

 GUI looks identical across platforms.

Applications Built in Tk

Large successful applications have been built in Tcl/Tk.

 Dashboard Soft User Interface

 Forms GUI for Relational DB

 Ad Hoc GUI for Relational DB

 Software/Hardware System Design

 Xtask - Task Management

 Musicology with Tcl and Tk

 Calender app

 Tk mail

 Tk Debugger

22. Tk – Overview

Tcl/Tk

95

Generally, all Mac and Linux mac come with Tk pre-installed. In case, it's not available or

you need the latest version, then you may need to install it. Windows don't come with

Tcl/Tk and you may need to use its specific binary to install it.

The Tk Interpreter

It is just a small program that enables you to type Tk commands and have them executed

line by line. It stops execution of a tcl file in case, it encounters an error unlike a compiler

that executes fully.

Let's have a helloWorld.tcl file as follows. We will use this as first program, we run on the

platform you choose.

#!/usr/bin/wish

grid [ttk::button .mybutton -text "Hello World"]

The following section explains only how to install Tcl/Tk on each of the available platforms.

Installation on Windows

Download the latest version for windows installer from the list of Active Tcl/Tk binaries

available. Active Tcl/Tk community edition is free for personal use.

Run the downloaded executable to install the Tcl and Tk, which can be done by following

the on screen instructions.

Now, we can build and run a Tcl file say helloWorld.tcl by switching to folder containing

the file using cd and then using the following step:

C:\Tcl> wish helloWorld.tcl

Press enter and we will see an output as shown below:

23. Tk – Environment

Tcl/Tk

96

Installation on Linux

Most Linux operating systems comes with Tk inbuilt and you can get started right away in

those systems. In case, it's not available, you can use the following command to download

and install Tcl-Tk.

$ yum install tcl tk

Now, we can build and run a Tcl file say helloWorld.tcl by switching to folder containing

the file using cd command and then using the following step:

$ wish helloWorld.tcl

Press enter and we will see an output similar to the following:

Installation on Debian Based Systems

In case, it's not available prebuilt in your OS, you can use the following command to

download and install Tcl-Tk:

$ sudo apt-get install tcl tk

Now, we can build and run a Tcl file say helloWorld.tcl by switching to folder containing

the file using cd command and then using the following steps:

$ wish helloWorld.tcl

Press enter and we will see an output similar to the following:

Tcl/Tk

97

Installation on Mac OS X

Download the latest version for Mac OS X package from the list of Active Tcl/Tk binaries

available. Active Tcl community edition is free for personal use.

Run the downloaded executable to install the Active Tcl, which can be done by following

the on screen instructions.

Now, we can build and run a Tcl file say helloWorld.tcl by switching to folder containing

the file using cd command and then using the following step:

$ wish helloWorld.tcl

Press enter and we will see an output as shown below:

Installation from Source Files

You can use the option of installing from source files when a binary package is not

available. It is generally preferred to use Tk binaries for Windows and Mac OS X, so only

compilation of sources on unix based system is shown below:

 Download the source files.

 Now, use the following commands to extract, compile, and build after switching to

the downloaded folder.

$ tar zxf tk8.6.1-src.tar.gz

$ cd tcl8.6.1

$ cd unix

$./configure —with-tcl=../../tcl8.6.1/unix —prefix=/opt —enable-gcc

$ make

$ sudo make install

Note: Make sure, you change the file name to the version you downloaded on commands

1 and 2 in the above.

In Tcl, we classify some of the variables as special variables and they have a predefined

usage/functionality. The list of specials variables is listed below:

Tcl/Tk

98

Special

Variable
Description

argc Refers to a number of command-line arguments.

argv Refers to the list containing the command-line arguments.

argv0
Refers to the file name of the file being interpreted or the name by

which we invoke the script.

env
Used for representing the array of elements that are environmental

variables.

errorCode Provides the error code for last Tcl error.

errorInfo Provides the stack trace for last Tcl error.

tcl_interactive
Used to switch between interactive and non-interactive modes by

setting this to 1 and 0 respectively.

tcl_library Used for setting the location of standard Tcl libraries.

tcl_pkgPath
Provides the list of directories where packages are generally

installed.

tcl_patchLevel Refers to the current patch level of the Tcl interpreter.

tcl_platform
Used for representing the array of elements with objects including

byteOrder, machine, osVersion, platform, and os.

tcl_precision

Refers to the precision i.e. number of digits to retain when

converting to floating-point numbers to strings. The default value is

12.

tcl_prompt1 Refers to the primary prompt.

tcl_prompt2 Refers to the secondary prompt with invalid commands.

tcl_rcFileName Provides the user specific startup file.

tcl_traceCompile
Used for controlling the tracing of bytecode compilation. Use 0 for

no output, 1 for summary, and 2 for detailed.

tcl_traceExec
Used for controlling the tracing of bytecode execution. Use 0 for no

output, 1 for summary, and 2 for detailed.

tcl_version Returns the current version of the Tcl interpreter.

The above special variables have their special meanings for the Tcl interpreter.

Tcl/Tk

99

Examples for Using Tcl Special Variables

Let's take some examples to understand the use of special variables.

Tcl Version

#!/usr/bin/tclsh

puts $tcl_version

When you run the program, you will get a similar output as shown below:

8.5

Tcl Environment Path

#!/usr/bin/tclsh

puts $env(PATH)

When you run the program, you will get a similar output as shown below:

/web/com/GNUstep/Tools:/usr/GNUstep/Local/Tools:/usr/GNUstep/System/Tools:/usr/

local/sml/bin:/usr/local/flex/bin:/usr/local/gcc-

4.8.1/bin:/usr/share/java:.:/usr/share/java:/usr/lib/jvm/java/lib:/usr/lib/jvm/

java/jre/lib:/usr/local/bin:/usr/local/mozart/bin:/usr/local/go/bin:/usr/local/

factor/:/usr/local/groovy-2.1.7/bin:/opt/Pawn/bin/:/usr/local/icon-

v950/bin:/usr/local/lib/mono/4.0:/usr/lib64/qtC.3/bin:/usr/local/bin:/bin:/usr/

bin:/usr/local/sbin:/usr/sbin:/sbin:/opt/Pawn/bin:/usr/local/dart/bin:/usr/loca

l/julia/usr/bin:/usr/local/julia:/usr/local/scriptbasic/bin

Tcl Package Path

#!/usr/bin/tclsh

puts $tcl_pkgPath

When you run the program, you will get a similar output as shown below:

/usr/lib64/tcl8.5 /usr/share/tcl8.5 /usr/lib64/tk8.5 /usr/share/tk8.5

Tcl Library

#!/usr/bin/tclsh

puts $tcl_library

Tcl/Tk

100

When you run the program, you will get a similar output as shown below:

/usr/share/tcl8.5

Tcl Patch Level

#!/usr/bin/tclsh

puts $tcl_patchLevel

When you run the program, you will get a similar output as shown below:

8.5.7

Tcl Precision

#!/usr/bin/tclsh

puts $tcl_precision

When you run the program, you will get a similar output as shown below:

0

Tcl Startup File

#!/usr/bin/tclsh

puts $tcl_rcFileName

When you run the program, you will get a similar output as shown below:

~/.tclshrc

Tcl/Tk

101

The basic component of a Tk-based application is called a widget. A component is also

sometimes called a window, since, in Tk, "window" and "widget" are often used

interchangeably. Tk is a package that provides a rich set of graphical components for

creating graphical applications with Tcl.

Tk provides a range of widgets ranging from basic GUI widgets like buttons and menus to

data display widgets. The widgets are very configurable as they have default configurations

making them easy to use.

Tk applications follow a widget hierarchy where any number of widgets may be placed

within another widget, and those widgets within another widget. The main widget in a Tk

program is referred to as the root widget and can be created by making a new instance of

the TkRoot class.

Creating a Widget

The syntax for creating a widget is given below.

type variableName arguments options

The type here refers to the widget type like button, label, and so on. Arguments can be

optional and required based on individual syntax of each widget. The options range from

size to formatting of each component.

