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Based on recent developments in the field of artificial intelligence (AI), we examine 
what type of human labour will be a substitute versus a complement to emerging 
technologies. We argue that these recent developments reduce the costs of providing 
a particular set of tasks – prediction tasks. Prediction about uncertain states of the 
world is an input into decision-making. We show that prediction allows riskier 
decisions to be taken and this is its impact on observed productivity although it could 
also increase the variance of outcomes as well. We consider the role of human 
judgment in decision-making as prediction technology improves. Judgment is 
exercised when the objective function for a particular set of decisions cannot be 
described (i.e., coded). However, we demonstrate that better prediction impacts the 
returns to different types of judgment in opposite ways. Hence, not all human 
judgment will be a complement to AI. Finally, we explore what will happen when AI 
prediction learns to predict the judgment of humans. 
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1 Introduction 

There is widespread discussion regarding the impact of machines on employment (see 

Autor, 2015). In some sense, the discussion mirrors a long-standing literature on the impact of 

the accumulation of capital equipment on employment; specifically, whether capital and labor 

are substitutes or complements (Acemoglu, 2003). But the recent discussion is motivated by the 

integration of software with hardware and whether the role of machines goes beyond physical 

tasks to mental ones as well (Brynjolfsson and McAfee, 2014). As mental tasks were seen as 

always being present and essential, human comparative advantage in these was seen as the main 

reason why, at least in the long term, capital accumulation would complement employment by 

enhancing labour productivity in those tasks.  

The computer revolution has blurred the line between physical and mental tasks. For 

instance, the invention of the spreadsheet in the late 1970s fundamentally changed the role of 

book-keepers. Prior to that invention, there was a time intensive task involving the 

recomputation of outcomes in spreadsheets as data or assumptions changed. That human task 

was substituted by the spreadsheet software that could produce the calculations more quickly, 

cheaply, and frequently. However, at the same time, the spreadsheet made the jobs of 

accountants, analysts, and others far more productive. In the accounting books, capital was 

substituting for labour but the mental productivity of labour was being changed. Thus, the impact 

on employment critically depended on whether there were tasks the “computers cannot do.” 

These assumptions persist in models today. Acemoglu and Restrepo (2016) observe that 

capital substitutes for labour in certain tasks while at the same time technological progress 

creates new tasks. They make what they call a “natural assumption” that only labour can perform 

the new tasks as they are more complex than previous ones.1 Benzell, LaGarda, Kotlikoff, and 

Sachs (2015) consider the impact of software more explicitly. Their environment has two types 

of labour – high-tech (who can, among other things, code) and low-tech (who are empathetic and 

can handle interpersonal tasks). In this environment, it is the low-tech workers who cannot be 

replaced by machines while the high-tech ones are employed initially to create the code that will 

eventually displace their kind. The results of the model depend, therefore, on a class of worker 

																																																								
1 To be sure, their model is designed to examine how automation of tasks causes a change in factor prices that biases 
innovation towards the creation of new tasks that labour is more suited to.  
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who cannot be substituted directly for capital but also on the inability of workers themselves to 

substitute between classes. 

In this paper, our approach is to delve into the weeds of what is happening currently in the 

field of artificial intelligence (AI) to examine precisely what type of human labour will be a 

substitute versus a complement to emerging technologies. In Section 2, we argue that recent 

developments in AI overwhelmingly impact the costs of providing a set of tasks – prediction. 

Prediction about uncertain states of the world is an input into decision-making. In Section 3, we 

show that prediction allows riskier decisions to be taken and this is its impact on observed 

productivity although it could increase the variance of outcomes as well. In Section 4, we make 

our stand on the issue of “what computers cannot do” and consider the role of human judgment 

in decision-making. Judgment is exercised when the objective function for a set of decisions 

cannot be described (i.e., coded). However, we demonstrate that better prediction impacts the 

returns to different types of judgment in opposite ways. Hence, not all human judgment will be a 

complement to AI. Section 5 then considers the design of prediction technology when prediction 

may be unreliable. Section 6 then examines span of attention issues for human judgment. Section 

7 then pontificates about the future of radiologists. Finally, in the conclusion, we explore what 

will happen when AI learns to predict the judgment of humans.  

2 AI and Prediction Costs 

We argue that the recent advances in artificial intelligence are advances in the technology 

of prediction. Most broadly, we define prediction as the ability to take known information to 

generate new information. Our model emphasizes prediction about the state of the world.  

