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A wide variety of pocket-size calculating devices are currently marketed. Some can
run programs prepared by the user; some have pre-programmed packages for fre-
quently used calculus procedures, including the display of graphs. All have certain
limitations in common: a limited range of magnitude (usually less than for cal-
culators) and a bound on accuracy (typically eight to thirteen digits).

A calculator usually comes with an owner’s manual. Read it! The manual will tell
you about further limitations (for example, for angles when entering trigonometric
functions) and perhaps how to overcome them.

Program packages for microcomputers (even the most fundamental ones, which
realize arithmetical operations and elementary functions) often suffer from hidden
flaws. You will be made aware of some of them in the following examples, and you
are encouraged to experiment using the ideas presented here.

Preliminary Experiments with your Calculator or Computer

To have a first look at the limitations and quality of your calculator, make it compute
. Of course, the answer is not a terminating decimal so it can’t be represented

exactly on your calculator. If the last displayed digit is 6 rather than 7, then your cal-
culator approximates by truncating instead of rounding, so be prepared for slightly
greater loss of accuracy in longer calculations.

Now multiply the result by 3; that is, calculate . If the answer is 2, then
subtract 2 from the result, thereby calculating . Instead of obtaining
0 as the answer, you might obtain a small negative number, which depends on the con-
struction of the circuits. (The calculator keeps, in this case, a few “spare” digits that
are remembered but not shown.) This is all right because, as previously mentioned, the
finite number of digits makes it impossible to represent exactly.

A similar situation occurs when you calculate . If you do not obtain 0,
the order of magnitude of the result will tell you how many digits the calculator uses
internally.

Next, try to compute using the key. Many calculators will indicate an error
because they are built to attempt . One way to overcome this is to use the fact
that whenever is an integer.

Calculators are usually constructed to operate in the decimal number system. In
contrast, some microcomputer packages of arithmetical programs operate in a number
system with base other than 10 (typically 2 or 16). Here the list of unwelcome tricks
your device can play on you is even larger, since not all terminating decimal numbers
are represented exactly. A recent implementation of the BASIC language shows (in
double precision) examples of incorrect conversion from one number system into
another, for example,

whereas

Yet another implementation, apparently free of the preceding anomalies, will not 
calculate standard functions in double precision. For example, the number

, whose representation with sixteen decimal digits should be
, appears as ; this is off by more than 3.14159 29794 311523.14159 26535 89793
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▲ See Section 1.4 for a discussion of
graphing calculators and computers with
graphing software.



. What is worse, the cosine function is programmed so badly that its 
“cos” . (Can you invent a situation when this could ruin your calcula-
tions?) These or similar defects exist in other programming languages too.

The Perils of Subtraction

You might have observed that subtraction of two numbers that are close to each other
is a tricky operation. The difficulty is similar to this thought exercise: Imagine that you
walk blindfolded 100 steps forward and then turn around and walk 99 steps. Are you
sure that you end up exactly one step from where you started?

The name of this phenomenon is “loss of significant digits.” To illustrate, let’s 
calculate

The approximations from my calculator are

and

and so we get . Even with three spare digits exposed,
the difference comes out as . As you can see, the two ten-digit numbers
agree in nine digits that, after subtraction, become zeros before the first nonzero digit.
To make things worse, the formerly small errors in the square roots become more vis-
ible. In this particular example we can use rationalization to write 

(work out the details!) and now the loss of significant digits doesn’t occur:

to seven digits

(It would take too much space to explain why all seven digits are reliable; the subject
numerical analysis deals with these and similar situations.) See Exercise 7 for another
instance of restoring lost digits.

Now you can see why in Exercises 2.2 your guess at the limit of was
bound to go wrong: becomes so close to that the values will eventually agree
in all digits that the calculator is capable of carrying. Similarly, if you start with just
about any continuous function and try to guess the value of

long enough using a calculator, you will end up with a zero, despite all the rules in
Chapter 3!

Where Calculus is More Powerful than Calculators and Computers

One of the secrets of success of calculus in overcoming the difficulties connected with
subtraction is symbolic manipulation. For instance, is always , although
the calculated value may be different. Try it with and .
Another powerful tool is the use of inequalities; a good example is the Squeeze Theo-
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rem as demonstrated in Section 2.3. Yet another method for avoiding computational
difficulties is provided by the Mean Value Theorem and its consequences, such as
l’Hospital’s Rule (which helps solve the aforementioned exercise and others) and
Taylor’s Inequality.

The limitations of calculators and computers are further illustrated by infinite
series. A common misconception is that a series can be summed by adding terms until
there is “practically nothing to add” and “the error is less than the first neglected
term.” The latter statement is true for certain alternating series (see the Alternating
Series Estimation Theorem) but not in general; a modified version is true for another
class of series (Exercise 10). As an example to refute these misconceptions, let’s con-
sider the series

which is a convergent -series ( ). Suppose we were to try to sum this
series, correct to eight decimal places, by adding terms until they are less than 5 in the
ninth decimal place. In other words, we would stop when

that is, when . (This would require a high-speed computer and
increased precision.) After going to all this trouble, we would end up with the approx-
imating partial sum

But, from the proof of the Integral Test, we have

Thus, the machine result represents less than 2% of the correct answer!
Suppose that we then wanted to add a huge number of terms of this series, say,

terms, in order to approximate the infinite sum more closely. (This number ,
called a googol, is outside the range of pocket calculators and is much larger than the
number of elementary particles in our solar system.) If we were to add terms of
the above series (only in theory; a million years is less than microseconds), we
would still obtain a sum of less than 207 compared with the true sum of more than
1000. (This estimate of 207 is obtained by using  a more precise form of the Integral
Test, known as the Euler-Maclaurin Formula, and only then using a calculator. The
formula provides a way to accelerate the convergence of this and other series.)