Widget Naming Convention

Widget uses a structure similar to naming packages. In Tk, the root window is named with

a period (.) and an element in window, for example button is named .myButton1. The

variable name should start with a lowercase letter, digit, or punctuation mark (except a

period). After the first character, other characters may be uppercase or lowercase letters,

numbers, or punctuation marks (except periods). It is recommended to use a lowercase

letter to start the label.

Color Naming Convention

The colors can be declared using name like red, green, and so on. It can also use

hexadecimal representing with #. The number of hexadecimal digits can be 3, 6, 9, or 12.

Dimension Convention

The default unit is pixels and it is used when we specify no dimension. The other

dimensions are i for inches, m for millimeters, c for centimeters and p for points.

24. Tk – Widgets Overview

Tcl/Tk

102

Common Options

There are so many common options available to all widgets and they are listed below in

the following table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -height number Used to set height for widget.

6 -highlightbackground color

Used to set the color rectangle to draw around a

widget when the widget does not have input

focus.

7 -highlightcolor color
Used to set the color rectangle to draw around a

widget when the widget has input focus.

8 -padx number Sets the padx for the widget.

9 -pady number Sets the pady for the widget.

10 -relief condition

Sets the 3D relief for this widget. The condition

may be raised, sunken, flat, ridge, solid, or

groove.

11 -text text Sets the text for the widget.

12 -textvariable varName

Variable associated with the widget. When the

text of widget changes, the variable is set with

text of widget.

13 -width number Sets the width for widget.

A simple example for options is shown below.

#!/usr/bin/wish

grid [label .myLabel -background red -text "Hello World" -relief ridge -

borderwidth 3] -padx 100 -pady 100

Tcl/Tk

103

When we run the above program, we will get the following output.

The list of available widgets are categorized below:

Basic Widgets

SN Widget Description

1 Label Widget for displaying single line of text.

2 Button Widget that is clickable and triggers an action.

3 Entry Widget used to accept a single line of text as input.

4 Message Widget for displaying multiple lines of text.

5 Text Widget for displaying and optionally edit multiple lines of text.

6 Toplevel
Window with all borders and decorations provided by the Window

manager.

Layout Widgets

SN Widget Description

1 Frame Container widget to hold other widgets.

2 Place
Widget to hold other widgets in specific place with coordinates of its

origin and an exact size.

3 Pack
Simple widget to organize widgets in blocks before placing them in the

parent widget.

4 Grid Widget to nest widgets packing in different directions.

Tcl/Tk

104

Selection Widgets

SN Widget Description

1 Radiobutton
Widget that has a set of on/off buttons and labels, one of which

may be selected.

2 Checkbutton
Widget that has a set of on/off buttons and labels, many of which

may be selected.

3 Menu Widget that acts as holder for menu items.

4 Listbox
Widget that displays a list of cells, one or more of which may be

selected.

Mega Widgets

SN Widget Description

1 Dialog Widget for displaying dialog boxes.

2 Spinbox Widget that allows users to choose numbers.

3 Combobox
Widget that combines an entry with a list of choices available to the

use.

4 Notebook
Tabbed widget that helps to switch between one of several pages,

using an index tab.

5 Progressbar
Widget to provide visual feedback to the progress of a long

operation like file upload.

6 Treeview
Widget to display and allow browsing through a hierarchy of items

more in form of tree.

7 Scrollbar Scrolling widgets without a text or canvas widgets.

8 Scale Scale widget to choose a numeric value through sliders.

Other Widgets

SN Widget Description

1 Canvas Drawing widget for displaying graphics and images.

We will cover each of these widgets in the upcoming chapters.

Tcl/Tk

105

Basic widgets are common widgets available in almost all Tk applications. The list of

available basic widgets is given below:

1 Label Widget for displaying single line of text.

2 Button Widget that is clickable and triggers an action.

3 Entry Widget used to accept a single line of text as input.

4 Message Widget for displaying multiple lines of text.

5 Text Widget for displaying and optionally edit multiple lines of text.

6 Toplevel Widget used to create a frame that is a new top level window.

Tk - Label Widget

A label widget is a common widget used in almost all Tk applications that is used to display

simple text. The syntax for label widget is shown below:

label labelName options

Options

The options available for the label widget are listed below in table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -height number Used to set height for widget.

6 -padx number Sets the padx for the widget.

7 -pady number Sets the pady for the widget.

8 -relief condition
Sets the 3D relief for this widget. The condition may

be raised, sunken, flat, ridge, solid, or groove.

9 -text text Sets the text for the widget.

10 -textvariable varName
Variable associated with the widget. When the text of

widget changes, the variable is set to text of widget.

25. Tk – Basic Widgets

http://localhost/tcl-tk/tk_label_widget.htm
http://localhost/tcl-tk/tk_button_widget.htm
http://localhost/tcl-tk/tk_entry_widget.htm
http://localhost/tcl-tk/tk_message_widget.htm
http://localhost/tcl-tk/tk_text_widget.htm
http://localhost/tcl-tk/tk_toplevel_widget.htm

Tcl/Tk

106

11 -width number Sets the width for widget.

12 -justify alignment
Sets the alignment of text, which can be left, center,

or right.

A simple example for label widget is shown below:

#!/usr/bin/wish

grid [label .myLabel -background red -foreground white -text "Hello World" -

relief ridge -borderwidth 8 -padx 10 -pady 10 -font {Helvetica -18 bold} -

height 10 -width 35 -textvariable myvariable -justify left -underline 1]

set myvariable "Test Hello"

When we run the above program, we will get the following output:

Tk – Button Widget

Tk button widget is a clickable widget that triggers an action. The syntax for button widget

is shown below:

button buttonName options

Tcl/Tk

107

Options

The options available for the button widget are listed below in table:

SN Syntax Description

1 -font fontDescriptor Used to set font for widget.

2 -height number Used to set height for widget.

3 -command action Sets the command action for button.

4 -text text Sets the text for the widget.

5 -width number Sets the width for widget.

A simple button widget is shown below:

#!/usr/bin/wish

grid [label .myLabel -text "Click the buttons" -textvariable labelText]

grid [button .myButton1 -text "Button 1" -font {Helvetica -18 bold} -height 5

-width 10 -command "set labelText clicked_top_btn"]

grid [button .myButton2 -text "Button 2" -font {Helvetica -18 bold} -height 5 -

width 10 -command "set labelText clicked_bottom_btn"]

When we run the above program, we will get the following output:

Tcl/Tk

108

When we click the Button1, we will get the following output:

When we click the Button2, we will get the following output:

Tcl/Tk

109

Tk – Entry Widgets

Entry widgets are used to accept a single line of text as input. Getting user input is almost

mandatory in all Tk applications. The syntax for entry widget is shown below:

entry entryName options

Options

The options available for the entry widget are listed below in the following table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -pady number Sets the pady for the widget.

6 -relief condition
Sets the 3D relief for this widget. The condition may

be raised, sunken, flat, ridge, solid, or groove.

7 -textvariable varName
Variable associated with the widget. When the text of

widget changes, the variable is set to text of widget.

8 -width number Sets the width for widget.

9 -justify side
Sets the justification side. The valid sides are left and

right.

10 -show character Sets the character for secure entry.

A simple example using entry widget is shown below:

#!/usr/bin/wish

grid [entry .myEntry -background red -foreground white -relief ridge -

borderwidth 8 -font {Helvetica -18 bold} -width 35 -textvariable myvariable -

justify right]

set myvariable "Hello World"

When we run the above program, we will get the following output:

Tcl/Tk

110

An example for secure entry is shown below:

#!/usr/bin/wish

grid [entry .myEntry -background red -foreground white -relief ridge -

borderwidth 8 -font {Helvetica -18 bold} -width 35 -textvariable myvariable -

justify left -show "*"]

set myvariable "Hello World"

When we run the above program, we will get the following output:

Tk – Message Widget

A message widget is used for displaying multiple lines of text. The syntax for message

widget is shown below:

message messageName options

Options

The options available for the message widget are listed below in the following table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -padx number Sets the padx for the widget.

6 -pady number Sets the pady for the widget.

Tcl/Tk

111

7 -relief condition
Sets the 3D relief for this widget. The condition may

be raised, sunken, flat, ridge, solid, or groove.

8 -text text Sets the text for the widget.