Most contemporary artificial intelligence research and applications come from a field now 

called “machine learning.” Many of the tools of machine learning have a long history in statistics 

and data analysis, and are likely familiar to economists and applied statisticians as tools for 

prediction and classification.2 For example, Alpaydin’s (2010) textbook Introduction to Machine 

Learning covers maximum likelihood estimation, Bayesian estimation, multivariate linear 

regression, principal components analysis, clustering, and nonparametric regression. In addition, 

																																																								
2 Under the definition of taking known information to generate new information, classification techniques such as 
clustering are prediction techniques in which the new information to be predicted is the appropriate category or 
class. 
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it covers tools that may be less familiar, but also use independent variables to predict outcomes: 

Regression trees, neural networks, hidden Markov models, and reinforcement learning. Hastie, 

Tibshirani, and Friedman’s (2009) The Elements of Statistical Learning covers similar topics. 

The 2014 Journal of Economic Perspectives symposium on big data covered several of these less 

familiar prediction techniques in articles by Varian (2014) and Belloni, Chernozhukov, and 

Hansen (2014).  

While many of these prediction techniques are not new, recent advances in computer 

speed, data collection, data storage, and the prediction methods themselves have led to 

substantial improvements. These improvements have transformed the computer science research 

field of artificial intelligence. The Oxford English Dictionary defines artificial intelligence as 

“[t]he theory and development of computer systems able to perform tasks normally requiring 

human intelligence.” In the 1960s and 1970s, artificial intelligence research was primarily rules-

based, symbolic logic. It involved human experts generating rules that an algorithm could follow 

(Domingos 2015, p. 89). These are not prediction technologies. Such systems became decent 

chess players and they guided factory robots in highly controlled settings; however, by the 

1980s, it became clear that rules-based systems could not deal with the complexity of many non-

artificial settings. This led to an “AI winter” in which research funding artificial intelligence 

projects largely dried up (Markov 2015).  

Over the past 10 years, a different approach to artificial intelligence has taken off. The idea 

is to program computers to “learn” from example data or experience. In the absence of the ability 

to pre-determine the decision rules, a data-driven prediction approach can conduct many mental 

tasks. For example, humans are good at recognizing familiar faces, but we would struggle to 

explain and codify this skill. By connecting data on names to image data on faces, machine 

learning solves this problem by predicting which image data patterns are associated with which 

names. As a prominent artificial intelligence researcher put it, “Almost all of AI’s recent 

progress is through one type, in which some input data (A) is used to quickly generate some 

simple response (B)” (Ng 2016). Thus, the progress is explicitly about improvements in 

prediction. In other words, the suite of technologies that have given rise to the recent resurgence 

of interest in artificial intelligence use data collected from sensors, images, videos, typed notes, 

or anything else that can be represented in bits to fill in missing information, recognize objects, 

or forecast what will happen next.  
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To be clear, we do not take a position on whether these prediction technologies really do 

mimic the core aspects of human intelligence. While Palm Computing founder Jeff Hawkins 

argues that human intelligence is — in essence — prediction (Hawkins 2004), many 

neuroscientists, psychologists, and others disagree. Our point is that the technologies that have 

been given the label artificial intelligence are prediction technologies. Therefore, in order to 

understand the impact of these technologies, it is important to assess the impact of prediction on 

decisions. 

3 Impact of Prediction on Decisions 

We now turn to model the impact of a reduction in the cost of prediction on decision-

making. We assume there are two actions that might be taken: a safe action and a risky action. 

The safe action generates an expected payoff of S while the risky action’s payoff depends on the 

state of the world. If the state of the world is good then the payoff is R while if it is bad, the 

payoff is r. We assume that R > S > r. These expected payoffs represent the decision-maker’s 

utility from each action. 

Which action should be taken depends on the prediction of how likely the good rather than 

the bad state will arise. To keep things simple, we will suppose that the probability of each state 

is ½. Prediction is of value because it makes taking the risky action less risky. To capture this we 

assume that: 

!
" 𝑅 + 𝑟 < 𝑆   (A1) 

Then in the absence of a prediction, the decision-maker will take the safe action. Better 

prediction means that the decision-maker is more likely to face a probability that is closer to 1 or 

0. Thus, better prediction increases the likelihood the decision-maker receives ‘good news’ and 

takes the risky action.  

To make this concrete, suppose that the prediction technology is such that with probability, 

e, the decision-maker learns that the true state. Thus, if the prediction technology is available 

then the decision-maker’s expected payoff is: 

𝜋) = 𝑒 ,
-
𝑅 + ,

-
𝑆 + 1 − 𝑒 𝑆 = 𝑒,

-
𝑅 + 1 − 𝑒,

-
𝑆 
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Thus, the better is the prediction technology (e), the higher the expected payoff. The returns to 

creating a better prediction technology depend on (R – S); the difference between the upside 

payoff and the safe payoff. 

4 Prediction and Human Judgment 

Having specified the baseline role of prediction in decision-making, we now turn to 

consider the application of judgment. The need for judgment arises because the decision-maker 

cannot describe the utility function perfectly in advance. Specifically, having received a 

prediction regarding the likely state of the world, the decision-maker engages in thought that 

allows them to assess the payoff from each action. In this mode, the payoffs specified previously 

are simply prior beliefs and having engaged in thought, the decision-maker can update those 

beliefs.  

