Chapter 9

Single-Server Queues

9.1. Introduction

In this chapter we continue applying the continuous-mapping approach
to establish heavy-traffic stochastic-process limits for stochastic processes of
interest in queueing models, but now we consider the standard single-server
queue, which has unlimited waiting space and the first-come first-served ser-
vice discipline. That model is closely related to the infinite-capacity fluid
queue considered in Chapter 5, but instead of continuous divisible fluid,
customers with random service requirements arrive at random arrival times.
Thus, attention here is naturally focused on integer-valued stochastic pro-
cesses counting the number of arrivals, the number of departures and the
number of customers in the queue.

Here is how this chapter is organized: We start in Section 9.2 by defining
the basic stochastic processes in the single-server queue. Then in Section
9.3 we establish general heavy-traffic stochastic-process limits for a sequence
of single-server queue models. Included among the general heavy-traffic
limits for queues in Section 9.3 are limits for departure processes, so the
displayed heavy-traffic limits for one queue immediately imply associated
heavy-traffic limits for single-server queues in series. However, in general the
limit processes for departure processes are complicated, so that the heavy-
traffic limits are more useful for single queues.

In Section 9.4 and 9.5 we obtain FCLT's for arrival processes that are su-
perpositions or splittings of other arrival processes. Along with the limits for
departure processes, these results make the heavy-traffic FCLTs in Section
9.3 applicable to general acyclic open networks of single-server queues. Cor-
responding (more complicated) heavy-traffic limits for general single-class
open networks of single-server queues (allowing feedback) are obtained in
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Chapter 14 by applying the multidimensional reflection map, again with
variants of the M; topology to treat limit processes with discontinuous sam-
ple paths.

In Section 9.6, we amplify the discussion in Section 5.7 by discussing
the reflected-Brownian-motion (RBM) limit that commonly occurs in the
light-tailed weak-dependent case and the associated RBM approximation
that stems from it. We show how the useful functions in Chapter 13 can be
applied again to yield the initial FCLTs for the arrival and service processes
(required for the heavy-traffic limits) in more detailed models, e.g., where
the input is from a multi-class batch-renewal process with class-dependent
service times or a Markov-modulated point process.

We discuss the special case of very heavy tails in Section 9.7. When the
service-time ccdf decays like 7% as £ — oo for 0 < a < 1, the service-time
mean is infinite. The queueing processes then fail to have proper steady-
state distributions. The heavy-traffic stochastic-process limits are useful to
describe how the queueing processes grow. Very large values then tend to
be reached by jumps. The heavy-traffic limits yield useful approximations
for the distributions of the time a high level is first crossed and the positions
before and after that high level are crossed.

In Section 9.8 we extend the discussion in Section 8.7 by establishing
heavy-traffic stochastic-process limits for single-server queues with superpo-
sition arrival processes, when the number of component arrival processes in
the superposition increases in the limit. When the number of component ar-
rival processes increases in the limit with the total rate held fixed, burstiness
greater than that of a Poisson process in the component arrival processes
tends to be dissipated because the superposition process approaches a Pois-
son process. For example, even with heavy-tailed interarrival times, the
superposition process may satisfy a FCLT with a limit process having con-
tinuous sample paths. On the other hand, the limit process tends to be
more complicated because it fails to have independent increments.

Finally, in Section 9.9 we discuss heuristic parametric-decomposition ap-
proximations for open queueing networks. In these approximations, arrival
and service processes are each partially characterized by two parameters,
one describing the rate and the other describing the variability. We show
how the heavy-traffic stochastic-process limits can be used to help determine
appropriate variability parameters.
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9.2. The Standard Single-Server Queue

In this section we define the basic stochastic processes in the standard
single-server queue, going beyond the introduction in Section 6.4.1. In this
model, there is a single server and unlimited waiting space. Successive cus-
tomers with random service requirements arrive at random arrival times.
Upon arrival, customers wait in queue until it is their turn to receive ser-
vice. Service is provided to the customers on a first-come first-served basis.
After the customers enter service, they receive service without interruption
and then depart.

The model can be specified by a sequence {(Ug, Vi) : k > 1} of ordered
pairs of nonnegative random variables. The variable Uy, represents the inter-
arrival time between customers k£ and k — 1, while the variable Vj, represents
the service time of customer k. To fully specify the system, we also need to
specify the initial conditions. For simplicity, we will assume that the first
customer arrives at time U; > 0 to find an empty system. It is easy to
extend the heavy-traffic limits to cover other initial conditions, as was done
in Chapter 5.

The model here is similar to the fluid-queue model in Chapter 5, but the
differences lead us to consider different processes, for which we use different
notation. The main descriptive quantities of interest here are: Wj, the
waiting time until beginning service for customer k; L(t), the workload (in
unfinished service time facing the server) at time ¢; Q(t), the queue length
(number in system, including the one in service, if any) at time #; Q4, the
queue length just before the £*® arrival; and Q,?, the queue length just after
the k' departure. The workload L(t) is also the waiting time of a potential
or “virtual” arrival at time ¢; thus the workload L(t) is also called the virtual
waiting time.

The waiting time of the k' customer, W}, can be expressed in terms
of the waiting time of the previous customer, Wj_1, the service time of the
previous customer, Vj_1, and the interarrival time between customers k — 1
and k, Uy, by the classical Lindley recursion; i.e., we can make the definition

Wi = [Wi—1 + Vikmr — U], k>2, (2.1)

where [z]T = max{z,0} and W; = 0. We can apply mathematical induction
to show that W} can be expressed in terms of appropriate partial sums by
a discrete-analog of the reflection map in (5.4) in Chapter 13 and in (2.5)
below.
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Theorem 9.2.1. The waiting times satisfy

Wi =58, —min{S;:0<j <k}, k>0, (2.2)
where
Sk=Sp1—S;, Sp=Vi+-+Vy and Sy=U1+ -+U, k>1,
with So = S§ =V =S =Up =0.

Note that the indices in S} in the definition of Sy are offset by 1. Nev-
ertheless, S, is the k*® partial sum

Sp=X1+--+X, k>1,

where
Xi=Via—-U, 121,

with V) = 0. Note that W7 = Wy = 0 with our definition, because Sy = 0
and S; < 0 since V) = 0.
We define the arrival counting process by letting

At)=max{k>0:5'<t}, ¢t>0. (2.3)

Since S} is the arrival time of customer k, A(t) counts the number of arrivals
in the interval [0,%]. We use the arrival process A to define the cumulative-
input process. The cumulative input of work in the interval in [0,%] is the
sum of the service times of all arrivals in [0, ], i.e., so the cumulative input
can be defined as the random sum

At)
Ct)=84y=>_ Vi, t20. (2.4)
=1

The associated net-input process is
Xt)y=Ct)—t, t>0.
As in the fluid queue, the workload is the one-sided reflection of X, i.e.,

L) = $(X)(t) = X() = inf {X() A0}, t20;  (25)

i.e., ¢ is the reflection map in (2.5) and (2.6) in Chapter 8 and in (5.4) of
Chapter 13. The workload process in the single-server queue coincides with
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the workload process in the fluid queue with cumulative-input process C
and deterministic processing rate 1.

Since the cumulative-input process here is a pure-jump process, the
server is working if and only if the workload is positive. Thus, the cu-
mulative busy time of the server is easy to express in terms of C' and L, in
particular,

B(t)=C(t) - L(t), t>0. (2.6)

Equivalently, the cumulative idle time in [0, ] is the lower-boundary regula-
tor function associated with the reflection map, i.e.,

I(t) = o (X)(t) = — inf {X(s)AO}, >0, (2.7)

and the cumulative busy time is
B(t)=t—-1(t), t>0. (2.8)

Paralleling the definition of the arrival counting process A in (2.3), define
a counting process associated with the service times by letting

N(t)=max{k>0:S5, <t}, t>0. (2.9)

Following our treatment of the waiting times and workload, we would like
to think of the queue-length process {Q(t) : t > 0} as the reflection of
an appropriate “net-input” process. However, that is not possible in gen-
eral. When the service times come from a sequence of IID exponential ran-
dom variables, independent of the arrival process, we can exploit the lack
of memory property of the exponential distribution to conclude that the
queue-length process is distributed the same as the reflection of the process
{A(t) — N'(t) : t > 0}, where {N'(t) : t > 0} is a Poisson process counting
“potential” service times. However, more generally, we do not have such a
direct reflection representation, so we will have to work harder.
Let D(t) count the number of departures in [0,¢]. The departure process
can be defined by
D(t)=N(B(t)), t>0. (2.10)

We then can define the queue-length process by
Q(t) = A(t) — D(t), t>0, (2.11)

because we have stipulated that the first arrival finds an empty system.
Let D,’f be the time of the k™! departure (the departure time of the
k™ arrival). We can use the inverse relation for counting processes and
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associated partial sums to define the departure-time sequence {Di' : k > 1}
in terms of the departure process {D(t) : t > 0}, i.e.,

D =if{t>0:D(t) >k}, k>1. (2.12)

However, it is convenient to start with another expression for D,‘;‘. First, let
T be the service-start time of customer k, with Ty' = 0. Since a customer
must arrive and wait before starting service,

T =SP4+ Wy, kE>1. (2.13)
Since service is not interrupted,

D =T +W, k>1. (2.14)
From Theorem 9.2.1 and (2.14), we obtain the following.

Corollary 9.2.1. (departure time representation) The depm ture times sat-
’I,Sfy
A v : v U
— . — . > . .

We next define the continuous-time service-start-time process {T'(t) : t > 0}
by letting
T(t) =max{k>0:TA <t}, t>0. (2.16)

Given the continuous-time process {Q(¢) : t > 0}, we can define the
sequences {Qf : k > 1} and {QP : k > 1} as embedded sequences, i.e.,

Qf = Q(S¢-)
QF = QD}). (2.17)

Note that the definitions in (2.17) make Qi the queue length before all
arrivals at arrival epoch S}, and QkD is the queue length after all departures
at departure epoch D,f. (Other definitions are possible, for Q,‘? if there are
0 interarrival times, and for Q,? if there are 0 service times).

So far, we have not introduced any probabilistic assumptions. The stan-
dard assumption is that {Uy : £ > 1} and {Vj : k > 1} are independent
sequences of IID random variables with general distributions, in which case
the counting processes A and N are called renewal processes. Then, with
the Kendall notation, the queueing model is called GI/GI/1, with GI de-
noting independence (I) with general distributions (G). The first GI refers
to the interarrival times, while the second refers to the service times. The
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final “1” indicates a single server. Unlimited waiting space and the FCFS
service discipline are understood.

If in addition one of the distributions is exponential, deterministic, Er-
lang of order & (convolution of k IID exponentials) or hyperexponential of
order k (mixture of k exponentials), then GI is replaced by M, D, E;, and
Hy, respectively. Thus the M/Ej/1 model has a Poisson arrival process
(associated with exponential interarrival times) with Erlang service times,
while the Hy/M /1 model has a renewal arrival process with hyperexponen-
tial interarrival times and exponential service times. An attractive feature
of the heavy-traffic limits is that they do not depend critically on the dis-
tributional assumptions or even the IID assumptions associated with the
GI/GI/1 model.

9.3. Heavy-Traffic Limits

We now establish heavy-traffic stochastic-process limits for the stochas-
tic processes in the stable single-server queue. We can obtain fluid limits
(FLLN’s) just as in Section 5.3, but we omit them. We go directly to the
heavy-traffic limits for stable queues, as in Section 5.4.

9.3.1. The Scaled Processes

As in Section 5.4, we introduce a sequence of queueing models indexed
by n. In model n, U,y is the interarrival time between customers k and
k—1, and V;, ;, is the service time of customer k. The partial sums for model
n are Spk, S, and S, defined just as in Theorem 9.2.1 with S, =

no=Sno = 0 for all n. The other stochastic processes are defined just as
in Section 9.2, with an extra subscript n to indicate the model number.

We convert the initial model data as represented via the partial sums
Sy and Sy, into two sequences of random elements of D = D([0,00), R)
by introducing translation and scaling, i.e., by letting

Sg(t) = c’r:l[S;zL,LntJ —)\El’nt],
Sh(t) = ' [Shiny —Hm nt], 20, (3.1)

where A, pn and ¢, are positive constants and |z] is the greatest integer
less than or equal to . We think of A\, and u, in (3.1) as the arrival rate
and service rate.
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Since the indices of S} are shifted by one, we also form the associated
modification of S} above by setting

Sh(t) = i [Sp jnt)1 — K 1], 20, (3:2)

where S} _; = 0. (Recall that S} =0 too.)
We then define associated random elements of D induced by the partial
sums Sy, ;, waiting times W, , service-start times TA,c and departure times

D;?,k by letting

Sn(t) = Sn,lnt) = (S5 — SH)(t)
W,(t) = ¢'W, J|nt]
To(t) = &' [Ty — A 'nt]
D (t) = ;' [Dfpy —M'nt], >0, (3.3)
where
Sp—1=8p0=8n0=Wap _T;:lo = DnO =0.

We next define normalized random elements of D induced by the asso-
ciated continuous-time processes by letting

A,(t) = cﬁl[A (nt) — A\pnt] ,

Nu(t) = ' [Na(nt) — pnnt]

Cult) = 6 (Culnt) — Aupi'nt]

Xn(t) = _lX (nt) ,

L,(t) = ¢, 'Ly(nt),

B,(t) = ¢ [Ba(nt) —nt],

T,(t) = c, [Th(nt) — \nt]

D,(t) = c;'[Dn(nt) — \ynt] ,

Q.(t) = ¢;'Qn(nt), t>0. (3.4)

Finally, we define two sequences of random functions induced by the
queue lengths at arrival epochs and departure epochs by letting

Q) = ' Qnpny
Q%Z(t) = o Qs 20, (35)
where Qn 0= QD =
Notice that there are no translation terms in S,, and W, in (3.3) or in

X, and L, in (3.4). Thus we can apply the continuous-mapping theorem
with the reflection map in (2.5) to directly obtain some initial results.



9.3. HEAVY-TRAFFIC LIMITS 355

Theorem 9.3.1. (single-server-queue heavy-traffic limits directly from the
reflection map) Consider the sequence of single-server queues with the ran-
dom elements in (3.3) and (3.4).

(a) if
S. =S in D

with the topology J1 or My, then
W, = ¢(S) in D

with the same topology, where ¢ is the reflection map in (2.5).

(b) If
X,=X in D

with the topology J1 or My, then
L,=¢X) in D

with the same topology.