If the two preceding approaches didn’t give the right information about the accu-
racy of the partial sums, what does? A suitable inequality satisfied by the remainder
of the series, as you can see from Exercise 6.

Computers and calculators are not replacements for mathematical thought. They
are just replacements for some kinds of mathematical labor, either numerical or sym-
bolic. There are, and always will be, mathematical problems that can’t be solved by a
calculator or computer, regardless of its size and speed. A calculator or computer does
stretch the human capacity for handling numbers and symbols, but there is still con-
siderable scope and necessity for “thinking before doing.”
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(b) Use the Mean Value Theorem a second time to discover
why the quantities and in part (a) are so
close to each other.

6. For the series , studied in the text, exactly how
many terms do we need (in theory) to make the error less
than 5 in the ninth decimal place? You can use the inequal-
ities from the proof of the Integral Test:

7. Archimedes found an approximation to by considering
the perimeter of a regular 96-gon inscribed in a circle of
radius 1. His formula, in modern notation, is

(a) Carry out the calculations and compare with the value of
from more accurate sources, say .

How many digits did you lose?
(b) Perform rationalization to avoid subtraction of approxi-

mate numbers and count the exact digits again.

8. This exercise is related to Exercise 2. Suppose that your
computing device has an excellent program for the
exponential function but a poor program for

. Use the identity

and Taylor’s Inequality to improve the accuracy of .

9. The cubic equation

where we assume for simplicity that , has a classical
solution formula for the real root, called Cardano’s formula:

For a user of a pocket-size calculator, as well as for an inex-
perienced programmer, the solution presents several stum-
bling blocks. First, the second radicand is negative and the
fractional power key or routine may not handle it. Next,
even if we fix the negative radical problem, when is small
in magnitude and is of moderate size, the small number 
is the difference of two numbers close to .
(a) Show that all these troubles are avoided by the formula
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1. Guess the value of

and determine when to stop guessing before the loss of sig-
nificant digits destroys your result. (The answer will depend
on your calculator.) Then find the precise answer using an
appropriate calculus method.

2. Guess the value of

and determine when to stop guessing before the loss of sig-
nificant digits destroys your result. This time the detrimental
subtraction takes place inside the machine; explain how
(assuming that the Taylor series with center is used to
approximate ). Then find the precise answer using an
appropriate calculus method.

3. Even innocent-looking calculus problems can lead to num-
bers beyond the calculator range. Show that the maximum
value of the function

is greater than . [Hint: Use logarithms.] What is the
limit of as ?

4. What is a numerically reliable expression to replace
, especially when is a small number? You will

need to use trigonometric identities. (Recall that some com-
puter packages would signal an unnecessary error condition,
or even switch to complex arithmetic, when .)

5. Try to evaluate

on your calculator. These numbers are so close together that
you will likely obtain 0 or just a few digits of accuracy.
However, we can use the Mean Value Theorem to achieve
much greater accuracy.
(a) Let , , and . Then the

Mean Value Theorem gives

where . Since is decreasing, we have
. Use this to estimate the value 

of .D
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and recall from our study of Taylor and Maclaurin series
that

converges to as . The expression in square
brackets converges to , a nonzero number,
which gets multiplied by a fast-growing factor . We con-
clude that even if all further calculations (after entering )
were performed without errors, the initial inaccuracy would
cause the computed sequence to diverge.

12. (a) A consolation after the catastrophic outcome of Exer-
cise 11: If we rewrite the reduction formula to read

we can use the inequality used in the squeeze argument
to obtain improvements of the approximations of . 
Try again using this reverse approach.

(b) We used the reversed reduction formula to calculate
quantities for which we have elementary formulas. To
see that the idea is even more powerful, develop it for
the integrals

where is a constant, , and ,
For such the integrals are no longer elementary (not
solvable in “finite terms”), but the numbers can be 
calculated quickly. Find the integrals for the particular
choice and to five digits of 
accuracy.

13. An advanced calculator has a key for a peculiar function:

After so many warnings about the subtraction of close 
numbers, you may appreciate that the definition

gives inaccurate results for small ,
where is close to . Show that the use of the
accurately evaluated function helps restore the
accuracy of for small .xsinh x
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Hint: Use the factorization formula

(b) Evaluate

If the result is simple, relate it to part (a), that is, restore
the cubic equation whose root is written in this form.

10. (a) Consider the power series

It is easy to show that its radius of convergence is
. The series will converge rather slowly at

: find out how many terms will make the error
less than .

(b) We can speed up the convergence of the series in 
part (a). Show that

and find the number of the terms of this transformed
series that leads to an error less than .
[Hint: Compare with the series , whose
sum you know.]

11. The positive numbers

can, in theory, be calculated from a reduction formula
obtained by integration by parts: ,

. Prove, using and the Squeeze
Theorem, that . Then try to calculate from
the reduction formula using your calculator. What went
wrong?

The initial term can’t be represented exactly
in a calculator. Let’s call the approximation of that
we can enter. Verify from the reduction formula (by observ-
ing the pattern after a few steps) that
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1. 3. 5. 9. 3 � 3x � 4 � 04.82549424 � 10�1101
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