9 -textvariable varName
Variable associated with the widget. When the text of

widget changes, the variable is set to text of widget.

10 -justify alignment
Sets the alignment of text, which can be left, center,

or right.

11 -aspect ratio
Sets the aspect ratio in percent. The default is 150.

It is available when width option is not used.

12 -width number Sets the width for widget.

A simple example for message widget is shown below:

#!/usr/bin/wish

grid [message .myMessage -background red -foreground white -text "Hello\nWorld"

-relief ridge -borderwidth 8 -padx 10 -pady 10 -font {Helvetica -18 bold} -

textvariable myvariable -justify right -aspect 100]

When we run the above program, we will get the following output:

Tk – Text Widget

Tk text widget is a general purpose editable text widget with features for multiple options.

The syntax for text widget is shown below:

text textName options

Tcl/Tk

112

Options

The options available for the text widget are listed below in table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -relief condition
Sets the 3D relief for this widget. The condition may be

raised, sunken, flat, ridge, solid, or groove.

6 -width number Sets the width for widget.

7 -height number Used to set height for widget.

A simple example for text widget is shown below:

#!/usr/bin/wish

grid [text .myText -background red -foreground white -relief ridge -borderwidth

8 -padx 10 -pady 10 -font {Helvetica -18 bold} -width 20 -height 5]

.myText insert 1.0 "Hello\nWorld\n"

.myText insert end "A new line\n"

.myText tag configure para -spacing1 0.15i -spacing2 0.05i \

 -lmargin1 0.25i -lmargin2 0.2i -rmargin 0.25i

.myText tag configure hang -lmargin1 0.30i -lmargin2 0.25i

.myText tag add para 1.0 2.end

.myText tag add hang 3.0 3.end

When we run the above program, we will get the following output:

Tcl/Tk

113

As you can see, text widgets works with the help of procedures like tag, insert, and delete.

Most of the tag usages have been covered in the above example.

Tk – Top Level Widgets

Top level widget is used to create a frame that is a new top level window. The syntax for

top level widget is shown below:

toplevel topLevelName options

Options

The options available for the top level widget are listed below in table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -height number Used to set height for widget.

4 -padx number Sets the padx for the widget.

5 -pady number Sets the pady for the widget.

6 -relief condition
Sets the 3D relief for this widget. The condition may be

raised, sunken, flat, ridge, solid, or groove.

7 -width number Sets the width for widget.

A simple example for top level widget is shown below:

#!/usr/bin/wish

toplevel .top -width 400 -height 100 -background red -relief ridge -borderwidth

8 -padx 10 -pady 10

When we run the above program, we will get the following output:

Tcl/Tk

114

A simple Tk example is shown below using basic widgets:

#!/usr/bin/wish

grid [label .myLabel -text "Label Widget" -textvariable labelText]

grid [text .myText -width 20 -height 5]

.myText insert 1.0 "Text\nWidget\n"

grid [entry .myEntry -text "Entry Widget"]

grid [message .myMessage -background red -foreground white -text

"Message\nWidget"]

grid [button .myButton1 -text "Button" -command "set labelText clicked"]

When we run the above program, we will get the following output:

Tcl/Tk

115

Layout widgets are used to handle layouts for the Tk application. Frame widget is used

group other widgets and place, pack, and grid are layout manager to give you total control

over your adding to windows. The list of available layout widgets are as shown below:

1 Frame Container widget to hold other widgets.

2 Place

Widget to hold other widgets in specific place with coordinates of its origin

and an exact size.

3 Pack

Simple widget to organize widgets in blocks before placing them in the

parent widget.

4 Grid Widget to nest widgets packing in different directions.

Tk – Frame Widget

The frame widget is a rectangular container widget that groups widgets for designing GUI.

The syntax for frame widget is shown below:

frame frameName options

Options

The options available for the frame widget are listed below in table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -height number Used to set height for widget.

4 -padx number Sets the padx for the widget.

5 -pady number Sets the pady for the widget.

6 -relief condition
Sets the 3D relief for this widget. The condition may be

raised, sunken, flat, ridge, solid, or groove.

7 -width number Sets the width for widget.

26. Tk – Layout Widgets

http://localhost/tcl-tk/tk_frame_widget.htm
http://localhost/tcl-tk/tk_place_widget.htm
http://localhost/tcl-tk/tk_pack_widget.htm
http://localhost/tcl-tk/tk_grid_widget.htm

Tcl/Tk

116

A simple example for frame widget is shown below:

#!/usr/bin/wish

frame .myFrame1 -background red -relief ridge -borderwidth 8 -padx 10 -pady 10

-height 100 -width 100

frame .myFrame2 -background blue -relief ridge -borderwidth 8 -padx 10 -pady

10 -height 100 -width 50

pack .myFrame1

pack .myFrame2

When we run the above program, we will get the following output:

Tk – Place Widget

The place widget is used to locate a widget at an absolute location or a relative location

based on the size of the window. The syntax for place widget is shown below:

place placeName options

Options

The options available for the place widget are listed below in table.

SN Syntax Description

1 -x xLocation Sets the absolute x position for widget.

2 -y yLocation Sets the absolute y position for widget.

3 -relx xFraction Sets the relative x position as fraction of width for widget.

Tcl/Tk

117

4 -rely yFraction Sets the relative y position as fraction of height for widget.

A simple example for place widget is shown below.

#!/usr/bin/wish

 . configure -width 250 -height 300

frame .myFrame1 -background red -relief ridge -borderwidth 8 -padx 10 -pady 10

-height 100 -width 100

frame .myFrame2 -background blue -relief ridge -borderwidth 8 -padx 10 -pady

10 -height 100 -width 50

place .myFrame1 -x 0 -y 20

place .myFrame2 -x 50 -y 150

When we run the above program, we will get the following output:

Tk – Pack Widget

The pack widget is a rectangular container widget that groups widgets for designing GUI.

The syntax for pack widget is shown below.

pack packName options

Tcl/Tk

118

Options

The options available for the pack widget are listed below in the following table:

SN Syntax Description

1 -side side
Packs the widget to given side of the parent window. It

can be top, bottom, left, and right. The default is top.

2 -anchor edge

Pack widget will be anchored to specific side if the width

is less than space is assigned. The valid edges are n, e,

w, and s.

3 -expand boolean Used to make the widget the available space.

4 -padx number Sets the padx for the widget.

5 -pady number Sets the pady for the widget.

6 -fill direction

Widget may expand to fill extra space in its parcel. The

default is none. The direction may be none, x to fill

vertically, y to fill horizontally, and both to fill both ways.

7 -after widgetName
Pack this widget after widgetName, generally on top of

it.

A simple pack example for pack widget is shown below:

#!/usr/bin/wish

label .label1 -background green -text "Hello World1" -width 30

label .label2 -background gray -text "Hello World2"

frame .myFrame2 -background blue -relief ridge -borderwidth 8 -padx 10 -pady

10 -height 100 -width 50

pack .label1 -side top -anchor s

pack .label2 -side top -anchor s

pack .myFrame2 -padx 10 -fill x -side bottom -anchor n -after .label2

Tcl/Tk

119

When we run the above program, we will get the following output.

Tk – Grid Widget

The grid widget used to layout widgets in specific rows and columns. The syntax for grid

widget is shown below:

grid gridName options

Options

The options available for the grid widget are listed below in the following table:

SN Syntax Description

1 -column number Sets the column position for widget.

2 -row number Sets the row position for widget.

3 -columnspan number
Number of columns to be used for this widget. Defaults

to 1.

4 -rowspan number
Number of rows to be used for this widget. Defaults to

1.

5 -sticky side

Sets the edge of the cell to which the widget should

stick to. Valid values can be n for top, s for bottom, e

for right, w for left, or a combination of these letters.