Proof. It follows from Theorem 9.2.1 that
W, = ¢(Sn)a n>1,

for the reflection map ¢ : D — D in (2.5) and S,, and W, in (3.3). Similarly,
it follow from (2.5) that

L, =¢(X,), n>1

for X,, and L,, in (3.4). Hence the stated results follow directly from the
simple continuous mapping theorem, Theorem 3.4.1, because the reflection
map is continuous by Theorem 13.5.1. =

Remark 9.3.1. Strong and weak topologies on D?. Let SJ; and SM; de-
note the strong or standard J; and M; topologies on the product space D¥,
and let WJi and W M; denote the associated weak or product topologies
on D*. Given the limit S,, = S in (D, J;) assumed in Theorem 9.3.1 (a),
we obtain the joint convergence

(Sn, Wa) = (S,¢(S)) in D([0,00),R*,8Jy) . (3.6)

However, given the same limit in (D, M), we do not obtain the analog of
(3.6) in (D?,SM;). Example (14.5.1) shows that the map taking x into
(x,¢(z)) is not continuous when the range has the SM; topology. Hence,
we use the WM, topology on the product space D¥. =
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We now want to obtain limits for the random elements in (3.3), starting
from convergence of the pair (S%,S?) in (3.1). We start by establishing
limits for the discrete-time processes.

9.3.2. Discrete-Time Processes

Before stating limits for the discrete-time processes, we establish condi-
tions under which the two scaled service processes S;, and S?, are asymptot-
ically equivalent.

Theorem 9.3.2. (asy{nptotic equivalence of the scaled service processes)
If either S}, = S" or S = S in D([0,00),R,T), where T is the topology
Ji, My or Ms, then

dr(SY,8Y) =0 in D(]0,00),R) (3.7)
for dy, in (3.2) in Section 3.3 and
(S?,8Y) = (S¥,8Y) in D? (3.8)

with the product-T topology.

Proof. Assume that S! = SY. (The argument is essentially the same
starting with S? = S?.) Use the Skorohod representation theorem to re-
place convergence in distribution by convergence w.p.1. By Section 12.4,
the assumed convergence implies local uniform convergence at continuity
points. Let t be such that P(¢t € Disc(S”)) = 0, which holds for all but at
most countably many ¢. By the right continuity at 0 for functions in D, the
local uniform convergence holds at 0 and ¢t. We now define homeomorphisms
of [0,¢] needed for J; convergence in D([0,%],R): Let vy, : [0,t] — [0,t] be
defined by v,(0) =0, v, (t) = t, vp(n™') =2n"tand v, (t —2n" 1) =t —n~!
with v, defined by linear interpolation elsewhere. Let || - ||; be the uniform
norm on D([0,%],R). Since ||v, —e||; = n~! and

IS5 ovn —Sille < 2sup{|Sy(s)| : 0< s <2n7'}
+2sup{|SY(s)|:t—n"! <s<t+n"'}
—0 as n— o0,
the limit in (3.7) holds in D([0,¢], R). Since such limits hold for a sequence
{tn} with ¢, — oo, we have (3.7), which implies (3.8) by Theorem 11.4.7.

u
We apply Theorem 9.3.2 to establish heavy-traffic limits for the discrete-
time processes.
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Theorem 9.3.3. (heavy-traffic limits starting from arrival times and ser-
vice times) Suppose that

(S%,8Y) = (S%,8Y) in D?, (3.9)
where the topology is either W.J, or WM, S and S}, are defined in (3.1),
P(Disc(S*) N Disc(SY) =¢) =1, (3.10)
Ccn — 00, nfcy, — 00, Ayt = AL 0 < A7 < o0, and
M =0yt — A, ) Jen =1 as n— oo . (3.11)
(a) If the topology in (3.9) is Wy, then

(S%,8Y,8,, W, T4) = (S¥,8",S, W, T4) (3.12)
in D([0,00), R, S.J1), where
S=S"—-S%+ne, W=¢(S) and TA=5(S",S"+ne), (3.13)
with ¢ being the reflection map and § : D x D — D defined by
8(x1,m2) = w9 + (z1 — 22)T, (3.14)

where =1 is the supremum of x defined by

z'(t) = sup z(s), t>0. (3.15)
0<s<t

Then the limit processes S*, 8 and T4 have no negative jumps.
(b) If the topology in (3.9) above is W My, then the limit in (3.12) holds
in (D%, W M), with the limit processes being as in (3.13).

Proof. We start by invoking the Skorohod representation theorem, Theo-
rem 3.2.2, to replace the convergence in distribution in (3.9) by convergence
w.p.1 for special versions. For simplicity, we do not introduce extra notation
to refer to the special versions. By Theorem 9.3.2, we obtain convergence

(S, 8n) = (8",8") (3.16)

from the initial limit in (3.9), with the same topology on D?. We then apply
condition (3.10) to strengthen the convergence to be in D([0, ), R?, ST7),
drawing upon Section 12.6. Let ¢ be any time point in (0, 00) for which

P(t € Disc(S") U Disc(S?)) =0 .
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There necessarily exists infinitely many such ¢ in any bounded interval. We
thus have convergence of the restrictions of (S%,S%) in D([0,t,],R%, ST1),
for which we again use the same notation.

(a) First, suppose that S7; = SJ;. By the definition of SJ; convergence,
we can find increasing homeomorphisms v, of [0, ¢] such that

1S5, 87) — (8*,8") ovplle = 0 wp.l,

where || - ||+ is the uniform norm on [0, ¢]. Since
Sn = _z - S% + Mne ,

szl =9 gaS;}z + mne)
where ¢ is the reflection map and § is the map in (3.14), both regarded as
maps from D([0,],R) or D([0,t],R)? to D([0, ], R), which are easily seen to
be Lipschitz continuous, first with respect to the uniform metric and then
for dy, , it follows that
(S5, S5 Su, Wa, T7) — (8%,8",8, W, T) ovn [ = 0 wp.l
for S, W and T4 in (3.13), so that
(SY,SY,S,, W,, T2) — (S*,8,S,W, T4) in D([0,00),R5, S.Jy)

w.p.1 as claimed. Next, let J;" and J; be the maximum-positive-jump and
maximum-negative-jump functions over [0, t], i.e.,

TH@) = sup {a(s) —(s-) (3.17)
and
J, (z) = —Oislngt{av(s) —z(s—)} . (3.18)

If the topology is Jy, then the functions J;” and J; are continuous at all
x € D for which ¢ ¢ Disc(z). Since S® and S? have no negative jumps,
then neither do S* and S? if the topology limit is J;. For any z € D,
z! = supg<,<{z(s)}, t > 0, has no negative jumps. Thus, since

TA =8 +ne+ (S* —S* —ne)',

T4 also has no negative jumps when the topology is J;.
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(b) Suppose that the topology on D? for the convergence in (3.16) is
STi = SM;, after applying condition (3.10) to strengthen the mode of
convergence from W M;. Then we can apply the continuous maps to get
the limit (3.12) with the W M; topology. We need the SM; topology on the
domain in order for § in (3.14) to be continuous. As indicated in Remark
9.3.1, unlike with the J; topology, we need the weaker W M; topology on
the range product space D¥. =

Remark 9.3.2. Alternative conditions. In Theorem 9.3.3 we only use con-
dition (3.10) to strengthen the mode of convergence in (3.9) and (3.16) to
the strong topology from the weak product topology. Thus, instead of con-
dition (3.10), we could assume that (3.9) holds with the strong topology.
That could hold without (3.10) holding.

Moreover, to obtain limits for S,, and W,, with the M; topology, instead
of (3.10), we could assume that the two limit processes S* and S” have no
common discontinuities of common sign. Then addition is continuous by
virtue of Theorem 12.7.3. However, then extra conditions would be needed
to establish limits for T, in (3.12) and D,, in Theorem 9.3.4 below. =

9.3.3. Continuous-Time Processes

We now establish limits for the normalized continuous-time processes in
(3.4) and the embedded queue-length processes in (3.5). Now we need the
M, topology to treat stochastic-process limits with discontinuous sample
paths, because we must go from partial sums to counting processes. The
limits for departure processes imply limits for queues in series and contribute
to establishing limits for acyclic networks of queues.

Theorem 9.3.4. (heavy-traffic limits for continuous-time processes) Sup-
pose that, in addition to the conditions of Theorem 9.3.3 (with the topology
in (3.9) being either WJy or WM, ),

P(S"“(0)=0)=P(S’(0)=0)=1. (3.19)
Then

(Ay, Ny, Cry X5, Ly, By, Q. Q2,QE, T, D, D)
= (A,N,C,X,L,B,Q,Q",Q*, T,D,D*) in (D2, WM)

jointly with the limits in (3.12), where
A = —)S%ole, N = —AS’ole,
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C = (SY—S%olXe, X = Sole,

L = ¢(X)=Wole, B = Xt=8'o)e,

Q = M, Q% = Qorxle=AW, T = —AT%o)e

D 5(A,N—Xce), DA=-2"'Doxr7le (3.20)

where § : D x D — D is defined by

5(:1:1,:52) =9+ (1 — :1:2)¢ . (3.21)

Proof. Again we start with the Skorohod representation theorem, The-
orem 3.2.2, to replace convergence in distribution with convergence w.p.1
for the associated special versions, without introducing new notation for the
special versions. By exploiting the convergence preservation of the inverse
map with centering in Theorem 13.7.1 as applied to counting functions in
Section 13.8, we obtain (A,,N,) — (A,N) in (D?, WM;) for (A,,N,) in
(3.1) and (A,N) in (3.20). (We use condition (3.19) at this point.) Since
C,, involves a random sum, we apply composition with translation as in
Corollary 13.3.2 to get its limit. In particular, note that

Cu(t) = Sy 0 An(t) + py ' An(t)
for C,, and A, in (3.4), where

~

A, () =ntA,(nt), t>0.

Since A, — A, A, — Xe. Condition (3.10) and the form of A in (3.20)
implies that
P(Disc(A) N Disc(S" o Xe) =¢) =1. (3.22)

Thus we can apply Corollary 13.3.2 to get
C, > SY0de+pu (=AS%0Xe) = (S —S%) o de .

Since
X, (t) = Cou(t) + nt(Aup,t — 1) /cn

and condition (3.11) holds,
X, —>C+e=Soxe in (D,M).

Since L, = ¢(X,,), we can apply the reflection map again to treat L,. By
(2.7) and (2.8), B,, = X3, where 2+ = —(—z)" and z" is the supremum map.
Hence we can apply the supremum map to establish the convergence of B,,.
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The argument for the queue-length process is somewhat more compli-
cated. The idea is to represent the random function Q,, as the image of the
reflection map applied to an appropriate function. It turns out that we can

write
Q= ¢(An —NpoB, + Anlflnnne) y (323)
where
B,(t) =n"'B(nt), t>0, (3.24)
and
B,—>e in D wpl (3.25)

since B,, = B. We can write (3.23) because

Qn(t) = An(t) - Nn(Bn (t))
= An(t) - Nn(Bn (t)) - ,U'n[t - Bn(t)] + ,un[t - Bn(t)]
= ¢(An — Np o By, — pnle — Bn])(t) . (3.26)

The second line of (3.26) is obtained by adding and subtracting uy, [t — By, (t)].
The third line holds because the resulting expression is equivalent to the re-
flection representation since py,[t— By (t)], being py, times the cumulative idle
time in [0, ¢], is necessarily nondecreasing and increases only when @, (t) = 0.
(See Theorem 14.2.3 for more on this point.) When we introduce the scaling
in the random functions, the third line of (3.26) becomes (3.23), because

(An —Njo ﬁn + )\n#nnne) (t)
= C;I(An (nt) — At — Nn(Bn (nt)) + #an(nt) + ()\n - Nn)nt)
= ¢, (A — Ny o By, — pnle — By))(nt), t>0, (3.27)

and ¢(cz o be) = co(z) o be for all b > 0 and ¢ > 0. We have already noted
that (A,,N,) = (A,N) in (D?, WM;). By (3.25) and Theorem 11.4.5, we
have

(A,,N,,B,) = (A,N,e) in (D3 WM). (3.28)

Given (3.28), we can apply composition with Theorem 13.2.3 to get
(A,,N,0oB,) = (A,N) in (D? WM). (3.29)
By condition (3.10) and the form of A and N in (3.20),

P(Disc(A) N Disc(N) =¢) =1. (3.30)
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Hence the mode of convergence in (3.28) and (3.29) can be strengthened to
SM;. Thus, we can apply the subtraction map to get

A, —N,oB, - A—-N in (D,M). (3.31)
Combining (3.23) and (3.31), we obtain
Q. — #(A—-N+Ane)=Q in (D, M). (3.32)
Next, to treat the departure processes, note that D,, = A,, — Q. By (3.23),
D, = Nyo B, — Anfintin€ + (Ag — Ny 0 B, + Antinfne)*
= (Ap,NyoB, — Appnmne) (3.33)
for § in (3.21). Since 4 is continuous as a map from (D2, SM;) to (D, M),
D, — 0(A,N —X%pe) in (D,M).

We then apply the convergence-preservation property of the inverse map
with centering in the context of counting functions to obtain the limit for
D/ from (3.33). We can apply the composition map to treat Q4 and Q.
First, as a consequence of (3.9) and (3.11), since n/c, — oo, we have

SA 5 X le and DA —Ale (3.34)

for
S;(t)=n"'Sk ,, and Dp(t)=n "Dy, - (3.35)

Applying Theorem 11.4.5 with (3.32) and (3.34), we obtain
(Qn,S:,DP) —» (Q, A" 'e,A7te) in (D3, WMy)
and, then applying Theorem 13.2.3, we obtain
Qi =QnoS2 - Qor'e and QP =Q,0DJ 5 Qorle

in (D, My). Finally, limits for the normalized continuous-time service-start-
time processes T, follow by applying the inverse map with centering as
applied to counting functions to the previous limits for T;?, just as we ob-
tained limits for A, and N, starting from S and S},. =

Remark 9.3.3. Impossibility of improving from My to J;. When the limit
processes have discontinuous sample paths, the M; mode of convergence in
Theorem 9.3.4 cannot be improved to J;. First, it is known that S} = S
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and A, = —AS¥ o Ae both hold in (D, J;) if and ounly if P(S* € C) = 1;
see Lemma 13.7.1. In the special case of identical deterministic service
times, the processes C,, X,, L, and Q, are simple functions of A,, so
their convergence also cannot be strengthened to Ji. Similarly, the limits
T/ = T4 and T, - —\T o \e cannot both hold in .J;.

Similarly, we cannot have convergence

(T;, D7) = (T4, T4

in D(]0,00),R2,S.J;) if S has discontinuities, because that would imply
that

D2 -T2 -0 in (D,J)). (3.36)
The limit (3.36) is a contradiction because S — S? in (D, J;) implies that
J(Sp) = sup {|S}(s) — Sh(s—)} = J(D; — T7)
0<s<t

= sup {Cr_Lan,LnsJ} — J1(SY)
0<s<t
for any ¢ such that P(t € Disc(S")) = 0, and P(J;(S8”) = 0) < 1 for all
sufficiently large ¢ if SV fails to have continuous sample paths. =

It is natural to choose the measuring units so that the mean service time
is 1. Then A =y = p, = 1 for all n. When A = 1, the limit processes W,
L, Q and Q“ all coincide; they all become ¢(S), the reflection of S. We
observed the coincidence of W and Q when A = 1 in Chapter 6.

The discussion about heavy-traffic scaling in Section 5.5 applies here as
well. There are slight differences because (3.11) differs from (4.6) in Section
5.4. If ¢, = n* for 0 < H < 1 and 7 < 0, then just as in (5.10) in Section
5.5, we obtain

n=(¢/(1-p)0H), (3.37)

but now
(=—-nA>0. (3.38)

(Now A~! plays the role of u before.)