To model this, we assume that there are hidden attributes that, if known, can change the 

assessment of return to the risky action in the good state. Specifically, we assume that with 

probability 𝜌/2 (𝜌 < 1), a hidden opportunity that boosts R by D arises. Similarly, we assume 

with the same probability 𝜌/2 a hidden cost that reduces R by D arises. We assume that hidden 

opportunities and hidden costs are mutually exclusive events (i.e., they cannot both arise). Thus, 

the expected payoff from the risky action in the good state remains R. We focus attention on 

hidden attributes that are consequential. Therefore, we assume that: 

!
" 𝑅 + ∆ + !

"𝑟 > 𝑆  (A2) 

𝑅 − ∆< 𝑆  (A3) 

Thus, if the decision-maker is uncertain regarding the state, identifying an opportunity will cause 

them to choose the risky action. If they are certain about the state, then identifying a cost will 

cause them to choose the safe action. 

Judgment is the ability to recognize hidden attributes when they arise. Humans might be 

able to exercise judgment in identifying hidden opportunities or hidden costs and we treat their 

abilities in this regard as distinct. Thus, we assume that with probability, 𝜆6, the decision-maker 

gets ‘good’ news and can discover a hidden opportunity (if it arises) while with probability, 𝜆7, 

the decision-maker gets ‘bad’ news can discover a hidden cost (if it arises).  
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To begin, if there are no hidden attributes, the decision-maker will choose the safe action. 

If such attributes are discovered, the exercise of the resulting judgment will only change the 

decision if a hidden opportunity is uncovered. Therefore, the expected payoff becomes: 

𝜆6
,
-
𝜌 ,

-
𝑅 + Δ + ,

-
𝑟 + 1 − ,

-
𝜌 𝑆 + 1 − 𝜆6 𝑆 = 𝜆6

,
-
𝜌 ,

-
𝑅 + Δ + ,

-
𝑟 + 1 − 𝜆6

,
-
𝜌 𝑆 

The application of judgment for hidden costs does not impact on the expected payoff precisely 

because the discovery of such costs will not change the decision made. Notice that this opens up 

the possibility that a risky action will be taken in what turns out to be the bad state. Thus, 

judgment improves the average payoff but increases the variance.  

Now consider what happens if a prediction technology (of level e) is available. In this case, 

the expected payoff becomes:  

𝜋9 = 𝑒 ,
-
𝜆7

,
-
𝜌𝑆 + ,

-
𝜌(𝑅 + ∆) + 1 − 𝜌 𝑅 + 1 − 𝜆7 𝑅 + ,

-
𝑆  

+(1 − 𝑒) 𝜆6!"𝜌
!
" 𝑅 + Δ + !

"𝑟 + 1 − 𝜆6!"𝜌 𝑆  (1) 

Using this we can establish the following result. 

Proposition 1. Better prediction is a substitute with judgment over hidden opportunities but a 
complement with judgment over hidden costs. 

PROOF: The mixed partial derivative of 𝜋9 with respect to 𝑒, 𝜆6  is !"𝜌 𝑆 − !
" 𝑅 + Δ −

!
"𝑟 < 0 by A2 while the mixed partial derivative of 𝜋9 with respect to 𝑒, 𝜆7  is !"𝜌 𝑆 −
(𝑅 − ∆) > 0 by A3. 

The intuition is simple. Without prediction, only ‘good news’ will change the decision from the 

safe default. As prediction becomes better, then the decision-maker is more likely to choose the 

riskier action. However, in this situation, it is only ‘bad news’ that will cause the decision-maker 

to revert to the safe action. In other words, judgment is useful when it changes a decision from 

that which would be determined by information about the uncertain action. When there is little 

information (i.e. without prediction) only judgment on hidden opportunities can change the 

decision. When there is good information (i.e., prediction is more precise) only judgment on 

hidden costs can change the decision. The outcome here is related to the ‘bad news principle’ 

that arises in decisions regarding the timing of irreversible investments (Bernanke, 1983). In that 

situation, the option value of delaying an investment is only positive if there is information that 

can be gathered that causes the investment to be abandoned.  
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It is useful to note that when judgment is generic (i.e., that the exercise of judgment is 

equally applicable for hidden opportunities and costs, 𝜆6 = 𝜆7), then prediction and judgment 

are complements only if 𝑆 − 𝑟 > 2 𝑅 − 𝑆 ; that is, if the downside risk is much larger than the 

upside risk. 

5 Unreliable Prediction 

Thus far, when the machine returns a prediction, it delivers a perfect signal regarding 

whether the good or bad state is true or not. But what if the prediction itself is imperfect? 