A simple example for grid widget is shown below:

#!/usr/bin/wish

Tcl/Tk

120

frame .myFrame1 -background red -relief ridge -borderwidth 8 -padx 10 -pady 10

-height 100 -width 100

frame .myFrame2 -background blue -relief ridge -borderwidth 8 -padx 10 -pady

10 -height 100 -width 50

grid .myFrame1 -columnspan 10 -rowspan 10 -sticky w

grid .myFrame2 -column 10 -row 2

When we run the above program, we will get the following output:

A simple Tk example is shown below for layout widgets:

#!/usr/bin/wish

frame .myFrame1 -background red -relief ridge -borderwidth 8 -padx 10 -pady 10

-height 100 -width 100

frame .myFrame2 -background blue -relief ridge -borderwidth 8 -padx 10 -pady

10 -height 100 -width 50

pack .myFrame1

pack .myFrame2

When we run the above program, we will get the following output:

Tcl/Tk

121

Tcl/Tk

122

Selection widgets are used to select different options in a Tk application. The list of

available selection widgets are as shown below.

1 Radiobutton
Widget that has a set of on/off buttons and labels, one of which

may be selected.

2 Checkbutton
Widget that has a set of on/off buttons and labels, many of which

may be selected.

3 Menu Widget that acts as holder for menu items.

4 Listbox
Widget that displays a list of cells, one or more of which may be

selected.

Tk – Radio Button Widget

Radio button widget implements a multiple-choice button, which is a way to offer many

possible selections to the user and lets user choose only one of them. The syntax for radio

button widget is shown below:

radiobutton radiobuttonName options

Options

The options available for the radio button widget are listed below in the following table:

SN Syntax Description

1 -font fontDescriptor Used to set font for widget.

2 -height number Used to set height for widget.

3 -command action Sets the command action for button.

4 -text text Sets the text for the widget.

5 -width number Sets the width for widget.

6 -variable variableName Sets the variable for widget.

7 -value variableValue Sets the variable with variable value.

27. Tk – Selection Widgets

Tcl/Tk

123

A simple radio button widget example is shown below:

#!/usr/bin/wish

grid [frame .gender]

grid [label .myLabel -text "Male" -textvariable myLabel1]

grid [radiobutton .gender.maleBtn -text "Male" -variable gender -value "Male"

-command "set myLabel1 Male"] -row 1 -column 2

grid [radiobutton .gender.femaleBtn -text "Female" -variable gender -value

"Female" -command "set myLabel1 Female"] -row 1 -column 3

.gender.maleBtn select

When we run the above program, we will get the following output:

Tk – Check Button Widget

Tk-check button is used to create multiple selectable items in the form of check boxes.

The syntax for check button widget is shown below:

checkbutton checkbuttonName options

Options

The options available for the check button widget are listed below in the following table:

SN Syntax Description

1 -font fontDescriptor Used to set font for widget.

2 -height number Used to set height for widget.

3 -command action Sets the command action for button.

4 -text text Sets the text for widget.

5 -width number Sets the width for widget.

6 -variable variableName Sets the variable for widget.

Tcl/Tk

124

A simple Tk example for check button is shown below:

#!/usr/bin/wish

grid [label .myLabel1 -text "Range 20-30 not selected" -textvariable

myLabelValue1]

grid [checkbutton .chk1 -text "Range 20-30" -variable occupied1 -command {if

{$occupied1 } {

 set myLabelValue1 {Range 20-30 selected}

} else {

 set myLabelValue1 {Range 20-30 not selected}

} }]

grid [label .myLabel2 -text "Range 30+ not selected" -textvariable

myLabelValue2]

grid [checkbutton .chk2 -text "Range 20-30" -variable occupied2 -command {if

{$occupied2 } {

 set myLabelValue2 {Range 30+ selected}

} else {

 set myLabelValue2 {Range 30+ not selected}

} }]

When we run the above program, we will get the following output:

Tcl/Tk

125

When we click the check button1 and check button2, we will get the following output:

Tk – Menu Widget

Tk menu widget is used along with Tk widget menubutton. So, we will see menubutton

first. The syntax for menu button widget is shown below:

menubutton menubuttonName options

Menu Button Options

The options available for the menu button widget are listed below in the following table:

SN Syntax Description

1 -command action Sets the command action for button.

2 -text text Sets the text for the widget.

3 -textvariable varName

Variable associated with the widget. When the text

of widget changes, the variable is set to text of

widget.

4 -width number Sets the width for widget.

5 -menu menuName Specifies the name of associated menu widget.

6 -underline charPosition Sets the position for hotkey.

The syntax for menu is shown below.

menu menuName options

Tcl/Tk

126

Menu Options

The options available for the menu widget are listed below in the following table:

SN Syntax Description

1 -font fontDescriptor Used to set font for widget.

2 -postcommand action
Sets the command action to be done before a menu is

posted.

3 -menu menuName Specifies the name of associated menu widget.

4 -tearoff boolean

Allows or disallows a menu to be removed from the

menubutton and displayed in a permanent window.

Default is enabled.

The syntax for adding menubutton is shown below:

menuName add type menubuttonType options

The type includes separator, cascade, checkbutton, radiobutton, and command.

MenuName Add Options

The options available for the menuName add are listed below in table:

SN Syntax Description

1 -command action Sets the command action for the menubutton.

2 -menu menuName Specifies the name of associated menu widget.

3 -label string Set the text of the menu.

4 -variable varName Sets the variable to be set when this entry is selected.

5 -value string The value is set for the variable.

6 -underline position Sets the position for hotkey.

A simple Tk menu is shown below:

#!/usr/bin/wish

menubutton .myMenubutton -menu .myMenubutton.myMenu -text "ChangeText"

menu .myMenubutton.myMenu

.myMenubutton.myMenu add command -label Hello -command {set myvariable "Hello"}

.myMenubutton.myMenu add command -label World -command {set myvariable "World"}

pack .myMenubutton

Tcl/Tk

127

pack [label .myLabel -text "Select An option" -font {Helvetica -18 bold} -

height 5 -width 15 -textvariable myvariable]

When we run the above program, we will get the following output:

When we select a menu option, we will get an output as shown below:

Tk – Listbox Widget

Tk listbox widgets are scrollable lists that can be selected. The syntax for listbox widget is

shown below:

listbox buttonName options

Tcl/Tk

128

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -height numberOfLines Used to set number of lines for height of widget.

6 -selectmode mode Mode can be single, browse, multiple and extended.

7 -exportselection bool
To use multiple listbox widgets, set this option to

FALSE. The default is TRUE.

8 -width number Sets the width for widget.

A simple example for listbox is shown below:

#!/usr/bin/wish

proc setLabel {text} {

 .label configure -text $text

}

listbox .myList

label .label -text "No Choice selected"

bind .myList {setLabel [.myList get active]}

grid .myList -row 0 -column 0 -sticky news

grid .label -row 1 -column 0 -columnspan 2

.myList insert 0 Choice1 Choice2 Choice3

Tcl/Tk

129

When we run the above program, we will get the following output:

When we select an option, we will get the following output:

Tcl/Tk

130

A simple Tk example is shown below using selection widgets:

#!/usr/bin/wish

grid [frame .gender]

grid [label .label1 -text "Male" -textvariable myLabel1]

grid [radiobutton .gender.maleBtn -text "Male" -variable gender -value "Male"

-command "set myLabel1 Male"] -row 1 -column 2

grid [radiobutton .gender.femaleBtn -text "Female" -variable gender -value

"Female" -command "set myLabel1 Female"] -row 1 -column 3

.gender.maleBtn select

grid [label .myLabel2 -text "Range 1 not selected" -textvariable myLabelValue2

]

grid [checkbutton .chk1 -text "Range 1" -variable occupied1 -command {if

{$occupied1 } {

 set myLabelValue2 {Range 1 selected}

} else {

 set myLabelValue2 {Range 1 not selected}

} }]

proc setLabel {text} {

 .label configure -text $text

}

When we run the above program, we will get the following output:

Tcl/Tk

131

Canvas is used for providing drawing areas. The syntax for canvas widget is shown below:

canvas canvasName options

Options

The options available for the canvas widget are listed below in the following table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -closeenough distance

Sets the closeness of mouse cursor to a

displayable item. The default is 1.0 pixel. This

value may be a fraction and must be positive.

3 -scrollregion boundingBox
The bounding box for the total area of this

canvas.

4 -height number Used to set height for widget.

5 -width number Sets the width for widget.

6 -xscrollincrement size
The amount to scroll horizontally when scrolling is

requested.

7 -yscrollincrement size
The amount to scroll vertically when scrolling is

requested.