Remark 9.3.4. From queue lengths to waiting times. We conclude this
section by mentioning some supplementary material in the Internet Supple-
ment. In Section 5.4 of the Internet Supplement, drawing upon Puhalskii
(1994), we show how heavy-traffic limits for workload and waiting-time pro-
cesses can be obtained directly from associated heavy-traffic limits for ar-
rival, departure and queue-length processes. These results apply the FCLT
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for inverse processes with nonlinear centering in Section 13.7. Following
Puhalskii (1994), we apply the result to establish a limit for a single-server
queue in a central-server model (i.e., a special closed queueing network)
as the number of customers in the network increases. In that setting it is
not easy to verify the conditions in the earlier limit theorems for waiting
times and the workload because the arrival and service processes are state-
dependent. That result has also been applied by Mandelbaum, Massey,
Reiman and Stolyar (1999).

9.4. Superposition Arrival Processes

In Section 8.3 we established heavy-traffic stochastic-process limits for a
fluid queue with input from multiple sources. We now establish analogous
heavy-traffic stochastic-process limits for the standard single-server queue
with arrivals from multiple sources. We use the inverse map with centering
(Sections 13.7 and 13.8) to relate the arrival-time sequences to the arrival
counting processes.

With multiple sources, the arrival process in the single-server queue is
the superposition of m component arrival processes, i.e.,

A(t) EAl(t) +"'+Am(t)a tZO ) (4'1)

where {4;(t) : t > 0} is the i component arrival counting process with
associated arrival times (partial sums)

Sikp =inf{t >0: Ai(t) >k}, k=0, (4.2)

7

and interarrival times
Ui’k = Szu;k - S;%k—l’ k 2 ]. . (4.3)

We extend the previous limit theorems in Section 9.3 to this setting by
showing how limits for the m partial-sum sequences {Szu,k tk>1}F1<4i<
m, imply limits for the overall partial-sum sequence {S} : k > 1}, where

SE=inf{t>0:A(t) >k}, k>0. (4.4)

As in Section 9.3, we consider a sequence of models indexed by n; e.g.,
let S%;, be the k™ partial sum (arrival time of customer k) in the i*"
component arrival process of model n. Let the random elements of D be
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defined by
S%,z-(t) = CEI[SZ,Z-,WJ - k;ént]
An,z(t) = cr_Ll[An,i(nt) _An,i'n't]
Sh(t) = ' ISh ny — A 'nt]
A, (t) = ¢, [An(nt) = \unt], t>0, (4.5)

for n > 1. The M; topology plays an important role when the limit processes
can have discontinuous sample paths.

Theorem 9.4.1. (FCLT for superposition arrival processes) Suppose that

(Snir--»Snm) = (S1,--.,85) in (D™, WM), (4.6)

»Pn,m

where S}, ; is defined in (4.5),
P(Disc(S} o A\je) N Disc(Sj o A\je) = ¢) =1 (4.7
foralli,j with 1 <4i,7 <m and i # j, and
P(S}(0)=0)=1, 1<i<m. (4.8)

If, in addition ¢, — oo, nfc, — 00 and Ap; = A, 0 < X < o0, for
1 <4< m, then

Sy 1, Sh  Anty ooy An s A, Sy

n,l» »Mn,mo

= (SY,...,8%, Aq,...,Apm, A, SY) (4.9)
in (D?™+2, W M), where

AnE)\n,1+"'+/\n,ma

s
i

—AiSjole, A=A +---+A,

m
A lAorle= Z%sg o y;e (4.10)

=1

Su

A=A+ +An and v =XN/A, 1<i<m. (4.11)



366 CHAPTER 9. SINGLE-SERVER QUEUES

Proof. We apply the Skorohod representation theorem, Theorem 3.2.2,
to replace the convergence in distribution in (4.6) by convergence w.p.1 for
special versions. We then apply the convergence-preservation results for the
inverse map with centering, as applied to counting functions, in Corollary
13.8.1 to obtain, first, the limits for Ay, ; from the limits for S7 ; and, second,
the limit for S from the limit for A,. We use addition with condition (4.7)
to obtain the convergence of A,, from the convergence of (Ap1,...,Apm). =

Remark 9.4.1. The case of IID Lévy processes. Suppose that the limit
processes SY,..., Sy in Theorem 9.4.1 are IID Lévy processes. Then vy; =

m -,

d qu
=y ome,

m
AL A ome and ZS?
i=1
so that
st L lsy

In this case, A and S differ from A; and SY only by the deterministic scale
factor m.

We can remove the deterministic scale factor by rescaling to make the
overall arrival rate independent of m. We can do that for any given m by
replacing A;(t) by Ai(t/m) for t > 0 or, equivalently, by replacing S}, by
m S;fk for k£ > 0. If we make that scale change at the outset, then the limit
processes A and S" become independent of m. However, we cannot draw
that conclusion if the limit processes SY,...,S¥, are not Lévy processes. For
further discussion, see Section 5.6 and Remarks 10.2.2 and 10.2.4. =

We can combine Theorems 9.3.3, 9.3.4 and 9.4.1 to obtain a heavy-traffic
limit for queues with superposition arrival processes.

Theorem 9.4.2. (heavy-traffic limit for a queue with a superposition ar-
rival process) Suppose that

(S%,,...,8% .8%) = (S%...,8“ 8Y) in (D™ WM)  (4.12)

mn,ls - .M

for S¥ . in (4.5) and S?, in (3.1), where

n,i
P(Disc(S} o vye) N Disc(S} o yje) = ¢) =1 (4.13)

and

P(Disc(S} o v;e) N Disc(S?) =¢) =1 (4.14)
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for all i,5 with 1 < 4,5 < m, i # j and v; in (4.11). Suppose that, for
1 <1< m,
P(S¥(0) =0) = P(S'(0) = 0) =1, (4.15)

Cp — 00, nfcy — 00, /\ﬁ—>)\;1,0<)\;1<oo, and
M =0, — A, en =1 as n— oo (4.16)

for A in (4.10). Then the conditions and conclusions of Theorems 9.3.3
and 9.3.4 hold with S* and A in (4.10) and X in (4.11).

Proof. Asusual, start by applying the Skorohod representation theorem to
replace convergence in distribution by convergence w.p.1, without introduc-
ing special notation for the special versions. Then conditions (4.12)—(4.15)
plus Theorem 9.4.1 imply that conditions (3.9) and (3.10) in Theorem 9.3.3
and condition (3.19) in Theorem 9.3.4 hold. Thus the conditions of Theo-
rems 9.3.3 and 9.3.4 hold with S* and A in (4.10) and X in (4.11). =

We now show what Theorem 9.4.2 yields in the standard light-tailed
weak-dependent case. The following results closely parallels Theorem 8.4.1.

Corollary 9.4.1. (the Brownian case) Suppose that the conditions of The-
orem 9.4.2 hold with ¢, = /n, S¥ = 0,;B}, 1 <i <m, and S’ = ,B,
where BY,...,By,BY are m+1 IID standard Brownian motions. Then the
conclusions of Theorem 9.4.2 hold with

s*4,,B (4.17)
for
m
o2 = 27?05,1- (4.18)
i=1
and
S <L 54B + e (4.19)
for n in (4.16),
ot =o02+0o2, (4.20)

and B being a standard Brownian motion.

A corresponding corollary is easy to establish in the heavy-tailed case,
when the limits are scaled versions of independent stable Lévy motions. For
the IID case, using essentially a single model, we apply Theorem 4.5.3. Since
the random variables Uy, ;  and V,, ; are nonnegative, we get totally skewed
stable Lévy motion limits (with 8 = 1) for S and S”.
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Corollary 9.4.2. (the stable-Lévy-motion case) Suppose that the condi-
tions of Theorem 9.4.2 hold with the limit processes Si, 1 <4 < m, and S
being mutually independent stable Lévy motions with inder a, 1 < a < 2,

where
S¥(1) £ 6,384(1,1,0), 1<i<m, (4.21)

and
s?(1) £ 5,8,(1,1,0) . (4.22)

Then the conclusions of Theorem 9.4.2 hold with S* and S being stable Lévy
motions with index o, where

s*(1) £ 5,8.(1,1,0) (4.23)
for
m 1/a
Oy = (Z IYZ'OH_I)
i=1
and
S(1) £ 54(0,5,0) , (4.24)
where
o =(0F +op)'/®
and N N
0y — 0Oy
h= ot +af

Proof. Again we apply Theorem 9.4.2. We obtain (4.23) and (4.24) by
applying the basic scaling relations in (5.7)—(5.11) of Section 4.5. =

9.5. Split Processes

In this section we obtain a FCLT for counting processes that are split
from other counting processes. For example, the original counting process
might be a departure process, and each of these departures may be routed to
one of several other queues. We then want to consider the arrival counting
processes at these other queues. We also allow new points to be created in
these split arrival processes. (Events in the original process may trigger or
cause one or more events of different kinds. In manufacturing there may
be batching and unbatching. In communication networks there may be
multicasting; the same packet received may be simultaneously sent out on
several outgoing links.)
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Let A(t) count the number of points in the original process in the time
interval [0,t]. Let X;; be the number of points assigned to split process %
at the epoch of the j*™ point in the original arrival process A. With the
standard splitting, for each j, X; ; = 1 for some 7 and X; ; = 0 for all other
1, but we allow other possibilities.

Under the assumptions above, the number of points in the 3" split count-
ing process in the time interval [0, ¢] is

At) =D X4, t2>0. (5.1)

Now we assume that we have processes as above for each n, i.e., {A,(t) :
t >0}, {X,;:%>1} and {A4,;(t) : t > 0}. We form associated random
elements of D = D([0,00),R) by setting

A, (t) = ¢ An(nt) — Ant]
nt]

Sn’i(t) = C,Il ZXn,i,j —pn’int
=1
Ani(t) = ¢ [Ani(nt) — Appnant], >0, (5.2)
where )\, is a positive scalar and p, = (pp,1,-..,Pn,m) is an element of R™

with nonnegative components.
We can apply Corollary 13.3.2 to establish a FCLT for the vector-valued
split processes A, = (Ap1,...,Apm) in D™. Let S;, = (Sp1,---,Snm)-

Theorem 9.5.1. (FCLT for split processes) Suppose that

(A,,S,) = (A,S) in D™ (5.3)

with the topology WJi or WM. Also suppose that ¢, — 00, n/c, — oo,

An = A, P — D, where p; > 0 for each i, and almost surely A and S; o \e
have no common discontinuities of opposite sign for 1 <i < m. Then

A,=A in D" (5.4)
with the same topology, where

A; =piA+S;0)e. (5.5)
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Proof. Since A;(t) in (5.1) is a random sum, we can apply the continuous
mapping theorem, 3.4.3, with composition and addition. Specifically, we
apply Corollary 13.3.2 after noting that

An,i = Sn,i o An,i + pn,iAn,i )

where A, ; =n A, (nt),, t >0. =

If ¢,/\/n — oo, it will often happen that one of the limit processes A
or S; will be the zero function. If the burstiness in A dominates, so that
S; = Oe, then the limit in (5.4) becomes p;A, a deterministic-scalar multiple
of the limit process A. On the other hand, if the burstiness in S; dominates,
so that A = (e, then the limit in (5.4) becomes S; o e, a deterministic time
change of the limit process S;.

It is instructive to contrast various routing methods. Variants of the
round robin discipline approximate deterministic routing, in which every
(1/p;)™ arrival from A is assigned to A;. With any reasonable approximation
to round robin, we obtain S; = Oe.

In contrast, with ITD splittings, Z?:l Xn,i,j has a binomial distribution

for each n, ¢ and k, so that S, ; = S;, where ¢, = \/n, S; 4 o;B with B
standard Brownian motion and o2 = p;(1—p;). Then S is a zero-drift Brow-
nian motion with covariance matrix ¥ = (agw’i,j), where U?g,i,i = pi(1 — p;)
and a?gﬂ-’j = —p;p; for i # j. We thus see that IID splitting produces greater
variability in the split arrival processes than round robin, and thus produces
greater congestion in subsequent queues. Moreover, with the heavy-traffic
stochastic-process limits, we can quantify the difference.

9.6. Brownian Approximations

In this section we continue the discussion begun in Section 5.7 of Brow-
nian limits that occur in the light-tailed weak-dependent case and the asso-
ciated Brownian (or RBM) approximations that stem from them.

In the standard light-tailed weak-dependent case, the conditions of The-
orems 9.3.1-9.3.4 hold with space scaling by ¢, = y/n and limits

S < 5sB +1e , (6.1)

where B is standard Brownian motion and 7 is obtained from the limit
(3.11). Just as in Section 5.7, we can obtain such limits by considering
essentially a single model. Here the single model is based on a single sequence
of interarrival times and service times {(Uy, Vi) : kK > 1}. Let the associated
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partial sums be S} = Uy +---Up and S = Vi +---+ Vi, k> 1. We
then construct the sequences {(U, , Vyk) : K > 1} for a sequence of models
indexed by n by scaling the service times, i.e., by letting

Un,k = Uk and Vn,k = ank . (62)

Then, in the setting of Section 9.3, A\, = A and p,,! = A "!p, for all n. Then
condition (3.11) becomes

Vn(l—pp,) 2 ¢=-nA>0 as n—oco. (6.3)

The required FCLT for (S¥, S?) in condition (3.9) then follows from Donsker’s
theorem in Section 4.3 or one of its generalizations for dependent sequences
in Section 4.4, applied to the partial sums of the single sequences {(Uy, Vi)},
under the assumptions there.

As in Section 5.5, it is natural to index the family of queueing systems
by the traffic intensity p, where p T 1. Then, focusing on the waiting-time
and queue-length processes and replacing n by ¢2(1 — p)=2 for ¢ in (3.38)
and (6.3), we have the Brownian approximations

W, ~ Aoi(1—p) 'R(A205%(1 — p)?; —1,1,0) (6.4)

and

Q,(t) = No5(1— p) "R\ og*(1 - p)%—-1,1,0) , (6.5)
where {R(¢; —1,1,0) : ¢ > 0} is canonical RBM. The Brownian approxima-
tion in (6.4) is the same as the Brownian approximation in (7.8) in Section

5.7 with A~! replacing pu. Approximation (6.5) follows from (6.4) because
Q = AW o )e; see (3.20).

9.6.1. Variability Parameters

For the GI/GI/1 queue, where the basic sequences {Uy} and {Vj} are
independent sequences of IID random variables, the heavy-traffic variance
constant is

0% =0y +0y, (6.6)

where
2 — 2
0,=VarU; and o,=VarV;.

For better understanding, it is helpful to replace the variances by dimen-
sionless variability parameters: It is convenient to use the squared coefficients

of variation (SCVs), defined by

VarU;
(EU1)?