Suppose that the confidence that the prediction is true is 𝑎 < 1 meaning that the probability of a 

false positive is 1 − 𝑎. We assume that this confidence is independent of human judgment. In 

particular, even if there is a false positive, the probability of a hidden opportunity or hidden cost 

is unchanged. Finally, we assume that the prediction is sufficiently reliable so that 𝑎𝑅 +

1 − 𝑎 𝑟 > 𝑆. We focus here on the unreliability of a prediction that the state is good. As it turns 

out, that since the signal that a state is bad will not change a decision to choose S, the reliability 

of that prediction does not matter.  

Given this change we can now write 𝜋) and 𝜋9 as: 

𝜋) = 𝑒 ,
-
(𝑎𝑅 + 1 − 𝑎 𝑟) + ,

-
𝑆 + 1 − 𝑒 𝑆 

𝜋9 = 𝑒 ,
-
𝑎 𝜆7

,
-
𝜌𝑆 + ,

-
𝜌∆ + 1 − ,

-
𝜌 𝑅 + 1 − 𝜆7 𝑅 + 1 − 𝑎 𝑟 + ,

-
𝑆  

+(1 − 𝑒) 𝜆6
,
-
𝜌 ,

-
𝑅 + Δ + ,

-
𝑟 + 1 − 𝜆6

,
-
𝜌 𝑆  

Obviously, given a choice, one would want a more reliable prediction. Here, because reliability 

does not alter the decision in the absence of judgment, the level of reliability does not impact on 

the association between prediction and judgment. That is, Proposition 1 still qualitatively holds. 

Instead, the interesting question is a design one: suppose it was the case that if you want a 

prediction to be reported more often (a higher e), then that only comes about with a sacrifice in 

reliability (a). That is, you can design the machine prediction technology to be more optimistic 

(that is, reporting a prediction that the state is positive more often) but at the expense of that 

prediction being true less often. By contrast, a cautious prediction would be one that it was 

reported more sparingly but that was more likely to be true when reported. An alternative 
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interpretation of this trade-off is to consider e as not simply a prediction but the ability of a 

human to parse the prediction (that is, to understand it). In this interpretation, the more a 

prediction can be explained, the less reliable it becomes. Regardless of interpretation, what 

interests us here are situations where there is a technical constraint that relates the reliability of 

prediction to its availability. 

To consider this, assume that the technical relationship between e and a is described by 

e(a), a decreasing, quasi-concave function. What we are interested in is how the effectiveness of 

human judgment (in particular, 𝜆7) changes the type of prediction technology chosen. 

Proposition 2. Suppose that 𝑅 − 𝑟 ≤ ∆, then as 𝜆7 increases, the optimal value of e increases 
while the optimal value of a decreases.  

PROOF: The equilibrium point is where the slope of e(a) equals the marginal rate of 
substitution between e and a; that is, 

𝜕𝜋9/𝜕𝑒
𝜕𝜋9/𝜕𝑎 =

,
- 𝑎 𝜆7,-𝜌 𝑆 + ∆ + 1 − 𝜆7,-𝜌 𝑅 + 1 − 𝑎 𝑟 + ,

-𝑆
− 𝜆6,A𝜌 𝑅 + Δ + 𝑟 + 1 − 𝜆6,-𝜌 𝑆

𝑒 ,
- 𝜆7

,
-𝜌 𝑆 + ∆ + 1 − 𝜆7,-𝜌 𝑅 − 𝑟

 

The sign of the derivative of this with respect to 𝜆7 is the same as the sign of: 

2 2𝑆 𝑆 + ∆ − 𝑅 𝑆 + 𝑎 𝑆 + ∆ + 𝑟 𝑅 − 2 − 𝑎 𝑆 + ∆ − 𝜆6(𝑟 + 𝑅 − 2𝑆 + ∆)(𝑅
− 2 𝑆 + ∆ )𝜌 

Taking the derivative with respect to a: 

2 𝑆 + ∆ 𝑟 − 𝑅 < 0 
Thus, it is decreasing in a. The highest a can be is 1 in which case the expression becomes: 

2 (2𝑆 − 𝑟) 𝑆 − 𝑅 + ∆ − 𝑅∆ − 𝜆6(𝑟 + 𝑅 − 2𝑆 + ∆)(𝑅 − 2 𝑆 + ∆ )𝜌 

The second term is positive by our earlier assumptions. The first term is positive if  

2𝑆 − 𝑟 𝑆 − 𝑅 + ∆ > 𝑅∆⇒ 2𝑆 − 𝑟 𝑆 − 𝑅 > (𝑅 + 𝑟 − 2𝑆)∆ 

which cannot hold. However, setting 𝜆6𝜌 = 1, we can show that the overall expression is 
positive if: 

2∆ 𝑆 + ∆ > 𝑅(𝑅 + ∆ − 𝑟) 
This holds so long as 𝑅 − 𝑟 ≤ ∆. The lowest a can be is CDEFDE which, when substituted into 
the expression, becomes: 

−2 𝑟 − 𝑆 −𝑅 + 𝑆 + ∆ − 𝜆6(𝑟 + 𝑅 − 2𝑆 + ∆)(𝑅 − 2 𝑆 + ∆ )𝜌 

which is positive.  
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Intuitively, when R is relatively low, the consequences of unreliability are relatively high but the 

application of judgment serves to protect against the consequence of that unreliability (namely, 

choosing the safe action). Thus, in designing the prediction technology, better judgment favors 

choosing to have prediction under more circumstances but with lower reliability. 