A simple example for canvas widget is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 100 -height 100

pack .myCanvas

28. Tk – Canvas Widgets

Tcl/Tk

132

When we run the above program, we will get the following output:

Widgets for Drawing in Canvas

The list of the available widgets for drawing in canvas is listed below:

SN Widget Description

1 Line Draws a line.

2 Arc Draws an arc.

3 Rectangle Draws a rectangle.

4 Oval Draws an oval.

5 Polygon Draws a polygon.

6 Text Draws a text.

7 Bitmap Draws a bitmap.

8 Image Draws an image.

Tk – Canvas Line Widget

Line widget is used to draw a line in canvas. The syntax for line widget is shown below:

canvasName create line x1 y1 x2 y2 ... xn yn options

x1 y1, x2 y2 ... xn yn are used to determine the end points of line segments.

Tcl/Tk

133

Options

The options available for the line widget are listed below in the following table:

SN Syntax Description

1 -arrow end
Determines whether line should have arrow on ends.

The end can be both, first, last and none.

2 -fill color The fill color fills the line segment with the color.

3 -smooth boolean
This can be set to true make the line segments to be

rendered with a set of Bezier splines.

4 -splinesteps number
Determines the number of line segment for Bezier

splines.

A simple example for line widget is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 100 -height 100

pack .myCanvas

.myCanvas create line 10 10 50 50 30 100 -arrow both -fill yellow -smooth true

-splinesteps 2

When we run the above program, we will get the following output:

Tcl/Tk

134

Tk - Canvas Arc Widget

Arc widget is used to draw an arc in canvas. The syntax for arc widget is shown below:

canvasName create arc x1 y1 x2 y2 options

x1 y1 and x2 y2 are the end points of an arc.

Options

The options available for the arc widget are listed below in the following table:

SN Syntax Description

1 -fill color The fill color fills the arc with the color.

2 -start angle The start location in degrees for this arc. The default is 0.

3 -extent angle
The number of degrees to extend the arc from the start

position. The default is 90 degrees.

4 -style styleType
The style of arc to draw. The options are pieslice, chord, and

arc.

A simple example for arc widget is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 100 -height 100

pack .myCanvas

.myCanvas create arc 10 10 80 80 -fill yellow

When we run the above program, we will get the following output:

Tcl/Tk

135

Tk – Canvas Rectangle Widget

Rectangle widget is used to draw a rectangle shape in canvas. The syntax for rectangle

widget is shown below:

canvasName create rectangle x1 y1 x2 y2 options

x1 y1 and x2 y2 are the end points of rectangle.

Options

The options available for the rectangle widget are listed below in the following table:

SN Syntax Description

1 -outline color Determines the outline color.

2 -fill color The fill color fills the oval with the color.

3 -stipple bitmap The stipple pattern to use if the -fill option is being used.

4 -width number Determines the width.

A simple example for rectangle widget is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 200 -height 200

pack .myCanvas

.myCanvas create rectangle 50 50 100 80 -fill yellow

When we run the above program, we will get the following output:

Tcl/Tk

136

Tk – Canvas Oval Widget

Oval widget is used to draw an oval shape in canvas. The syntax for oval widget is shown

below:

canvasName create oval x1 y1 x2 y2 options

x1 y1 and x2 y2 are the end points of oval.

Options

The options available for the oval widget are listed below in the following table:

SN Syntax Description

1 -outline color Determines the outline color.

2 -fill color The fill color fills the oval with the color.

3 -stipple bitmap The stipple pattern to use if the -fill option is being used.

4 -width number Determines the width.

A simple example for oval widget is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 200 -height 200

pack .myCanvas

.myCanvas create oval 50 50 100 80 -fill yellow

When we run the above program, we will get the following output:

Tcl/Tk

137

Tk – Canvas Polygon Widget

Polygon widget is used to draw a polygon shape in canvas. The syntax for polygon widget

is shown below:

canvasName create polygon x1 y1 x2 y2 ... xn yn options

x1 y1 and x2 y2 ... xn yn are used to determine the end points of a polygon.

Options

The options available for the polygon widget are listed below in the following table:

SN Syntax Description

1 -outline color Determines the outline color.

2 -fill color The fill color fills the oval with the color.

3 -stipple bitmap
The stipple pattern to use if the -fill option is being

used.

4 -width number Determines the width.

5 -smooth boolean
This can be set to true make the line segments to be

rendered with a set of Bezier splines.

6 -splinesteps number
Determines the number of line segment for bezier

splines.

A simple example for polygon widget is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 200 -height 200

pack .myCanvas

.myCanvas create polygon 50 50 100 80 120 120 100 190 -fill yellow -outline

green

When we run the above program, we will get the following output:

Tcl/Tk

138

Tk - Canvas Text Widget

Canvas text widget is used to draw text in canvas. The syntax for canvas text widget is

shown below:

canvasName create text x y options

x and y are used to determine the position of text:

Options

The options available for the canvas text widget are listed below in the following table:

SN Syntax Description

1 -anchor position

The text will be positioned relative to the x and y locations.

Center is default and other options are n, s, e, w, ne, se,

sw, and nw.

2 -justify style
Determines the multiline, should be right justified, left

justified, or center justified. The default is left.

3 -fill color The fill color fills the oval with the color.

4 -text text The text for text widget.

5 -font fontStyle The font to use for this text.

A simple example for canvas text widget is shown below:

Tcl/Tk

139

#!/usr/bin/wish

canvas .myCanvas -background red -width 200 -height 200

pack .myCanvas

.myCanvas create text 100 100 -fill yellow -justify center -text "Hello

World.\n How are you?" -font {Helvetica -18 bold}

When we run the above program, we will get the following output:

Tk – Canvas Bitmap Widget

Bitmap widget is used to add bitmap to canvas. The syntax for bitmap widget is shown

below:

canvasName create bitmap x y options

x and y set the location of bitmap.

Options

The options available for the bitmap widget are listed below in the following table:

SN Syntax Description

1 -anchor position

The bitmap will be positioned relative to the x and y

locations. Center is default an other options are n, s, e, w,

ne, se, sw, and nw.

2 -bitmap name

Defines the bitmap to display. The available bitmaps in Tk

include warning, question, questhead, info, hourglass,

error, gray12, gray25, gray50, and gray75.

Tcl/Tk

140

A simple example for bitmap widget is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 100 -height 100

pack .myCanvas

.myCanvas create bitmap 50 50 -bitmap info

When we run the above program, we will get the following output:

Tk – Canvas Image Widget

Image widget is used to create a displayed image item. An image can be created from a

GIF, PNG, PPM, PGM, or X-Bitmap image. The syntax for image widget is shown below.

canvasName create image x y options

x and y set the location of a bitmap.

Option

The option available for the image widget are listed below in the following table:

Tcl/Tk

141

SN Syntax Description

1 -image imageName The variable that holds image to display.

A simple example for image widget is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 100 -height 100

pack .myCanvas

set myImage [image create photo]

$myImage read "/Users/myImages/myImage1.png"

.myCanvas create image 50 50 -image $myImage

When we run the above program, we will get the following output:

An example using different canvas widgets is shown below:

#!/usr/bin/wish

canvas .myCanvas -background red -width 200 -height 200

pack .myCanvas

.myCanvas create arc 10 10 50 50 -fill yellow

.myCanvas create line 10 30 50 50 100 10 -arrow both -fill yellow -smooth true

-splinesteps 2

.myCanvas create oval 50 50 100 80 -fill yellow

Tcl/Tk

142

.myCanvas create polygon 50 150 100 80 120 120 100 190 -fill yellow -outline

green

.myCanvas create rectangle 150 150 170 170 -fill yellow

.myCanvas create text 170 20 -fill yellow -text "Hello" -font {Helvetica -18

bold}

.myCanvas create bitmap 180 50 -bitmap info

When we run the above program, we will get the following output:

Tcl/Tk

143

Mega widgets include many complex widgets which is often required in some large scale

Tk applications. The list of available mega widgets are as shown below:

SN Widget Description

1 Dialog Widget for displaying dialog boxes.

2 Spinbox Widget that allows users to choose numbers.

3 Combobox
Widget that combines an entry with a list of choices available to the

use.

4 Notebook
Tabbed widget that helps to switch between one of several pages,

using an index tab.