VarVy
(EV1)*

and ¢ = (6.7)

2
Cy =
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Combining (6.5)—(6.7), we have

C2 +C2 02
5= "5r = e (6-8)

where c%{T is the dimensionless overall variability parameter.
For the more general G/G/1 queue, in which {(Ug, V) : k > 1} is a
stationary sequence, we must include covariances. In particular,

0% = chr /N, (6.9)
where
chr = cp+ & — 2y (6.10)
with
. 1VarS; CO’U (U1, Uy)
= 1 1 =1 1 7’
o = Jm ke 2 = lim & Z (EU,)?2
k
. VarkS _ Cov(V1, V)
= lim &7! k = lim k! — ’
@ o= i e =k k) gy

., _1Cou(St,SY) L Cov(U1,Vj)
2 1 k'~k) — 1 ’
v ik (EUL)(EVy) — i JZ_I( )(EU )(EV; )(6 1)

We call c%], c%, and C%]’V in (6.11) the asymptotic variability parameters for
the arrival and service processes.

We can combine (6.4), (6.5) and (6.9) to obtain general Brownian ap-
proximations in terms of the dimensionless variability parameter ¢

Wor =~ A chr(l—p) "Ricgp(l - p)*k; —1,1,0)
Qp(t) = CHT(l_ p)” lR(CHT)‘(l_p) t;—1,1,0) . (6.12)

For example, as a consequence, the approximation for the mean steady-state
waiting time is

EW,00 =A™ L2 /2(1 = p) . (6.13)
(Recall that the mean service time in model p is p here.)

The dimensionless variability parameter C%IT helps to understand the
heavy-traffic limits for queues with superposition arrival processes. If the
arrival process is the superposition of m IID component arrival processes,
then ¢ is independent of the number m of processes. (See Remark 9.4.1.)
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For the GI/GI/1 model, ¢, = ¢2, ¢, = ¢% and cQU,V = 0. However, in
many more general G/G/1 applications, these relations do not nearly hold.
For example, that usually is the case with superposition arrival processes

arising in models of statistical multiplexing in communication networks.

Example 9.6.1. A packet network example. In a detailed simulation of a
packet network link (specifically, an X.25 link) with 25 independent sources,
Fendick, Saksena and Whitt (1989) found that

¢, ~1.89, ¢, ~106 and c,~0.03, (6.14)
where ¢2 and 2 are in (6.7) and

_ Cov(Uy, 1)
oy = B0 BV (6.15)

In contrast, they found that
g~ 176, cf~351 and cfy ~—6.7. (6.16)

The differences between (6.16) and (6.14) show that there are significant
correlations: (i) among successive interarrival times, (ii) among successive
service times and (iii) between interarrival times and service times. The
dependence among service times and between service times and interarrival
times occur because of bursty arrivals from multiple sources with different
mean service times (due to different packet lengths).

Note that the variability parameter c2,,. based on (6.10) and (6.16) is
very different from the one based on (6.7), (6.8), (6.14) and (6.16). The
variability parameter based on (6.10) and (6.16) is

chr = 17.6 +35.1 — 2(6.7) = 66.1 . (6.17)

If, instead, we acted as if we had a GI/GI/1 queue and used (6.7), (6.8) and
(6.14), we would obtain ¢, = 2.79.

Moreover, under moderate to heavy loads, the average steady-state queue
lengths in the simulation experiments were consistent with formulas (6.10)
and (6.16) using the variability parameter ¢%; in (6.17). However, under
lighter loads there were significant differences between the observed average
queue lengths and the heavy-traffic approximations, which motivate alter-
native parametric approximations that we discuss in Section 9.9 below.

This simulation experiment illustrates that correlations can be, not only
an important part of the relevant variability, but the dominant part; in this
example,

&+ — 20%],‘/ >>c2 el (6.18)
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Moreover, in this example the lag-k correlations, defined by

2. = Cov(Uy,Uy14) 2 = Cov(Vi, Vi)
u,k (EU1)2 ’ v,k (EV1)2 B
Cov(Uy, Vitk)
2 » Y1+
Cuvik (EUL,EV;) (6.19)

were individually small for all k. The values in (6.16) were substantially
larger than those in (6.14) because of the cumulative effect of many small
correlations (over all k). See Albin (1982) for similar experiments. =

9.6.2. Models with More Structure

The heavy-traffic Brownian approximation is appealing because it is of-
ten not difficult to compute the variability parameter ¢Z, in (6.10) for mod-
els. Indeed, in Section 4.4 we indicated that it is often possible to compute
the normalization constant in a CLT involving dependent summands. There
the specific formulas and algorithms depended on Markov structure. Now
we illustrate by considering a model from Fendick, Saksena and Whitt (1989,
1991) that has more structure.

We consider a multi-class batch-renewal-process model that might serve
as a model for a packet arrival process in a communication network. In that
context, a customer class can be thought of as a particular kind of traffic
such as data, video or fax. As an approximation, we assume that all packets
(customers) in the same batch (message, burst or flow) arrive at the same
instant. We discuss generalizations afterwards in Remark 9.6.1. For this
model, we show how to determine the variability parameters c%, ¢ and
&y

We assume that the arrival process of k customer classes come as mu-
tually independent batch-renewal processes. For class ¢, batches arrive ac-
cording to a renewal process with rate Ap; where the interrenewal-time cdf
has SCV c?m; the successive batch sizes are IID with mean m; and SCV c,%’z-;
the packet service times are IID with mean 7; and SCV c%’i. (We assume
that p; + -+ - pxr = 1, so that the total arrival rate of batches is A. The total
arrival rate of customers (packets) is thus A = Amp where

k
mp — Zpimi - (6.20)
i=1



9.6. BROWNIAN APPROXIMATIONS 375

Let ¢g; be the probability that an arbitrary packet belongs to class i, i.e.,

k
g = pimi/ Y _ pjm; - (6.21)
i=1
Let %
= M and 7; = I (6.22)

We do not describe the full distributions of intervals between batches, batch
sizes and service times, because the heavy-traffic limit does not depend on
that extra detail. The model can be denoted by S_(GIPi/GI;)/1, since the
service times are associated with the arrivals.

Let c%]i be the heavy-traffic variability parameter for the class-i arrival
process alone.

Theorem 9.6.1. (Heavy-traffic limit for the Y (GIP:/GI)/1 model) For
the single-server queue with multi-class batch-renewal input above, the con-
ditions of Theorems 9.3.1 and 9.3.3 hold with ¢, = n'/? and (S*,S?) being

two-dimensional zero-drift Brownian motion, supporting the approximations
in (6.12) with

k
G = D ach
1=1
k
& = D ailric +(ri -1’
i=1
k
Gy = Zq'i(l_ri)c%],ia
i=1
2 2 2
cU,i = mi(cb,i + Cu’i) . (623)

Proof. We only give a quick sketch. The independence assumptions allow
us to obtain FCLTs for the partial sums of the batch interarrival times,
the batch sizes and the service times. Given that initial FCLT, we can
apply the Skorohod representation theorem to replace the convergence in
distributions by convergence w.p.1 for special versions. Then note that the
packet arrival process can be represented as a random sum: the number of
packet arrivals in [0,¢] is the sum of the IID batches up to the number of
batches to arrive in [0,¢]. Hence we can apply Corollary 13.3.2 for random
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sums. The overall packet counting process is the sum of the k independent
class packet counting processes. The partial sums of the interarrival times
can be treated as the inverses of the counting processes. We thus obtain
the limits for all arrival processes and S}, and the variability parameters
c?]’i and cZ in (6.23). We treat the total input of work by adding over the
classes, with the total input of work for each class being a random sum of
the IID service times up to the number of packet arrivals. Hence we can
apply Corollary 13.3.2 for random sums again. From the total input of work,
we can directly obtain the limit for the workload by applying the reflection
map. From the limit for the total input of work, we can also obtain a limit
for the service times presented in order of their arrival to the queue. (This
is perhaps the only tricky step.) In general, we have

C(SY =) < 824 < Cu(S%y) forall n,k, (6.24)

where S . is the E*M partial sum of the service times associated with succes-
sive arrivals in model n. We first obtain the limit for Cn( ;f,k) by applying
the random-sum result in Corollary 13.3.2 once more. Since the limit pro-
cess has continuous sample paths, from (6.24) we can conclude that S, has
the same limit; see Corollary 12.11.6. Given the limit for (S¥,SY), we can
apply Theorems 9.3.3 and 9.3.4. =

It is helpful to further interpret the asymptotic variability parameters in
(6.23). Note that cf; is a convex combination of c%],i weighted by ¢; in (6.21),
where g1 + -+ + g = 1. Note that c%]ﬂ- is directly proportional to the mean
batch size m;. Note that c%, and C%J,V also can be represented as weighted
sums of c%,’i and c%],v,z-, where

i = ricoi+ (ri—1)c;
v = (1—ri)cp, (6.25)

The class-7 asymptotic service variability parameter c%],z- and the class-i co-
variance asymptotic parameter c%]v ; depend upon the non-class-i processes
only via the parameter r; = 7;/7 =7 in (6.22). Note that r; is large (small)
when class-i service times are larger (smaller) than usual. Note that c%,,z- has

2 .

2
the component rj’c; ;

that is directly proportional to 7"1-2 and c%ﬂ-.

Remark 9.6.1. Ezxtra dependence. In Theorem 9.6.1 we assumed that the
basic model sequences are independent sequences of IID random variables.
Using Section 4.4 that can be greatly relaxed. In the spirit of Section 9.3,
we could have started with a joint FCLT.
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For the model in Theorem 9.6.1, we let all arrivals in a batch arrive at
the same instant. We could instead allow the arrivals from each batch to
arrive in some arbitrary manner in the interval between that batch arrival
and the next. It is significant that Theorem 9.6.1 is unchanged under that
modification. However, both the original model and the generalization above
implicitly assume that each batch size is independent of the interval between
batch arrivals. That clearly is not realistic in many scenarios, e.g., for packet
queues, where larger batch sizes usually entail longer intervals between batch
arrivals. It is not difficult to create models that represent this feature. In
particular, let {(BY,L%) : n > 1} be the sequence of successive pairs of
successive batch sizes and interval length between successive batch arrivals
for class i. Assume that successive pairs are 11D, but allow B! and L to
be dependent for each n. As above, let m; and cg,i be the two parameters

for BfL and let (Ap;) ! and cf,i be the two parameters for sz. Let vpr; be
the correlation between B and Lf. Then Theorem 9.6.1 remains valid with
cf; in (6.23) replaced by

i = mi(Ch; + oy — 2V piCoiCri) - ™ (6.26)

The multi-class batch-renewal-process model above illustrates that the
asymptotic variability parameters cf;, ¢;, and cf; - appearing in the expres-
sion for C%IT in (6.10) can often be computed for quite rich and complex
models. We conclude this section by illustrating this feature again for point
processes in a random environment, such as the Markov-modulated Poisson

process (MMPP).

Example 9.6.2. Point processes in random environments. In this example
we suppose that the arrival process can be represented as a counting process
in a random environment, such as

A(t) = X(Y(1), t>0, (6.27)

where
(XnaYn) = (B15B2) in D? (628)

with (B1,B2) being two-dimensional Brownian motion and
(X, Y3)(#) = n Y2(X (nt) — znt, Y (nt) —ynt), t>0. (6.29)

For example, an MMPP satisfies (6.27)—(6.29) where X is a homogeneous
Poisson process and Y is a function of an irreducible finite-state continuous-
time Markov chain (CTMC). Indeed, the representation (6.27) was already
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exploited for the cumulative-input processes of the fluid queue in (2.6) in
Chapter 8.

Given (6.27), we can obtain the required FCLT for A from an estab-
lished FCLT for (X,Y) in (6.28) by applying Corollary 13.3.2. Without loss
of generality (by deterministically scaling X and Y in (6.27)), we can obtain
(6.27) with X,Y and A all being rate-1 processes, i.e., for z =y = 1 in
(6.29). Then the FCLT for A,, yields the dimensionless asymptotic variabil-
ity parameter

0?4 = c§( + c% .
For example, if A is a rate-1 MMPP and X is a rate-1 Poisson process, then
0?4 =1+ c§( ,

where cg( is the asymptotic variability parameter of a function of a stationary
CTMC having mean 1, which is given in Theorem 2.3.4 in the Internet
Supplement. =

9.7. Very Heavy Tails

When the interarrival times and service times come from independent
sequences of IID random variables with heavy-tailed distributions, we ob-
tain heavy-traffic stochastic-process limits with reflected-stable-Lévy-motion
(RSLM) limit processes from Sections 4.5 and 9.3, the same way we obtained
heavy-traffic stochastic-process limits with RSLM limit processes for fluid
queues in Section 8.5 from Sections 4.5, 5.4 and 8.3. For the most part, the
story has already been told in Section 8.5. Hence, now we will only discuss
the case of very heavy tails, arising when the random variables have infinite
mean. See Resnick and Rootzén (2000) for related results.

Specifically, as in (5.26) in Section 4.5, we assume that the service-time
distribution has a power tail, satisfying

P(Vi>z)~Az ® as z— o (7.1)

for positive constants @ and A with 0 < a < 1.

We note that a = 1 is a critical boundary point, because if (7.1) holds
for @ > 1, then the service-time distribution has a finite mean, which im-
plies that the waiting-time process has a proper steady-state distribution.
However, if (7.1) holds for a@ < 1, then the service-time distribution has
infinite mean, which implies that the waiting-time process fails to have a
proper steady-state distribution, in particular,

Wy —00 as k—>o00 w.p.l.
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9.7.1. Heavy-Traffic Limits

We can use the heavy-traffic stochastic-process limits to show how the
waiting times should grow over finite time intervals. Similar limits will hold
for the queue-length processes. For these limits, it suffices to consider a
single queueing system. Since the mean service time is infinite, the traffic
intensity is infinite here, and thus plays no role. Let the random elements
of D be defined by

Su(t) = n VS|,
W,(t) = n YWy, t>0. (7.2)

Theorem 9.7.1. (service times with very heavy tails) Consider the stan-
dard single-server queue with interarrival times and service times coming
from a sequence of IID random vectors {(Uy, Vx)}. Suppose that EU; < 0o
and (7.1) holds with 0 < a < 1. Then

(Sn, W,) = (S,8)) in D([0,00),R%,SJy) ,

for Sy, and W, in (7.2), where S is the a-stable Lévy motion with 8 =
1 characterized by Theorems 4.5.2 and 4.5.3 that arises as the stochastic-
process limit for partial sums of the service times alone.

Proof. Since EU; < oo, {Uy : kK > 1} obeys the strong law of large
numbers, which in turn implies a functional strong law; see Corollary 3.2.1
in the Internet Supplement. Hence the FCLT for S,, follows for the FCLT
for the partial sums of the service times alone (without translation term), by
virtue of Theorem 11.4.5. The FCLT for the service times alone follows from
Theorems 4.5.2 and 4.5.3. We obtain the limit theorem for the scaled waiting
times by applying the continuous-mapping approach with the reflection map;
in particular, we can apply Theorem 9.3.1 (a). Finally, the limit process W
has the indicated form because S has nondecreasing sample paths since
=1 n

As a consequence, of Theorem 9.7.1, we can approximate the transient
waiting times by

Wi, ~n*?S(k/n), k>0,

for any k.