When R is above the threshold in Proposition 2, a clear monotone comparative static does 

not arise. While an increase in 𝜆7 always serves to mitigate the consequences of unreliability, it 

is also a complement with prediction itself. When the consequences of unreliability are relatively 

low, it may be that the strength of complementarity between 𝜆7 and prediction outweighs it, 

causing the decision-maker to adjust towards more prediction even if it is less reliable. 

6 Inattention and Real Machine Authority 

Thus far, we have considered the roles of prediction and judgment in the context of a single 

decision. However, individuals usually have a number of decisions that are under their span of 

control. Moreover, those decisions may differ in terms of their underlying drivers of the costs of 

prediction and the value of judgment. In this section, we ask when an individual who has formal 

authority for a decision may, in effect, delegate that decision to a machine by choosing not to pay 

attention and exercise judgment. 

This question is related to the study of Aghion and Tirole (1997) on formal versus real 

authority. In their context, a subordinate who collected information – similar to our notion of 

prediction here – would report that information to a superior who could also collect their own 

information. Because the superior could not pay attention to everything, the subordinate might be 

able to exercise real authority over some decisions. Moreover, because the subordinate may gain 

from that authority privately, they would have a greater incentive to collect information.  

Here we need not concern ourselves with a conflicted or unmotivated subordinate. The 

machine will engage in prediction regardless and there is little reason to suppose that engaging in 

prediction over a wider domain will reduce the quality of their predictions. However, the 

individual who has formal authority over the decision may face such issues. That individual may 

wish to exercise judgment but in some circumstances, paying attention to a larger number of 

factors may limit their effectiveness in finding judgment opportunities. Thus, it becomes 
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important where that individuals focusses their attention and how this focus changes with the 

underlying environment. 

To consider this, we amend the baseline model (where a = 1) as follows. There is now a 

continuum of environments the decision-maker might be faced with each with a different D. 

Each D comes from the [∆, ∆] domain and has a frequency 𝑓(∆), where 𝑓 ∆ 𝑑∆∆
∆ = 1 and F(.) 

is the cdf of f(.). The lower bound is such that our earlier assumptions (A2) and (A3) are 

maintained. Otherwise, all parameters are held constant.3  

We imagine that the decision-maker can choose the number of environments they monitor. 

If they do not monitor the environment, they cannot exercise judgment. In that situation, their 

expected payoff is 𝜋) as stated above. In this situation, the prediction of the machine determines 

fully the decision taken. Hence, we say that in this case the machine has real authority. If they 

monitor an environment, they can exercise judgment of the form we described in the baseline 

model for that environment. In that case, their expected payoff is as listed in (1).  

Note that the expected payoff in (1), 𝜋9, is greater than that in (2), 𝜋), and it is increasing 

in D. If there were no costs to doing so, therefore, the decision-maker would monitor all 

environments and exercise judgment in them as necessary. To consider such costs, let D be the 

set of environments that are monitored by the decision-maker. We will assume that 𝜆7 𝐷  is 

decreasing in 𝐷 , the cardinality of D. The idea is that the fewer environments a decision-maker 

monitors, the better they become at exercising judgment in any one.  

Given this we can demonstrate the following: 

Proposition 3. There exists a cut-off environment, D*, so that the machine has real authority over 

environments [∆, D*] and the human exercises judgment over environments [∆∗, ∆]. At the 

optimal span of control D*, 𝜋9(∆∗, 𝜆7 ∆ − ∆∗ ) ≫ 𝜋). 

The proposition says that the human exercises judgment in the states with the highest D – a 

parameter that we noted captured the value of judgment. But more importantly, the human cedes 

																																																								
3 The structure of this model is similar to that of Athey et.al. (1994) and the results that follow have their analogs in 
their findings. Where there are differences is that we only allow an expansion of effect decision-authority to 
negatively impact on the quality of one-side of the equation (human judgment) whereas machine prediction is 
assumed to be scalable without diminishing returns. In addition, we side-step an issue with their model regarding the 
incentives of different agents by considering a setting in which there are no apparent conflicts of interest. 
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real authority to the machine even in states where it has an absolute advantage contingent upon 

its equilibrium level of judgment ability. The reason this occurs is that the human finds it optimal 

to take a ‘hands off’ approach in environments where judgment has lower value so that they can 

improve their monitoring in higher value states. In effect, they specialize their attention. 