5 Progressbar
Widget to provide visual feedback to the progress of a long

operation like file upload.

6 Treeview
Widget to display and allow browsing through a hierarchy of items

more in form of tree.

7 Scrollbar Scrolling widgets without a text or canvas widgets.

8 Scale Scale widget to choose a numeric value through sliders.

Tk – Dialog Widget

A dialog widget is used for displaying dialog boxes:

tk_dialog window title detailText bitmap default string1 ... stringn

The use of each of the above option of the widget is listed below in the following table and

they need to be used in the same order:

SN Syntax Description

1 window
Determines the name of the top level window for dialog and

any existing window by this name is destroyed.

2 title Title for the widget.

3 detailText Detail text for the widget.

4 bitmap

Bitmap (in the form suitable for Tk_GetBitmap) to display

in the top portion of the dialog, to the left of the text. If

this is an empty string then no bitmap is displayed in the

dialog. The available bitmaps in Tk include warning,

question, questhead, info, hourglass, error, gray12,

gray25, gray50, and gray75.

5 default The index of button to be selected.

29. Tk – Mega Widgets

Tcl/Tk

144

6 string1 ... stringn
The strings for buttons and it determines the number of

buttons.

A simple example for dialog widget is shown below:

#!/usr/bin/wish

set a [tk_dialog .myDialog "myTitle" "myDetail Text" questhead 0 "Yes" "No"]

When we run the above program, we will get the following output:

Tk – Spinbox Widget

Spinbox widget allows users to choose numbers or arbitrary values. The syntax for spinbox

widget is shown below.

spinbox spinboxName options

Options

The options available for the spinbox widget are listed below in table.

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -from number Range start value for spinbox.

6 -increment number Range increment value for spinbox.

7 -relief condition
Sets the 3D relief for this widget. The condition may

be raised, sunken, flat, ridge, solid, or groove.

Tcl/Tk

145

8 -textvariable varName
Variable associated with the widget. When the text of

widget changes, the variable is set to text of widget.

9 -to number Range end value for spinbox.

10 -values array Arbitrary values for spinbox widget.

11 -width number Sets the width for widget.

A simple example for spinbox widget is shown below:

#!/usr/bin/wish

set mylist [list C C++ Lua Tcl]

pack [spinbox .s1 -textvariable spinval1 -values $mylist -background yellow -

borderwidth 5 -font {Helvetica -18 bold} -foreground red -width 40 -relief

ridge]

pack [spinbox .s2 -textvariable spinval2 -from 1.0 -to 100.0 -increment 5 -

background yellow -borderwidth 5 -font {Helvetica -18 bold} -foreground red -

width 40 -relief ridge]

When we run the above program, we will get the following output:

Tk – Combobox Widget

Combobox widget is a widget that combines an entry with a list of choices available to the

use. The syntax for combobox widget is shown below:

combobox comboboxName options

Tcl/Tk

146

Options

The options available for the combobox widget are listed below in table.

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -textvariable varName

Variable associated with the widget. When the text

of widget changes, the variable is set to text of

widget.

6 -values array Arbitrary values for combobox widget.

7 -width number Sets the width for widget.

8 -justify alignment
Sets the alignment of text, which can be left,

center, or right.

9 -state requiredState
Sets the state, which can be read only, disabled,

or normal.

10 -postcommand command Procedure to be executed post action.

A simple example for combobox widget is shown below:

#!/usr/bin/wish

set mylist [list C C++ Lua Tcl]

pack [ttk::combobox .s1 -textvariable combovalue -values $mylist -background

yellow -font {Helvetica -18 bold} -foreground red -width 40 -justify left -

state normal]

set combovalue "C"

When we run the above program, we will get the following output:

Tk – Notebook Widget

A tabbed widget that helps to switch between one of several pages, using an index tab.

The syntax for notebook widget is shown below.

ttk::notebook notebookName options

Tcl/Tk

147

Options

The options available for the notebook widget are listed below in the following table:

SN Syntax Description

1 -height number Used to set height for widget.

2 -width number Sets the width for widget.

A simple example for notebook widget is shown below:

#!/usr/bin/wish

ttk::notebook .n -width 100 -height 100

ttk::frame .n.f1;

ttk::frame .n.f2;

.n add .n.f1 -text "TabOne"

.n add .n.f2 -text "TabTwo"

pack [label .n.f1.f2 -background red -foreground white -text "TabOne"]

pack [label .n.f2.f2 -background red -foreground white -text "TabTwo"]

pack .n

When we run the above program, we will get the following output:

Tk – Progressbar Widget

Progressbar widget is used to provide visual feedback of the progress of a long operation

like file upload. The syntax for progressbar widget is shown below:

progressbar progressbarName options

Tcl/Tk

148

Options

The options available to progressbar widget is listed below in the following table:

SN Syntax Description

1 -length number Sets the length for widget.

2 -maximum number Set the maximum possible -value. Default is 100.

3 -mode mode Mode can be indeterminate or determinate.

4 -orien orientation
Sets the orientation for widget. It can be either

horizontal or vertical.

5 -value number The current progress of the progress bar.

6 -variable varName
Variable associated with the widget. When the text of

widget changes, the variable is set to text of widget.

A simple example for progressbar widget is shown below.

#!/usr/bin/wish

pack [ttk::progressbar .p1 -orient horizontal -length 200 -mode indeterminate -

value 90]

pack [ttk::progressbar .p2 -orient horizontal -length 200 -mode determinate -

variable a -maximum 75 -value 20]

When we run the above program, we will get the following output.

Tk – Treeview Widget

Treeview widget is used to choose a numeric value through sliders. The syntax for treeview

widget is shown below.

treeview treeviewName options

Tcl/Tk

149

Options

The options available for the treeview widget are listed below in table.

SN Syntax Description

1 -columns columnNames An array of column names for widget.

2 -displaycolumns columns
An array of column names or indices specifying

columns to be displayed. Use #all for all.

3 -height number Height for widget.

4 -selectmode mode
Selection mode which can be extended, browse, or

none.

A simple example for treeview widget is shown below.

#!/usr/bin/wish

ttk::treeview .tree -columns "Creator Year" -displaycolumns "Year Creator"

.tree heading Creator -text "Creator" -anchor center

.tree heading Year -text "Year" -anchor center

pack .tree

.tree insert {} end -id Languages -text "Languages"

.tree insert Languages end -text C -values [list "Dennis Ritchie" "1990"]

.tree insert "" end -id Direct -text "Direct"

When we run the above program, we will get the following output.

To move the elements, we can use the following command.

.tree move Languages Direct end

Tcl/Tk

150

We will get the following output when the above command is executed.

Similarly, we can use the delete command to delete a values from treeview.

Tk – Scrollbar Widget

Scrollbar widget is a scrolling widget that can work without a text or canvas widgets. The

syntax for scrollbar widget is shown below.

scrollbar scrollbarName options

Options

The options available for the scrollbar widget are listed below in table.

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -orien orientation
Sets the orientation for widget. It can be either

horizontal or vertical.

4 -relief condition
Sets the 3D relief for this widget. The condition may be

raised, sunken, flat, ridge, solid, or groove.

5 -command command Command links view to scrollbar widget.

A simple example for scrollbar widget is shown below:

#!/usr/bin/wish

grid [tk::listbox .l -yscrollcommand ".s1 set" -xscrollcommand ".s2 set" -

height 5 -width 20] -column 0 -row 0 -sticky nwes

grid [ttk::scrollbar .s1 -command ".l yview" -orient vertical -background

yellow -borderwidth 5 -relief ridge] -column 1 -row 0 -sticky ns

Tcl/Tk

151

grid [ttk::scrollbar .s2 -command ".l xview" -orient horizontal -background

yellow -borderwidth 5 -relief ridge] -column 0 -row 1 -sticky ew

for {set index 0} {$index<100} {incr index} {

 .l insert end "A long line of text for testing scrollbar."

}

When we run the above program, we will get the following output:

Tk – Scale Widget

Scale widget is used to choose a numeric value through sliders. The syntax for scale widget

is shown below:

scale scaleName options

Options

The options available for the scale widget are listed below in the following table:

SN Syntax Description

1 -background color Used to set background color for widget.