We now show that we can calculate the pdf and cdf of the S,(o,1,0)
stable distribution for 0 < a < 1. Paralleling the case @ = 3/2 described
in Theorem 8.5.4, the case @ = 1/2 is especially tractable. As noted in
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Section 4.5, for & = 1/2, we obtain the Lévy distribution; i.e., the S,(1,1,0)
distribution has cdf

Gy jolr) = 23°(1/VE), 720
where ®¢(z) = P(N(0,1) > z) and pdf

see p. 52 of Feller (1971).

More generally, we can apply numerical inversion of Laplace transforms
again to calculate the pdf and ccdf of the stable subordinator S(¢). We
exploit the fact that the distribution S, (e, 1,0) of S%(1) has support on the
positive halfline. That makes the bilateral Laplace transform in (5.17) in
Section 4.5 a bonafide Laplace transform. We exploit self-similarity to relate
the distribution at any time ¢ to the distribution at time 1, i.e.,

S(t) L t/28(1) . (7.3)

Hence it suffices to consider the single-parameter family of distributions
Sa(1,1,0).

By (5.12) in Section 4.5, we know that the ccdf of S,(1,1,0) decays as
z~. Hence, for 0 < a < 1, the random variable S(¢) has infinite mean. By
(7.3), we expect S(t) to grow like t'/® as t increases. However, we should
expect much of the growth to be in large jumps. To illustrate the form of
the ccdf’s, we give the cedf values of S4(1,1,0) for three values of « in Table
9.1, again computed by numerical transform inversion, exploiting the Euler
algorithm in Abate and Whitt (1995a).

The cdf of the stable law S, (1, 1, 0) reveals the consequences of the heavy
tail, but it does not directly show the jumps in the stable Lévy motion. We
see the jumps more directly when we consider the first passage times to
high levels. We can exploit the convergence to a stable Lévy motion to
show, asymptotically, how the waiting-time process reaches new levels when
the service-time distribution has such a heavy tail (with 0 < a < 1).

9.7.2. First Passage to High Levels

As observed in Section 4.5, a stable Lévy motion with 0 < a < 2 is
a pure-jump stochastic process. Thus, the stable Lévy motion passes any
specified level by making a jump. (See Bertoin (1996).) Hence the process
is below the level just before the jump and above the level immediately
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GS, cedf of S,(1,1,0)

T a=0.2 a=0.>5 a=0.8
(0.01)2° = 0.01 0.9037 1.0000 1.0000
(0.01)2! = 0.02 0.8672 1.0000 1.0000
(0.01)22 = 0.04 0.8251 0.9996 1.0000
(0.01)2* = 0.16 0.7282 0.9229 1.0000
(0.01)25 = 0.64 0.6233 0.6232 0.7371
(0.01)2% = 2.56 0.5197 0.3415 0.1402
(0.01)210 = 10.24 0.4242 0.1749 0.3739 e—1
(0.01)2'2 = 40.96 0.3404 0.8798 e—1 | 0.1154 e—1
(0.01)2¢ = 655.36 0.2112 0.2204 e—1 | 0.1220 e—2
(0.01)220 = 10486 0.1269 0.5510 e—2 | 0.1324 e—3
(0.01)2%* = 167,772 0.7477 e—1 | 0.1377 e—2 | 0.1440 e—4
(0.01)228 = 2,684,000 | 0.4359 e—1 | 0.3444 e—3 | 0.1567 e—5
(0.01)232 = 42,949,000 | 0.2525 e—1 | 0.8609 e—4 | 0.1705 e—6

Table 9.1: Tail probabilities of the stable law S, (1, 1,0) for & = 0.2, 0.5 and
0.8 computed by numerical transform inversion.

after the jump. It is significant that we can obtain useful characterizations
of the distributions of the values immediately before and after first passing
any level for the limiting stable Lévy motion. We describe the asymptotic
distribution of the last value before the jump as the level increases.

Stochastic-process limits for these quantities follow from the continuous-
mapping approach with Theorem 13.6.5. Explicit expressions for the dis-
tributions associated with the limiting stable Lévy notion follow from the
generalized arc sine laws; see Sections IIT and VIII of Bertoin (1996).

For z > 0, let 7, be the first passage time to a level beyond z; i.e., for
r€eD,

7, () =27 (2) = inf{t > 0: z(t) > 2} (7.4)

with 7,(z) = oo if 2(t) < z for all t. Let -y, be the associated overshoot; i.e.,

Yo (z) = z(7,(2)) — 2 . (7.5)
Let A, be the last value before the jump; i.e.,
() = z(1,(2)—) - (7.6)
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Let these functions also be defined for the discrete-time process W =
{W}} (without scaling) in the same way.
Note that the scale parameter ¢ enters in simply to the first passage
time, i.e., for y > 0
7.(S(y) =y~ '7(8) ,

and does not appear at all in the overshoot or the last value before passage
(because o corresponds to a simple time scaling).

Also note that we can determine the distribution of the overshoot and
the jump size for the waiting times in a GI/GI/1 model if we know the
distribution of the last value A,(WW): Because of the IID assumption for

{(Uk, Vi) },
Py (W) > z[A.(W) =y) = PV1 U1 > z+2—y|[Vi U1 > z—y) . (7.7)

When z and z—y are both large, we can exploit the service-time tail asymp-
totics in (7.1) to obtain the useful approximation

PVi-Ui>z+z—ylVi—Ui >z—y)
~PVi>z+z—ylVi >z—1)
~((z—y)/(z+z—-y)*. (7.8)

hence, much interest centers on determining the distribution of the last value

before the jump for the waiting times. That exact distribution is hard to
come by directly, so that the heavy-traffic limit is helpful.

Theorem 9.7.2. (limits for the first-passage time, overshoot and last value)
Under the conditions of Theorem 9.7.1, for z > 0,

nra(W) = 7,(S) in R as n— oo,

so that
lim P(7,,1/a (W) > nz) = P(S(z) < 2) ;
n—oo

n_l/a'yml/a (W)=7,(S) in R as n— oo,

so that, for b> z,

lim P(7,,1/a(W) > (b— 2)n'/®)

n—oo
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n YW (7, 0/0(W) = |) = S(r2(8)-)
and, for 0 <b <1,

sin(am)dt

1
lim P(S(r,(S)—) > 2b) :/b R

Z—00

(7.10)

Proof. By Theorem 13.6.5, the first-passage time, overshoot and last-value
functions are almost surely continuous functions on D with respect to the
limiting stable Lévy motion. Hence we can apply the continuous mapping
theorem, Theorem 3.4.3. Note that

nil’rznl/a (W) = Tz(nil/aWLn'J) ’

T s (W) =07 W) = 2= 7e(07 W)

and
DWW (|7 (W) = ) =07 YVOW i ey ) -

For (7.9), see Exercise 3, p. 238, and p. 241 of Bertoin (1996). For (7.10),
see Theorem 6, p. 81, of Bertoin (1996). =

The limiting distribution in (7.10) is called the generalized arc sine law.
Its density is in general an asymmetric U-shaped function. The case a = 1/2
produces the standard arc sine density in Corollary 4.3.1. Consistent with
intuition, as a decreases, the chance of the scaled last value being relatively
small (making the final jump large for a large level z) increases.

9.8. An Increasing Number of Arrival Processes

In this section we establish heavy-traffic limits for queues with superpo-
sition arrival processes, where the number of arrival processes being super-
posed increases in the limit. Related results for fluid queues were established
in Section 8.7.

9.8.1. Iterated and Double Limits

From Theorem 9.4.1, we see that the FCLT for a superposition of m 11D
counting processes is the same as the FCLT for a single counting process,
except for the obvious deterministic scaling. Indeed, in Section 9.6 we ob-
served that the dimensionless variability parameter ¢4 defined in (6.9) and
(6.10) is independent of m.
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However, we obtain a different picture from the fundamental limit for
superpositions of point processes, where the number of superposed processes
gets large with the total rate held fixed. (That limit is sometimes called
the law of small numbers.) Then the superposition process converges to
a Poisson process; e.g., see Cinlar (1972) or Daley and Vere Jones (1988).
For this limit, convergence in (D,.J;) is equivalent to convergence of the
finite-dimensional distributions.

Theorem 9.8.1. (Poisson limit for superposition processes) Suppose that
A" are IID counting processes with stationary increments and without mul-
tiple points (all jumps in A* are of size 1). Then

An=A in (D,J;) as m— oo, (8.1)
where
m .
Ap(t) =) Alt/m), t>0, m>1, (8.2)
i=1

and A is a homogeneous Poisson process with intensity
A=E[A(t+1) — A(t)] = E[A*(t +1) — AY(t)] . (8.3)

In view of Theorem 9.8.1, we might well expect the superposition arrival
process for large m to behave like a Poisson process in the heavy-traffic
limit. However, if A' is a Poisson process, then Sp1 = SY with ¢, =
v/n and S¥ a standard Brownian motion; i.e., the dimensionless variability
parameter is c?] = 1. Clearly, Theorem 9.4.1 does not capture this Poisson
tendency associated with large m. The two iterated limits lim,_,1 limy, ;o0
and lim,,_, lim,_,; are not equal. The reason that these iterated limits do
not coincide is that the superposition process looks different in different time
scales. The iterated limits do not agree because the Poisson superposition
limit focuses on the short-time behavior, while the heavy-traffic limit focuses
on long-time behavior.

Remark 9.8.1. Different variability at different time scales. A Poisson
process is relatively simple in that it tends to have the same level of vari-
ability at all time scales. For example, if A is a Poisson counting process
with rate A, then both the mean and the variance of A(t) are At for all
t > 0. In contrast, a superposition of a large number m of IID stationary
point processes (without multiple points), where each component process is
not nearly Poisson, tends to have different levels of variability at different
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time scales. Consistent with Theorem 9.8.1, for large m, the superposition
process tends to look like a Poisson process in a short time scale, but it looks
like a single component point process in a long time scale.

For example, for a superposition of IID point processes with large m and
small ¢, the variance of A(t) tends to be approximately Amt, where A is the
rate of one component process, just as if A were a Poisson process. However,
consistent with Theorem 9.4.1, under regularity conditions, for any given m,
the variance of A(t) approaches Ac2mt, where

¢ = tliglo Var(Ai(t)/At,

with A; being the counting process of one source. If A; is a Poisson process,
then ¢2 = 1, but more generally c2 can be very different from 1.

The heavy-traffic limits in Section 9.4 for queues with a superposition
of a fixed number of component processes capture only the large-time-scale
variability of the superposition process. That is appropriate for the queue
for any number m of component processes provided that the traffic intensity
p is large enough. However, in practice p may not be large enough.

The problem, then, is to understand how variability in the input, with
levels varying over different time scales, affects queueing performance. Con-
sistent with intuition, it can be shown that the large-time-scale variability
tends to determine queue performance at very high traffic intensities, while
the short-time-scale variability tends to determine queue performance at
very low traffic intensities. More generally, we conclude that variability at
longer times scales become more important for queue performance as the
traffic intensity increases. See Section 9.9, Sriram and Whitt (1986), Fen-
dick, Saksena and Whitt (1989, 1991) and Fendick and Whitt (1989) for
more discussion. As shown by Whitt (1985a), for superposition processes,
we gain insight into the effect of different variability at different time scales
upon queueing performance by considering the double limit as p T 1 and
m—00. =m

In order to have a limit that captures some of the structure of the super-
position process not seen in either a single component process or the Poisson
process, we consider a double limit, letting the number of component pro-
cesses be n, and then letting p, 1 1 as n — oo. As in Theorem 9.8.1, we
rescale time in the superposition process so that the total arrival rate is
fixed, say at 1. Thus the superposition arrival process alone approaches a
rate-1 Poisson process as the number n of components increases. In the n't
queueing model with n component arrival processes, we let the service times
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have mean p, !, so that the traffic intensity in model n is p,. We achieve
heavy traffic by letting p, 11 as n — oo.

The double limit considered in this section has advantages and disadvan-
tages. Its first advantage is that it may more faithfully describe queues with
superpositions of a large number of component arrival processes. Its second
advantage is that, even if the interarrival times have heavy-tailed distribu-
tions, the limit process is likely to have continuous sample paths. However,
a disadvantage is that the limit process is more complicated, because it does
not have independent increments.

We start by considering the superposition arrival process alone. Treating
the arrival process alone, we first scale time by n~! to keep the rate fixed.
Then we scale time again by n to establish the FCLT. These two time
scalings cancel out, so that there is no time scaling inside the arrival process.
In particular, the scaled arrival process is

A,(t) = (An(nt/n) — Ant)

e (An(
e (An(t) — Ant)

= ¢t (il Al(t) — /\nt>

= ¢," ) (A'(t) - At), t>0. (8.4)

From the final line of (8.4), we see that the final scaled process A,, can be
represented as the scaled sum of the IID processes {A'(t) — At : t > 0}. Thus
limits for A, follow from the CLT for processes in Section 7.2.

Now, following and extending Whitt (1985a), we establish a general
heavy-traffic stochastic-process limit for a queue with a superposition ar-
rival process, where the number of component arrival processes increases in
the limit. (See Knessl and Morrison (1991), Kushner and Martins (1993,
1994), Kushner, Yang and Jarvis (1995), Brichet et al. (1996, 2000) and
Kushner (2001) for related limits.) We consider the general space scaling by
¢n, where ¢, — 0o and n/c, — oo.

Theorem 9.8.2. (general heavy-traffic limit for a queue with a superposi-
tion arrival process having an increasing number of components) Consider
a sequence of single-server queueing models indexzed by n, where the service
times are independent of the arrival times and the arrivals come from the
superposition of n IID component arrival processes A*. Suppose that

S! = 8" in (D,M,) (8.5)
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for SY in (3.1), P(SY(0) =0) =1, and
P(t € Disc(S)) =0 forall t. (8.6)

Suppose that
A, = A in (D,M) (8.7)

for A, in (8.4), P(A(0) =0) =1 and
P(t € Disc(A)) =0 forall t. (8.8)
If ¢, > o0, nfcn — 0 and
m=nlp,t = A /en—n as n— oo, (8.9)

then the conditions and conclusions of Theorems 9.3.3 and 9.3.4 hold with
A=A, S® = X"TA o)X le and the WM, topology on the product space D,

Proof. It is easy to verify that the conditions here imply the conditions
in Theorems 9.3.3 and 9.3.4: First, we can apply Theorem 7.3.2 to get

St =8*=-XA1tAo)le.
Then we can apply Theorem 11.4.4 to get
(S%,8%) = (S¥,8Y) in (D*,WM1).

Conditions (8.6) and (8.8) imply condition (3.10). The conditions also imply
(3.19).