Observationally, there exist environments where the human could have exercised judgment and 

taken a safer course of action but does not.  

We now turn to examine how changes in the external environment impact on the degree of 

real machine authority. To begin, suppose that prediction technology improves (i.e, an 

exogenous increase in e). We can prove the following: 

Proposition 4. D* is increasing in e if 𝜆7 𝑆 + 𝑑 − 𝑅 ≤ 𝜆6 𝑅 + 𝑑 + 𝑟 − 2𝑆 . 

PROOF: The problem being solved is: 

∆∗= 𝑎𝑟𝑔𝑚𝑎𝑥Q 𝜋)(𝑒)𝑑𝐹(∆)
Q

∆
+ 𝜋9(𝑒, 𝑑, ∆)𝑑𝐹(∆)

∆

Q
 

The proposition will hold if the objective function is supermodular in (𝑒, 𝑑). The derivative 
of the objective function with respect to d is: 

𝜋) 𝑒 𝑓 𝑑 +
𝜕𝜋9 𝑒, 𝑑, ∆

𝜕𝑑 𝑑𝐹 ∆
∆

Q
− 𝜋9 𝑒, 𝑑, 𝑑 𝑓 𝑑  

Taking the derivative of this with respect to e gives: 

𝜕𝜋) 𝑒
𝜕𝑒 𝑓 𝑑 +

𝜕𝜋9 𝑒, 𝑑, ∆
𝜕𝑑𝜕𝑒 𝑑𝐹 ∆

∆

Q
−
𝜕𝜋9 𝑒, 𝑑, 𝑑

𝜕𝑒 𝑓 𝑑  

𝜕𝜋9 𝑒, 𝑑, ∆
𝜕𝑑𝜕𝑒 =

𝜕𝜆7
𝜕𝑑

𝜌
4 𝑆 + ∆ − 𝑅 > 0 

𝜕𝜋) 𝑒
𝜕𝑒 =

1
2 𝑅 − 𝑆 > 0 

𝜕𝜋9 𝑒, 𝑑, 𝑑
𝜕𝑒 = 𝜆7

,
A
𝜌 𝑆 + 𝑑 − 𝑅 − 𝜆6

,
A
𝜌 𝑅 + 𝑑 + 𝑟 − 2𝑆 + ,

-
(𝑅 − 𝑆) > 0 

Note that: 

𝜕𝜋9 𝑒, 𝑑, 𝑑
𝜕𝑒 ≤

𝜕𝜋) 𝑒
𝜕𝑒 ⟹ 

𝜆7 𝑆 + 𝑑 − 𝑅 ≤ 𝜆6 𝑅 + 𝑑 + 𝑟 − 2𝑆  

which is the condition in the proposition. 
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The first condition in the proposition says that the difference 𝜋9 𝑒, 𝑑, 𝑑 − 𝜋) 𝑒  is non-

increasing in e; that is, as the prediction technology rises, the marginal benefit to the area where 

judgment is not applied increases by more than that where it is applied. However, this 

proposition provides a sufficient condition only. For a necessary and sufficient condition, if we 

assume that f is uniform so that 𝑓 ∆ = !
∆D∆. Then D* is increasing in e if and only if: 

𝜕𝜆7
𝜕𝑑

,
-
∆ + 𝑑 − 2𝑅 + 2𝑆 ∆ − 𝑑 + 𝜆6 𝑅 + 𝑑 + 𝑟 − 2𝑆 − 𝜆7 𝑆 + 𝑑 − 𝑅 ≥ 0 

There are two broad effects. The first is the strength of complementarity between generic 

judgment and prediction. The stronger this is, the less likely it is for this inequality to hold. The 

second is the degree of reduction as the span of control increases. The larger this is, the more 

likely it is for the inequality to hold. Intuitively, therefore, prediction improvements will be 

associated with an increase in machine real authority if those improvements means that it pays to 

improve judgment on inframarginal units rather than expand judgment at the margin. 

As a final comparative static, let us consider a change in the underlying complexity of the 

environment. Suppose that 𝑓 ∆; 𝜃 : ∆, ∆ ×ℝ → [0,1] is our density function now parameterized 

by q. Suppose that the likelihood ratio, 𝑓(∆; 𝜃)/𝑓(∆; 𝜃\) is monotone increasing in D for 𝜃 > 𝜃′. 

This means that an increase in q shifts the mass of the density so that highly ordered states occur 

relatively more frequently. This could be interpreted as an increase in complexity where the 

effect of human judgment is more likely to be consequential in higher than lower ordered 

environments.  

Given this we can demonstrate the following: 

Proposition 5. D* is increasing in q. 

The proof follows Athey et.al. (1994) and is omitted. Intuitively, as states where the human is 

likely to exercise their formal authority occur relatively more frequently, the benefits to them 

having superior judgment in those states increase. Therefore, they reduce their span of control, in 

order to concentrate better judgment across fewer environments. 

This result is important because it suggests that, in contrast to Acemoglu and Restrepo 

(2016), an increase in complexity may increase the range of environments that machines exercise 

real authority and reduce those for humans. That said, it cannot be said whether the overall 
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intensity of human judgment application increases or decreases as a result of this change. That is, 

humans exercise judgment more often per environment but the set of environments where they 

do so has been reduced.  

7 Case: Radiology  

In 2016, Geoff Hinton – one of the pioneers of deep learning neutral networks – stated that 

it was no longer worth training radiologists. His strong implication was that radiologists would 

not have a future. This is something that radiologists have been concerned about since 1960 

(Lusted, 1960). Today, machine learning techniques are being heavily applied in radiology by 

IBM using its Watson computer and by a start-up, Enlitic. Enlitic has been able to use deep 

learning to detect lung nodules (a fairly routine exercise4) but also fractures (which is more 

complex). Watson can now identify pulmonary embolism and some other heart issues. These 

advances are at the heart of Hinton’s forecast but have also been widely discussed amongst 

radiologists and pathologists (Jha and Topol, 2016). What does the model in this paper suggest 

about the future of radiologists? 

If we consider a simplified characterization of the job of a radiologist it would be that they 

examine an image in order to characterize and classify that image and return an assessment to a 

physician. While often that assessment is a diagnosis (i.e., “the patient has pneumonia”), in many 

cases, the assessment is in the negative (i.e., “pneumonia not excluded”). In that regard, this is 

stated as a predictive task to inform the physician of the likelihood of the state of the world. 

Using that, the physician can devise a treatment. 

These predictions are what machines are aiming to provide. In particular, it might provide 

a differential diagnosis of the following kind: 

Based on Mr Patel's demographics and imaging, the mass in the liver has a 66.6% 

chance of being benign, 33.3% chance of being malignant, and a 0.1% of not being 

real. 5 

In this case, one can imagine that human judgment might involve the interpretation of these 

probabilities. However, the machine may also include an assessment that “such and such is not 

																																																								
4 "You did not go to medical school to measure lung nodules." http://www.medscape.com/viewarticle/863127#vp_2  
5 http://www.medscape.com/viewarticle/863127#vp_3  
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excluded” which is precisely how the model characterizes predictive technology. In this 

situation, human judgment remains by default. 

But it is useful to think more carefully about the types of decisions a radiological 

assessment might cause. For instance, if a potential tumor is identified in a non-invasive scan, 

then this will inform whether an invasive examination will be conducted. In terms of identifying 

the state of the world, the invasive exam is costly but safe – it can deduce a cancer with certainty 

and remove it if necessary. The role of a non-invasive exam is to inform whether an invasive 

exam should be forgone. That is, it is to make physicians more confident about abstaining from 

treatment and further analysis. In this regard, if the machine improves prediction, it will lead to 

fewer invasive examinations.  

This suggests that the role of human judgment that will increase in value will be the 

judgment regarding engaging in an invasive examination even when the machine is suggesting a 

high enough likelihood that there isn’t an issue. There will likely be some examinations where 

the probability that the machine returns a false negative is low and so human judgment will have 

less value while others where the reverse is true. If we had to conjecture, this is likely to be for 

examinations where the image is only partially useful in diagnosis. The issue is whether a trained 

specialist radiologist is in the best position to make this judgment or will it occur further along 

the chain of decision-making or involve new job classes that merge diagnostic information such 

as a combined radiologist/pathologist (Jha and Topol, 2016). 

The conclusion we reach is that while it is likely that the job of a radiologist may change 

drastically and that a single radiologist may be able to perform the functions of many, it is a very 

thin characterization of the job of radiologist to presume that machines will fully eliminate all of 

their functions. Hence, we cannot with the same degree of confidence pronounce radiology 

training programs obsolete.  

8 Conclusions 

In this paper, we explore the consequences of recent improvements in machine learning 

technology that have advanced the broader field of artificial intelligence. In particular, we argue 

that these advances in the ability of machines to conduct mental tasks are driven by 

improvements in machine prediction. Therefore, we examine sources of comparative advantage 
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in the presence of improved machine prediction. Specifically, we identify judgment as an 

activity, distinct from prediction, that can improve decision-making outcomes. Whereas 

prediction is information regarding the expected state of the world that can be easily described, 

judgment relies on factors that are indescribable. These are things often classed as intuition, 

transference, and the drawing of analogies for unfamiliar situations. To be sure, judgment is not a 

passive activity. Instead, it requires deliberative cognitive application.  

With this distinction formalized, we demonstrate several outcomes. The first is that when it 

comes to whether more prediction enhances the value of judgment or not, the type of judgment 

matters. This is because prediction tends to favor choosing actions that are riskier when 

undertaken without information. So while, in the absence of prediction, judgment might push 

decisions towards riskier actions if it identifies hidden opportunities (that is, factors that make 

the riskier action have greater up-side potential), when there is prediction, the reverse is true. In 

such situations, the role of judgment is to move away from the riskier action to safer ones. And 

this will happen if that judgment is directed at identifying hidden costs associated with the riskier 

action. Thus, we argue that as the cost of prediction falls and prediction is applied to more 

decisions, then the type of judgment that is valuable will move from judgment regarding good 

news to judgment regarding bad news. 

We then turn to consider trade-offs in the design of prediction technology. In this regard, 

we argue that there is a potential trade-off between more predictions being generated and made 

available to decision-makers and the reliability of those predictions. The notion is that a machine 

might signal a favorable state to a decision-maker more often but the cost of this is that any given 

prediction is more likely to be incorrect. We demonstrate that it can often be the case that better 

judgment (regarding bad outcomes) will tend to push the design of prediction technology 

towards choosing more situations where prediction is used, at the expense of those predictions 

being less reliable. This reinforces the notion that as the costs of machine prediction fall, we will 

likely see more variance in actual outcomes than previously even if such variance is associated 

with higher average returns. 

Finally, we examine span of control issues for humans. In our model, a human has formal 

authority over any decision. However, if a decision is determined exclusively by a machine’s 

prediction, then that authority may be abrogated; that is, the machine may have real authority. 
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Why might this occur? We demonstrate that the allocation of real decision authority towards 

machines arises because, in a diverse environment, humans may only monitor a limited number 

of contexts with which to apply judgment as doing more reduces the quality of judgments on 

infra-marginal environments. We show that this implies that humans will cede authority even in 

environments where they might apply judgment (at its current quality) efficiently. Moreover, we 

demonstrate that as the frequency of environments where judgment is more valuable increases 

(something that may be interpreted as an increase in complexity), then the human will cede an 

even greater number of environments to machine real authority. 

Our analysis, however, remains just the beginning and there are numerous directions in 

which our exploration of prediction and judgment can proceed. For instance, thusfar, we have 

defined judgment in the negative: an intervention that cannot be described. This is necessary 

because if it can be described then it is conceivable that it could form part of the prediction that 

machines can undertake. In reality, this is useful only in a static context. One of the hallmarks of 

machine learning is that prediction can improve over time as the machines are able to observe the 

outcomes associated with an observed state and a chosen action. Thus, for instance, when a 

human intervenes because they assess there are hidden costs, this intervention becomes data for 

the machine. Given enough such interventions, the machine can potentially form an inference 

regarding when those costs arise. Hence, the machine would be less likely to recommend the 

risky action if similar circumstances arise in the future. From our perspective, at the margin, this 

new data would then allow prediction to replace judgment.  

Machines could even be designed so that the process of having prediction replace judgment 

is deliberate. To get machines to learn judgment, the machines need examples of judgment; so 

they can observe it in more environments and learn to mimic it. This may mean you want the 

machine to return predictions more often to encourage humans to consider alternatives. Of 

course, you might always want to withhold prediction and observe judgment so as to observe and 

learn from ‘good news’ judgment as well. The dynamics here are likely to be subtle. 

Furthermore, this suggests a potential limit to the ability of machines to learn judgment: The 

need for a willing human trainer. Thus, within organizations, human workers have incentives to 

sabotage the training process if the purpose of training is for the machines to replace the human 

workers.  
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It is useful to consider other limits on the potential for judgment to become prediction over 

time. In addition to the within organization issues around incentives and sabotage, two other 

constraints on judgment becoming prediction are rare events and privacy. Both arise because of 

the inability of the machine to collect enough data to make a prediction. For rare events, the 

machine may never get enough observations to learn even if it observes the human judgment 

each time. Thus, it is difficult to predict presidential elections because, by definition, they happen 

only every four years. Privacy concerns limit the ability of the machines to collect data. Without 

data, predictions are not as accurate and judgment will be needed to fill in the missing 

information. Thus privacy, as manifested in refusal of some humans to provide certain 

information to machines, generates an important role for judgment (in the form modeled above).  

In contrast to this discussion about the limits of machine prediction to replace human 

judgment, an alternative viewpoint is that human judgment is itself deeply flawed and so having 

less of it will improve decision-making in many circumstances. As behavioral economists and 

psychologists have shown us, human judgment has biases. In the model, judgment is accurate. 

This raises the interesting question of whether improved machine prediction can counter such 

biases or might possibly end up exacerbating them.  
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