2 -borderwidth width Used to draw with border in 3D effects.

3 -font fontDescriptor Used to set font for widget.

4 -foreground color Used to set foreground color for widget.

5 -from number Range start value for widget.

6 -variable varName
Variable associated with the widget. When the text of

widget changes, the variable is set to text of widget.

7 -length number Sets the length for widget.

8 -orien orientation
Sets the orientation for widget. It can be either

horizontal or vertical.

Tcl/Tk

152

9 -relief condition
Sets the 3D relief for this widget. The condition may be

raised, sunken, flat, ridge, solid, or groove.

10 -to number Range end value for widget.

11 -command command Procedure to be executed on action.

A simple example for scale widget is shown below:

#!/usr/bin/wish

proc scaleMe {mywidget scaleValue} {

 $mywidget configure -length $scaleValue

}

pack [scale .s2 -from 100.0 -to 200.0 -length 100 -background yellow -

borderwidth 5 -font {Helvetica -18 bold} -foreground red -width 40 -relief

ridge -orien horizontal -variable a -command "scaleMe .s2"]

When we run the above program, we will get the following output.

When we scroll the scale to maximum, we will get the following output.

Tcl/Tk

153

A simple Tk example is shown below using some mega widgets.

#!/usr/bin/wish

ttk::treeview .tree -columns "Creator Year" -displaycolumns "Year Creator"

.tree heading Creator -text "Creator" -anchor center

.tree heading Year -text "Year" -anchor center

pack .tree

.tree insert {} end -id Languages -text "Languages"

.tree insert Languages end -text C -values [list "Dennis Ritchie" "1990"]

proc scaleMe {mywidget scaleValue} {

 $mywidget configure -length $scaleValue

}

pack [scale .s2 -from 100.0 -to 200.0 -length 100 -background yellow -

borderwidth 5 -font {Helvetica -18 bold} -foreground red -width 40 -relief

ridge -orien horizontal -variable a -command "scaleMe .s2"]

pack [ttk::progressbar .p1 -orient horizontal -length 200 -mode indeterminate -

value 90]

pack [ttk::progressbar .p2 -orient horizontal -length 200 -mode determinate -

variable a -maximum 75 -value 20]

When we run the above program, we will get the following output:

Tcl/Tk

154

There are a number of widgets that supports displaying text. Most of these provides the

option of font attribute. The syntax for creating a font is shown below:

font create fontName options

Options

The options available for the font create are listed below in the following table:

SN Syntax Description

1 -family familyName The name of font family.

2 -size number The size of font.

3 -weight level The weight for font.

A simple example for a font creation is shown below:

#!/usr/bin/wish

font create myFont -family Helvetica -size 18 -weight bold

pack [label .myLabel -font myFont -text "Hello World"]

When we run the above program, we will get the following output:

To get all the fonts available, we can use the following command:

#!/usr/bin/wish

puts [font families]

30. Tk – Fonts

Tcl/Tk

155

When we run the above command, we will get the following output:

{Abadi MT Condensed Extra Bold} {Abadi MT Condensed Light} {Al Bayan} {Al Nile} {Al

Tarikh} {American Typewriter} {Andale Mono} Arial {Arial Black} {Arial Hebrew}

{Arial Narrow} {Arial Rounded MT Bold} {Arial Unicode MS} Athelas Avenir {Avenir

Next} {Avenir Next Condensed} Ayuthaya Baghdad {Bangla MN} {Bangla Sangam MN}

{Baoli SC} Baskerville {Baskerville Old Face} Batang {Bauhaus 93} Beirut {Bell MT}

{Bernard MT Condensed} BiauKai {Big Caslon} {Book Antiqua} {Bookman Old Style}

{Bookshelf Symbol 7} Braggadocio {Britannic Bold} {Brush Script MT} Calibri

{Calisto MT} Cambria {Cambria Math} Candara Century {Century Gothic} {Century

Schoolbook} Chalkboard {Chalkboard SE} Chalkduster {Charcoal CY} Charter Cochin

{Colonna MT} {Comic Sans MS} Consolas Constantia {Cooper Black} Copperplate

{Copperplate Gothic Bold} {Copperplate Gothic Light} Corbel {Corsiva Hebrew}

Courier {Courier New} {Curlz MT} Damascus {DecoType Naskh} Desdemona {Devanagari

MT} {Devanagari Sangam MN} Didot {DIN Alternate} {DIN Condensed} {Diwan Kufi}

{Diwan Thuluth} {Edwardian Script ITC} {Engravers MT} {Euphemia UCAS} Eurostile

Farah Farisi {Footlight MT Light} {Franklin Gothic Book} {Franklin Gothic Medium}

Futura Gabriola Garamond {GB18030 Bitmap} {Geeza Pro} Geneva {Geneva CY} Georgia

{Gill Sans} {Gill Sans MT} {Gloucester MT Extra Condensed} {Goudy Old Style}

{Gujarati MT} {Gujarati Sangam MN} Gulim GungSeo {Gurmukhi MN} {Gurmukhi MT}

{Gurmukhi Sangam MN} Haettenschweiler {Hannotate SC} {Hannotate TC} {HanziPen SC}

{HanziPen TC} Harrington HeadLineA Hei {Heiti SC} {Heiti TC} Helvetica {Helvetica

CY} {Helvetica Neue} Herculanum {Hiragino Kaku Gothic Pro} {Hiragino Kaku Gothic

ProN} {Hiragino Kaku Gothic Std} {Hiragino Kaku Gothic StdN} {Hiragino Maru Gothic

Pro} {Hiragino Maru Gothic ProN} {Hiragino Mincho Pro} {Hiragino Mincho ProN}

{Hiragino Sans GB} {Hoefler Text} Impact {Imprint MT Shadow} InaiMathi {Iowan Old

Style} Kai Kailasa {Kaiti SC} {Kaiti TC} {Kannada MN} {Kannada Sangam MN} Kefa

{Khmer MN} {Khmer Sangam MN} {Kino MT} Kokonor Krungthep KufiStandardGK {Lantinghei

SC} {Lantinghei TC} {Lao MN} {Lao Sangam MN} {Libian SC} {LiHei Pro} {LiSong Pro}

{Lucida Blackletter} {Lucida Bright} {Lucida Calligraphy} {Lucida Console} {Lucida

Fax} {Lucida Grande} {Lucida Handwriting} {Lucida Sans} {Lucida Sans Typewriter}

{Lucida Sans Unicode} {Malayalam MN} {Malayalam Sangam MN} Marion {Marker Felt}

Marlett {Matura MT Script Capitals} Meiryo Menlo {Microsoft Sans Serif} Mishafi

Mistral {Modern No. 20} Monaco {MS Gothic} {MS Mincho} {MS PGothic} {MS PMincho}

{MS Reference Sans Serif} {MS Reference Specialty} Mshtakan {MT Extra} Muna

{Myanmar MN} {Myanmar Sangam MN} Nadeem {Nanum Brush Script} {Nanum Gothic} {Nanum

Myeongjo} {Nanum Pen Script} {New Peninim MT} {News Gothic MT} Noteworthy Onyx

Optima {Oriya MN} {Oriya Sangam MN} Osaka Palatino {Palatino Linotype} Papyrus

PCMyungjo Perpetua {Perpetua Titling MT} PilGi {Plantagenet Cherokee} Playbill

PMingLiU {PT Mono} {PT Sans} {PT Sans Caption} {PT Sans Narrow} {PT Serif} {PT

Serif Caption} Raanana Rockwell {Rockwell Extra Bold} Sana Sathu {Savoye LET}

Seravek Silom SimSun {Sinhala MN} {Sinhala Sangam MN} Skia {Snell Roundhand}

{Songti SC} {Songti TC} Stencil STFangsong STHeiti STIXGeneral STIXIntegralsD

STIXIntegralsSm STIXIntegralsUp STIXIntegralsUpD STIXIntegralsUpSm STIXNonUnicode

STIXSizeFiveSym STIXSizeFourSym STIXSizeOneSym STIXSizeThreeSym STIXSizeTwoSym

STIXVariants STKaiti STSong Superclarendon Symbol Tahoma {Tamil MN} {Tamil Sangam

MN} TeamViewer8 {Telugu MN} {Telugu Sangam MN} Thonburi Times {Times New Roman}

{Trebuchet MS} {Tw Cen MT} Verdana Waseem {Wawati SC} {Wawati TC} Webdings {Weibei

SC} {Weibei TC} {Wide Latin} Wingdings {Wingdings 2} {Wingdings 3} {Xingkai SC}

{Yuanti SC} YuGothic YuMincho {Yuppy SC} {Yuppy TC} {Zapf Dingbats} Zapfino {Apple

Braille} {Apple Chancery} {Apple Color Emoji} {Apple LiGothic} {Apple LiSung}

{Apple SD Gothic Neo} {Apple Symbols} AppleGothic AppleMyungjo {Monotype Corsiva}

{Monotype Sorts}

Tcl/Tk

156

The image widget is used to create and manipulate images. The syntax for creating image

is as follows:

image create type name options

In the above syntax type is photo or bitmap and name is the image identifier.