Remark 9.8.2. The case of a Lévy counting process. If A is a Lévy process,
then the scaled superposition process in (8.4) satisfies

A1) L A (nt) — ant], t>0,

as in (3.4) with constant A, using the reasoning in Remark 9.4.1. In that case,
Theorem 9.8.2 adds nothing new. The counting process A is a Lévy process
if it is a Poisson process or, more generally, a batch Poisson process, with
the batches coming from a sequence of IID integer-valued random variables.
The scaled batch-Poisson process can converge to a non-Brownian stable
Lévy motion. =
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We now focus on the way the number of sources, n, and the traffic
intensity, p, should change as n — oo and p 1 1. For that purpose, suppose
that ¢, = nf for 0 < H < 1, then (8.9) implies that

nt~H1—p,) = M| as n—oo. (8.10)

As the component arrival processes get more bursty, H increases. As H
increases, n' # increases more slowly as a function of n. Thus, with greater
burstiness, p can approach 1 more slowly to have the heavy-traffic limit in
Theorem 9.8.2.

We now have criteria to determine when the two iterated limits tell the

correct story: If
n>> (|Agl/(1 = p) )

then the arrival process should behave like a Poisson process in the heavy-
traffic limit; if
n << (|Agl/(1 = p))/OH)

then the arrival process should behave like a single component arrival process
in the heavy-traffic limit. The intermediate case covered by (8.10) is more
complicated.

In Section 7.2 we have given sufficient conditions for the condition A, =
A in (8.7). We illustrate by giving a result from Whitt (1985a) for super-
positions of renewal processes, drawing on Theorem 7.2.3.

Theorem 9.8.3. (reflected Gaussian heavy-traffic limit for a queue with a
superposition arrival process having an increasing number of renewal com-
ponents) Consider a sequence of single-server queueing models indexed by
n, where the service times are independent of the arrival times and the ar-
rivals come from the superposition of n IID component stationary renewal
processes A* with interrenewal cdf F having mean \~'. Suppose that

SU =S in (D,J) (8.11)

for SY in (3.1) with ¢, = \/n and S” a zero-mean Brownian motion. Suppose
that

. -1 .
%g%t (F(t) — F(0)) < oo . (8.12)

Suppose that
M=vnpt =AY =20 as n—oo. (8.13)

Then
A,=A in (D) (8.14)
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where A is a zero-mean Gaussian process with stationary increments and
continuous sample paths. The limit process A has the covariance function
of A', which is characterized in Theorem 7.2.4. Then the conditions and
conclusions of Theorems 9.3.3 and 9.3.4 hold with ¢, = /n, A\p = X\ and

St=—_X1tAoxle. (8.15)

Consequently, the limit processes S and X are Gaussian processes with sta-
tionary increments and continuous sample paths.

Proof. Apply Theorems 9.3.3, 9.3.4 and 7.2.3. =

Unfortunately the limit processes for the waiting time, queue-length and
workload processes stemming from Theorem 9.8.3 are relatively intractable,
because the limit processes S and X here do not have independent incre-
ments. However, since S and X are Gaussian processes, we can obtain
approximations for the steady-state distributions of the queueing-content
limit processes W, L, Q and Q4 by applying Section 8.8. We can also
establish a second limit to RFBM as in Section 8.7.

9.8.2. Separation of Time Scales

When we let the number of sources become large in a single-server queue,
we change the relevant time scales of the sources relative to the server. With
n IID sources, the interarrival times for each source become of order O(n),
while the service times remain of order O(1). When we scale time by n for
the heavy-traffic limit, the interarrival times for each source become of order
O(1), while the service times become of order O(n~!). From either perspec-
tive, the interarrival times for each source are of order O(n) times longer
than the service times. Thus, as n increases, the relevant time scales for the
sources and the server separate. Consequently, for large n, the small-time-
scale behavior of the source arrival processes (from their own perspective)
can significantly affect the large-time-scale or heavy-traffic behavior of the
queue.

Consistent with that observation, the limit process A in Theorem 9.8.3
providing the contribution of the arrival process to the heavy-traffic limit de-
pends on the component process A; through its correlation function. Thus,
unlike the case of a single source, locally smoothing the input for each source
with many sources can dramatically reduce the congestion in heavy traffic.
In contrast, for a single source, the heavy-traffic behavior of the queue de-
pends on the source arrival process only through its CLT behavior, which
of course depends on the large-time-scale behavior of that source.
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As noted by Whitt (1988), there is a separation of time scales for flows
in multi-class queueing networks: When one source at a queue has an arrival
rate much smaller than the service rate (usually because the server is shared
by many sources), the departure process for that class tends to be very
similar to the arrival process for that class, because the service and delay
experienced at that queue tend to be in a shorter time scale. Thus, in a
flow through a network from source to destination, where the arrival rate
of that flow is much smaller than the service rate at all queues on its path,
the arrival process at the destination will be very similar to the original
flow emitted from the source. This property has been further exposed by
Wischik (2001b) using moderate-deviation limits.

For discussions about time scales in queues associated with communica-
tion networks, see Sriram and Whitt (1986), Fendick and Whitt (1989), Tse,
Gallager and Tsitsiklis (1995), Jelenkovié, Lazar and Semret (1997), Gross-
glauser and Tse (1999), Greenberg, Srikant and Whitt (1999) and Srikant
and Whitt (2001). =

Example 9.8.1. Token-bank rate-control throttles. The separation of time
scales has implication for the effectiveness of devices to regulate traffic. One
such device is a token-bank rate-control throttle; see Berger (1991), Berger
and Whitt (1992a, b, 1994, 1995b) and references cited there. The operation
of such a throttle is depicted in Figure 9.8.1. The throttle contains two
finite buffers, one for jobs and one for tokens. The jobs may be packets in
a high-speed packet network or call-setup requests in a telecommunications
switching system. The buffer for tokens, called a token bank, is typically a
fictitious buffer, because the token bank is usually implemented by a counter
with a cap, but it is convenient to think of physical tokens. These tokens
arrive deterministically and evenly spaced from an infinite source.

Tokens that arrive to a full token bank are blocked and lost. If the bank
contains a token when a job arrives to the throttle, then the job is allowed
to pass through, and one token is removed from the token bank. If the token
bank does not contain any tokens when a job arrives, then the job queues
in the job buffer if the job buffer is not full. If a job arrives to find a full
job buffer, then the job is not admitted and is said to have “overflowed”. In
packet networks, the overflowed packet may be discarded or may be marked
and later treated as a lower priority class.

The token-bank rate-control throttle is closely related to the leaky-bucket
regulator. With the conventional definition, the leaky bucket has a constant
drain rate r and a capacity C. At a job arrival, if the bucket content is
below C' —1, then the job is admitted and the bucket content is increased by
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throttle
token lost if
bank isfull
token bank )
jobs that
job pass
through
throttle
111] o
‘ job buffer downstream

queue.

i job rejected if
buffer isfull

Figure 9.1: Diagram of a token-bank rate-control throttle with a job-buffer
regulating traffic to a downstream queue.

1. Otherwise, the job overflows. The bucket drains out at a deterministic
rate . When the bucket is empty, the draining stops. The draining process
starts again upon the next job arrival. The arrival brings the bucket content
to 1, and a new busy period of the bucket begins. Thus, the time epochs at
which a unit of content drains out of the bucket do not remain synchronous
in time, but instead experience a phase shift each time the bucket empties.

In contrast, with a token-bank rate-control throttle, the token arrival
process continues to run independent of the state of the bank, so that the
token arrival epochs do remain synchronous for all time. The leaky bucket
is equivalent to a modified rate-control throttle, without job buffer, in which
the deterministic token arrival process stops whenever the token bank be-
comes full, and starts again at the next job arrival epoch. Just like the
rate-control throttle, the leaky bucket can be supplemented by adding a job
buffer. Hence, our remarks here about token-bank rate-control throttles also
apply to leaky-bucket regulators.

An important initial observation for understanding the performance of
the throttle is the overflow invariance property established by Berger (1991)
and Berger and Whitt (1992a): Except for a finite initial period to count for
initial conditions, the job overflow process depends on the (finite) capacity of
the token bank, C7, and the (finite) capacity of the job buffer, Cy, only via
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their sum C = Cp + Cj. The overflow invariance property implies that we
can decompose the question about the performance of the throttle into two
separate parts: First, there is the traffic shaping caused by job rejections,
which depends only on the total capacity C. Second, there is the additional
traffic shaping provided by a job buffer given a fixed total capacity C.

The traffic shaping caused by job rejections can be studied by establish-
ing heavy-traffic limits for the throttle; that was done by Berger and Whitt
(1992b). Following Berger and Whitt (1992a, 1994), here we will focus on
the second question: What is the traffic-shaping benefit provided by the job
buffer, given fixed total capacity C'?

For given total capacity C, we should prefer no job buffer (C; = 0)
if there were no performance differences, because a job buffer is an actual
buffer requiring resources to implement. The reason for having a job buffer
is that it can provide additional traffic shaping. The potential advantages
of a job buffer are easy to see when we contrast an all-token-bank throttle
(with Cy = 0) to an all-job-buffer throttle (with Cr = 0). With an all-token-
bank throttle, the throttle can admit batches of jobs of size C'. In contrast,
with an all-job-buffer throttle, the successive admission epochs of jobs are
always separated by at least the deterministic interval between successive
token arrivals.

Early proponents of rate-control throttles with job buffers noted the
smoothing properties of the throttle. For example, they showed that the
throttle reduced the variability (e.g., as measured by the squared coefficient
of variation) of the stationary interval between successive job admission
epochs. However, through stochastic analysis and simulation, Berger and
Whitt (1992a, 1994) showed that, while the traffic smoothing benefit of the
throttle was dramatic in a short time scale, it was much less so in a long
time scale. Indeed, they showed that the heavy-traffic limiting behavior at a
downstream queue fed by a source with a rate-control throttle is independent
of the job buffer, given fixed total capacity. More generally, simulations
showed that the job buffer tends to provide only a relatively minor reduction
of congestion in a downstream queue.

However, most systems actually have traffic from many sources enter-
ing the downstream system. As noted above, when the number of sources
increases, the short-time behavior of the individual sources begins to have
impact upon the large-time-scale behavior of the queue. In the limit, there
is a separation of time scales. Consistent with that observation, simulations
show that, in marked contrast to the case of a queue fed by a single source,
the job buffer provides a dramatic smoothing benefit when 100 identical
sources regulated by throttles feed a downstream queue. The separation of
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time scales provided by many sources makes the short-time-scale behavior of
the individual sources relevant to the large-time-scale behavior of the queue.

Consistent with that observation, the simulations also show that the
synchronization of many token arrival streams can be a major source of
congestion: If there are many sources, and the token arrival epochs of these
sources are synchronous, then there can be bursts of arrivals at each token
arrival epoch. This effect tends not to appear, however, if all the throttles
are not synchronized, i.e., if the phase is random for each throttle.

For recent work focusing on the impact of rate control throttles on
long-range dependent input, see Vamvakos and Anantharam (1998) and
Gonzéles-Arévalo and Samorodnitsky (2001). =

9.9. Approximations for Queueing Networks

Most systems experiencing congestion are not single queues, but net-
works of queues. However, a cardinal principle of performance analysis is:
Look for the bottleneck! Often there is a critical resource that primarily de-
termines system performance. When viewed correctly, the complex queueing
network often reduces to a smaller system that is easier to analyze. Indeed,
it often suffices to consider a single queue.

Hence, from a practical perspective, there is much justification for em-
phasizing single queues. However, it is also helpful to be able to analyze
queueing networks.

9.9.1. Parametric-Decomposition Approximations

In this section we discuss heuristic approximations for queueing net-
works. These approximation are called parametric-decomposition approz-
imations because the queues are analyzed separately after approximately
characterizing the arrival process at each queue by two parameters; see
Whitt (1983a,b, 1995) and Buzacott and Shanthikumar (1993). (The first
work in this direction was done by Reiser and Kobayashi (1974), Sevcik et
al. (1977) and Kuehn (1979).)

We discuss parametric-decomposition approximations here because heavy-
traffic limits can play an important role in choosing appropriate variability
parameters. Indeed, important insight is provided by the heavy-traffic limit
for a queue with a superposition arrival process, where the number of com-
ponent arrival processes increases in the heavy traffic limit, just considered
in the previous section.
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With parametric-decomposition approximations, the goal is to obtain
improved performance predictions compared to more elementary one-parameter
models such as the M /M /1 queue and the single-class open Jackson queueing
network (a network of M/M/1 queues with Markovian routing); see Jackson
(1957, 1963). Variability has an impact on the performance of these one-
parameter models, but they provide no parameters to quantify the degree
of variability.

In this section we are primarily interested in exploiting heavy-traffic
limits to improve the quality of parametric-decomposition approximations.
Along the way, we point out significant difficulties, where initial simple ap-
proaches break down. When considering approximation errors, it is good
to keep in mind that in engineering applications the error in model fit is
usually larger than the error in approximating the solution of the model.

We start by considering how to approximately characterize the distribu-
tion of a nonnegative real-valued random variable. It is natural to partially
characterize the distribution by its mean and squared coefficient of varia-
tion (SCV, variance divided by the square of the mean). Thus it is natural
to partially characterize a renewal process by the mean and SCV of the
interrenewal time.

However, it is difficult to adequately characterize a general stationary
arrival process by only two parameters, because in addition to the general
interarrival-time distribution, there may be complicated dependence among
the interarrival times. For models, the arrival rate can be determined ex-
actly. The difficulty is in finding an appropriate second parameter to char-
acterize the variability.

The variability of a general stationary arrival process often looks dif-
ferent in different time scales. Consequently, the variability impact on the
congestion in a following queue often depends on the traffic intensity of that
queue. Hence, following Whitt (1995), in order to partially characterize a
general stationary arrival process, we propose using the arrival rate and a
variability function that gives a variability parameter as a function of the
traffic intensity in a following queue. When that arrival process appears
in a queue, we obtain a variability parameter by evaluating the variability
function at the traffic intensity of the queue. (Fendick and Whitt (1989)
investigate how variability as a function of time in an arrival process can be
converted into variability as a function of the traffic intensity in a following
queue.)

In a typical queueing-network application, there are multiple classes of
customers, each with their own arrival, service and routing pattern. It is
often realistic to assume that the routing is primarily deterministic for each
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class, so we will consider the case of deterministic routing. With determin-
istic routing, there is an exogenous arrival process to some queue for each
class, which we will regard as a renewal process partially characterized by the
mean and the SCV of an interrenewal time. (We will later discuss extensions
to non-renewal arrival processes partially characterized by variability func-
tions.) Each customer visits a sequence of queues in the network, possibly
returning to the same queue more than once, and then leaves the network.
At each queue on the customer’s route, there is a service-time distribution,
which is partially characterized by its mean and SCV. It is assumed that
the arrival process and the service times are mutually independent. The
service-time distributions may differ at different queues. The service-time
distributions also may differ at the same queue for different customers or
even for the same customer upon different visits to that queue.

The model data for one customer class might be the vector

(1,2,4;2,1,0;3,1,1;2,5,1) . (9.1)

The first triple describes the exogenous arrival process: Customers from
that class enter the network at queue 1 with an exogenous renewal arrival
process having arrival rate 2 and interarrival-time SCV 4. Afterwards, these
customers visit queues 2, 3 and 2, in that order, and then leave the network.
On the first visit to queue 2, the service time has mean 1 and SCV 0, while
on the second visit to queue 2 the service time has mean 5 and SCV 1.

We must also specify the queues. For simplicity, we will consider only
single-server queues with unlimited waiting room and the FCFS service dis-
cipline, but clearly the general approach can accomodate a wide variety of
queues.

Given the specified model data partially characterizing the arrival and
service processes of each customer class in an open queueing network of
single-server FCFS queues, the goal is to describe the performance. We
want to determine approximate queue-length distributions at each queue and
approximate sojourn-time (time-in-system) distributions for each customer
class.

Here we will only discuss the mean (steady-state) sojourn time for one
class. The mean sojourn time is the sum of the mean waiting times (before
beginning service) and the mean service times at all the queues on the cus-
tomer’s route. The mean service times are directly specified for each class
as part of the model data, so we use them. (To do otherwise could introduce
large errors unnecessarily.) In general, the waiting-time distribution and its
mean can depend on the customer class, but we will use an approximation



396 CHAPTER 9. SINGLE-SERVER QUEUES

for the mean waiting time for an arbitrary customer at that queue. Hence,
here our goal reduces to developing an approximation for the mean waiting
time for an arbitrary customer at each queue in the network.

To determine the approximate mean waiting time at any single queue,
we act as if we have a GI/GI/1 queue partially characterized by the mean
A7l and SCV ¢2 of an interarrival time and the mean y~! and SCV ¢? of
a service time. We will use the heavy-traffic approximation, refined by the
exact M/GI/1 formula, namely,

-1 2 2
EW = EW(\, 2, p,c2) = poolata) (9.2)

2(1-p)

where p = A/p is the traffic intensity. (We obtain (9.2) by multiplying
(6.13) by p?, which provides an asymptotically exact formula as p 1 1 for
any GI/GI/1 queue.

Part of the overall approximation error is due to using formula (9.2) for
a GI/GI/1 queue. It is natural to ask about the range of possible mean-
waiting-time values consistent with the four specified parameters; that is
investigated for the GI/M/1 special case in Whitt (1984b,c) and Klincewicz
and Whitt (1984). The range of possible values given the partial specification
is quite large, e.g., the relative error could well be 100%, but for “typical”
distributions, the range is not great, so that the relative error might be only
10%. However, touting much better accuracy, such as 1% relative error, for
specific interarrival-time and service-time distributions is pointless because
we can find different distributions that yield larger errors.

It is possible to improve (9.2), but we cannot escape the inevitable error
caused by the partial characterization. A good refinement to approsimation
(9-2), which makes EW smaller in some cases, was developed by Kraemer
and Langenbach-Belz (1976). Possible refinements are discussed in Whitt
(1983a, 1989b, 1993a) and references cited there.

Given approximation (9.2), the problem is to approximate the arrival
and service processes at each queue in the network by the arrival and service
processes in a GI/GI/1 queue partially characterized by the parameter four-
tuple (X, 2, 4, 7).

We start by treating the aggregate exogenous arrival process at each
queue as the superposition of the single-class exogenous arrival processes
at that queue. The exogenous arrival rate clearly should be the sum of the
component single-class exogenous arrival rates at that queue. The variability
function for the aggregate exogenous arrival process is more complicated
and will be discussed later. The routing of customers within the network is
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treated as Markovian: The probability P; ; of a customer going next to queue
j after completing service at queue ¢ is made equal to the long-run proportion
of departing customers from queue i that are routed next to queue j. At
each queue, the first two moments of the aggregate service-time distribution
is just the weighted (by the arrival rates) average of the moments of the
individual service-time distributions. The service-time SCV is defined in
terms of the first two moments in the usual way: ¢ + 1 = E[V?]/(E[V])2.

We act as if the service times do not need great care, and that often is
the case. However, Example 9.6.1 illustrates how there can be significant de-
pendence among successive service times and significant dependence between
interarrival times and service times. In any specific application setting, it
is good to have verification by simulation and measurement. We can verify
both the final performance predictions and the variability characterizations
of arrival and service processes.

It is straightforward accounting to produce aggregate exogenous arrival
rates, Markovian routing probabilities at each queue and service-time dis-
tributions partially characterized by their first two moments. Indeed, the
first-order deterministic rate parameters are exact in the specified procedure.

In engineering applications of queueing network analyzers, e.g., in the
design of a manufacturing facility, usually most of the benefit is gained from
the initial phase of the analysis. In the initial planning stages, the model
formulation and accounting identify queues with unacceptably high traffic
intensities (e.g., p; > 1).

A second benefit that occurs before solving the model comes from having
a model with an explicit quantification of variability. The form of the re-
quired model data focuses attention on variability. It indicates what should
be measured. To build the queueing-network model, the engineers must look
at process variability. When engineers attempt to measure and quantify the
variability of arrival and service processes, they often discover opportuni-
ties to reduce that variability and make dramatic improvements in system
performance.

Returning to the parametric-decomposition approximation, it remains to
determine the SCV of the renewal arrival process approximating the arrival
process at each queue. We can decompose the final approximation of c2
for one such queue into two steps: (i) approximating the exogenous arrival
process at each queue by a renewal process partially characterized by its
rate and SCV, and (ii) approximating the net arrival process at the queues
in the network by renewal arrival processes partially characterized by their
rates and SCV’s. (The exact rates of both the exogenous and aggregate
arrival processes have already been determined.)
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The second step involves developing an approximation for a generalized
Jackson network, which is a single-class queueing network with Markovian
routing, mutually independent renewal exogenous arrival processes and 11D
service times at the queues. For the generalized Jackson network considered
here, the interarrival-time and service-time distributions are only partially
characterized by their first two moments or, equivalently, by their means
and SCV’s. Dividing the overall approximation into two steps allows us to
focus on the accuracy of each step separately.

9.9.2. Approximately Characterizing Arrival Processes

We now discuss ways to approximate a general arrival process with sta-
tionary interarrival time sequence {Uy, : k > 1} by a renewal process partially
characterized by the mean A\~! and SCV ¢2 of an interarrival time. Follow-
ing Whitt (1982a), we observe that there are two natural ways: In both
ways, we let the arrival rate be specified exactly by letting A\™! = EU;. The
stationary-interval method lets the SCV cz be the SCV of one interval Uq,
i.e., we let

i =c =Var(Uy)/(EUL)?, (9.3)
as in (6.7). The asymptotic method lets c2 be the scaled asymptotic variance
Var Sy
202 2 _ 7
CaNCAM:CU:nli)ngo’n(T[]]_;é s (9.4)

where S =U; + -+ 4+ Up, n > 1, as in (6.11).

Under the regularity condition of uniform integrability, the asymptotic
method in (9.4) is equivalent to ¢ being the dimensionless space-scaling
constant in the CLT for Sy or the associated arrival counting process A(t),
ie.,

(EA2n)"Y2(8% — X\"'n) = N(0,1) (9.5)

or, equivalently,
(AcEt)2(A(t) — Xt) = N(0,1) ; (9.6)

see Sections 7.3 and 13.8.

The stationary-interval method in (9.3) ignores any correlations among
successive interarrival times. At first glance, it might appear that the
stationary-interval method is implied by a renewal-process approximation,
because there are no correlations in a renewal process, but that is not so.
Even though the approximating process is to be viewed as a renewal pro-
cess, it is important not to ignore the correlations in the arrival process
being approximated if significant correlations are there.
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In contrast, the asymptotic method includes all the correlations in the
arrival process being approximated. From the Brownian heavy-traffic lim-
its for general G/G/1 queues discussed in Section 9.6, we know that the
asymptotic method is asymptotically correct in heavy traffic, using the mean
waiting-time formula in (9.2). Thus, the heavy-traffic limit provides a very
important reference point for these heuristic approximations.

However, in light traffic the long-run correlations among interarrival
times obviously are not relevant, so that the stationary-interval method
seems intuitively better in light traffic. Indeed, the stationary-interval method
usually performs well in light traffic. To appreciate this discussion, it is im-
portant to realize that the two approximation procedures can both perform
well in their preferred regimes, and yet c?,, can be very very different from
cZ;. (We will give examples below.) Thus neither procedure alone can
always work well.

Thus, an effective approximation procedure needs to involve a compro-
mise between the two basic approaches. As mentioned in Section 5.7, one
possible approach is to interpolate between light-traffic and heavy-traffic
limits, but we do not discuss that approach.

9.9.3. A Network Calculus

A parametric-decomposition algorithm for open queueing networks pro-
vides an algorithm for calculating the approximate arrival-process variability
parameter c¢2 at each queue in the network. That variability parameter will
subsequently be used, together with the exact arrival rate, to approximately
characterize an approximating renewal arrival process at that queue. The
overall algorithm for calculating the arrival-process variability parameters
can be based on a network calculus that transforms arrival-processe vari-
ability parameters for each of the basic network operations: superposition,
splitting and departure (flow through a queue).

When the network is acyclic, the basic transformations can be applied
sequentially, one at a time, but in general it is necessary to solve a system of
equations in order to calculate the final variability parameters. Solving the
equations becomes elementary if all the transformations are linear. Then
the final algorithm involves solving a system of linear equations, with one
equation for each queue. Hence there is motivation for developing linear ap-
proximations to characterize each transformation. The synthesis into a final
system of linear equations is relatively straightforward; see Whitt (1983a,
1995); we will not discuss it here.

Here we will only discuss the basic transformations and the initial choice
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of variability parameters. As mentioned earlier, we will focus on variability
functions instead of variability parameters. Given a variability function
{2(p) : 0 < p < 1}, we obtain a specific variability parameter when we
specify the traffic intensity at the queue.

Superposition. Superposition applies first to the exogenous arrival pro-
cess at each queue and then to the aggregate or net arrival process at each
queue, including departures routed from other queues. Suppose that we have
the superposition of m independent renewal counting processes A’(t) with
rates \; and SCVs c2 ;. As indicated above, these parameters can be deter-
mined from the first two moments of an interarrival time. Alternatively, the
parameters can be determined from a CLT for A* of the form

[A*(t) — Ait]/ ([ dic? ; = N(0,1) . (9.7)

Clearly the rate of the superposition process A = Al 4+ ... A™ is \ =
AL+ -+ Ap. It follows from Theorem 9.4.1 and Corollary 9.4.1 that the
appropriate asymptotic-method approximation for ¢ is the weighted average
of the component SCV’s, i.e.,

G = Y _(Ni/ Nk - (9-8)
1=1

The stationary-interval method for superposition processes is more com-
plicated, as can be seen from exact formulas in Section 4.1 of Whitt (1982a).
However, by Theorem 9.8.1, for large m the superposition process behaves
locally like a Poisson process, so that a large-m stationary-interval approx-
imation is

iy~ (9.9)

Notice that we have a demonstration of the inconsistency of the two basic
approximation methods: For a superposition of m IID renewal processes, no
matter how large is the interarrival-time SCV in a component arrival process,
the superposition process approaches a Poisson process as m — oo. If the
traffic intensity in a following queue is not too large, then the congestion
at the queue is essentially the same as if the superposition arrival process
were a Poisson process. On the other hand, for any fixed m, if the traffic
intensity is high enough, the heavy-traffic limit is approximately correct.
Since ¢4, can be arbitrarily large, the error from making the wrong choice
can be arbitrarily large.
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On the other hand, if ¢,, ~ 1, then the two basic methods are con-
sistent and a Poisson-process approximation for the arrival process, which
has ¢2 = 1, is likely to perform well in many applications. However, if ¢,
is not near c?q 7, then we can consider that a demonstration that the actual
arrival process is not nearly a renewal process. Nevertheless, it may be pos-
sible to choose a variability parameter c2 so that (9.2) is a reasonably good
approximation for the mean waiting time.

The problem then is to find a compromise between the asymptotic method
and the stationary-interval method that is appropriate for the queue. In gen-
eral, that should depend upon the traffic intensity in the following queue.
From the heavy-traffic limits in Section 9.3, it follows that the asymptotic
method is asymptotically correct for the queue as p 1 1, so that we should
have c2(p) — ¢4, as p T 1. On the other hand, for very small p it is appar-
ent that the stationary-interval method should be much better, so that we
should have ¢Z(p) = ¢%; as p | 0.

We can use Theorem 9.8.3 as a theoretical basis for a refined approxima-
tion. From Theorem 9.8.3, we know that, for superposition arrival processes
with m component arrival processes, where m — oo, the asymptotic method
is asymptotically correct for the queue as p — 1 only if m(1—p)%2 — 0. Thus,
with superposition arrival processes, the weight on the asymptotic method

should be approximately inversely proportional to m(1 — p)2.

In general, we want to treat superposition arrival processes where the
component arrival processes have different rates. The number m has precise
meaning in the expression m(1 — p)? above only for identically distributed
component processes. If one component process has a rate much larger than
the sum of the rates of all other component processes, then the effective
number should only be slightly larger than 1, regardless of m. However, it
is not difficult to identify appropriate “equivalent numbers” of component
processes that allow for unequal rates.

The considerations above lead to generalizations of the approximation
used in the queueing network analyzer (QNA) software tool; see Whitt
(1983a, 1995), Albin (1984) and Segal and Whitt (1989).

Specifically, an approximating variability function c2(p) for the superpo-
sition arrival process is

co(p) = wchy + (1—w)cg;

w (Z(/\i//\)cg,i(p)> +(1—-w), (9.10)

i=1

Q
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where

w=wp,v) = [1+4(1 - p)*(v—1)]7! (9.11)
with

m -1
v= [Z(,\i/,\)Zl : (9.12)
i=1

The parameter v in (9.12) is the “equivalent number” of component arrival
streams, taking account of unequal rates. When m = 1, v = 1 and ¢2(p) =
cg,l(p). In (9.10) we use the approximation c¢%; = cgﬂ-(()) ~ 1 motivated by
Theorem 9.8.1. Notice that w as a function of p and v is roughly consistent
with the scaling in (8.9) in Theorem 9.8.3: The complex limit occurs as
v(1 — p)? converges to a nondegenerate limit.

Splitting. When the routing is Markovian and we start with a renewal
process, the split processes are also renewal processes, so that 0124 M= C%- o If
a renewal arrival process with interarrival times having mean A~! and SCV
c? is split into m streams, with the probability being p; of each point being
assigned to the i'! split stream, then the mean and SCV of the interarrival
time in the *® split stream are

>\Z._1 = ()\pz)_l a.nd CZ,Z' - pzcg -I' 1 - pz ] (913)

as can be deduced from Theorem 9.5.1.

We now want to extend the splitting formula to independent splitting
from more general non-renewal processes. Now the original arrival process
is partially characterized by its arrival state A and its variability function
{2 (p) : 0 < p < 1}, where p is the traffic intensity at the following queue.
A natural generalization of (9.13) is

Ai = Ap; and cg’i(p) =pic2(p) +1—p; (9.14)
for0<p<1.

However, formulas (9.13) and (9.14) can perform poorly when the routing
is not actually Markovian. Discussions of alternative approximations asso-
ciated with non-Markovian routing appear in Bitran and Tirupati (1988)
and Whitt (1988, 1994, 1995). In particular, when there are multiple classes
with each class having its own deterministic routing, we can use the separa-
tion of time scales to deduce that the single-class departure process is closely
related to the single-class arrival process: With many classes, the queue op-
erates in a shorter time scale than the flow for one customer class. Then the
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customer sojourn times, being relatively short compared to the single-class
interarrival times, tend to make the single-class departure process differ little
from the single-class arrival process.

Suppose that there are m single-class arrival processes with variability
functions {cczm-(p) :0<p<1}forl<i<m. Let {cii(p) :0< p<1}be
the associated variability functions for the single-class departure processes
from that queue. The separation of time scales suggests that we should have

i) mcrilp), 0<p<l, (9.15)
The approximation (9.15) treats departure and splitting together in one
step.

Departures. The stationary interval between departures in a GI/GI/1
queue partially characterized by the parameter four-tuple (\,c2, u,c2) has
mean \~! and SCV

2 =c2 42022 —2p(1 — p)uEW . (9.16)
Hence we can use (9.2) to produce an approximation for the stationary-
interval SCV of a departure process,

cir = pis + (1= p?)ed ; (9.17)

see Whitt (1984d). However, except for the M/M/1 queue, the departure
process is not a renewal process. Hence there are correlations among suc-
cessive interdeparture times that are not captured by approximation (9.17).
Nevertheless, simulation experiments indicate that approximation (9.17) of-
ten performs remarkably well. For example, simulations indicate that ap-
proximations (9.17) and (9.2) together work well to determine the best order
for queues in series (to minimize the mean steady-state sojourn time, given
a fixed arrival process); see Whitt (1985b) and Suresh and Whitt (1990b).

As noted in Remark 5.3.1, for 0 < p < 1, the departure process obeys
the same CLT as the arrival process. Thus the asymptotic-method approx-
imation for the departure process is

Ay =c. (9.18)

To highlight the difference between (9.17) and (9.18), consider two queues
in series — the GI/GI/1 — /GI/1 model. Let p; be the traffic intensity,
cg’i the interarrival-time SCV and cii the service-time SCV at queue 4 for
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1 = 1,2. First, it is evident that the departure process from queue 1 ap-
proaches the service process there as p; T 1. Consistent with that property,
iy — cg’l as p1 T 1 by (9.17). On the other hand, the asymptotic-method
approximation is asymptotically correct for the arrival process at the second
queue as p2 T 1. Hence ci M= cg,l is asymptotically correct for 03,2 as ps 11
for fixed p;.

Now, turning to the variability functions, a candidate approximation
consistent with the reference point above is

cao(p2) = ci1(p1,p2) = elp1, p2)cas + (1 — alp1,p2))cii(p2) ,  (9.19)

where a(p1,p2) T 1as p1 11 and ap1, p2) L 0as ps T 1. A specific candidate
that agrees with (9.17) unless po > p; is

alp1, p2) = pimin1, (1 = p2)2/(1 - p1)?} , (9.20)
but further study is needed.

Example 9.9.1. The heavy-traffic bottleneck phenomenon. The purpose
of this example is to demonstrate the need for variability functions in-
stead of variability parameters to partially characterize arrival processes
in parametric-decomposition approximations. We consider a large number
n of queue in series, all with relatively low traffic intensity p1, followed by a
(n +1)%* queue with high traffic intensity p,y1-

To be concrete, we consider a GI/M/1 — /M/1 — --- — /M/1 model
with a rate-1 renewal arrival process partially characterized by its SCV 03,1.
The service-time distributions are all exponential, so that cg,i =1 for all 3.
The mean service time and traffic intensity at each of the first n queues is
p1, while the traffic intensity at the final (n + 1)%* queue is ppy1-

It is known that as n increases, the stationary departure process from
the n'® queue approaches a Poisson process; see Mountford and Prabhakar
(1995), Mairesse and Prabhakar (2000) and references cited there. Consis-
tent with that limit, the stationary-interval approximation in (9.17) for the
SCV cc21,n+1 satisfies

i1 =1 —p)ca+(1—(1—pH)") =1 (9.21)

as n — oo. On the other hand, for any fixed p;, the final (n + 1) queue
has a heavy-traffic limit that depends on the first n queues only through the
exogenous arrival rate 1 and the SCV cg’l.

We now describe a simulation experiment conducted by Suresh and
Whitt (1990a) to show that this heavy-traffic bottleneck phenomenon is of
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practical significance. To consider “typical” values, they let n = 8, p; = 0.6
and pg = 0.9. (The initial traffic intensity is not too low, while the final traf-
fic intensity is not too high.) Two renewal arrival processes are considered:
hyperexponential interarrival times (mixtures of two exponential distribu-
tions) with cg’l = 8.0 and deterministic interarrival times with cg’l = 0.0,
representing high and low variability.

We compare simulation estimates of the mean steady-state waiting times
with three approximations. In all three approximations, the approximation
formula is
PPz +1)

2(1—p)
1

EW ~ , (9.22)
which is obtained from (9.2) by letting p=! = p and ¢? = 1. The three ap-
proximations differ in their choice of the arrival-process variability parameter
cZ: The asymptotic-method (or heavy-traffic) approximation lets cg = cg’l;
the stationary-interval approximation lets ¢2 = c% I.n+1; the M/M/1 approx-
imation lets ¢2 = 1. The SI approximation yields c§,9 = 1.20 and c§,9 =0.97
in the two cases.

Table 9.2 shows the results of the simulation experiment. From Table
9.2, we see that the asymptotic-method approximation is far more accurate
than the other two approximations at the final queue 9, while the other
two approximations are far more accurate at the previous queue 8 with
lower traffic intensity. The appropriate variability parameter for the arrival
process clearly depends on the traffic intensity at the final queue.

Counsistent with the different approximations at the queues, the measured
variability parameters differ. The stationary interarrival time at queue 9 has
an SCV close to 1, while the estimated asymptotic variability parameter
c%]’g is close to cg,l. Just as with superposition arrival processes (see Albin
(1982)), the individial lag-k correlations are small; C2U,9 differs from ¢ 4
because of the cumulative effect of many small correlations.

Just as in examples with superposition arrival processes, the heavy-traffic
bottleneck phenomenon illustrates the need for variability functions. The
heavy-traffic bottleneck phenomenon also illustrates that there can be long-
range variability effects in networks. High or low variability in an exogenous
arrival process can be unseen (can have little congestion impact) in some
queues and then suddenly appear at a later queue with a much higher traffic
intensity. The reason is that different levels of variability can exist at differ-
ent time scales. The arrival process to the final queue in this example looks
like a Poisson process in a small time scale, but looks like the exogenous
arrival process in a long time scale.
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High Low
variability variability
c2,=8.0 21 =0.0

Queue 9 Simulation 30.1£5.1 5.03 +£0.22
po = 0.9 estimate
asymptotic-method 36.5 4.05
approximation
stationary-interval 8.9 8.0
approximation
M/M/1 8.1 8.1
approximation
Queue 8 Simulation 1.424+0.07 | 0.775+0.013
ps = 0.6 estimate
asymptotic-method 4.05 0.45
approximation
stationary-interval 1.04 0.88
approximation
M/M/1 0.90 0.90
approximation

Table 9.2: A comparison of approximations with simulation estimates of the
mean steady-state waiting times at queue 9 and 8 in the network of nine
queues in series.

9.9.4. Exogenous Arrival Processes

In applications of any method for analyzing the performance of queueing
networks, it is necessary to specify the exogenous arrival processes. With
the parametric-decomposition approximation, it is necessary to obtain initial
variability functions chacterizing the exogenous arrival processes. If the
exogenous arrival processes are actually renewal processes, then there is no
difficulty: then we can simply let the variability function c2(p) be the SCV
of an interarrival time for all traffic intensities p.

However, experience indicates that, in practice (as opposed to in models),
an arrival process that fails to be nearly a Poisson process also fails to be
nearly a renewal process. Indeed, exogenous arrival processes often fail to
be renewal processes, so that it is necessary to take care in characterizing
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the variability of these exogenous arrival processes. Hence, instead of the
route vector in (9.1), the model data for that customer class should be of
the form

(1,2,{02,0(/)) :0<p<1};2,1,053,1,1;2,5,1) . (9.23)

With variability functions, then, we should be prepared to specify the
variability functions of the exogenous arrival processes. Following Whitt
(1981, 1983c) and Section 3 of Whitt (1995), we suggest fitting variability
parameters indirectly by observing the congestion produced by this arrival
process in a test queue. This can be done either through analytical formu-
las (if the arrival process is specified as a tractable mathematical model) or
through simulation (if the arrival process is specified either as a mathemat-
ical model or via direct system measurements).

For example, we can use approximation formula (9.2). We might consider
an exponential service-time distribution, which makes ¢2 = 1. We then think
of the queue as a GI/M/1 queue, but since the arrival process may not
actually be a renewal process, we allow the variability parameter to depend
on the traffic intensity. We estimate the mean waiting time as a function of
p using the arrival process to be characterized. For each value of p, we let
the variability function c2(p) assume the value c¢2 that makes formula (9.2)
match the observed mean waiting time.

This indirect procedure is illustrated by applying it to irregular periodic
deterministic arrival processes in Section 4 of Whitt (1995). A simple exam-
ple has successive interarrival times 3/2, 1/2, 3/2, 1/2,.... Consistent with
intuition, for irregular periodic deterministic arrival processes, c2(p) = 0 for
all sufficiently small p and c2(p) — 0 as p 1 1, but c2(p) can be arbitrarily
large for intermediate values of p.

This indirect estimation procedure can also be used to refine parametric-
decomposition approximations for the variability functions partially charac-
terizing the internal flows in the network. Through simulations and mea-
surements, we can appropriate variability functions that lead to accurate
performance predictions for the internal flows, just as for the exogenous ar-
rival processes. See Fendick and Whitt (1989) and Whitt (1995) for further
discussion.

9.9.5. Concluding Remarks
We conclude this section with two remarks.

Remark 9.9.1. Heavy-traffic limits for queueing networks. An alternative
to the parametric-decomposition approximation is an approximation based
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directly on a heavy-traffic limit for the queueing network. The heavy-traffic
limit ideally would be for the original multiclass queueing network, but it
could be for the single-class Jackson network constructed in the first phase of
the procedure described above. Heavy-traffic limits for the single-class gen-
eralized Jackson network are developed in Chapter 14. A specific algorithm
based on the heavy-traffic limit is the QNET algorithm of Dai (1990), Dai
and Harrison (1991, 1992), Harrison and Nguyen (1990) and Dai, Yeh and
Zhou (1997). A direct heavy-traffic algorithm is an attractive alternative,
but the limit process is usually complicated. The computational complexity
of the QNET algorithm grows rapidly as the number of nodes increases.

When considering heavy-traffic limits for queueing networks, it is impor-
tant to recognize that there is more than one way to take the heavy-traffic
limit. With a queueing network, there is more than one traffic intensity:
There is a traffic intensity at each queue. The standard limiting procedure
involves balanced loading, in which all the traffic intensities approach 1 to-
gether; i.e., if p; is the traffic intensity at queue 7, then p; 1 1 for all 7 with
(L=pi)/(L=p1) = ci, 0 < ¢ <oo.

However, the bottleneck view, stemming from consideration of a fixed
network with one traffic intensity larger than the others, has one traffic
intensity approach 1 faster than the others. If the traffic intensity at one
queue approaches 1 faster than the traffic intensities at the other queues,
then we see a nondegenerate limit for the scaled queue-length process only
at the bottleneck queue. With this form of heavy-traffic limit, one queue
dominates. Just as in the heavy-traffic bottleneck phenomenon, the heavy-
traffic approximation is equivalent to the heavy-traffic limit in which all the
service times at the other queues are reduced to zero, and the other queues
act as instantaneous switches.

A more general heavy-traffic approximation for a network of queues isthe
sequential-bottleneck decomposition method proposed by Reiman (1990a)
and Dai, Nguyen and Reiman (1994). It is a heirarchical procedure similar
to the one proposed for the priority queue in Section 5.10. The sequential-
bottleneck procedure decomposes the network into groups of one or more
queues with similar traffic intensities. Then heavy-traffic approximations
are developed for the groups separately, starting with the group with high-
est traffic intensities. When analyzing a subnetwork associated with a group
of queues, the remaining queues are divided into two sets, those with larger
traffic intensities and those with smaller traffic intensities. Queues with
smaller traffic intensities are treated as if their service times are zero, so
they act as instantaneous switches. Queues with larger traffic intensities
are treated as if they are overloaded, which turns them into sinks for flows
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into them and exogenous sources for flows out of them. Then the QNET
approximation is applied to each subgroup. If the subgroups only contain
a single queue, then we can apply the simple single-queue heavy-traffic ap-
proximation. The single-queue case was proposed by Reiman (1990a).

The sequential-bottleneck approximation is appealing, but note that it
offers no way to achieve the needed non-heavy-traffic approximation at a
queue with a superposition arrival process having many components. At
first glance, the single-queue sequential-bottleneck approximation seems to
perform well on Example 9.9.1: It produces the heavy-traffic approximation
at the final queue with high traffic intensity, which is pretty good. However,
the heavy-traffic approximation at the final queue would not be good if we
lowered the traffic intensity of the final queue from 0.9 to 0.61, where it
still is greater than all other traffic intensities. It still remains to develop
an approximation for the special GI/M/1 — --- — /M/1 model with nine
queues in series that can be effective for all possible traffic-intensity vectors.

Remark 9.9.2. Closed queueing networks. For many applications it is nat-
ural to use closed queueing network models, which have fixed customer pop-
ulations, instead of open queueing network models. There are convenient
algorithms for a large class of Markovian closed queueing network models,
but non-Markovian closed queueing network models tend to be intractable.

Approximations for non-Markovian open queueing networks can be ap-
plied via the fized-population-mean (FPM) method: The steady-state perfor-
mance of the closed queueing network is approximated by the steady-state
performance of an associated open network in which the mean population in
the open network is set equal to the specified population in the closed net-
work; see Whitt (1984c). A search algorithm identifies the exogenous arrival
rate in the open model producing the target mean. (A more complicated
search algorithm is required if there are multiple customer classes with spec-
ified populations.) The FPM method provides good approximations when
the population is not too small.

The FPM method can explain seemingly anomalous behavior in non-
Markovian closed queueing networks: If the variability of the service-time
distribution increases at one queue, then it is possible for the mean queue
length at that queue to decrease. Indeed that phenomenon routinely occurs
at a bottleneck queue; see Bondi and Whitt (1986). That occurs because
the bottleneck queue tends to act as an exogenous source for the rest of the
network. Thus increased variability at the bottleneck queue is likely to cause
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greater congestion in the rest of the network. Since the total population is
fixed, the mean queue length at the bottleneck queue is likely to go down.

To summarize, parametric-decomposition approximations for queueing
networks can be great aids in performance analysis. And heavy-traffic limits
can help improve the performance of these algorithms. However, at the
present time there is no one algorithm that works well on all examples.
Nevertheless, there is sufficient understanding and there are sufficient tools
to make effective algorithms for many specific classes of applications.