Options

The options available for image create are listed below in the following table:

SN Syntax Description

1 -file fileName The name of the image file name.

2 -height number Used to set height for widget.

3 -width number Sets the width for widget.

4 -data string Image in base 64 encoded string.

A simple example for image widget is shown below:

#!/usr/bin/wish

image create photo imgobj -file "/Users/rajkumar/Desktop/F

Drive/pictur/vb/Forests/680049.png" -width 400 -height 400

pack [label .myLabel]

.myLabel configure -image imgobj

31. Tk – Images

Tcl/Tk

157

When we run the above program, we will get the following output:

The available function for image are listed below in the following table:

SN Syntax Description

1 image delete imageName
Deletes the image from memory and related

widgets visually.

2 image height imageName Returns the height for image.

3 image width imageName Returns the width for image.

4 image type imageName Returns the type for image.

5 image names Returns the list of images live in memory.

Tcl/Tk

158

A simple example for using the above image widget commands is shown below:

#!/usr/bin/wish

image create photo imgobj -file "/Users/rajkumar/images/680049.png" -width 400

-height 400

pack [label .myLabel]

.myLabel configure -image imgobj

puts [image height imgobj]

puts [image width imgobj]

puts [image type imgobj]

puts [image names]

image delete imgobj

The image will be deleted visually and from memory once "image delete imgobj" command

executes. In console, the output will be like the following:

400

400

photo

imgobj ::tk::icons::information ::tk::icons::error ::tk::icons::warning

::tk::icons::questi

Tcl/Tk

159

Events in its simplest form is handled with the help of commands. A simple example for

event handling is event handling with button and is shown below:

#!/usr/bin/wish

proc myEvent { } {

puts "Event triggered"

}

pack [button .myButton1 -text "Button 1" -command myEvent]

When we run the above program, we will get the following output:

A simple program to show delay text animation event is shown below:

#!/usr/bin/wish

proc delay {} {

 for {set j 0} {$j < 100000} {incr j} {

 }

}

label .myLabel -text "Hello................" -width 25

pack .myLabel

set str "Hello................"

for {set i [string length $str]} {$i > -2} {set i [expr $i-1]} {

 .myLabel configure -text [string range $str 0 $i]

 update

 delay

}

32. Tk – Events

Tcl/Tk

160

When we run the program, we will get the following output in animated way:

Event after Delay

The syntax for event after delay is shown below:

after milliseconds number command

A simple program to show after delay event is shown below:

#!/usr/bin/wish

proc addText {} {

 label .myLabel -text "Hello................" -width 25

 pack .myLabel

}

after 1000 addText

When we run the program, we will get the following output after one second:

You can cancel an event using the after cancel command as shown below:

#!/usr/bin/wish

proc addText {} {

 label .myLabel -text "Hello................" -width 25

 pack .myLabel

}

after 1000 addText

after cancel addText

Tcl/Tk

161

Event Binding

The syntax for event binding is as shown below:

bind arguments

Keyboard Events Example

#!/usr/bin/wish

bind . {puts "Key Pressed: %K "}

When we run the program and press a letter X, we will get the following output:

Key Pressed: X

Mouse Events Example

#!/usr/bin/wish

bind . {puts "Button %b Pressed : %x %y "}

When we run the program and press the left mouse button, we will get an output similar

to the following:

Button 1 Pressed : 89 90

Linking Events with Button Example

#!/usr/bin/wish

proc myEvent { } {

puts "Event triggered"

}

pack [button .myButton1 -text "Button 1" -command myEvent]

bind . ".myButton1 invoke"

When we run the program and press enter, we will get the following output:

Event triggered

Tcl/Tk

162

Window manager is used to handle the top level window. It helps in controlling the size,

position, and other attributes of the window. In Tk, . is used to refer the main window.

The syntax for window command is shown below:

wm option window arguments

The list of options available for Tk wm command is shown in the following table:

SN Syntax Description

1 aspect windowName a b c d

Tries to maintain the ratio of

width/height to be between a/b and

c/d.

2 geometry windowName geometryParams Use to set geometry for window.

3 grid windowName w h dx dy Sets the grid size.

4 group windowName leaderName
leaderName gives the leader of a

group of related windows.

5 deiconify windowName
Brings the screen to normal if

minimized.

6 iconify windowName Minimizes the window.

7 state windowName Returns the current state of window.

8 withdraw windowName
Unmaps the window and removes its

details in memory.

9 iconbitmap windowName image Sets or returns the icon bitmap.

10 iconPhoto windowName image Sets or returns the icon photo.

11 command windowName commandString
Records the startup command in the

WM_COMMAND property.

12 protocol windowName arguments

Register a command to handle the

protocol request name, which can be

WM_DELETE_WINDOW,

WM_SAVE_YOURSELF,

WM_TAKE_FOCUS. Eg: wm protocol .

WM_DELETE_WINDOW Quit.

13 minsize windowName size Determines the minimum window size.

14 maxsize windowName size
Determines the maximum window

size.

33. Tk – Windows Manager

Tcl/Tk

163

15 title windowName titleText Determines the title for window.

16 attributes subOptions
There are lots of attributes available

like alpha, full screen and so on.

Some of the above commands are used in the following example:

#!/usr/bin/wish

wm maxsize . 800 800

wm minsize . 300 300

wm title . "Hello"

wm attributes . -alpha ".90"

wm geometry . 300x200+100+100

When we run the above program, we will get the following output:

As you can see alpha is one of the attributes available. The list of commonly used

subcommands are listed below:

SN Syntax Description

1 -alpha number Sets the alpha for window.

2 -fullscreen number Number can be 0 for normal screen or 1 for full screen.

3 -topmost number
Sets or returns whether window is topmost.Value can be

0 or 1.

Tcl/Tk

164

Creating Window

We can use top level command to create a window and an example is shown below:

#!/usr/bin/wish

toplevel .t

When we run the above program, we will get the following output:

Destroying Window

We can use destroy command to destroy a window and an example is shown below:

#!/usr/bin/wish

destroy .t

The above command will destroy window named .t.

Tcl/Tk

165

The geometry manager is used to manage the geometry of the window and other frames.

We can use it to handle the position and size of the window and frames. The layout widgets

are used for this purpose.

Positioning and Sizing

The syntax for positioning and sizing window is shown below:

wm geometry . wxh+/-x+/-y

Here, w refers to width and h refers to height. It is followed by a '+' or '−' sign with number

next referring to the x position on screen. Similarly the following '+' or '−' sign with number

refers to the y position on screen

A simple example is shown below for the above statement:

#!/usr/bin/wish

wm geometry . 300x200+100+100

When we run the above program, we will get the following output:

Grid Geometry

The syntax for grid geometry is shown below:

grid gridName -column number -row number -columnspan number -rowspan number

The column, row, columnspan, or rowspan helps in providing the grid geometry.

34. Tk – Geometry Manager

Tcl/Tk

166

A simple example is shown below for the above statement:

#!/usr/bin/wish

frame .myFrame1 -background red -height 100 -width 100

frame .myFrame2 -background blue -height 100 -width 50

grid .myFrame1 -columnspan 10 -rowspan 10 -sticky w

grid .myFrame2 -column 10 -row 2

When we run the above program, we will get the following output:

