
I. The Study of Logical Systems

In this course, we’ll be studying a number of logical systems, also known
as logical theories or deductive systems. Loosely speaking, a logical system
consists of four things:

1. A vocabulary of primitive signs used in the language of that system.
2. A list or set of rules governing what strings of signs (called “formu-

las”) are grammatically or syntactically well-formed in the language
of that system.

3. A list of axioms, or a subset of the well-formed formulas, considered
as basic and unprovable principles taken as true in the system.

4. A specification of what inferences, or inference patterns or rules,
are taken as valid in that system.

Because we always start discussing a logical system by discussing the
language it uses, it’s worth pausing to discuss the notion of using language
to study language.

A. Metalanguage and Object Language

The languages of the systems we’ll be studying are all symbolic logical
languages. They use symbols like “→” and “∨”, not found in everyday
English. Of course, however, most of our readings, and most of our
discussions about these languages will be in ordinary English. Whenever
one language is used to discuss or study another, we can distinguish
between the language being studied, called the object language, and
the language in which we conduct the study, called the metalanguage.

In this course, the object languages will be the symbolic languages of
first- and higher-order predicate logic, and axiomatic set theory. The
metalanguage is English. To be more precise, it is a slightly more technical
variant of English than ordinary English. This is because in addition to
the symbols of our object language, we’ll be adding some technical terms
and even quasi-mathematical symbols to ordinary English to make our
lives easier.

1. The logic of the metalanguage

Often, we’ll be using the metalanguage to prove things about the object
language, and proving anything requires logical vocabulary. Luckily,
English has handy words like “all”, “or”, “and”, “not”, “if”, and it allows
us to add new words if we want like “iff” for “if and only if”. Of course,
our object languages also have logical vocabularies, and have signs like
“→”, “¬”, “∨”, “∀”. But we’d better restrict those signs to the object
language unless we want to get ourselves confused.

But we do want our metalanguage to be very clear and precise. For
that reason, when we use the word “or”, unless suggested otherwise, we
mean by this the inclusive meaning of “or”. Similarly, if we use the phrase
“if . . . then . . . ” in this class we always mean the material conditional
unless stated otherwise. (This makes our metalanguage slightly more
precise than ordinary English.) The same sorts of logical inferences that
apply in the object language also apply in the metalanguage. So

If (blah blah blah) then (yadda yadda).
Blah blah blah.
Therefore, yadda yadda.

. . . is a valid inference form. You have to use logic to study logic. There’s
no getting away from it. However, I’m not going to bother stating all the
logical rules that are valid in the metalanguage, since I’d need to do that
in the meta-meta-language, and that would just get me started on an
infinite regress. However, any process of reasoning used within standard
mathematical practice is OK.

2. Metalinguistic variables

Ordinary English doesn’t really use variables, but they make our lives a
lot easier. Since the metalanguage is usually used in this course to discuss
the object language, the variables we use most often in the metalanguage
are variables that are used to talk about all or some expressions of the
object language. We don’t want to get these variables confused with the
variables of the object languages. Since predicate logic uses letters like
‘x ’ and ‘y ’ as variables, typically I use fancy script letters like ‘A ’ and ‘B ’

1

in the metalanguage to mean any object-language expression of a certain
specified type. For example, I might say things like:

If A is a sentence of predicate logic, then A contains no
variables not bound by a quantifier.

Notice that, in that statement, the variable ‘A ’ is used, not mentioned.
The letter ‘A ’ is not itself used in predicate logic, and contains no vari-
ables bound or free. It’s something I use in the metalanguage to mean
any sentence of the object language. SoA might be “Fa” or it might be
“(∀x)(F x → Gx)”, etc.

Variables like this used in the metalanguage are called schematic letters.

Other books use other conventions. Hatcher uses Roman letters ‘X ’ and
‘Y ’ or ‘A’ and ‘B’ schematically. Some other books might use Greek letters
instead.

II. First-Order Theories: Syntax

Some logical systems are known as first-order theories. In order to define
this notion, we start by sketching the basic symbols used in the languages
of such systems:

Definition: An individual constant is one of the lowercase letters ‘a’,
‘b’, ‘c’, ‘d ’, or ‘e’, written with or without a numerical subscript.

Examples: ‘a’, ‘c3’, ‘d12’, etc.

Definition: An individual variable is one of the lowercase letters ‘x ’,
‘y ’, or ‘z’, written with or without a numerical subscript.

Examples: ‘x ’, ‘x1’, ‘x12’ ‘y ’, ‘y2’, ‘z’, ‘z13’, etc.

Definition: A predicate letter is one of the uppercase letters from ‘A’
to ‘T ’, written with a numerical superscript ≥ 1, and with or without a
numerical subscript.

Examples: ‘A1’, ‘R2’, ‘H4’, ‘F1
2 ’, ‘G3

4 ’, etc.

• The superscript indicates how many terms the predicate letter takes
to form a statement.

• A predicate letter with a superscript ‘1’ is called a monadic predicate
letter.

• A predicate letter with a superscript ‘2’ is called a binary or dyadic
predicate letter.

• I leave these superscripts off when it is obvious from context what
they must be. E.g., “R2(a, b)” may be written simply “R(a, b)”.

Definition: A function letter is one of the lowercase letters from ‘ f ’
to ‘l ’, written with a numerical superscript ≥ 1, and with or without a
numerical subscript.

Examples: ‘ f 1’, ‘g2’, ‘h3
3’, etc.

Definition: A term of a first-order language is defined recursively as
follows:

(i) all individual variables are terms;
(ii) all individual constants are terms;

(iii) if f is a function letter with superscript n, and t 1, . . . , t n are terms,
then f (t 1, . . . , t n) is a term;

(iv) nothing that cannot be constructed by repeated applications of the
above is a term.

Examples: ‘a’, ‘x ’, ‘ f (a)’, ‘g(x , f (y))’, etc.

Definition: An atomic formula is any expression of the form
P (t 1, . . . , t n) where P is a predicate letter with superscript n, and
t 1, . . . , t n are all terms.

Examples: ‘F1(a)’, ‘F1(f (x))’, ‘R3
4(a, b, c)’, ‘H4(x , b, y, g(a, x))’, etc.

I adopt the convention that if the terms in an atomic formula contain no
function letters, the parentheses and comma may be removed.

Examples: ‘F x ’ is shorthand for ‘F1(x)’, and ‘Rab’ is shorthand for
‘R2(a, b)’.

Definition: A well-formed formula (wff) is recursively defined as fol-
lows:

(i) any atomic formula is a wff;

2

(ii) ifA is a wff, then ¬A is a wff;
(iii) ifA andB are wffs, then (A ∨B) is a wff;
(iv) ifA is a wff and x is an individual variable, then ((∀x)A) is a wff;
(v) nothing that cannot be constructed by repeated applications of the

above is a wff.

Other standard logical operators can be included as well, or introduced
by definition:

(A ∧B) is defined as ¬(¬A ∨¬B)
(A →B) is defined as (¬A ∨B)
(A ↔B) is defined as ((A →B)∧ (B →A))
((∃x)A) is defined as ¬((∀x)¬A)

Definition: A first-order language is any logical language that makes
use of the above definition of a wff, or modifies it at most by restricting
which constants, function letters and predicate letters are utilized (pro-
vided that it retains at least one predicate letter). E.g., a language that
does not have function letters still counts as a first-order language.

Parentheses conventions

Sometimes when a wff gets really complicated, it’s easier to leave off
some of the parentheses. Because this leads to ambiguities, we need
conventions regarding how to read them. Different books use different
conventions. According to standard conventions, we can rank the opera-
tors in the order ¬, ∃, ∀, ∨, ∧,→,↔. Those earlier on the list should
be taken as having narrower scope and those later in the list as having
wider scope if possible. For example:

Fa→ F b ∨ Fc

is an abbreviation of
(Fa→ (F b ∨ Fc))

Whereas
Fa→ F b↔ Fc

is an abbreviation of
((Fa→ F b)↔ Fc)

When the operators are the same, the convention is association to the
left, i.e., the leftmost occurrence is taken to have narrow scope. So

Fa→ F b→ Fc

is an abbreviation of
((Fa→ F b)→ Fc)

Obviously for ∨ and ∧, this last convention is less important, since these
operators are associative.

Sometimes parentheses cannot be left off. Fa→ (F b↔ Fc) cannot be
written Fa→ F b↔ Fc.

Other notations

My sign Alternatives
Negation ¬ ∼, −
Conjunction ∧ &, •
Disjunction ∨ +
Material conditional → ⊃,⇒
Material biconditional ↔ ≡,⇔
Universal quantifier (∀x) ∀x , (x), Πx , ∧x

Existential quantifier (∃x) ∃x , (Ex), Σx , ∨x

III. Deduction in First-Order Theories

In addition to a specified list of well-formed formulas, a first-order theory
will typically contain a list of axioms, and a list of inference rules. These
are divided into two groups. First there are the logical axioms and
inference rules, which are typically shared in common in all standard
first-order theories.

Hatcher formulates them as follows:

Definition: Any instance of the following schemata is a logical axiom,
whereA ,B , C are any wffs, x any variable, and t any term with the
specified property:

3

(1) ((A ∨A)→A)
(2) (A → (A ∨A))
(3) ((A ∨B)→ (B ∨A))
(4) ((A →B)→ ((C ∨A)→ (C ∨B)))
(5) (∀x)A [x]→A [t], provided that no variables in t become bound

when placed in the contextA [t].
(6) (∀x)(B →A [x])→ (B → (∀x)A [x]), provided that x does not

occur free inB .

Notice that even though there are only six axiom schemata, there are
infinitely many axioms, since every wff of one of the forms above counts
as an axiom.

Definition: The inference rules are:

Modus ponens (MP): FromA →B andA , inferB .

Universal generalization (UG): FromA [x], infer (∀x)A [x].

Many other books give equivalent formulations. E.g., Mendelson has the
same inference rules but uses ¬ and→ as primitive rather than ¬ and ∨,
and schemata (1)–(4) are replaced by:

A → (B →A)

(A → (B →C))→ ((A →B)→ (A →C))

(¬A →¬B)→ ((¬A →B)→A)

These formulations are completely equivalent; they yield all the same
results.

You may instead be used to a completely different approach: one in
which there are no axioms, but instead numerous inference rules. For
example, Hardegree’s system SL, which contains the rules DN,→O, ∨I,
∨O, &I, &O,↔I,↔O, ∀O, ∃O, ∃I, and the proof techniques CD, ID and
UD. Again, the results are the same.

Definition: A derivation or proof of a wffB from a set of premises Γ
is an ordered sequence of wffs, A1, . . . ,An, where B is An, and such
that for every Ai, 1 ≤ i ≤ n, (1) Ai is an axiom of the theory (either
logical or proper), (2) Ai is a member of Γ , or (3) there are previous

members of the sequence such thatAi follows from them by one of the
inference rules.

Definition: We use the notation “Γ `K B” to mean that there exists a
derivation or proof ofB from Γ in system K. (We leave off the subscript
if it is obvious from context what system is meant.)

We write “`KB” to mean that there exists a proof ofB in system K that
does not make use of any premises beyond the axioms and inference
rules of K. In such a case,B is said to be a theorem of K.

Definition: A first-order predicate calculus is a first-order theory that
does not have any non-logical axioms.

(It might seem at first that there is only one first-order predicate calculus;
in fact, however, a distinct first-order predicate calculus exists for every
first-order language.)

Most likely, what is provable in the natural deduction system you learned
in your first logic course is equivalent to the first-order predicate calculus;
all of its inference rules can be derived in the above formulation and vice
versa. Therefore, I encourage you to make use of the notation and proof
structures of whatever natural deduction system for first-order predicate
logic you know best, whether it be Hardegree’s set of rules, or Copi’s, or
any other.

You may also shorten steps in proofs that follow from the rules of first-
order logic alone by just writing “logic” or “SL” or “FOL [First-Order
Logic]”, citing the appropriate line numbers. Hatcher will introduce any
truth-table tautology by writing “Taut”. We’re beyond the point where
showing each step in a proof is absolutely necessary.

Here is a list of derived rules of any first-order predicate calculus, and
the abbreviations I personally am most likely to use.

4

MT A →B ,¬B ` ¬A
HS A →B ,B →C `A →C
DS A ∨B ,¬B `A
DS A ∨B ,¬A `B
Int A → (B →C) `B → (A →C)
Trans A →B ` ¬B →¬A
Trans ¬A →¬B `B →A
Exp A → (B →C) ` (A ∧B)→C
Exp (A ∧B)→C `A → (B →C)
DN ¬¬A `A
DN A ` ¬¬A
FA ¬A `A →B
TC A `B →A
TAFC A ,¬B ` ¬(A →B)
TA ¬(A →B) `A
FC ¬(A →B) ` ¬B
Inev A →B ,¬A →B `B
Red A ∨A `A
Red A `A ∧A
Add A `A ∨B
Add A `B ∨A
Com A ∨B `B ∨A
Com A ∧B `B ∧A
Com A ↔B `B↔A
Assoc A ∨ (B ∨C) ` (A ∨B)∨C
Assoc A ∧ (B ∧C) ` (A ∧B)∧C
Assoc (A ∨B)∨C `A ∨ (B ∨C)
Assoc (A ∧B)∧C `A ∧ (B ∧C)
Simp A ∧B `A
Simp A ∧B `B
Conj A ,B `A ∧B
DM ¬(A ∧B) ` ¬A ∨¬B
DM ¬(A ∨B) ` ¬A ∧¬B
DM ¬A ∨¬B ` ¬(A ∧B)
DM ¬A ∧¬B ` ¬(A ∨B)
BI A →B ,B →A `A ↔B
BI A ,B `A ↔B
BI ¬A ,¬B `A ↔B

BE A ↔B `A →B
BE A ↔B `B →A
BMP A ↔B ,A `B
BMP A ↔B ,B `A
BMT A ↔B ,¬A ` ¬B
BMT A ↔B ,¬B ` ¬A
UI (∀x)A [x] `A [t]
EG A [t] ` (∃x)A [x]
CQ ¬ (∀x)A [x] ` (∃x)¬A [x]
CQ ¬ (∃x)A [x] ` (∀x)¬A [x]
CQ (∀x)¬A [x] ` ¬ (∃x)A [x]
CQ (∃x)¬A [x] ` ¬ (∀x)A [x]

Definition: The deduction theorem is a result that holds of any first-
order theory in the following form:

If Γ ∪ {B} `A , and no UG step is applied to a free variable of
B on a step of the proof dependent uponB , then Γ `B →A .

This underwrites both the conditional proof technique and the indirect
proof technique, provided the restriction on UG is obeyed.

Hatcher annotates proofs in the following way. E.g., consider this proof
of the result:

` (∀x)(F x → ((∀z)(Fz→ Gz)→ (∃y)G y))

(1) 1. F x H[ypothesis]
(2) 2. (∀z)(Fz→ Gz) H
(2) 3. F x → Gx 2, e∀ (=UI)
(1, 2) 4. Gx 1,3 MP
(1, 2) 5. (∃y)G y 4, iE (=EG)
(1) 6. [2→ 5] 2, 5 eH (=DT/CD/CP)

7. [1→ 6] 1, 6 eH
8. (∀x)[7] 7, UG

The numbers in parentheses on the left indicate the line number of any
premise or hypotheses from which a step is derived. A number in brackets
abbreviates the wff found at a given line. Hence “(∀x)[7]” is the same
as our result “(∀x)(F x → ((∀z)(Fz→ Gz)→ (∃y)G y))”.

5

You may annotate proofs this way if you like. However, you may use
whatever method you like, whether it uses boxes, lines, indentations,
etc., for subproofs, or a device similar to the above, or uses “`” with its
relata on every line, etc. I don’t care.

Definition: In the metalanguage, “K(Γ)” is used to denote the set of all
wffsB such that Γ `KB .

HOMEWORK

1. Prove informally that Γ is a subset of K(Γ) for any first-order system,
i.e., that every member of Γ is a member of K(Γ).

2. Prove informally that if Γ is a subset of ∆, then K(Γ) is a subset of
K(∆), for any first-order system.

3. Prove informally that K(K(Γ)) = K(Γ) for any first-order system.

IV. Formal Semantics and Truth for First-
Order Predicate Logic

A sentence or wff of a first-order language is true or false relative to an
interpretation or model.

Loosely speaking, an interpretation is just a way of interpreting the
language: a specification of (i) what things the variables range over, (ii)
what each constant stands for, (iii) what each predicate letter stands for,
and (iv) what each function letter stands for.

This can be made more precise by thinking of an interpretation set-
theoretically.

Definition: An interpretation M of a first-order language consists of
the following four things:

1. The specification of some non-empty set D to serve as the domain
of quantification for the language

• This set is the sum total of entities the quantifiers are inter-
preted to “range over”.

• The domain might include numbers only, or people only, or
anything else you might imagine.

• The domain of quantification is sometimes also known as the
universe of discourse.

2. An assignment, for each individual constant in the language, some
fixed member of D for which it is taken to stand.

3. An assignment, for each predicate letter with superscript n in the
language, a set of n-tuples taken from D.

• This set can be thought of as the extension of the predicate
letter under the interpretation.

4. An assignment, for each function letter with superscript n in the
language, some n-place operation on D.

• Set-theoretically, an operation is thought of as a set of ordered-
pairs, the first member of which is itself some n-tuple of mem-
bers of D, and the second member of which is some member
of D.

• This operation can be thought of as representing the mapping
for the function represented by the function-letter. The first
member of the ordered pair represents the possible arguments,
and the second member of the ordered pair represents the
value.

In a sense, the four parts of a model fix the meanings of the quantifiers,
constants, predicate letters, and function letters, respectively. (Or at
the very least, they fix as much of their meanings as is relevant in an
extensional logical system such as first-order predicate logic.)

Given an interpretation, we can determine the truth-value of any closed
wff (wff without any free or unbound variables). Roughly speaking, this
goes as follows.

First, we consider the set of all possible assignments of a member of the
domain as value to the variables. Each such variable assignment is called
a sequence.

Indirectly, a sequence correlates an entity of the domain with each term.
(The model fixes the correlated entity for each constant. The sequence

6

provides an entity for each variable. In the case of terms built up from
function letters, we simply take the value of the operation associated
by the model for the ordered n-tuple built from the entities associated
by the sequence with the terms in the argument-places to the function
letter.)

A wff is said to be satisfied or unsatisfied by a given sequence.

Definition: The notion of satisfaction is defined recursively. For a given
interpretation M with domain D:

(i) If A is an atomic wff P (t 1, . . . , t n), then sequence s satisfies A
iff the ordered n-tuple formed by those entities in the domain D
that s correlates with t 1, . . . , t n is in the extension of P under the
interpretation.

(ii) Sequence s satisfies a wff of the form ¬A iff s does not satisfyA .
(iii) Sequence s satisfies a wff of the form (A ∨B) iff either s satisfies

A or s satisfiesB .
(iv) Sequence s satisfies a wff of the form (∀x)A iff every sequence

s∗ that differs from s at most with regard to what entity of D it
correlates with the variable x satisfiesA .

Definition: A wffA is said to be true for the interpretation M iff every
sequence one can form from the domain D of M satisfiesA .

The notation
�M A

means thatA is true for M. (The subscript on � is necessary here.)

Definition: If M is an interpretation that makes every axiom of a first-
order theory K true, then M is called a model for K.

Definition: A wffA is said to be logically true or logically valid iffA
is true for every possible interpretation.

The notation
�A

(leaving off any subscript) means thatA is logically valid.

Definition: A wff A is a logical consequence of a set of wffs Γ iff in
every interpretation, every sequence that satisfies every member of Γ

also satisifesA .

This is abbreviated Γ �A .

V. Some results covered in Mathematical
Logic I

1. If M is a model for a given first-order theory K, then every theorem
of K is true for M.

2. Soundness: Every theorem of a first-order predicate-calculus is
logically valid, i.e., if `A then �A .

3. (Another way of stating the same result.) Every interpretation for
a given first-order language is a model for the first-order predicate
calculus for that language.

Definition: A first-order theory K is said to be consistent if there is
no wffA such that both `KA and `K ¬A .

4. Consistency: First-order predicate calculi are consistent, i.e., there
is no wff such that both `A and ` ¬A .

5. Gödel’s Completeness Theorem: Every logically valid wff of a
given first-order language is a theorem of the associated first-order
predicate calculus, i.e., if �A , then `A .

6. A first-order theory is consistent if and only if it has a model.

7. The Skolem-Löwenheim Theorem: If a first-order theory has any
sort of model, then it has a denumerable model, i.e., a model with
as many elements in the domain as there are natural numbers
{0,1, 2,3, . . . }.

7

VI. Theories with Identity/Equality

Definition: A first-order theory K is a first-order theory with identity
[equality] iff there is a predicate letter A2

1 used in the theory such that:

1. (∀x)A2
1 x x is either an axiom or theorem, and

2. for every wffB not containing bound occurrences of the variable
‘y ’, the wff:

(∀x) (∀y)(A2
1(x , y)→ (B[x , x]→B[x , y]))

whereB[x , y] is obtained fromB[x , x] by substituting ‘y ’ for zero
or more free occurrences of ‘x ’ in B[x , x], is either an axiom or
theorem.

In such theories, the wff A2
1(t , u) is typically abbreviated as t = u, and

¬A2
1(t , u) is abbreviated as t 6= u.

Definition: If instead of a predicate letter A2
1, K is a theory where there

is a complex wff with two free variables A [x , y] such that similar ax-
ioms and theorems obtain, K is said to be a theory in which identity is
definable.

HOMEWORK

Prove that if K is a theory with identity, then we have the following
results for any terms, t , u and v :

(Ref=) `K t = t
(Sym=) t = u `K u = t
(Trans=) t = u, u = v `K t = v
(LL) t = u,B[t , t] `KB[t , u], provided that neither t nor u

contain variables bound inB[t , t] orB[t , u].

These likely correspond to the rules you learned for “identity logic” in
your intermediate logic courses. Hereafter, feel free to use whatever
abbreviations were found there in your proofs.

Semantics for Theories With Identity

Definition: An interpretation M is a normal model iff the extension it
assigns to the predicate A2

1 is all ordered pairs of the form 〈o, o〉 taken
from the domain D of M.

Definition: A first-order predicate calculus with identity is a first-
order theory whose only proper (“non-logical”) axioms are (∀x) x = x
and every instance of (∀x) (∀y)(x = y → (B →B∗)) whereB∗ is ob-
tained from fromB by substituting ‘y ’ for zero or more free occurrences
of ‘x ’ in places where ‘y ’ does not become bound in the narrow context
ofB∗.

Some results:

1. Soundness: If a wffA is a theorem of a first-order predicate cal-
culus with identity, thenA is true in all normal models.

2. Every normal model for a given first-order language is a model for
the associated predicate calculus with identity.

3. Consistency: Every first-order predicate calculus with identity K is
consistent.

4. If a first-order theory with identity is consistent, then it has a normal
model.

5. Semantic Completeness: If A is a wff of a given first-order lan-
guage, andA is true in all normal models, then if K is the associated
first-order predicate calculus with identity for that language, `KA .

VII. Variable-Binding Term Operators (vbtos)

A. Introduction

Definition: A first-order language with vbtos is just like a first-order
language, except adding terms of the form νx A [x], where t is any
variable and A [x] any wff, and ν some new symbol special to the
language.

8

Variable-binding term operators are also called subnectives.

All occurrences of the variable x occurring in a term of the form νx A [x]
are considering bound.

We shall limit our discussion to vbtos with one bound variable. We shall
also limit our discussion to extensional vbtos, i.e., those yielding terms
standing for the same object whenever the open wffs to which the vbto
is applied are satisfied by the same entities.

Example vbtos:

1. The description operator ιxA [x]

read: the x such thatA [x]

2. Selection/choice operator: µxA [x] or εxA [x]

read: the least/first x such thatA [x], or an x such thatA [x]

3. Set/class abstraction: {x |A [x]}

read: the set/class of all x such thatA [x]

B. Semantics for vbtos

Interpretations for first-order languages with vbtos must also include an
additional component:

5. For each vbto, an assignment of a function mapping every subset of D
to a member of D.

For example, and intended model for the use of the description operator
will assign to it a function mapping every singleton subset of D to its
sole member, and will map every empty and non-singleton subset of D
to some chosen entity in D (e.g., the number 0).

In determining the satisfaction/truth of a wff containing vbtos, a se-
quence s will assign to a term of the form νx A [x] the value of the
function assigned to the vbto by the model for the subset of the domain
made up of those entities o for which the sequence s∗ just like s except
with o assigned to the variable x satisfiesA [x] as argument.

The definitions of truth/satisfaction remain unchanged otherwise.

C. Deduction for vbtos

To preserve completeness, we add the following axiom schemata to the
first-order predicate calculus for a given first-order language with vbtos:

V.1 (∀x)(A [x]↔B[x])→ (C [νxA [x]]↔C [νxB[x]]), provided
that no free variable of νxA [x] or νxB[x] becomes bound in the
context C [νxA [x]] or C [νxB[x]].

V.2 C [νx A [x]]↔ C [νyA [y]], provided that no free variable of
νx A [x] or νyA [y] becomes bound in the context C [νx A [x]] or
C [νyA [y]].

For a first-order predicate calculus with identity, we add instead the
schemata:

V.1′ (∀x)(A [x]↔B[x])→ νxA [x] = νxB[x]

V.2′ νx A [x] = νyA [y]

HOMEWORK

Show that schemata V.1 and V.2 are provable from V.1′ and V.2′ in a theory
with identity.

VIII. First-Order Peano Arithmetic

As an example of a first-order system, we shall consider system S, or
first-order Peano arithmetic.

The first-order language of S is as follows:

1. There is one constant, ‘a’, but instead we write ‘0’.
2. There are three function letters, ‘ f 1’, ‘ f 2

1 ’, and ‘ f 2
2 ’, but instead we

write ‘′’, ‘+’ and ‘·’ with infix notation.
3. There is one predicate letter ‘A2

1’, but instead we write ‘=’ (again,
with infix notation).

9

Definition: The proper or non-logical axioms of S are:

S1. (∀x) x = x
S2. (∀x) (∀y)(x = y → y = x)
S3. (∀x) (∀y) (∀z)(x = y ∧ y = z→ x = z)
S4. (∀x) (∀y)(x = y → x ′ = y ′)
S5. (∀x1) (∀x2) (∀y1) (∀y2)(x1 = x2∧ y1 = y2→ (x1+ y1) = (x2+ y2)∧
(x1 · y1) = (x2 · y2))

S6. (∀x)(x ′ 6= 0)
S7. (∀x) (∀y)(x ′ = y ′→ x = y)
S8. (∀x)(x + 0= x)
S9. (∀x) (∀y)((x + y ′) = (x + y)′)

S10. (∀x)(x · 0= 0)
S11. (∀x) (∀y)((x · y ′) = ((x · y) + x))
S12. A [0]∧ (∀x)(A [x]→A [x ′])→ (∀x)A [x]

Notice that because S12 is an axiom schema, not a single axiom, system
S has infinitely many proper axioms.

Semantics for S

The intended interpretation for S, called the standard interpretation,
is as follows:

1. The domain of quantification D is the set of natural numbers
{0,1, 2,3, . . . }.

2. The constant ‘0’ stands for zero.
3. The extension of ‘=’ is the identity relation on the natural numbers,

i.e., {〈0,0〉, 〈1, 1〉, 〈2, 2〉, . . . }.
4. The function signs ‘′’, ‘+’, and ‘·’ are respectively assigned to the

successor, addition and multiplication operations.

Many other arithmetical notions can be introduced into S by definition,
e.g.:

1 for 0′

2 for 0′′

3 for 0′′′, etc.
t < u for (∃x)(x 6= 0∧ t + x = u)

Some Results

1. Because the standard interpretation is a model for S, S is consistent.

2. Every recursive number-theoretic function is representable in S, and
every recursively decidable number-theoretic property or relation is
expressible in S.

3. Gödel’s First Incompleteness Theorem: There are closed wffsA
of the language of S such that neitherA nor ¬A are theorems of
S.

• Hence there are wffs that are true in the standard interpretation
that are not theorems of S.

• The same is true for any consistent theory obtained from S
by adding a finite number of axioms, or even by adding a
recursively decidable infinite number of axioms.

• The same is true for any consistent first-order theory with
recursively decidable lists of wffs and axioms for which the
previous result holds, including any such first-order theory
in which the axioms of S (or equivalents) are derivable as
theorems.

4. Gödel’s Second Incompleteness Theorem: The consistency of S
cannot be proven in S itself (and the same holds for similar systems).

5. There are non-standard models of S, i.e., models not isomorphic to
the standard interpretation.

HOMEWORK

Prove that `S (∀x) (∀y)((y ′ + x) = (y + x)′). Hint: use S12 with the
above as consequent.

10

IX. System F

A. Frege and Hatcher’s System F

Gottlob Frege (1848–1925) was the first logician ever to lay out fully
an axiomatic deductive calculus, and is widely regarded as the father of
both predicate logic and modern mathematical logic.

Frege was philosophically convinced of a thesis now known as logicism:
the thesis that mathematics is, in some sense or another, reducible to
logic, or that mathematical truth is a species of logical truth.

Frege, somewhat naïvely, attempted to argue in favor of logicism by
inventing a formal system in which he believed all of pure arithmetic
could be derived, but whose axioms consisted only of general logical
principles. The core predicate logic was laid out in Frege’s 1879 Begriff-
sschrift, and expanded into set or class theory in his 1893 Grundgesetze
der Arithmetik.

Unfortunately, the system of Frege’s Grundgesetze turned out to be incon-
sistent.

Hatcher creates a system he calls “System F”, after Frege, and claims he
presents it “in a form quite close to the original”. This isn’t even close to
being true.

Nevertheless, Hatcher’s system does a good job explaining how it is, from
a naïve perspective, one might attempt to create a system in which the
basic terminology of arithmetic could be defined, and the basic principles
of number theory proven from some basic axioms about the nature of
classes, sets or (as Frege called them) “extensions of concepts”.

B. Syntax of F

We use a first-order language with one vbto; in particular

(i) There are no individual constants in the language;
(ii) There are no function letters in the language;

(iii) There is one predicate letter, but instead of writing A2
1(t , u), we

write t ∈ u. This is read either “t is a member of u”, “t is an element
of u”, or simply “t is in u”.

(iv) There is one vbto, forming terms written {x |A [x]}. This is read,
“the set [or class] of all x such thatA [x]”.

It is assumed (for Hatcher’s system) that every member of the domain
of quantification is a set or class. This allows F to be a system in which
identity is defined. In particular:

Definition: t = u is defined as (∀x)(x ∈ t ↔ x ∈ u), where x is the
first variable not occurring free in either t or u.

C. Axioms of F

In addition to the logical axioms, F also includes all instances of the
following two schemata:

F1 (∀x) (∀y)(x = y → (A [x , x] → A [x , y])), where A [x , y] is
derived fromA [x , x] by replacing one or more free occurrences of ‘x ’
with ‘y ’ without thereby binding ‘y ’.

F2 (∀y)(y ∈ {x |A [x]} ↔ A [y]), provided that y is not bound in
A [y].

D. Some set-theoretic notions

Definitions: Where x is the first variable not occurring free in t or u:
t /∈ u for ¬t ∈ u
t 6= u for ¬t = u

V for {x |x = x}
Λ for {x |x 6= x}
{t} for {x |x = t}

{t 1, . . . , t n} for {x |x = t 1 ∨ . . .∨ x = t n}
t for {x |x /∈ t}

11

(t ∩ u) for {x |x ∈ t ∧ x ∈ u}
(t ∪ u) for {x |x ∈ t ∨ x ∈ u}
(t ⊆ u) for (∀x)(x ∈ t → x ∈ u)
(t − u) for {x |x ∈ t ∧ x /∈ u}

From F2, we get two derived rules, where no free variables of t are
bound inA [t]:

F2R A [t] `F t ∈ {x |A [x]}
F2R t ∈ {x |A [x]} `FA [t]

Proof: Direct from F2, UI and BMP.

Some theorems:

T1. `F (∀x) x = x

(Hence, F is a theory with identity.)

T2. `F (∀x) x ∈ V

Proof:

1. x = x T1, UI
2. x ∈ {x |x = x} 1 F2R
3. x ∈ V 2 Df. V
4. (∀x) x ∈ V 3 UG

T2.1 `F V ∈ V

T3. `F (∀x) x /∈ Λ

T4. `F (∀x)((∀y)(y /∈ x)→ x = Λ)

T5. `F (∀x) (∀y)(y ∈ x → ((x − {y})∪ {y}) = x)

HOMEWORK

Prove the following, without making use of Russell’s paradox or other
contradiction:

(a) `F (∀x) (∀y)(x ∩ y = y ∩ x)
(b) `F (∀x) (∀y) (∀z)(x ∪ (y ∪ z) = (x ∪ y)∪ z)
(c) `F (∀x) (∀y)(x − y = x ∩ y)

E. Some mathematical notions

On Frege’s conception of (cardinal) numbers, a number was taken to
be a class of classes all of which had members that could be put in 1–1
correspondence with each other. Zero would be the class of all classes
with no members, one would be the class of single-membered classes,
two would be the class of all two-membered classes, and so on.

Definitions:

0 for {Λ}
t ′ for {x | (∃y)(y ∈ x ∧ x − {y} ∈ t)}
N for {x | (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y)}
1 for 0′

2 for 1′

3 for 2′ and so on

Fin(t) for (∃x)(x ∈ N ∧ t ∈ x)
Inf(t) for ¬Fin(t)

Some theorems:

T6. `F 0 ∈ N (=Peano Postulate 1)

Proof:

1. 0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ 0 ∈ y Taut
2. (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ 0 ∈ y) 1 UG
3. 0 ∈ {x | (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y)} 2 F2R
4. 0 ∈ N 3 Df. N

T7. `F (∀x)0 6= x ′ (=Peano Postulate 3)

Proof:

12

(1) 1. 0= x ′ Hyp
2. Λ= Λ T1 UI
3. Λ ∈ {x |x = Λ} 2 F2R
4. Λ ∈ 0 3 Dfs. 0, {t}

(1) 5. Λ ∈ x ′ 1, 4 LL
(1) 6. Λ ∈ {y| (∃z)(z ∈ y ∧ y − {z} ∈ x)} 5 Df. ′

(1) 7. (∃z)(z ∈ Λ∧Λ− {z} ∈ x) 6 F2R
(1) 8. a ∈ Λ∧Λ− {a} ∈ x 7 EI

9. a /∈ Λ T3 UI
(1) 10. a ∈ Λ∧ a /∈ Λ 8, 9 SL

11. 0 6= x ′ 1–10 RAA
12. (∀x)0 6= x ′ 11 UG

T8. `F (∀x)(x ∈ N → x ′ ∈ N) (=Peano Postulate 2)

Proof:

(1) 1. x ∈ N Hyp
(1) 2. x ∈ {x | (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y)} 1 Df. N
(1) 3. (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y) 2 F2R
(4) 4. 0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y) Hyp
(1) 5. 0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y 3 UI
(1,4) 6. x ∈ y 4, 5 MP
(4) 7. (∀z)(z ∈ y → z′ ∈ y) 4 Simp
(4) 8. x ∈ y → x ′ ∈ y 7 UI
(1,4) 9. x ′ ∈ y 6, 8 MP
(1) 10. 0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ′ ∈ y 4–9 CP
(1) 11. (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ′ ∈ y) 10 UG
(1) 12. x ′ ∈ {x | (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y)} 11 F2R
(1) 13. x ′ ∈ N 12 Df. N

14. x ∈ N → x ′ ∈ N 1–13 CP
15. (∀x)(x ∈ N → x ′ ∈ N) 14 UG

T9. `F (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ N ⊆ y)

Proof:

13

(1) 1. 0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y) Hyp
(2) 2. x ∈ N Hyp
(2) 3. x ∈ {x | (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y)} 2 Df. N
(2) 4. (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y) 3 F2R
(2) 5. 0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y 4 UI
(1,2) 6. x ∈ y 1, 5 MP
(1) 7. x ∈ N → x ∈ y 2–6 CP
(1) 8. (∀x)(x ∈ N → x ∈ y) 7 UG
(1) 9. N ⊆ y 8 Df. ⊆

10. 0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ N ⊆ y 1–9 CP
11. (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ N ⊆ y) 10 UG

T10. `FA [0]∧ (∀x)(A [x]→A [x ′])→ (∀x)(x ∈ N →A [x])
(=Peano Postulate 5)

Proof:

(1) 1.A [0]∧ (∀x)(A [x]→A [x ′]) Hyp
(2) 2. x ∈ N Hyp

3. 0 ∈ {y|A [y]} ∧ (∀z)(z ∈ {y|A [y]} → z′ ∈ {y|A [y]})→ N ⊆ {y|A [y]} T9 UI
(1) 4.A [0] 1 Simp
(1) 5. 0 ∈ {y|A [y]} 4 F2R
(6) 6. z ∈ {y|A [y]} Hyp
(6) 7.A [z] 6 F2R
(1) 8.A [z]→A [z′] 1 Simp, UI
(1,6) 9.A [z′] 7, 8 MP
(1,6) 10. z′ ∈ {y|A [y]} 9 F2R
(1) 11. z ∈ {y|A [y]} → z′ ∈ {y|A [y]} 6–10 CP
(1) 12. (∀z)(z ∈ {y|A [y]} → z′ ∈ {y|A [y]}) 11 UG
(1) 13. N ⊆ {y|A [y]} 3, 5, 12 SL
(1) 14. (∀x)(x ∈ N → x ∈ {y|A [y]} 13 Df. ⊆
(1,2) 15. x ∈ {y|A [y]} 2, 14 UI, MP
(1,2) 16.A [x] 15 F2R
(1) 17. x ∈ N →A [x] 2–16 CP
(1) 18. (∀x)(x ∈ N →A [x]) 17 UG

19. [1→ 18] 1–18 CP

Corollaries (see Hatcher):

14

T11. `F (∀x)(0 ∈ x ∧ (∀y)(y ∈ x ∧ y ∈ N → y ′ ∈ x)→ N ⊆ x)

T12. `FA [0]∧ (∀x)(x ∈ N ∧A [x]→A [x ′])→
(∀x)(x ∈ N →A [x])

F. To Infinity and Beyond

We now have four of the five Peano postulates. The last one, that no two
natural numbers have the same successor, is more difficult to prove.

The reason it is difficult is best understood by considering the numbers
as defined by Frege. They are classes of like-membered classes:

0= {{}}
1= {{Ernie}, {Bert}, {Elmo}, {Gonzo}, . . . }
2= {{Ernie, Bert}, {Big Bird, Snuffy}, {Kermit, Piggy}, . . . }
3= {{Animal, Fozzie,Rowlf}, {Jennifer,Angelina, Brad}, . . . }
etc.

Notice that if there were only finitely many objects, there would be some
natural number n such that:

n= {V}

Then the successor of n would be the empty class, since there is no set
which has members we could take away to form V. Hence:

n′ = {}
n′′ = {} and therefore n′ = n′′

In that case, n and n′ have the same successor, but it still holds that
n 6= n′. Hence, if there were only finitely many objects, the fourth Peano
postulate would be false.

In order to prove the fourth Peano postulate, then, we need to prove
a theorem of infinity: that the universal class is not a member of any
natural number. In Frege’s logic, this can be done a number of ways.

We’re going to do it by proving that the following sequence, ω, never
ends:

Λ

{Λ}
{Λ, {Λ}}
{Λ, {Λ}, {Λ, {Λ}}}
{Λ, {Λ}, {Λ, {Λ}}, {Λ, {Λ}{Λ, {Λ}}}}
and so on, where each member is the set of all before it.

This sequence is also called the von Neumann sequence.

Definition:

ω for {x | (∀y)(Λ ∈ y ∧ (∀z)(z ∈ y → z ∪ {z} ∈ y)→ x ∈ y)}

Notice the similarity between this and the definition of N .

T13. `F (∀x)(x ∈ N →
(∀y1) (∀y2) (∀z)(y1 ∈ z ∧ y2 ∈ z ∧ z − {y1} ∈ x → z − {y2} ∈ x))

(The proof of T13 is long and boring; see Hatcher.)

T14. `F (∀x)(x ∈ N → (∀y) (∀z)(y ∈ x ∧ z ∈ x ∧ y ⊆ z→ y = z))

HOMEWORK

Prove T14. Use T12 and T13.

T15. `F Λ ∈ω

T16. `F (∀x)(Λ 6= x ∪ {x})

T17. `F (∀x)(x ∈ω→ x ∪ {x} ∈ω)

T18. `F (∀x)(Λ ∈ x ∧ (∀z)(z ∈ x → z ∪ {z} ∈ x)→ω ⊆ x)

T19. `FA [Λ]∧ (∀x)(A [x]→A [x ∪ {x}])→ (∀x)(x ∈ω→A [x])

(The proofs of T15–T19 are left as part of an exam question.)

T20. `F (∀x)(x ∈ω→ (∀y)(y ∈ x → y ⊆ x))

Proof:

15

1. y /∈ Λ T3 UI
2. y ∈ Λ→ y ⊆ Λ 1 FA
3. (∀y)(y ∈ Λ→ y ⊆ Λ) 2 UG

(4) 4. (∀y)(y ∈ x → y ⊆ x) Hyp
(5) 5. y ∈ x ∪ {x} Hyp
(5) 6. y ∈ {y|y ∈ x ∨ y ∈ {x}} 5, Df. ∪
(5) 7. y ∈ x ∨ y ∈ {x} 6 F2R

8. y ∈ {x} → y = x Df. {t}, F2, UI, SL
9. y = x → y ⊆ x Dfs. =, ⊆, Logic

10. y ∈ {x} → y ⊆ x 8, 9 HS
(4) 11. y ∈ x → y ⊆ x 4 UI
(4,5) 12. y ⊆ x 7, 10, 11 SL
(13) 13. z ∈ y Hyp
(4,5,13) 14. z ∈ x 12, 13 Df. ⊆, UI, MP
(4,5,13) 15. z ∈ x ∨ z ∈ {x} 14 Add
(4,5,13) 16. z ∈ {y|y ∈ x ∨ y ∈ {x}} 15 F2R
(4,5,13) 17. z ∈ x ∪ {x} 16 Df. ∪
(4,5) 18. z ∈ y → z ∈ x ∪ {x} 13–17 CP
(4,5) 19. (∀z)(z ∈ y → z ∈ x ∪ {x}) 18 UG
(4,5) 20. y ⊆ x ∪ {x} 19 Df. ⊆
(4) 21. y ∈ x ∪ {x} → y ⊆ x ∪ {x} 5–20 CP
(4) 22. (∀y)(y ∈ x ∪ {x} → y ⊆ x ∪ {x}) 21 UG

23. (∀y)(y ∈ x → y ⊆ x)→ (∀y)(y ∈ x ∪ {x} → y ⊆ x ∪ {x}) 4–22 CP
24. (∀x)((∀y)(y ∈ x → y ⊆ x)→ (∀y)(y ∈ x ∪ {x} → y ⊆ x ∪ {x})) 23 UG
25. (∀x)(x ∈ω→ (∀y)(y ∈ x → y ⊆ x)) 3, 24, T19 Conj, MP

T21. `F (∀x)(Λ ∈ x ∧ (∀z)(z ∈ x ∧ z ∈ω→ z ∪ {z} ∈ x)→ω ⊆ x)

T22. `FA [Λ]∧ (∀x)(A [x]∧ x ∈ω→A [x ∪ {x}])→ (∀x)(x ∈ω→A [x])

These are proven similarly to T11 and T12.

T23. `F (∀x)(x ∈ω→ x /∈ x)

Proof:

16

1. Λ /∈ Λ T3 UI
(2) 2. x /∈ x ∧ x ∈ω Hyp
(3) 3. x ∪ {x} ∈ x ∪ {x} Hyp
(3) 4. x ∪ {x} ∈ {y|y ∈ x ∨ y ∈ {x}} 3 Df. ∪
(3) 5. x ∪ {x} ∈ x ∨ x ∪ {x} ∈ {x} 4 F2R
(6) 6. x ∪ {x} ∈ {x} Hyp
(6) 7. x ∪ {x} ∈ {y|y = x} 6 Df. {t}
(6) 8. x ∪ {x}= x 7 F2R

9. x ∪ {x} ∈ {x} → x ∪ {x}= x 6–8 CP
(10) 10. x ∪ {x} ∈ x Hyp
(2) 11. (∀y)(y ∈ x → y ⊆ x) 2, T20 UI, MP
(2,10) 12. x ∪ {x} ⊆ x 10, 11 UI, MP

13. x ⊆ x ∪ {x} Dfs. ⊆, ∪, F2R
(2,10) 14. x ∪ {x}= x 12, 13 Dfs. ⊆, =
(2) 15. x ∪ {x} ∈ x → x ∪ {x}= x 10–14 CP
(2,3) 16. x ∪ {x}= x 5, 9, 15 SL
(2,3) 17. x ∈ x 3, 11 LL
(2,3) 18. x ∈ x ∧ x /∈ x 2, 17 SL
(2) 19. x ∪ {x} /∈ x ∪ {x} 3–18 RAA

20. x /∈ x ∧ x ∈ω→ x ∪ {x} /∈ x ∪ {x} 2–19 CP
21. (∀x)(x /∈ x ∧ x ∈ω→ x ∪ {x} /∈ x ∪ {x}) 20 UG
22. (∀x)(x ∈ω→ x /∈ x) 1, 21, T22 SL

T24. `F (∀x) (∀y)(x ∈ω∧ y ∈ N ∧ x ∈ y → x ∪ {x} ∈ y ′)

(T24 is an easy consequence of T23; see Hatcher, p. 94.)

T25. `F (∀x)(x ∈ N → (∃y)(y ∈ω∧ y ∈ x))

Proof:

1. Λ ∈ 0 Df. 0, Ref= F2R
2. Λ ∈ω∧Λ ∈ 0 1, T15 Conj
3. (∃y)(y ∈ω∧ y ∈ 0) 2 EG

(4) 4. x ∈ N ∧ (∃y)(y ∈ω∧ y ∈ x) Hyp
(4) 5. (∃y)(y ∈ω∧ y ∈ x) 4 Simp
(4) 6. a ∈ω∧ a ∈ x 5 EI

7. a ∈ω∧ x ∈ N ∧ a ∈ x → a ∪ {a} ∈ x ′ T24 UI×2

17

(4) 8. a ∪ {a} ∈ x ′ 4, 6, 7 SL
(4) 9. a ∪ {a} ∈ω 6, T17 UI, MP
(4) 10. a ∪ {a} ∈ω∧ a ∪ {a} ∈ x ′ 8, 9 Conj
(4) 11. (∃y)(y ∈ω∧ y ∈ x ′) 10 EG

12. x ∈ N ∧ (∃y)(y ∈ω∧ y ∈ x)→ (∃y)(y ∈ω∧ y ∈ x ′) 4–11 CP
13. (∀x)(x ∈ N ∧ (∃y)(y ∈ω∧ y ∈ x)→ (∃y)(y ∈ω∧ y ∈ x ′)) 12 UG
14. (∀x)(x ∈ N → (∃y)(y ∈ω∧ y ∈ x)) 3, 13, T12 SL

T26. `F Λ /∈ N

T27. `F (∀x) x ⊆ V

(T26 is an obvious consequence of T25; T27 is obvious, period.)

T28. (∀x)¬(V ∈ x ∧ x ∈ N)

Proof:

(1) 1. V ∈ x ∧ x ∈ N Hyp
(2) 2. y ∈ x ′ Hyp
(2) 3. y ∈ {y| (∃z)(z ∈ y ∧ y − {z} ∈ x)} 2 Df. ′

(2) 4. (∃z)(z ∈ y ∧ y − {z} ∈ x) 3 F2R
(2) 5. a ∈ y ∧ y − {a} ∈ x 4 EI

6. y − {a} ⊆ V T27 UI
7. x ∈ N → (∀y) (∀z)(y ∈ x ∧ z ∈ x ∧ y ⊆ z→ y = z) T14 UI

(1) 8. (∀y) (∀z)(y ∈ x ∧ z ∈ x ∧ y ⊆ z→ y = z) 1, 7 SL
(1) 9. y − {a} ∈ x ∧ V ∈ x ∧ y − {a} ⊆ V→ y − {a}= V 8 UI×2
(1,2) 10. y − {a}= V 1, 5, 6 SL
(11) 11. a ∈ y − {a} Hyp
(11) 12. a ∈ {x |x ∈ y ∧ x /∈ {a}} 11 Df. −
(11) 13. a ∈ y ∧ a /∈ {a} 12 F2R

14. a ∈ {a} Ref=, F2R, Def. {t}
(11) 15. a ∈ {a} ∧ a /∈ {a} 13, 14 SL

16. a /∈ y − {a} 11–15 RAA
(1,2) 17. a /∈ V 10, 16 LL

18. a ∈ V T2 UI
(1,2) 19. a ∈ V ∧ a /∈ V 17, 18 Conj
(1) 20. y /∈ x ′ 2–19 RAA

18

(1) 21. (∀y) y /∈ x ′ 20 UG
(1) 22. x ′ = Λ 21, T4 UI, MP
(1) 23. x ′ ∈ N 1, T8 UI, SL
(1) 24. Λ ∈ N 22, 23 LL

25. Λ /∈ N T26
(1) 26. Λ ∈ N ∧Λ /∈ N 24, 25 Conj

27. ¬(V ∈ x ∧ x ∈ N) 1–26 RAA
28. (∀x)¬(V ∈ x ∧ x ∈ N) 27 UG

T28.1 `F Inf(V)

(Obtain from DN on T28.)

T28.2 (∀x) (∀y)(x ∈ N ∧ y ∈ x → (∃x1) x1 /∈ y)

Proof:

(1) 1. x ∈ N ∧ y ∈ x Hyp
(1) 2. y 6= V 1, T28, F1 logic

3. (∀x1) x1 ∈ y → y = V Df. =, T2 logic
(1) 4. ¬ (∀x1) x1 ∈ y 2, 3 MT
(1) 5. (∃x1) x1 /∈ y 4 CQ, Df. 6=

6. x ∈ N ∧ y ∈ x → (∃x1) x1 /∈ y 1–5 CP
7. (∀x) (∀y)(x ∈ N ∧ y ∈ x → (∃x1) x1 /∈ y) 6 UG×2

We are finally ready to tackle our last Peano postulate.

T29. (∀x) (∀y)(x ∈ N ∧ y ∈ N ∧ x ′ = y ′→ x = y)
(=Peano Postulate 4)

Proof:

(1) 1. x ∈ N ∧ y ∈ N ∧ x ′ = y ′ Hyp
(2) 2. z ∈ x Hyp
(1,2) 3. (∃x1) x1 /∈ z 1, 2, T28.2 UI, SL
(1,2) 4. a /∈ z 3 EI
(5) 5. x1 ∈ z Hyp
(1,2,5) 6. x1 6= a 4, 5, F1 UI, SL
(1,2,5) 7. x1 /∈ {a} F2, Df. {t}, UI, BMT

(5) 8. x1 ∈ z ∨ x1 ∈ {a} 5 Add
(5) 9. x1 ∈ {x |x ∈ z ∨ x ∈ {a}} 8 F2R
(5) 10. x1 ∈ z ∪ {a} 9 Df. ∪
(1,2,5) 11. x1 ∈ z ∪ {a} ∧ x1 /∈ {a} 7, 10 Conj
(1,2,5) 12. x1 ∈ {x |x ∈ z ∪ {a} ∧ x /∈ {a}} 11 F2R
(1,2,5) 13. x1 ∈ (z ∪ {a})− {a} 12 Df. −
(1,2) 14. x1 ∈ z→ x1 ∈ (z ∪ {a})− {a} 5–12 CP
(15) 15. x1 ∈ (z ∪ {a})− {a} Hyp
(15) 16. x1 ∈ {x |x ∈ z ∪ {a} ∧ x /∈ {a}} 15 Df. −
(15) 17. x1 ∈ z ∪ {a} ∧ x1 /∈ {a} 16 F2R
(15) 18. x1 ∈ z ∪ {a} 17 Simp
(15) 19. x1 ∈ {x |x ∈ z ∨ x ∈ {a}} 18 Df. ∪
(15) 20. x1 ∈ z ∨ x ∈ {a} 19 F2R
(15) 21. x1 ∈ z 17, 20 SL

22. x1 ∈ (z ∪ {a})− {a} → x1 ∈ z 15–21 CP
(1,2) 23. x1 ∈ z↔ x1 ∈ (z ∪ {a})− {a} 14, 22 BI
(1,2) 24. (∀x1)(x1 ∈ z↔ x1 ∈ (z ∪ {a})− {a}) 23 UG
(1,2) 25. z = (z ∪ {a})− {a} 24 Df. =
(1,2) 26. (z ∪ {a})− {a} ∈ x 2, 25 LL

27. a ∈ {a} Ref= F2R
28. a ∈ z ∨ a ∈ {a} 27 Add
29. a ∈ z ∪ {a} 28 F2R, Df. ∪

(1,2) 30. a ∈ z ∪ {a} ∧ (z ∪ {a})− {a} ∈ x 26, 29 Conj
(1,2) 31. (∃y)(y ∈ z ∪ {a} ∧ (z ∪ {a} − {y} ∈ x) 30 EG
(1,2) 32. z ∪ {a} ∈ {z| (∃y)(y ∈ z ∧ z − {y} ∈ x)} 31 F2R
(1,2) 33. z ∪ {a} ∈ x ′ 32 Df. ′

(1,2) 34. z ∪ {a} ∈ y ′ 1, 33 Simp, LL
(1,2) 35. z ∪ {a} ∈ {x | (∃x1)(x1 ∈ x ∧ x − {x1} ∈ y)} 34 Df. −
(1,2) 36. (∃x1)(x1 ∈ z ∪ {a} ∧ (z ∪ {a})− {x1} ∈ y) 35 F2R
(1,2) 37. b ∈ z ∪ {a} ∧ (z ∪ {a})− {b} ∈ y 36 EI

(continued. . .)

19

38. y ∈ N → (∀y1) (∀y2) (∀z)(y1 ∈ z ∧ y2 ∈ z ∧ z − {y1} ∈ y → z − {y2} ∈ y) T13 UI
(1) 39. (∀y1) (∀y2) (∀z)(y1 ∈ z ∧ y2 ∈ z ∧ z − {y1} ∈ y → z − {y2} ∈ y) 1, 38 SL
(1) 40. b ∈ z ∪ {a} ∧ a ∈ z ∪ {a} ∧ (z ∪ {a})− {b} ∈ y → (z ∪ {a})− {a} ∈ y 39 UI×3
(1,2) 41. (z ∪ {a})− {a} ∈ y 29, 37, 40 SL
(1,2) 42. z ∈ y 25, 41 LL
(1) 43. z ∈ x → z ∈ y 2–42 CP
(1) 44. z ∈ y → z ∈ x CP just like 2–42
(1) 45. (∀z)(z ∈ x ↔ z ∈ y) 43, 44 BI, UG
(1) 46. x = y 45 Df. =

47. x ∈ N ∧ y ∈ N ∧ x ′ = y ′→ x = y 1–46 CP
48. (∀x) (∀y)(x ∈ N ∧ y ∈ N ∧ x ′ = y ′→ x = y) 47 UG×2

To complete the argument that all of Peano arithmetic can be derived in
System F, we should proceed to give definitions of addition and multipli-
cation and derive their recursive properties. However, the point is rather
moot in light of the problems with the system.

G. Russell’s Paradox

System F is inconsistent due to Russell’s Paradox: Some sets are mem-
bers of themselves. The universal set, V, is a member of V. Some sets
are not members of themselves, such as Λ or 0. Consider the set W,
consisting of all those sets that are not members of themselves. Problem:
Is it a member of itself? It is if and only if it is not.

`F {x |x /∈ x} ∈ {x |x /∈ x} ∧ {x |x /∈ x} /∈ {x |x /∈ x}

Proof:

1. (∀y)(y ∈ {x |x /∈ x}↔ y /∈ y) F2
2. {x |x /∈ x} ∈ {x |x /∈ x}↔ {x |x /∈ x} /∈ {x |x /∈ x} 1 UI
3. {x |x /∈ x} ∈ {x |x /∈ x} → {x |x /∈ x} /∈ {x |x /∈ x} 2 BE
4. {x |x /∈ x} /∈ {x |x /∈ x} ∨ {x |x /∈ x} /∈ {x |x /∈ x} 3 Df. →
5. {x |x /∈ x} /∈ {x |x /∈ x} 4 Red
6. {x |x /∈ x} ∈ {x |x /∈ x} 2,5 BMP
7. {x |x /∈ x} ∈ {x |x /∈ x} ∧ {x |x /∈ x} /∈ {x |x /∈ x} 5, 6 Conj

From this it follows that every wff of F is a theorem.

Moreover, this is not the only contradiction derivable in System F. It also
succumbs to Cantor’s Paradox, the Burali-Forti Paradox, the Russellian
Paradox of Relations in Extension, and others.

Obviously, this poses a major obstacle to the use of system F as a founda-
tion for arithmetic.

The question is: what’s wrong with F? Is there a way of modifying it
or changing it that preserves its method of constructing arithmetic but
without giving rise to the contradictions?

HOMEWORK

Do the exercise on p. 96 of Hatcher. I.e., prove the inconsistency of the
system like F but without any vbto, and whose axioms are (F1) and (F2′):
(∃y) (∀x)(x ∈ y↔A [x]), whereA [x] does not contain ‘y ’ free.

`FA

Proof:

8. {x |x /∈ x} ∈ {x |x /∈ x} ∨A 6 Add
9.A 5, 8 DS

20

X. The Historical Frege/System GG

A. Introduction

Frege’s actual system from the 1893 Grundgesetze der Arithmetik (GG)
was quite a bit different from Hatcher’s System F, and interesting in its
own right. Some dramatic differences include:

1. Frege’s system was second-order, meaning that it had predi-
cate/function variables as well as individual variables.

2. Frege’s system was a function calculus rather than a predicate calcu-
lus. Function calculi do not distinguish between terms and formulas,
nor between predicates and function letters. Even connectives are
thought of as standing for functions.

For Frege, a formula was thought to stand for something, just a
term does, and in particular, a truth value, either the True or the
False. A sentence consisted of a name of a truth value along with
an illocutionary force marker he called “the judgment stroke”.

The judgment stroke was written “`”, but this is not to be confused
with a metatheoretic sign used to say something is a theorem.

IfA is a well-formed expression, then `A is a proposition, which
asserts thatA denotes the True.

B. Primitive Function Signs and their Intended Inter-
pretations

Because it is inconsistent, one cannot develop “models” in the usual
sense for this system, but one can list what each sign was intended to
mean.

(i) A =

¨

the True, ifA is the True;

the False, otherwise.

(ii) A =

¨

the False, ifA is the True;

the True, otherwise.

Hereafter, we write ¬A instead.

(iii)
B

A
=

¨

the False, ifA is the True andB is not the True;

the True, otherwise.

Hereafter, we write (A →B) instead.

(iv) (A =B) =

¨

the True, ifA andB are the same object;

the False, otherwise.

(v)
x A [x] =

¨

the True, ifA [x] is the True for every x ;

the False, otherwise.

Hereafter, we write (∀x)A [x] instead.

(vi)
,
αA [α] = the value-range of the function A [] represents, or its
extension/class ifA [x] is always a truth-value.

Hereafter, we write {x |A [x]} instead.

(vii) \A =







the sole object falling under the concept whose

value-range isA , ifA is such a value-range;

A itself, otherwise.

Other common operators ∧, ∨, ∃, etc., could be defined from these as
you would expect.

In addition to the primitive constants, the language also contains individ-
ual variables x , y , z, etc., function/predicate variables, F , G, H, etc. (of
different polyadicities) and even second level function variables written
Mβ . . .β . . . , so that Mβ F(β) represented a second-level variable with its
first-level argument.

A second-level variable Mβ . . .β . . . can for most intents and purposes be
thought of as a variable quantifier whose values are, e.g., the universal
quantifier, the existential quantifier, and so on.

21

C. Axioms and Rules of GG

In modern notation, the axioms (“basic laws”) were:

(I) ` x → (y → x)
(II) ` (∀x) F(x)→ F(y)
` (∀F)Mβ F(β)→ MβG(β)

(III) ` g(x = y)→ g((∀F)(F(x)→ F(y)))
(IV) ` ¬(—x = ¬y)→ (—x =—y)
(V) ` ({x |F(x)}= {y|G(y)}) = (∀x)(F(x) = G(x))

(VI) ` x = \{y|y = x}

Frege’s Basic Law (V) is notorious. In predicate calculi analogues of
Frege’s system, you will often see it written instead:

({x |F(x)}= {y|G(y)})↔ (∀x)(F(x)↔ G(x))

Given that an identity between names of truth-values works much like a
biconditional, this version is very similar, though not quite equivalent, to
Frege’s form above.

Inference rules: (i) MP, (ii) Trans, (iii) HS, (iv) Inev, (v) Int, (vi) Amal, or
antecedent amalgamation, e.g., from `A → (A →B) infer `A →B ,
(vii) Hor, or amalgamation of successive horizontal strokes, (viii) UG,
which may be applied also to the consequent of the conditional, pro-
vided the antecedent does not contain the variable free, (ix) IC, in-
nocuous change of bound variable, and (x) Repl, or variable instanti-
ation/replacement. Variable instantiation requires replacing all occur-
rences of a free-variable with some expression of the same type, e.g.,
individual variable with any “complete” complex expression, or function
variables with any “incomplete” complex of the right sort.

Stating the variable instantiation rule precisely is difficult and not worth
our bother here, but here are some examples:

` (∀x) F(x)→ F(y) to ` (∀x) F(x)→ F({z|z = z})
(Replaced ‘y ’ with ‘{z|z = z}’.)
` (∀x) F(x)→ F(y) to ` (∀x)(x = x)→ (y = y)
(Replaced ‘F()’ with ‘() = ()’.)
` (∀F)Mβ F(β)→ MβG(β) to ` (∀F)¬ (∀x) F(x)→¬ (∀x)G(x)
(Replaced Mβ(. . .β . . .) with ¬ (∀x)(. . . x . . .).)

An example proof (Hatcher’s F1):

1. ` g(x = y)→ g((∀F)(F(x)→ F(y))) (III)
2. ` (x = y)→ (∀F)(F(x)→ F(y)) 2 Repl
3. ` (∀F)Mβ F(β)→ MβG(β) (II)
4. ` (∀F)(F(x)→ F(y))→ (G(x)→ G(y)) 3 Repl
5. ` (x = y)→ (G(x)→ G(y)) 2, 4 HS
6. ` (x = y)→ (A [x , x]→A [x , y]) 5 Repl

Frege gave a slightly more complicated (but more useful) definition, but
we can very simply define membership as follows:

t ∈ u for (∃f)(u = {x |f (x)} ∧ f (t))

From this we can derive an analogue of Hatcher’s F2:

` (∀x)(x ∈ {y|F(y)}↔ F(x))

HOMEWORK

Prove that the above is a theorem of GG. (Hint, use (V).)

Some interesting additional definitions:

t ∼= u for (∃R)((∀x)(x ∈ t → (∃y)(y ∈ u ∧ (∀z)(Rxz ↔ z = y))) ∧
(∀x)(x ∈ u → (∃y)(y ∈ t ∧ (∀z)(Rzx ↔ z = y))))

#(t) = {x |t ∼= x}

Inconsistency: Russell’s paradox follows just as for System F.

Paper idea and discussion topic: What led the Serpent into Eden? In other
words, what is the source of the inconsistency in systems GG or F?

Is it the very notion of the extension of a concept, the supposition that
one exists for every wff, or Basic Law (V) or F2?

Or is it the impredicative nature of Frege’s logic, that is, that it allows
quantifiers for functions to range over functions definable only in terms
of quantification over functions, thus creating “indefinitely extensible
concepts”?

Consider comparing the views, e.g., of Boolos (Logic, Logic and Logic,
chaps. 11 and 14) with Dummett (Frege: Philosophy of Mathematics,
especially last chapter), and/or others.

22

XI. Type-Theory Generally

“The theory of types” is not one theory, but several. Indeed, there are
two broad types of type theory. The first are typed set theories. The
second are typed higher-order set theories. Even within each category,
there are several varieties. What they have in common are syntactic
rules that make distinctions between different kinds of variables (and/or
constants), and restrictions to the effect one type of variable (and/or
constant) may not meaningfully replace another of a different type.

We begin our examination with so-called simple theories of types. The
simple theory of types for sets, when interpreted standardly, has distinct
kinds of variables for the following domains:

Type 0: individuals (entities)
Type 1: sets whose members are all individuals
Type 2: sets whose members are all sets of type 1
Type 3: sets whose members are all sets of type 2
And so on.

A simple theory of types for a higher-order language would have a similar
hierarchy: variables for individuals, variables for properties/relations
applicable to individuals, variables for properties/relations applicable to
such properties/relations, and so on. We begin our study however, with
type-theoretical set theories.

XII. The System ST (Simple Types)

A. Syntax

Definition: A variable is any of the letters x , y, or z written with a
numerical superscript n (where n≥ 0), and with or without a numerical
subscript. (If a subscript is left off, it should be taken as a 0.)

The subscripts as usual, are simply used to guarantee an infinite supply
of variables. The superscripts indicate the type of a variable.

Examples:

a) “x0
1” is a variable of type 0 (a variable for individuals).

b) “y1
4 ” is a variable of type 1 (a variable for sets of individuals)

c) “x3
2” is a variable of type 3 (a variable for sets of sets of sets of

individuals)

We continue to use the same vbto for set abstraction as before. However,
a term of the form {x |A [x]} will be of type n+ 1 where n is the type of
the variable x (as given by its superscript).

A string of symbols of the form “t ∈ u” is a wff only if the type of u is
one greater than the type t ; otherwise the syntax is the same as those of
system F.

Hence “x0 ∈ x0” is not well-formed, and so neither is “{x0|x0 /∈ x0}”.
However “x0 ∈ y1” is fine.

We introduce the signs→,↔, ∧, /∈, ∃, etc. by definition as one would
expect.

However, we define identity thusly:

t = u for (∀x)(t ∈ x ↔ u ∈ x), where x is the first variable of type
n+ 1, where n of the type of t and u, not ocurring free in either t or u.

Note that t = u is only well-formed if t and u have the same type.

We cannot define = as we did for system F, since entities of type 0 are
not sets and hence cannot have members, much less the “same members”
as each other.

We define t 6= u, t ∪ u, t ∩ u, t ⊆ u, t − u, {t}, {t 1, . . . , t n} similarly to
how they’re defined for system F. Notice, again, however that some of
these are well-formed only if u and t share the same type.

Vn+1 is defined as {xn|xn = xn}.
Notice there is a distinct universal class, of type n+ 1 for every type n.

Λn+1 is defined as {xn|xn 6= xn}.

〈t , u〉 is defined as {{t}, {t , u}}.

23

B. Axiomatics

System ST has logical axioms corresponding to the logical axioms of
first-order theories. We note only that for well-formed instances of the
axiom schema (∀x)A [x]→A [t], the type t must match that of the
variable x . (Of course, were this not the case, we would not even have
a wff.) The inference rules are the same, and all the same derived rules
carry over.

The proper axioms of ST are the following:

ST1. (∀x n)(x n ∈ {y n|A [y n]}↔A [x n]), provided that x n does occur
bound inA [y n].

ST2. (∀xn+1) (∀yn+1)((∀zn)(zn ∈ xn+1↔ zn ∈ yn+1)→ xn+1 = yn+1),
for every type n.

ST3. (∃x3)((∀x0)〈x0, x0〉 /∈ x3 ∧ (∀x0) (∃y0)〈x0, y0〉 ∈ x3∧
(∀x0) (∀y0) (∀z0)(〈x0, y0〉 ∈ x3 ∧ 〈y0, z0〉 ∈ x3→ 〈x0, z0〉 ∈ x3))

(The need and import of ST3 will be discussed below.)

C. Basic Results

Derived rule from ST1 (ST1R): Same as F2R, except obeying type-
restrictions. Proof the same.

T1. (∀xn) xn = xn

Proof:

1. xn ∈ yn+1↔ xn ∈ yn+1 Taut
2. (∀yn+1)(xn ∈ yn+1↔ xn ∈ yn+1) 1 UG
3. xn = xn 2 Df. =
4. (∀xn) xn = xn 3 UG

T2. (∀xn) (∀yn)(xn = yn→ (A [xn, xn]→A [xn, yn]))

Proof:

(1) 1. xn = yn Hyp
(1) 2. (∀zn+1)(xn ∈ zn+1↔ yn ∈ zn+1) 1 Df. =
(3) 3,A [zn, xn] Hyp
(3) 4. xn ∈ {xn|A [zn, xn]} 3 ST1R
(1) 5. xn ∈ {xn|A [zn, xn]}↔ yn ∈ {xn|A [zn, xn]} 2 UI
(1,3) 6. yn ∈ {xn|A [zn, xn]} 4, 5 BMP
(1,3) 7.A [zn, yn] 6 ST1R
(1) 8.A [zn, xn]→A [zn, yn] 3–7 CP

9. xn = yn→ (A [zn, xn]→A [zn, yn]) 1–8 CP
10. xn = yn→ (A [xn, xn]→A [xn, yn]) 9 UG, UI
11. (∀xn) (∀yn)(xn = yn→ (A [xn, xn]→A [xn, yn])) 10 UG×2

From T1 and T2 we get, in essence, that ST is a theory with identity, and
so we can use all associated derived rules.

The following have proofs that are either obvious or directly parallel to
the analogous results in system F:

T3. `ST (∀xn) xn ∈ Vn+1

T4. `ST (∀xn) xn /∈ Λn+1

T5. `ST (∀yn+1)((∀xn) xn ∈ yn+1→ yn+1 = Vn+1)

T6. `ST (∀yn+1)((∀xn) xn /∈ yn+1→ yn+1 = Λn+1)

T7. `ST (∀xn+1) (∀yn+1)(xn+1 ⊆ yn+1 ∧ yn+1 ⊆ xn+1→ xn+1 = yn+1)

T8. `ST (∀xn+1) (∀yn+1)(xn+1 ⊆ xn+1 ∪ yn+1)

T9. `ST (∀xn+1) (∀yn+1)(xn+1 ∩ yn+1 ⊆ xn+1)

T10. `ST (∀xn) (∀yn)(xn ∈ {yn}↔ xn = yn)

T11. `ST (∀xn) (∀yn) (∀zn)(xn ∈ {yn, zn}↔ xn = yn ∨ xn = zn)

T12. `ST (∀xn+1) (∀yn)(yn ∈ xn+1→ (xn+1 − {yn})∪ {yn}= xn+1)

T13. `ST (∀xn+1) (∀yn)(yn /∈ xn+1→ (xn+1 ∪ {yn})− {yn}= xn+1)

Another important result:
T14. `ST (∀xn

1) (∀xn
2) (∀yn

1) (∀yn
2)(〈x

n
1 , yn

1 〉= 〈x
n
2 , yn

2 〉↔
xn

1 = xn
2 ∧ yn

1 = yn
2)

24

Proof of right to left half of biconditional is an obvious consequence of LL.
Proof of left to right half of biconditional left as part of an exam question.

D. Development of Mathematics

Almost all the methodology we examined for capturing natural number
theory in System F can be carried over to ST. However, notive that we
have distinct numbers in distinct types starting with type 2. In type 2,
we have the number 2 as the set of all two-membered sets of individuals.
In type 3, we have the number 2 as the set of all two-membered sets of
sets of individuals, and so on.

Definitions:

0n+2 for {Λn+1}

t ′ for {x | (∃y)(y ∈ x ∧ x − {y} ∈ t)}, where x is the first variable one
type below t not found free in t , and y is the first variable two types
below t not found free in t .

N n+3 for {xn+2| (∀yn+3)(0n+2 ∈ yn+3∧
(∀zn+2)(zn+2 ∈ yn+3→ zn+2′ ∈ yn+3)→ xn+2 ∈ yn+3)}

Below, unless specified otherwise, we shall use “0” for “02” and “N” for
“N 3”.

The following results are derived exactly as for system F:

T15. `ST 0 ∈ N (=Peano Postulate 1)

T16. `ST (∀x2)(0 6= x2′) (=Peano Postulate 3)

T17. `ST (∀x2)(x2 ∈ N → x2′ ∈ N) (=Peano Postulate 2)

T18. `ST (∀x3)(0 ∈ x3 ∧ (∀y2)(y2 ∈ x3 ∧ y2 ∈ N → y2′ ∈ x3)→
N ⊆ x3)

T19. A [0]∧ (∀x2)(x2 ∈ N ∧A [x2]→A [x2′])→
(∀x2)(x2 ∈ N →A [x2]) (=Peano Postulate 5)

The tricky one is, again, the fourth Peano Postulate, which requires that
we prove that V1 is infinite. Here, however, the problem is more difficult

because we need to prove an infinity of individuals, and not an infinity
of sets. Indeed, the method used for System F to establish an infinity
will not work, because x ∪ {x} is not even well-formed in type theory,
and so the set ω cannot be defined.

ST3 has been added to the system for the sole purpose of proving an
infinity of individuals. The proof is quite complicated.

T20. `ST Λ
2 /∈ N

Proof:

25

1. (∃x3)((∀x0)〈x0, x0〉 /∈ x3 ∧ (∀x0) (∃y0)〈x0.y0〉 ∈ x3 ∧ (∀x0) (∀y0) (∀z0)(〈x0, y0〉 ∈ x3 ∧ 〈y0, z0〉 ∈ x3→ 〈x0, z0〉 ∈ x3)) ST3
2. (∀x0)〈x0, x0〉 /∈ r3 ∧ (∀x0) (∃y0)〈x0.y0〉 ∈ r3 ∧ (∀x0) (∀y0) (∀z0)(〈x0, y0〉 ∈ r3 ∧ 〈y0, z0〉 ∈ r3→ 〈x0, z0〉 ∈ r3) 1 EI
3. (∀x0)〈x0, x0〉 /∈ r3 2 Simp
4. (∀x0) (∃y0)〈x0.y0〉 ∈ r3 2 Simp
5. (∀x0) (∀y0) (∀z0)(〈x0, y0〉 ∈ r3 ∧ 〈y0, z0〉 ∈ r3→ 〈x0, z0〉 ∈ r3) 2 Simp
6. 〈x0, y0〉 ∈ r3 ∧ 〈y0, x0〉 ∈ r3→ 〈x0, x0〉 ∈ r3 5 UI
7. 〈x0, x0〉 /∈ r3 3 UI
8. 〈x0, y0〉 ∈ r3→ 〈y0, x0〉 /∈ r3 6, 7 SL
9. (∀x0) (∀y0)(〈x0, y0〉 ∈ r3→ 〈y0, x0〉 /∈ r3) 8 UG×2

It is convenient to pause to introduce an abbreviation:
C2 for {z1|z1 = Λ1 ∨ (∃y0)(y0 ∈ z1 ∧ (∀x0)(x0 ∈ z1 ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3))}
I now prove inductively that every natural number has a member of C2 in it.

10. Λ1 = Λ1 T1 UI
11. Λ1 = Λ1 ∨ (∃y0)(y0 ∈ Λ1 ∧ (∀x0)(x0 ∈ Λ1 ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3)) 10 Add
12. Λ1 ∈ C2 11 ST1R, Df. C2

13. Λ1 ∈ 0 Df. 0, Ref=, T10, UI, BMP
14. Λ1 ∈ C2 ∧Λ1 ∈ 0 12, 13 Conj
15. (∃y1)(y1 ∈ C2 ∧ y1 ∈ 0) 14 EG

(16) 16. x2 ∈ N ∧ (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2) Hyp
(16) 17. (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2) 16 Simp
(16) 18. b1 ∈ C2 ∧ b1 ∈ x2 17 EI
(16) 19. b1 ∈ {z1|z1 = Λ1 ∨ (∃y0)(y0 ∈ z1 ∧ (∀x0)(x0 ∈ z1 ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3))} 18 Simp, Df. C2

(16) 20. b1 = Λ1 ∨ (∃y0)(y0 ∈ b1 ∧ (∀x0)(x0 ∈ b1 ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3)) 19 ST1R
(21) 21. b1 = Λ1 Hyp

22. z0 /∈ Λ1 T4 UI
(21) 23. z0 /∈ b1 21, 22 LL
(21) 24. (b1 ∪ {z0})− {z0}= b1 23, T13 UI, MP

25. z0 ∈ {z0} Ref=, T10 UI, BMP
26. z0 ∈ b1 ∪ {z0} 25 Add, ST1R, Df. ∪

(16,21) 27. (b1 ∪ {z0})− {z0} ∈ x2 18, 24 Simp, LL
(16,21) 28. z0 ∈ b1 ∪ {z0} ∧ (b1 ∪ {z0})− {z0} ∈ x2 26, 27 Conj
(16,21) 29. (∃x0)(x0 ∈ b1 ∪ {z0} ∧ (b1 ∪ {z0})− {x0} ∈ x2) 29 EG
(16,21) 30. b1 ∪ {z0} ∈ x2′ 29 ST1R, Def. ′

(16) 31. x2′ ∈ N 16, T17 Simp, UI, MP
(32) 32. x0 ∈ b1 ∪ {z0} ∧ x0 6= z0 Hyp
(32) 33. x0 ∈ b1 ∨ x0 ∈ {z0} 32 Simp, Df. ∪, ST1R

26

(32) 34. x0 /∈ {z0} 32, T10 Simp, UI, BMT
(33) 35. x0 ∈ b1 33, 34 DS
(21,32) 36. x0 ∈ Λ1 21, 35 LL

37. x0 /∈ Λ1 T4 UI
(21,32) 38. x0 ∈ Λ1 ∧ x0 /∈ Λ1 36, 37 Conj
(21) 39. ¬(x0 ∈ b1 ∪ {z0} ∧ x0 6= z0) 32–38 RAA
(21) 40. x0 ∈ b1 ∪ {z0} ∧ x0 6= z0→ 〈x0, z0〉 ∈ r3 39 FA
(21) 41. (∀x0)(x0 ∈ b1 ∪ {z0} ∧ x0 6= z0→ 〈x0, z0〉 ∈ r3) 40 UG
(21) 42. z0 ∈ b1 ∪ {z0} ∧ (∀x0)(x0 ∈ b1 ∪ {z0} ∧ x0 6= z0→ 〈x0, z0〉 ∈ r3) 26, 41 Conj
(21) 43. (∃y0)(y0 ∈ b1 ∪ {z0} ∧ (∀x0)(x0 ∈ b1 ∪ {z0} ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3)) 42 EG
(21) 44. b1 ∪ {z0}= Λ1 ∨ (∃y0)(y0 ∈ b1 ∪ {z0} ∧ (∀x0)(x0 ∈ b1 ∪ {z0} ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3)) 43 Add
(21) 45. b1 ∪ {z0} ∈ C2 44 ST1R, Df. C2

(16,21) 46. b1 ∪ {z0} ∈ C2 ∧ b1 ∪ {z0} ∈ x2′ 30, 45 Conj
(16,21) 47. (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2′) 46 EG
(16) 48. b1 = Λ1→ (∃y1)(y1 ∈ y1 ∈ C2 ∧ y1 ∈ x2′) 21–47 CP
(49) 49. (∃y0)(y0 ∈ b1 ∧ (∀x0)(x0 ∈ b1 ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3)) Hyp
(49) 50. d0 ∈ b1 ∧ (∀x0)(x0 ∈ b1 ∧ x0 6= d0→ 〈x0, d0〉 ∈ r3) 49 EI
(49) 51. d0 ∈ b1 50 Simp
(49) 52. (∀x0)(x0 ∈ b1 ∧ x0 6= d0→ 〈x0, d0〉 ∈ r3) 50 Simp

53. (∃y0)〈d0, y0〉 ∈ r3 4 UI
54. 〈d0, e0〉 ∈ r3 53 EI
55. e0 6= d0 3, 54, T2 SL
56. 〈e0, d0〉 /∈ r3 9, 54 UI, MP

(49) 57. e0 ∈ b1 ∧ e0 6= d0→ 〈e0, d0〉 ∈ r3 52 UI
(49) 58. e0 /∈ b1 55, 56, 57 SL
(49) 59. (b ∪ {e0})− {e0}= b1 58, T13 UI×2, MP

60. e0 ∈ {e0} Ref=, T10 UI, BMP
61. e0 ∈ b1 ∪ {e0} 60 Add, ST1R, Df. ∪

(16,49) 62. (b1 ∪ {e0})− {e0} ∈ x2 18, 59 Simp, LL
(16,49) 63. e0 ∈ b1 ∪ {e0} ∧ (b1 ∪ {e0})− {e0} ∈ x2 61, 62 Conj
(16,49) 64. (∃x0)(x0 ∈ b1 ∪ {e0} ∧ (b1 ∪ {e0})− x0 ∈ x2) 63 EG
(16,49) 65. b1 ∪ {e0} ∈ x2′ 64 ST1R, Df. ′

(66) 66. x0 ∈ b1 ∪ {e0} ∧ x0 6= e0 Hyp
(66) 67. x0 ∈ b1 ∨ x0 ∈ {e0} 66 Simp, Df. ∪, ST1R
(66) 68. x0 /∈ {e0} 66 Simp, T10, UI, BMT
(66) 69. x0 ∈ b1 67, 68 DS
(70) 70. x0 = d0 Hyp

27

(70) 71. 〈x0, e0〉 ∈ r3 54, 70 LL
72. x0 = d0→ 〈x0, e0〉 ∈ r3 70–71 CP

(73) 73. x0 6= d0 Hyp
(49) 74. x0 ∈ b1 ∧ x0 6= d0→ 〈x0, d0〉 ∈ r3 52 UI
(49,66,73) 75. 〈x0, d0〉 ∈ r3 69, 73, 74 Conj, MP
(49,66,73) 76. 〈x0, e0〉 ∈ r3 5, 54, 75 UI×3, Conj, MP
(49,66) 77. x0 6= d0→ 〈x0, e0〉 ∈ r3 73–76 CP
(49,66) 78. 〈x0, e0〉 ∈ r3 72, 77 Inev
(49) 79. x0 ∈ b1 ∪ {e0} ∧ x0 6= e0→ 〈x0, e0〉 ∈ r3 66–78 CP
(49) 80. (∀x0)(x0 ∈ b1 ∪ {e0} ∧ x0 6= e0→ 〈x0, e0〉 ∈ r3) 79 UG
(49) 81. e0 ∈ b1 ∪ {e0} ∧ (∀x0)(x0 ∈ b1 ∪ {e0} ∧ x0 6= e0→ 〈x0, e0〉 ∈ r3) 61, 80 Conj
(49) 82. (∃y0)(y0 ∈ b1 ∪ {e0} ∧ (∀x0)(x0 ∈ b1 ∪ {e0} ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3)) 81 EG
(49) 83. b1 ∪ {e0}= Λ1 ∨ (∃y0)(y0 ∈ b1 ∪ {e0} ∧ (∀x0)(x0 ∈ b1 ∪ {e0} ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3)) 82 Add
(49) 84. b1 ∪ {e0} ∈ C2 83 ST1R, Df. C2

(16,49) 85. b1 ∪ {e0} ∈ C2 ∧ b1 ∪ {e0} ∈ x2′ 65, 84 Conj
(16,49) 86. (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2′) 85 EG
(16) 87. (∃y0)(y0 ∈ b1 ∧ (∀x0)(x0 ∈ b1 ∧ x0 6= y0→ 〈x0, y0〉 ∈ r3))→ (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2′) 49–86 CP
(16) 88. (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2′) 20, 48, 87 SL

89. x2 ∈ N ∧ (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2)→ (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2′) 16–88 CP
90. (∀x2)(x2 ∈ N ∧ (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2)→ (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2′)) 89 UG
91. (∀x2)(x2 ∈ N → (∃y1)(y1 ∈ C2 ∧ y1 ∈ x2)) 15, 90, T19 Conj, MP
92. Λ2 ∈ N → (∃y1)(y1 ∈ C2 ∧ y1 ∈ Λ2) 91 UI
93. y1 /∈ Λ2 T4 UI
94. ¬(y1 ∈ C2 ∧ y1 ∈ Λ2) 93 SL
95. (∀y1)¬(y1 ∈ C2 ∧ y1 ∈ Λ2) 94 UG
96. ¬ (∃y1)(y1 ∈ C2 ∧ y1 ∈ Λ2) 95 DN, Df. ∃
97. Λ2 /∈ N 92, 96 MT

To make use of T20 we also need:

T21. `ST (∀x2)(x2 ∈ N → (∀x1) (∀y0) (∀z0)(y0 ∈ x1 ∧ z0 ∈ x1 ∧ x1 − {y0} ∈ x2→ x1 − {z0} ∈ x2))

T22. `ST (∀x2)(x2 ∈ N → (∀y1) (∀z1)(y1 ∈ x2 ∧ z1 ∈ x2 ∧ y1 ⊆ z1→ y1 = z1))

(Proofs of these are exactly parallel to those for System F.) From these and T20 we get:

T23. `ST (∀x2)¬(V1 ∈ x2 ∧ x2 ∈ N)

T24. `ST (∀x2) (∀y1)(x2 ∈ N ∧ y1 ∈ x2→ (∃x0) x0 /∈ y1)

T25. `ST (∀x2) (∀y2)(x2 ∈ N ∧ y2 ∈ N ∧ x2′ = y2′→ x2 = y2) (=Peano Postulate 4)

28

HOMEWORK

Prove T23. (Hint: the proof is very similar to the proof of T28 for System
F. Use T20 and T22.)

E. Evaluation

System ST is, as far as we know, consistent. One of the problems with
establishing the consistency of any given set-theory is that the typical
way to establish the consistency of a theory is to show that the theory has
(one or more) models. However, models are themselves usually defined
set-theoretically. (E.g., an ordered pair 〈D, g〉 where D is a domain of
quantification and g is an assignment function, both understood as sets.)
What theories we can construct models for in the metalanguage depends
on what sort of set theory we employ in the metalanguage. Obviously,
the proof of consistency will be question beginning if we use the very
same kind of set-theory in the metalanguage as in the object-language.

Usually, the best we can hope for is a relative consistency proof: a proof
that models for a given set theory can be constructed in a different set
theory. Often this simply takes the form of a translation matrix from one
theory to another, along with a proof that if a contradiction was provable
in the one theory, a contradiction would also be provable in the other.

System ST is consistent relative to weak Zermelo set theory (System Z).
Before discussing System Z, we cannot actually go over the proof. While
an absolute proof of the consistency of Z has not been found either, no
one (so far as I know) has any serious doubts about it.

Quite a lot of mathematics can be captured in ST. Even more can be
captured if we add the axiom of choice (discussed in our next unit).

Still there are philosophical issues regarding System ST:

(1) What is the philosophical motivation for thinking that “x ∈ x” and
“x /∈ x” are meaningless? Even if one thinks there is no such set as
the set of all sets not members of themselves, is the very question
as to its existence nonsense?

A related worry: can the theory itself be stated without violating its
own strictures?

(2) Is the system restrictive enough? It still allows for impredicativity,
i.e., sets that are defined in terms of quantification over a range that
includes itself. Consider, e.g.,

E1 = {x0| (∀y1) x0 ∈ y1}

Intuitively, this is the set of all individuals that are members of every
set. Notive that one of the sets an individual would have to be a
member of, in order to be a member of E1 is E1 itself. Does this set
have well-defined membership conditions? (Notice, however, that
it is provable that E1 = Λ1.)

(3) Is the axiom of infinity well-motivated, or ad hoc? What if it were
dropped?

XIII. Higher-Order Simple Type Theories
(HOSTs)

A. Syntax

Definition: A type symbol is defined recursively as follows: (i) o is a
type-symbol; (ii) if τ1, . . . ,τn are type symbols, then (τ1, . . . ,τn) is a
type symbol, (iii) nothing that cannot be constructed from repeated
applications of (i) and (ii) is a type symbol.

Examples: (with intended meaning):

o is the type of individuals
(o) is the type of properties applicable to individuals

(o, o) is the type of dyadic relations applicable to indivuiduals
((o)) is the type of properties applicable to properties of individuals

(o,(o)) is the type of dyadic relations between individuals and
properties of individuals

29

The use of the words “properties” and “relations” here may be controver-
sial. It may be best to stick to the linguistic level. The symbol “o” is the
type-symbol for individual terms; the type symbol “(o)” is the type for
monadic predicates applied to individual terms, etc.

Definition: A variable is any lower or uppercase letter between f , . . . , z,
written with or without a numerical subscript, and with a type symbol
as superscript.

Examples: “ f (o)”, “x o
2”, “R(o,o,o)

1 ”.

Definition: A constant is any lower or uppercase letter between a, . . . , e,
written with or without a numerical subscript, and with a type symbol
as superscript.

Different higher-order languages may use different sets of constants, or
different subsets of the type-symbols.

Definition: A well-formed expression (wfe) is defined recursively as
follows:

(i) A variable or constant is a wfe of the type given by its superscript.
(ii) if P is a wfe of the type (τ1, . . . ,τn), and A1, . . . ,An are wfes of

types τ1, . . . ,τn, respectively, thenP (A1, . . . ,An) is a type-less wfe;
(iii) ifA andB are type-less wfes, then (A ∨B) is a type-less wfe;
(iv) ifA is a type-less wfe, then ¬A is a type-less wfe;
(v) ifA is a type-less wfe, and x is a variable, then (∀x)A is a type-less

wfe;
(vi) if x 1, . . . , x n are distinct variables of types τ1, . . . ,τn, respectively,

and A is a type-less wfe, then [λx 1 . . . x nA] is a wfe of type
(τ1, . . . ,τn) (and all occurrences of those variables are considered
bound in that context);

(vii) nothing that cannot be constructed from repeated applications of
the above is a wfe.

Definitions: A type-less wfe is called a well-formed formula (wff). A
wfe that is not a wff is called a term.

Terms of the form “[λx . . . x . . .]” might be read “the property of being
an x such that . . . x . . . ”. Terms of the form “[λx y . . . x . . . y . . .]” might
be read “the relation that holds between x and y when . . . x . . . y . . . ”.

Again, however, this phrasing may be controversial.

I use the notation “[λx . . . x . . .]” where Hatcher would write simply
“. . . x̂ . . . ”. Hatcher’s notation is older, and now somewhat outdated,
although the two notations are historically connected.

∧,→,↔, (∃x) are defined as one would expect.

Typically, t = u is defined as (∀x)(x (t)↔ x (u)) where t and u are of
the same type, τ, and x is the first variable of type (τ) not occurring
free in either t or u.

B. Formulation

Different HOSTs have different axioms. However, all standard theo-
ries have as axioms (or theorems) all truth-table tautologies, and the
following schemata:

• (∀x)A [x]→A [t], where x is a variable of any type, t any term
of the same type, and no free variables of t become bound in the
contextA [t].

• (∀x)(B →A [x])→ (B → (∀x)A [x]), where x is a variable of
any type, andB does not contain x free.

• (∀y1) . . . (∀y n)([λx 1 . . . x nA [x 1, . . . , x n]](y1, . . . , y n)↔
A [y1, . . . , y n]), where x 1, . . . , x n, y1, . . . , y n are distinct variables
and each x i matches y i in type.

The inference rules are MP and UG (applicable to any type variable).

So in addition to the normal first-order instances of the above, we also
have, e.g.
(∀F (o)) (∃x o) F (o)(x o)→ (∃x o)[λy o y o = y o](x o)
(∀R(o,o))(F (o)(x o)→ R(o,o)(x o, x o))→ (F (o)(x o)→ (∀R(o,o))R(o,o)(x o, x o))
(∀G(o))([λF (o) F (o)(x o)](G(o))↔ G(o)(x o))

Derived rules: lambda conversion (λ-cnv): where no free variable in
t 1, . . . , t n becomes bound in the contextA [t 1, . . . , t n]:
[λx 1, . . . , x nA [x 1, . . . , x n]](t 1, . . . , t n) `A [t 1, . . . , t n]
A [t 1, . . . , t n] ` [λx 1, . . . , x nA [x 1, . . . , x n]](t 1, . . . , t n)

30

Definition: The pure higher-order predicate calculus (HOPC) is the
HOST whose only axioms are instances of the above schemata in the
higher-order language that contains no constants.

Definition: Begin counting at 0, and parse a type symbol, adding 1 for
every left parenthesis, (, and substracting one for every right parenthesis,
). The highest number reached while parsing in the order of the type
symbol.

Definition: A theory of order n is just like a HOST, except eliminating
from the syntax all variables of order n or greater and all constants of
order n+ 1 or greater.

We adopt the following convention: Type symbols may be left off vari-
ables in later occurrences in the same wff, provided that the same letter
and subscript are not also used in that wff for a variable of a different
type.

Many HOSTs have the following as axioms or theorems, including the
versions of type theory outlined by Hatcher:

The axiom (principle) of extensionality (Ext):
(∀F (τ1,...,τn)) (∀G(τ1,...,τn))((∀xτ1

1) . . . (∀xτn
n)

(F(xτ1
1 , . . . xτn

n)↔ G(xτ1
1 , . . . xτn

n))→ F = G)

The axiom (principle) of infinity (Inf):
(∃R(o,o))((∀x o)¬R(x , x)∧ (∀x) (∃y o)R(x , y) ∧

(∀x) (∀y) (∀zo)(R(x , y)∧ R(y, z)→ R(x , z)))

(Ext) forces us to think of the values of the higher-order variables as
entities with extensional identity conditions, such as sets or classes. We
may also think of them as Fregean functions from objects to truth-values,
or something similar. However, we may not think of them as Platonic
universals or other intensionally-individuated entities. Thus we have as
the simplest instance:

(∀F (o)) (∀G(o))((∀x o)(F x ↔ Gx)↔ F = G)

This says that “properties” of individuals are identical when they apply
to all and only the same individuals.

With (Ext) we are free to regard the values of variables of type (o) simply
as classes of individuals, and the variables of type ((o)) as classes of classes,
etc. We are then free to regard the notation [λx A [x]] as a mere variant
of {x |A [x]}, and the notation x (y) as simply a variant of y ∈ x .

With both (Ext) and (Inf) added to HOPC, we can develop Peano arith-
metic precisely as we did for ST. The principle of lambda conversion is
a more general version of ST1, (Ext) is a more general version of ST2,
and (Inf) replaces ST3.

(HOPC + (Ext) + (Inf) is, in effect, Hatcher’s TT.)

HOMEWORK

Prove the following:

(a) `HOPC (∀xτ) xτ = xτ

(b) `HOPC (∀xτ) (∀yτ)(x = y → (A [x , x]→A [x , y])), where
A [x , x] does not contain y bound.

(c) Explain why it would be unnecessary to take the quantifier (∀x) as
a primitive variable binding operating in the syntax of HOSTs if one
instead used constants of the form A((τ)), with the intended meaning
of a property of properties applicable to those properties which hold
of everything in their type.

C. Doing without (Ext) or (Inf)

Is it possible to define numbers and capture arithmetic without assuming
(Ext)?

Russell used a version of type theory in which class abstracts were in-
troduced via contextual definitions. The general approach could be
summarized as follows:

The wffB[{x |A [x]}] is an abbreviation for the wff, (∃f)((∀x)(f (x)↔
A [x])∧B[f]), where f is the first (predicative) variable of type (τ),
where τ is the type of the variable x .

This approach was of a piece with his theory of descriptions, the view
that a wff of the formB[ιx A [x]] is to be regarded as an abbreviation

31

of a wff of the form (∃x)((∀y)(A [y]↔ y = x)∧B[x]).

Both kinds of contextual definition give rise to scope ambiguities. For
example, ¬M ((o))({x o|x o = x o}) may mean either:
(∃F (o))((∀x o)(F(x)↔ x = x)∧¬M ((o))(F (o))), or
¬ (∃F (o))((∀x o)(F(x)↔ x = x)∧M ((o))(F (o)))

Conventions had to be adopted in Principia Mathematica to avoid ambi-
guities.

It is clear, however, that when the contextual definitions are interpreted
with wide-scope, from B[{x |A [x]}] and (∀x)(A [x]↔C [x]), one
can always inferB[{x |C [x]}] even without (Ext).

Numbers, etc., would then be defined as classes, as before, but since class
symbols are eliminated in context, number signs would be eliminated.
The name of a number is, for Russell, an “incomplete symbol”: one
that contributes to the meaning of a complete sentence without having
a meaning on its own. For this reason, Russell calls numbers “logical
fictions” or “logical constructions.”

Other approaches for avoiding (Ext) may be possible in a richer, extended
language, such as one involving modal operators. A weaker, but perhaps
more plausible principle may be:
(�Ext) (∀F (o)) (∀G(o))(� (∀x o)(F x ↔ Gx)→ F = G)

If numbers are construed then as properties of properties, this may be
sufficient for the development (at least) of natural number theory.

We might also do without (Inf) in a given HOST if the HOST in question
had some other means of establishing an infinity of individuals (or the
fourth Peano postulate, which itself can be used to establish an infinity
of individuals). Principles regarding other abstract or modal entities
(senses, propositions, possibilia) may provide the means for establish-
ing an infinity in another way, though such principles are liable to be
philosophically controversial, and have pitfalls of their own.

D. Some Philosophical Issues Revisited

The issues surrounding HOPC and other HOSTs are in effect the same as
those for ST, viz.:

1. Is “¬F(F)”really meaningless? Can the theory be stated without
violating itself?

2. Is impredicativity a problem? Notice, we allow the abstract
“[λx o (∀F (o)) F (o)x o]” to defne a property of type (o), despite that
quantification over all such properties is part of its defining condi-
tion.

3. Is there sufficient reason for accepting (Inf)? What if we drop it?
4. What are the entities quantified over by higher-order variables?

What are their identity conditions? Are there any other philosophical
issues that arise?

5. Does higher-order logic count as logic?

XIV. Ramified Type Theory

In order to avoid problems with impredicativity, one may furhter divide
types into various orders.

The notion can be introduced by means of some natural language exam-
ples.

Consider such properties as being green, or being North of London. Intu-
itively, at least these properties are not defined or constituted by quan-
tification over other properties and relations. Let us call these order one
properties.

Now consider such properties as having some property in common with
Kevin or having every property had by every great general. On a simple
type theory, these would be regarded as having the same type as being
green: properties of individuals or type (o). However, in ramified type
theory, these are treated as order two properties, properties involving
quantification over order one properties.

The exact formulation of ramified type theory is very controversial, and

32

there is no universally agreed upon form for it to take. Hatcher’s formu-
lation of what he calls System RT is as follows:

Definition: An order-type symbol is either a symbol of the form o/0, or
one of the form (τ1, . . . ,τn)/k/(m1, . . . , mn), where (τ1, . . . ,τn) is a type
symbol, m1, . . . , mn are integers, each at least as high as the order of the
corresponding type symbol, and k is an integer at least as high as the
order of (τ1, . . . ,τn) and higher than any of m1, . . . , mn.

(The “order” of a type-symbol was defined in the last section.)

In an order-type symbol (τ1, . . . ,τn)/k/(m1, . . . , mn), k represents the
order of the variable, constant or term in question, and m1, . . . , mn repre-
sent the greatest possible orders of its arguments.

Examples:

o/0 individuals
(o)/1/(0) order-1 properties of individuals
(o)/2/(0) order-2 properties of individuals
((o))/2/(1) order-2 properties of order-1 properties of

individuals
((o))/3/(1) order-3 properties of order-1 properties of

individuals
((o), o)/2/(1, 0) order-2 relations between properties of

individuals and individuals
etc.

The syntax of RT requires that variables and constants have order-type
symbols as superscripts rather than simply type symbols.

If f is a variable or abstract of order-type (τ1, . . . ,τn)/k/(m1, . . . , mn),
then f (t 1, . . . , t n) is well-formed only if t 1, . . . , t n are of types τ1, . . . ,τn

respectively, and have orders of no greater than m1, . . . , mn, respectively.

An abstract of the form [λx 1, . . . , x nA] has order-type (τ1, . . . ,τn)/ j +
k/(m1, . . . , mn), where x 1, . . . , x n are respectively of type τ1, . . . ,τn and
order m1, . . . , mn, and k is the highest order of all variables and constants
in [λx 1, . . . , x nA] or the minimal order possible for the type, and j is
either 1 or 0 depending on whether any variables of type k occur bound
in [λx 1, . . . , x nA].

Examples: [λx o/0 F (o)/1/(0)(x o/0)] has order-type (o)/1/(0), but
[λx o/0 (∀F (o)/1/(0)) F (o)/1/(0)(x o/0)] has order-type (o)/2/(0).

Definition: A term is said to be predicative iff its order-type is o/0, or
its order-type is (τ1, . . . ,τn)/k/(m1, . . . , mn), where k is one more than
the greatest of m1, . . . , mn.

Hence, terms of order-type (o)/1/(0) are predicative; those of order-type
(o)/2/(0) are not.

Hatcher’s system PT is a system like HOPC, but that excludes from the syn-
tax all but predicative constants and variables. Notice that there may still
be non-predicative abstracts, as with [λx o/0 (∀F (o)/1/(0)) F (o)/1/(0)(x o/0)]
since all variables used within it are predicative. PT restricts the axioms
involving instantiation and lambda conversion to predicative terms.

The system RT, however, makes use of variables of all orders; instantiation
and conversion are allowed for all orders, provided that instantiated
terms match the instantiated variable in order, and the appropriate
restrictions on well-formed formulas are obeyed. (It is otherwise like
HOPC.)

The philosophical upshot in that no term can be introduced that involves
quantification over a range that includes itself: perhaps avoiding “vicious
circularity” or other philosophical problems. Notice, however, that such
restrictions are not needed to rule out Russell’s paradox or other direct
source of inconsistency.

Problems with Ramified Type-Theory

With order restrictions in place, RT is very weak, and very little mathe-
matics can be captured in it without adding additional axioms. Some
problems:

Identity

t = u is normally defined as (∀x)(x [t]↔ x [u]), but here the variable
x must be restricted to a given order: most naturally, it would be one

33

above t and u.

However, this would rule out applications of Leibniz’s law to wffs involv-
ing quantified variables of the same (or higher) type or order.

This could perhaps be gotten around by taking identity as primitive and
adding LL as an axiom schema, but this seems less than ideal.

Mathematical Induction

In the approaches to acquiring natural number theory we’ve looked
at, the principle of mathematical induction to supposed to fall out of
the definition of natural numbers. In HOPC, we might have given this
definition of N : [λm((o)) (∀F (((o))))(F(0) ∧ (∀n((o)))(F(n) → F(n′)) →
F(m))]. In RT, however, we would have to limit F to a certain order,
and the rule of mathematical induction would not apply to formulas
involving terms of greater order. However, applications of mathematical
induction to non-predicative properties of numbers are widespread and
necessary for many applications of number theory.

To get around such problems, ramified type-theories often make use of
an axiom (or axioms) of reducibility, e.g.:

(∀F (o)/n/(0)) (∃G(o)/1/(0)) (∀x o/0)(G(x)↔ F(x)), for any n> 1.

This says that for every non-predicative property of individuals, there
is a coextensional predicative property of individuals. (Typically there
would also be included analogues for higher-types, and relations, etc.)

Ever since Russell and Whitehead suggested something similar in Prin-
cipia Mathematica, the axiom(s) of reducibility have been the source of
significant controversy:

1. Are they plausible? Is there logical (or other) justification for sup-
posing them?

2. Do they more or less undo the effects of ramification?

(But as against answering “yes” to (2), it is worth noting that they did
not accept (Ext), and so the G posited was thought identical with F .)

XV. Meta-theory for Higher-Order Logic

We here deal with HOPC and other HOSTs, not with ramified type-theory.

HOPC, with or without (Ext) and (Inf) is, like ST, consistent relative to
weak Zermelo set theory (Z).

The precise way to do formal semantics for higher-order logic is con-
troversial, in part because there is disagreement over what entities are
quantified over by higher-order predicate variables.

The usual way, however, involves assigning sets of objects of the domain
(or sets of sets, etc.) as possible values of the predicate variables. (Models
constructed in this way presuppose that (Ext) will come out as true.)

A. Standard Semantics

Definition: A full model M is a specification of the following two things:

1. A non-empty set D to serve as the domain of quantification for
variables of type o.

In a full model, the domain of quantification for other types of
variables is determined entirely by D. More precisely, the domain
for type of the form (τ) is the powerset of the domain for type τ, and
the domain of quantification for type (τ1, . . . ,τn) is the powerset
of the set of all n-tupes 〈o1, . . . , on〉 where each oi is taken from the
domain of quantification for type τi.

We refer to the domain of quantification for type τ as D(τ).

2. A function assigning, to each constant c of type τ, some member
of D(τ). (We refer to this member of D(τ) as (c)M in the metalan-
guage.)

In a language, such as that of HOPC, without constants, a full model
consists of nothing but a domain of quantification.

Definition: A variable assignment (also known as a sequence) is a
function assigning to each variable x some member of D(τ), where τ is

34

the type of x .

Each variable assignment s determines a valuation function V s which
assigns to each typeless wfe either 1 or 0 (satisfaction or non-satisfaction),
and assigns to each wfe of type τ a member of D(τ). V s is defined
recursively as follows:

(i) For any constant c, V s(c) is (c)M .
(ii) For any variable x of type τ, V s(x) is the member of D(τ) that s

associates with x .
(iii) For any wfe of the form P (t 1, . . . , t n), V s(P (t 1, . . . , t n)) is 1 if

〈V s(t 1), . . . , V s(t n)〉 is a member of V s(P), and is 0 otherwise.
(iv) For any wfe of the formA ∨B , V s(A ∨B) is 1 if either V s(A) is

1 or V s(B) is 1 or both, or is 0 otherwise.
(v) For any wfe of the form ¬A , V s(¬A) is 1 if V s(A) is 0, and is 0 if

V s(A) is 1.
(vi) For any wfe of the form (∀x)A , V s((∀x)A) is 1 if every variable

assignment s∗ differing from s at most with regard to what gets
assigned to variable x is such that V s∗(A) is 1, and is 0 otherwise.

(vii) For any wfe of the form [λx 1 . . . x nA], V s([λx 1 . . . x nA]) is the
set of all n-tuples 〈o1, . . . , on〉 such that V s∗(A) is 1 where s∗ is the
variable assignment differing from s at most in assigning o1 to x 1,
. . . , and on to x n.

Definition: A variable assignment s is said to satisfy a wffA iff V s(A) =
1.

Definition: A wffA is said to be true for M iff every variable assignment
for model M satisfiesA .
We write this as �M A .

Definition: A wff A is said to be standardly valid iff A is true for
every full model.

Soundness

HOPC + (Ext) is sound, i.e., if `HOPC+(Ext)A thenA is standardly valid.

(Proof sketch: all the axioms are true in every full model, and the inference

rules are truth-preserving.)

B. Incompletess of Standard Semantics

The converse of soundness is not true, i.e., there are standardly valid
wffs that are not theorems of HOPC + (Ext). (The same holds for any
other recursively axiomatized consistent HOST.)

To see this, consider the language obtained from HOPC by adding a
constant ao, a two-place relation sign A(o,o), and two three-place relation
signs B(o,o,o) and C (o,o,o).

• Interpret ao as standing for the number 0. (Never mind that we
have considered defining numbers as properties of properties in
HOPC.)

• Interpret A(o,o) as standing for the relation that holds between a
number and its successor.

• Interpret B(o,o,o) and C (o,o,o) as standing for the relations that hold
between two numbers and their sum, and product, respectively.

Consider then the system HOPA (Higher-Order Peano Arithmetic), which
has the following non-logical axioms in addition to (Ext):

PA1. (∀x o) (∃y o) (∀zo)(A(x , z)↔ z = y)
PA2. (∀x o) (∀wo) (∃y o) (∀zo)(B(x , w, z)↔ z = y)
PA3. (∀x o) (∀wo) (∃y o) (∀zo)(C(x , w, z)↔ z = y)
PA4. (∀x o)¬A(x , a)
PA5. (∀x o) (∀y o) (∀zo)(A(x , z)∧ A(y, z)→ x = y)
PA6. (∀x o)B(x , a, x)
PA7. (∀uo) (∀vo) (∀x o) (∀y o) (∀zo)(A(y, u)∧ B(x , u, v)

∧ B(x , y, z)→ A(z, v))
PA8. (∀x o)C(x , a, a)
PA9. (∀uo) (∀vo) (∀x o) (∀y o) (∀zo)(A(y, u)∧ C(x , u, v)

∧ C(x , y, z)→ B(z, x , v))
PA10. (∀F (o))(F(a)∧ (∀x o) (∀y o)(F(x)∧ A(x , y)→ F(y))→ (∀x) F(x))

These correspond to the axioms of S, except instead of an infinite number
of instances of schema for mathematical induction, we have a single
axiom involving a bound predicate variable.

35

Notice that the full model N ∗ whose domain of quantification is the set
of natural numbers, and whose assignment to a, A, B and C are what
one would expect, is a model for HOPA. But we have something stronger.

Categoricity of HOPA: Every full model for HOPA is isomorphic to N ∗

(and hence makes all the same wffs true).

I shall not sketch the proof of this in detail, but notice that each model
M of HOPA must have denumerably many entities in its domain of
quantification. Correlate 0 with (a)M, and for each object in the domain
there is exactly one entity to which it is related by A: its “successor”.
(Notice that because identity is defined, we need not worry about non-
normal models.) We get that (a)M and its “successors” must exhaust the
domain of quantification. Otherwise, there would exist some set in the
domain of quantification for type (o) containing aM and all its successors
but not every member of the domain—but this is ruled out by the truth
of PA10. Model M must place the appropriate n-tuples in the extensions
of A, B and C in order to make the remaining axioms true, and hence is
isomorphic to N ∗.

Obviously, HOPA is at least as strong as first-order Peano Arithmetic.
Therefore, it is capable of representing every recursive function and
expressing every recursive relation. Moreover, it has a recursive syntax
and recursive axiom set. Hence, if it is consistent (which it must be since
it had a model), the Gödel and Gödel-Rosser results apply. So, there is a
closed wff G , true in the model N ∗, but for which it is not the case that
`HOPA G .

Let PA abbreviate the conjunction of PA1–PA10.

Let PA[x o, f (o,o)
1 , f (o,o,o)

2 , f (o,o,o)
3] be the open wff derived from PA by re-

placing every occurrence of the constant ao with the variable x o, and
ever occurrence of the predicate constants A(o,o), B(o,o,o) and C (o,o,o) with,
respectively, the predicate variables f (o,o)

1 , f (o,o,o)
2 and f (o,o,o)

3 , where these
are the first variables of the appropriate types not found in either PA or
G .

Let G[x o, f (o,o)
1 , f (o,o,o)

2 , f (o,o,o)
3] be derived from G similarly.

Now consider the wff (#):

(∀x o) (∀f (o,o)
1) (∀f (o,o,o)

2) (∀f (o,o,o)
3)(PA[x , f 1, f 2, f 3]→ G[x , f 1, f 2, f 3])

This wff is standardly valid but not a theorem of HOPC + (Ext).

Sketch of proof that it is standardly valid: Consider any variable assign-
ment s. If s satisfies PA[x , f 1, f 2, f 3], it must assign appropriate values
to these variables. If the same assignments were made to the constants
they replaced in some full model M ∗ for the language of HOPA, the
result would be a model for HOPA. Hence M ∗ would be isomorphic to
N ∗, and G would be true in M ∗ just as it is for N ∗. Since s treats these
variables just as M ∗ treats those constants, it must satisfy G[x , f 1, f 2, f 3].
Hence, every sequence that satisfies the antecedent of (#) also satisfies
the consequent, so (#) is true in any full model.

Proof it is not a theorem of HOPC + (Ext): If (#) were a theorem of
HOPC + (Ext), it would also be a theorem of HOPA. By UI, we’d obtain
`HOPA PA → G , and by Conj and MP, then, `HOPA G , which is impossible.

Notice the argument would apply just as well the second-order predicate
calculus, or any other specific order above first, not just HOPC.

The incompleteness of higher-order logic is sometimes used as an argu-
ment in favor of first-order logic. However, the incompleteness is due
largely to its expressive power and categoricity: features which could be
used to build arguments in favor of higher-order logic over first-order
logic.

There is another, weaker, notion of completeness according to which
HOPC + (Ext) is complete:

C. Henkin Semantics

Definition: A general structure is the specification of two things:

1. A function assigning to each type a domain of quantification, for type
o some non-empty set D, and for each type of the form (τ1, . . . ,τn),
some non-empty subset of the powerset of the set of all n-tuples
taken from τ1, . . . ,τn.

36

2. An assignment to each constant (if any) of type τ, some member of
D(τ).

The difference between a general structure and a full model is that the
higher-order variables need not be taken as quantifying over all sets of
entities or n-tuples taken from the type of possible arguments, but may
be restricted. So, for example, the variables of type (o) may not range
over all possible sets of individuals, but may instead be restricted only to
certain subsets of the individuals.

Notice that full models can be conceived as a certain kind of general
structure, those in which the domains of quantification do include the
full range. All full models are general structures, but not vice versa.

For each general structure, we can consider every possible variable
assignment and define our valuation functions V s exactly as before.

However, with the definitions as stated, we do encounter a problem (or
at least an oddity). Consider this statement from the definition of V s:

V s([λx 1 . . . x nA]) is the set of all n-tuples 〈o1, . . . , on〉 such
that V s∗(A) is 1 for the sequence s∗ differing from s at most in
assigning o1 to x 1, . . . and on to x n.

Notice, however, that the set defined this way may or may not be included
in the domain of quantification for type (τ1, . . . ,τn), where τ1, . . . ,τn

are the types of x 1, . . . , x n respectively.

To rectify this, we restrict our attention to those structures where this
problem does not arise:

Definition: A general model M is a general structure such that for every
sequence s for M , V s(t) is a member of D(τ) for every term t of type τ.

In effect, a general model is a structure in which the axioms of instantia-
tion and λ-conversion hold.

Definition: A wff A is generally valid iff it is true for every general
model.

We get the following results:

1. Soundness: Every wff A which is a theorem of HOPC + (Ext) is
generally valid.

2. Henkin Completeless: Every wff A which is generally valid is a
theorem of HOPC + (Ext).

The proof of Henkin completeness is not interestingly different from the
standard proof of the completeness of the first-order predicate calcu-
lus. Every consistent set of closed wffs can be expanded to become a
maximally consistent (and universal) set of closed wffs. This set can
be used to construct a denumerable model for the set. Every consistent
set of closed wffs has a model. If there a generally valid wff A for
HOPC + (Ext) which was not a theorem, the set {¬B}, whereB was
the universal closure ofA , would be consistent, and hence would have
a general model. But ifA is generally valid, ¬B cannot have a general
model. For more details, see Robbin (pp. 141–42) or the original paper
by Henkin (Journal of Symbolic Logic 15 (1950): 81–91.)

Notice that (#), while standardly valid, is not generally valid. This is
because PA is not categorical among general models: there are general
models of HOPA not isomorphic to N ∗. Notice, e.g., that the domain of
quantification for a general model need not be exhaused by (a)M and
its successors in order to make PA10 true, provided that the set that
contains (a)M and its successors but not the other entities in the domain
of quantification is not included in the domain for type (o). Hence there
can be sequences in general models that satisfy the antecedent of (#)
but not the consequent.

Contemporary Axiomatic Set Theories

We now turn our attention to the systems that can serve as a foundation
for arithmetic most often discussed by contemporary mathematicians.
They are usually formulated as first-order set theories. We begin with
the simplest.

37

XVI. Zermelo and Zermelo-Fraenkel Set The-
ories (Systems Z, ZF)

The theory outlined below is a modernized version of the theory of
sets outlined in Zermelo’s classic 1908 paper, “Untersuchungen über die
Grundlagen der Mengenlehre” (“Investigations into the Foundations of
Set Theory”), roughly contemporaneous with Russell’s “Mathematical
Logic as Based on the Theory of Types”.

A. Syntax

The language contains:

(i) two primitive constants, but rather than writing ‘a’ and ‘b’, we write
‘0’ and ‘ω’;

(ii) one primitive two-place predicate, but rather than writing A2(t , u),
we write t ∈ u;

(iii) four function constants, three of them one place, one of them two-
place, but instead of writing f 1(t), g1(t), h1(t) and f 2(t , u), we
write ℘(t),
⋃

(t), σ(t) and {t , u};
(iv) one vbto, written {x |A [x]}.

However, it would be possible to formulte more or less the same theory us-
ing only the predicate “∈”. (Indeed, you will likely find formulations of Z
or ZF in other textbooks like this.) The others are added for convenience.

Definitions: (With many others to follow...)1

t = u for (∀x)(x ∈ t ↔ x ∈ u)
t 6= u for ¬t = u
t /∈ u for ¬t ∈ u
t ⊆ u for (∀x)(x ∈ t → x ∈ u)
t ∪ u for
⋃

({t , u})
{t} for {t , t}

1From here on out when giving a definition like this, I shall stop explicitly saying
that x is the first variable not occurring free in t and u, and take for granted that you
understand the conventions for using schematic letters in definitions.

B. Formulation of Z

In addition to the axioms and inference rules for the predicate calculus
for this first-order language, Z has the following axioms:

Leibniz’s Law / Axiom(s) of extensionality2

Z1: (∀x) (∀y)(x = y → (A [x , x] → A [x , y])), where y does not
occur bound inA [x , x].

Axiom(s) of separation/selection (Aussonderung)
Z2: (∀z) (∀x)(x ∈ {y |y ∈ z ∧A [y]} ↔ x ∈ z ∧A [x]), where x , y
and z are distinct variables, and x does not become bound in the context
A [x].

Null set axiom:
Z3: 0= {x |x ∈ 0∧ x 6= x}

Power set axiom:
Z4: (∀x) (∀y)(x ∈ ℘(y)↔ x ⊆ y)

Pairing axiom:
Z5: (∀x) (∀y) (∀z)(x ∈ {y, z}↔ x = y ∨ x = z)

Union / Sum set axiom:
Z6: (∀x) (∀y)(x ∈

⋃

(y)↔ (∃z)(z ∈ y ∧ x ∈ z))

Axiom of infinity:
Z8′: (∃x)(0 ∈ x ∧ (∀y)(y ∈ x → y ∪ {y} ∈ x))
(This is not how Hatcher formulates his ZF.8, though this is closer to its
usual formulation. I skip Z7 in numbering to match Hatcher’s.)

Modern Zermelo-Fraenkel Set Theory (ZF) is obtained from Z by adding
the axioms of replacement and regularity. More on these below.

If one wished to avoid use of primitive constants and function letters
and the vbto {x |A [x]}, one could formulate what amounts to the same
using existentially formulated principles such as:

2This is what Hatcher calls it; it is a bit misleading. Zermelo himself took identity
as primitive and had something more like (Ext) from type-theory as an axiom, which
would more properly be called an axiom of extensionality. However, our Z1 can be
seen roughly as saying that Z only deals with extensional contexts.

38

(∀z) (∃y) (∀x)(x ∈ y ↔ x ∈ z ∧A [x]) (separation)
(∀y) (∃z) (∀x)(x ∈ z↔ x ⊆ y) (powerset)

It is convenient, however, to have names for the sets postulated to exist
by the axioms.

In some ways the most important axiom of the system Z is the axiom(s)
of separation. Rather than postulating a set of x such thatA [x] for any
wffA , as F2 of system F does, Z’s principle of separation postulates, for
any set z we already know to exist, a subset of z of which x is a member
iff x is in z andA [x].

In this way we can divide any set already known to exist into two subsets,
one for whichA [x] and another for which ¬A [x]. However, we cannot
speak of the set of all x absolutely such thatA [x].

The notation {x |x ∈ y ∧A[x]} is used for the subset of y which includes
a members of it such that A [x]. Other books may use the notation
{x ∈ y|A [x]}. Notice that Hatcher’s formulation allows {y |A [y]} to
be a well-formed term even if the wff in the abstract does not begin with
y ∈ t , it is only when it does so begin that anything interesting can be
proven using that term.

It is obvious that Z cannot countenance a universal set, or else we could
define the Russell set R as {z|z ∈ V∧z /∈ z}, and derive a paradox. Indeed,
we have the following:

`Z (∀x) (∃y) y /∈ x

Proof:

(1) 1. ¬ (∃y) y /∈ x Hyp
(1) 2. (∀y) y ∈ x 1 CQ, DN

3. (∀x) (∀y)(y ∈ {z|z ∈ x ∧ z /∈ z}↔ y ∈ x ∧ y /∈ y) Z2
4. {z|z ∈ x ∧ z /∈ z} ∈ {z|z ∈ x ∧ z /∈ z}↔ {z|z ∈ x ∧ z /∈ z} ∈ x ∧ {z|z ∈ x ∧ z /∈ z} /∈ {z|z ∈ x ∧ z /∈ z} 3 UI×2

39

5. {z|z ∈ x ∧ z /∈ z} ∈ {z|z ∈ x ∧ z /∈ z} → {z|z ∈ x ∧ z /∈ z} /∈ {z|z ∈ x ∧ z /∈ z} 4 SL
6. {z|z ∈ x ∧ z /∈ z} /∈ {z|z ∈ x ∧ z /∈ z} 6 SL
7. {z|z ∈ x ∧ z /∈ z} ∈ x ∧ {z|z ∈ x ∧ z /∈ z} /∈ {z|z ∈ x ∧ z /∈ z} → {z|z ∈ x ∧ z /∈ z} ∈ {z|z ∈ x ∧ z /∈ z} 4 SL

(1) 8. {z|z ∈ x ∧ z /∈ z} ∈ x 2 UI
(1) 9. {z|z ∈ x ∧ z /∈ z} ∈ {z|z ∈ x ∧ z /∈ z} 6, 7, 8 SL

10. (∃y) y /∈ x 1, 6, 9 RAA
11. (∀x) (∃y) y /∈ x 10 UG

Whence in particular: `Z (∃y) y /∈ {x |x = x}

This is despite that we do have (by a very easy proof): `Z (∀y) y = y .

Obviously, then {x |x = x} cannot stand for the set of all (and only) self-identical things.

Since the separation axiom only allow us to divide sets already known to exist, we need additional principles guaranteeing the existence
of interesting sets. This is the role of the other axioms. They allow us to deduce the existence of sets that are built up from sets already
known to exist by means of certain processes (pairing, forming a powerset, etc.). Iterating these processes, we can deduce the
the existence of more and more sets.

This is why this system and others like it are sometimes called iterative set theory.

Some theorems of Z (some with obvious proofs):

T4. `Z (∀x)((∀y)(y /∈ x)↔ x = 0)
T5. `Z (∀x) (∀y)(x ⊆ y ∧ y ⊆ x → x = y)
T6. `Z (∀x) x ⊆ x
T7. `Z (∀x) (∀y) (∀z)(x ⊆ y ∧ y ⊆ z→ x ⊆ z)
T8. `Z (∀x)0 ⊆ x

Definitions:

〈t , u〉 for {{t}, {t , u}}
⋂

(t) for {x |x ∈
⋃

(t)∧ (∀y)(y ∈ t → x ∈ y)}
t ∩ u for
⋂

({t , u})
t − u for {x |x ∈ t ∧ x /∈ u}

T9. `Z (∀x) (∀y)(x ∈ {y}↔ x = y)
T9a. `Z (∀x1) (∀x2) (∀y1) (∀y2)(〈x1, y1〉= 〈x2, y2〉↔ x1 = x2 ∧ y1 = y2)
T10. `Z (∀x) (∀y) (∀z)(x ∈ y ∪ z↔ x ∈ y ∨ x ∈ z)
T11. `Z (∀x) (∀y) (∀z)(x ∈ y ∩ z↔ x ∈ y ∧ x ∈ z)
T11a. `Z (∀x) (∀y) (∀z)(x ∈ y − z↔ x ∈ y ∧ x /∈ z)

40

We also get the commutativity and associativity of ∩ and ∪ and similar
results as theorems.

C. Cardinal and Ordinal Numbers in Z(F)

Cardinal numbers

Cardinal numbers derive from the notion of “cardinality,” roughly synony-
mous with the notion of “size”. A cardinal number is one that answers
the question “how many?” Usually, we apply the notion of cardinality to
sets or to properties. We say that two sets have the same cardinality or
have the same cardinal number when there is one-one correspondence
between their numbers.

This, however, does not tell what the cardinal numbers themselves are.
Frege defined a cardinal number as a set of sets sharing the same cardi-
nality: so 0 is the set of all zero-membered sets, 1 is the set of all one-
membered sets, 2 is the set of all two-membered sets. Russell adopted
more or less the same definitions, though, as we’ve seen, in type theory,
this means distinct numbers in distinct types.

This definition could not be used in Z or ZF. The axioms of ZF do not allow
us to deduce the existence of the set of all one-membered sets; indeed,
it is provable that ZF cannot countenance any such set. (Consider that if
“1” represented the set of all singletons, since every set is a member of
its own singleton, “

⋃

(1)” would name the universal set, and we have
already seen how from the supposition of a universal set in Z(F) we can
derive a contradiction.)

Typically, then in ZF, cardinal numbers are defined as representative sets
having a given cardinality. 0 is defined as as a particular set having no
members: in this case, there is only one such set: the empty set. 1 is
defined as the set whose only member is 0. 2 is defined as the set whose
only members are 0 and 1. This gives us the progression:

0, {0}, {0, {0}}, {0, {0}, {0, {0}}}, . . .

Notice that these sets are the same as the members of the set ω, used to
guarantee an infinity even in System F. There we only proved that each

natural number has a member of ω in it; here we define the natural
numbers as members of ω.

Ordinal numbers

Whereas cardinal numbers are associated with sets or properties, ordinal
numbers are associated with relations, or their fields. We begin by
rehearsing some terminology widely used in discussing relations (here
informally):

Definitions:

• The domain of a relation R is the set of all x for which there is a y
such that xRy .

• The range of a relation R is the set of all x such that there is a y
such that yRx .

• The field of a relation R is the union of its domain and range, i.e.,
all the relata of the relation.

• Relation R is irreflexive on set S iff there is no x in S such that xRx .
• Relation R is asymmetric on set S iff for all x and y in S, if xRy

then it is not the case that yRx .
• Relation R is transitive on set S iff for all x , y and z in S, if xRy

and yRz then xRz.
• Relation R is connected on S iff for all x and y in S, if x 6= y then

either xRy or yRx .
• Relation R is a partial order on set S iff S is subset of (or is) its

field, and R is irreflexive, asymmetric and transitive on S.
• Relation R is a total order on set S iff it is a partial order on S and

connected on S.
• Relation R is a well order on set S iff it is a total order on S and for

every non-empty subset T of S, there is a member x of T for which,
for all y in T , if y is not x , then xRy .

• Relations R and R′ are isomorphic iff there is a 1–1 function f
from the field of R into and onto the field of R′ such that xRy iff
f (x)R′ f (y) for all x and y in the field of R.

The notion of a sequence of series is roughly that of a well-ordered set.
In such cases, we can lay out the members of the well-ordered set as

41

follows:
e1⇒ e2⇒ e3⇒ e4⇒ e5⇒ e6⇒ e7⇒ . . .

Such a series can either be of finite length, or infinite length. Different
lengths correspond to different ordinal numbers.

Two well orders or well-ordered sets are said to have the same order-type
or ordinal number iff they are isomorphic (or are the fields of isomorphic
relations). Again, this does not fix what ordinal numbers themselves
are. Naïvely, it would be natural to define an ordinal number as a set
of isomorphic well-ordering relations, or a set of isomorphically well-
ordered sets. (Frege did discuss ordinal numbers, but this is how Russell
defined them.) However, this is not possible in ZF, for reasons similar to
those for cardinal numbers.

We shall pursue the strategy of defining ordinal numbers in ZF as certain
well-ordered sets having a given order-type: in particular ordinals are
defined as sets ordered by the membership (∈) relation. Interestingly,
the progression

0, {0}, {0, {0}}, {0, {0}, {0, {0}}}, . . .

is itself well-ordered by the ∈-relation. (Notice that each one is a member
of all subsequent ones.) This simplifies things, as we can identify the
finite ordinal numbers with the finite cardinal numbers in ZF. The set
ω, of all such numbers, is itself an ordinal number, though not a finite
ordinal.

D. Natural Numbers in ZF

The development is made much easier by the following axiom:

The axiom of regularity / foundation:
ZF7: (∀x)(x 6= 0→ (∃y)(y ∈ x ∧ y ∩ x = 0))

(This axiom was not initially included by Zermelo, or even by Fraenkel,
but is now standard. It sometimes also considered part of Z.)

The axiom of foundation says that every non-empty set has a member
which has no members in common with it. The practical effect of this

axiom is to eliminate the possibility of sets being members of themselves,
or being members of their members, etc. This is in keeping with the
general ZF conception of sets as being “built up” by iterative processes.

(Since all theorems of Z are theorems of ZF, we continue the theorem
numbering from before.)

The Irreflexivity of ∈.
T12. `ZF (∀x) x /∈ x

Proof:

(1) 1. x ∈ x Hyp
2. x ∈ {x} T2, T9 UI, BMP

(1) 3. x ∈ x ∩ {x} 1, 2, T11 UI, BMP
4. {x} 6= 0 2, T4 SL, EG, LL
5. (∃y)(y ∈ {x} ∧ y ∩ {x}= 0) 4, ZF7 UI, MP
6. d ∈ {x} ∧ d ∩ {x}= 0 5 EI
7. d = x 6, T9 UI, SL
8. x ∩ {x}= 0 6, 7 SL, LL

(1) 9. x ∈ 0 3, 8 LL
10. x /∈ 0 T3 UI
11. x /∈ x 1, 9, 10 RAA
12. (∀x) x /∈ x 11 UG

The Asymmetry of ∈.
T13. `ZF (∀x) (∀y)(x ∈ y → y /∈ x)

Proof:

(1) 1. x ∈ y Hyp
2. x ∈ {x , y} Z5, T2 UI, BMP
3. {x , y} 6= 0 2, T4 SL, EG, CQ, LL
4. (∃z)(z ∈ {x , y} ∧ z ∩ {x , y}= 0) 3, ZF7 UI, UG, BMP
5. d ∈ {x , y} ∧ d ∩ {x , y}= 0 4 EI
6. d = x ∨ d = y 5, Z5 UI, SL

(7) 7. d = y Hyp
(1,7) 8. x ∈ d 1, 7 LL
(1,7) 9. x ∈ d ∩ {x , y} 2, 8, T11 UI, SL
(1,7) 10. x ∈ 0 5, 9 SL, LL

42

11. x /∈ 0 T3 UI
(1) 12. d 6= y 7, 10, 11 RAA
(1) 13. d = x 6, 12 DS
(14) 14. y ∈ x Hyp

15. y ∈ {x , y} Z5, T2 UI, SL
(1,14) 16. y ∈ d 13, 14 LL
(1,14) 17. y ∈ d ∩ {x , y} 15, 16, T11 UI, SL
(1,14) 18. y ∈ 0 5, 17 Simp, LL

19. y /∈ 0 T3 UI
(1) 20. y /∈ x 14, 18, 19 RAA

21. x ∈ y → y /∈ x 1–20 CP
22. (∀x) (∀y)(x ∈ y → y /∈ x) 21 UG×2

Definitions:

t ′ for t ∪ {t}
1 for 0′

2 for 1′

3 for 2′ (etc.)
{t 1, . . . t n, t n+1} for {t 1, . . . , t n} ∪ {t n+1}
∈-Trans(t) for (∀x)(x ∈ t → x ⊆ t)
∈-Con(t) for (∀x) (∀y)(x ∈ t ∧ y ∈ t ∧ x 6= y → x ∈ y ∨ y ∈ x)

On(t) for ∈-Trans(t)∧∈-Con(t)

“On(t)” means “t is an ordinal number”.

HOMEWORK

Prove:
T14. `ZF (∀x) (∀y) (∀z)(x ∈ y ∧ y ∈ z→ z /∈ x ∧ z 6= x)
(For hints, see Hatcher, p. 146.)

Well ordering of ordinals by ∈.

T15. `ZF (∀x) (∀y)(x ⊆ y ∧ x 6= 0∧On(y)→ (∃z)(z ∈ x ∧ (∀x1)(x1 ∈ x → x1 = z ∨ z ∈ x1)))

Proof:

(1) 1. x ⊆ y ∧ x 6= 0∧On(y) Hyp
2. x 6= 0→ (∃y)(y ∈ x ∧ y ∩ x = 0) ZF7 UI

(1) 3. (∃y)(y ∈ x ∧ y ∩ x = 0) 1, 2 Simp, MP

43

(1) 4. c ∈ x ∧ c ∩ x = 0 3 EI
(5) 5. x1 ∈ x ∧ x1 6= c Hyp
(1) 6. ∈-Con(y) 1, Df. On, Simp
(1) 7. (∀x) (∀y)(x ∈ y ∧ z ∈ y ∧ x 6= z→ x ∈ z ∨ z ∈ x) 7 Df. ∈-Con
(1) 8. c ∈ y 1, 4, Df.⊆ UI, MP
(1,5) 9. x1 ∈ y 1, 5, Df.⊆ UI, MP
(1,5) 10. c ∈ x1 ∨ x1 ∈ c 5, 7, 8, 9 UI, SL
(11) 11. x1 ∈ c Hyp
(5,11) 12. x1 ∈ c ∧ x1 ∈ x 5, 11 SL
(5,11) 13. x1 ∈ c ∩ x1 12, T11 UI, BMP
(1,5,11) 14. x1 ∈ 0 4, 13 Simp, LL

15. x1 /∈ 0 T3 UI
(1,5) 16. x1 /∈ c 11, 14, 15 RAA
(1,5) 17. c ∈ x1 10, 16 DS
(1) 18. x1 ∈ x ∧ x1 6= c→ c ∈ x1 5–17 CP
(1) 19. x1 ∈ x → x1 = c ∨ c ∈ x1 18 SL
(1) 20. (∀x1)(x1 ∈ x → x1 = c ∨ c ∈ x1) 19 UG
(1) 21. c ∈ x ∧ (∀x1)(x1 ∈ x → x1 = c ∨ c ∈ x1) 4, 20 SL
(1) 22. (∃z)(z ∈ x ∧ (∀x1)(x1 ∈ x → x1 = z ∨ z ∈ x1)) 21 EG

23. x ⊆ y ∧ x 6= 0∧On(y)→ (∃z)(z ∈ x ∧ (∀x1)(x1 ∈ x → x1 = z ∨ z ∈ x1)) 1–22 CP
24. (∀x) (∀y)(x ⊆ y ∧ x 6= 0∧On(y)→ (∃z)(z ∈ x ∧ (∀x1)(x1 ∈ x → x1 = z ∨ z ∈ x1))) 23 UG×2

T16. `ZF On(0)

T17. `ZF (∀x) (∀y)(∈-Con(x)∧ y ⊆ x →∈-Con(y))

T18. `ZF (∀x) (∀y)(On(x)∧ y ∈ x → On(y))

There are three kinds of ordinals: zero, successors, and limit ordinals. Successors are those of the form n∪ {n} for some other ordinal n. Limits
are those such as ω, which have infinitely many other ordinals getting “closer and closer” to it.

Definition: We define a natural number as an ordinal which is either zero or a successor, and all members of which are either zero or a successor.
(The ordinal ω′, i.e., ω∪ {ω} is a successor, but not a natural number, since it has a limit ordinal as member.)

Definitions:

Sc(t) for (∃x)(On(x)∧ x ′ = t)
Lim(t) for On(t)∧ t 6= 0∧¬Sc(t)

N(t) for On(t)∧ (t = 0∨ Sc(t))∧ (∀x)(x ∈ t → x = 0∨ Sc(x))

Following Hatcher, from now on, rather than giving full proofs, I shall often only provide sketches.

44

T19. `ZF N(0) (=Peano postulate 1)

Proof sketch: Obvious.

T20. `ZF (∀x)0 6= x ′ (=Peano postulate 3)

Proof sketch: x ∈ x ′ but x /∈ 0, so 0= x ′ is impossible.

T21. `ZF (∀x)(On(x)→ On(x ′))

Proof sketch: Suppose On(x). Hence ∈-Con(x) and ∈-Trans(x). Consider
any y ∈ x ′. Either y ∈ x or y = x . If y ∈ x , since ∈-Trans(x), y ⊆ x ,
and since x ⊆ x ′, y ⊆ x ′. If y = x , since x ⊆ x ′, y ⊆ x ′. Hence
y ∈ x ′→ y ⊆ x ′. This holds for any y , so ∈-Trans(x ′).

Assume y ∈ x ′and z ∈ x ′ and y 6= z. There are three possibilities: either
(i) y ∈ x and z = x , or (ii) y = x and z ∈ x , or (iii) y ∈ x and z ∈ x . (It
cannot be that both y = x and z = x since y 6= z.) In case (i), y ∈ z, and
(ii) z ∈ y. In case (iii), since ∈-Con(x), we have y ∈ z ∨ z ∈ y. Hence,
y ∈ x ′ ∧ z ∈ x ′ ∧ y 6= z→ y ∈ z ∨ z ∈ y . This holds for any y and z, and
so ∈-Con(x ′), thus On(x ′).

T22. `ZF (∀x)(N(x)→ N(x ′)) (=Peano postulate 2)

Proof sketch: Suppose N(x). It follows that On(x), and so, by T21,
On(x ′). Obviously, Sc(x ′). Consider any member y of x ′: either y ∈ x ,
and so is 0 or a successor, or y = x , which is either 0 or a successor, since
N(x). So (∀y)(y ∈ x ′→ y = 0∨ Sc(y)) and N(x ′).

T23. `ZF (∀x) (∀y)(x ′ = y ′→ x = y) (=Peano postulate 4)

Proof sketch: Suppose x ′ = y ′, and suppose for reductio x 6= y. Since
x ∈ x ′, we get x ∈ y ′. This means that either x ∈ y or x ∈ {y}, but since
x 6= y, it must be that x ∈ y. By a parallel argument, y ∈ x . But this
contradicts T13. Hence x = y .

HOMEWORK

Prove: T24. `ZF (∀x) (∀y)(N(x)∧ y ∈ x → N(y))

The principle of mathematical induction (=Peano postulate 5)
T25. `ZFA [0]∧ (∀x)(N(x)∧A [x]→A [x ′])→

(∀x)(N(x)→A [x])

Proof:

(In the proof, L abbreviates {y|y ∈ x ′ ∧¬A [x]}.)

(1) 1.A [0]∧ (∀x)(N(x)∧A [x]→A [x ′]) Hyp
(2) 2. N(x) Hyp
(3) 3. ¬A [x] Hyp

4. x ∈ x ′ T2, T9, T10 QL
(3) 5. x ∈ L 3, 4, Z2, Df. L QL
(3) 6. L 6= 0 5, T4 QL
(3) 7. (∃y)(y ∈ L ∧ y ∩ L = 0) 6, ZF7, QL
(3) 8. c ∈ L ∧ c ∩ L = 0 7 EI
(3) 9. c ∈ x ′ ∧¬A [c] 8, Z2, Df. L, QL
(1,3) 10. c 6= 0 1, 9, Z1 QL
(2) 11. N(x ′) 2, T22 QL
(2,3) 12. N(c) 9, 11, T24 QL
(2,3) 13. c = 0∨ Sc(c) 12, Df. N , SL
(1,2,3) 14. (∃x)(On(x)∧ x ′ = c) 10, 13, Df. Sc SL
(1,2,3) 15. On(d)∧ d ′ = c 14 EI
(1,2,3) 16. d ∈ c 4, 15 QL, LL
(1,2,3) 17. N(d) 12, 16, T24 QL
(1,2,3) 18. d /∈ L 8, 16, T3, T11 QL
(1,2,3) 19. d /∈ x ′ ∨A [d] 18, Df. L, Z2 QL
(1,2,3) 20. d ∈ x ′ 9, 11, 16, Dfs. QL
(1,2,3) 21.A [d] 19, 20 SL
(1) 22. N(d)∧A [d]→A [d ′] 1 QL
(1,2,3) 23.A [d ′] 17, 21, 22 SL
(1,2,3) 24. ¬A [d ′] 9, 15 SL, LL
(1,2) 25.A [x] 3, 23, 24 RAA
(1) 26. N(x)→A [x] 2–25 CP
(1) 27. (∀x)(N(x)→A [x]) 26 UG

28.A [0]∧ (∀x)(N(x)∧A [x]→A [x ′])
→ (∀x)(N(x)→A [x]) 1–27 CP

T26. (∀x) (∀y)(N(x)∧ y ∈ x → y ′ ∈ x ′)

That the Peano postulates hold in ZF is enough to establish that the
domain of quantification for any of its models must be infinite. One can
prove, e.g., that 0 6= 1, 1 6= 2, 2 6= 3, etc. However, this does not yet

45

establish the existence of any set having an infinite number of members.
This is the role of the next axiom, which Hatcher puts in this form:

The axiom of infinity:
ZF8: (∀x)(x ∈ω↔ N(x))

Hence, ω is the set of natural numbers.

T27. `ZF On(ω)

For a sketch of a proof of this, see Hatcher, p. 155.

T28. `ZF Lim(ω)

Proof sketch: ω is a limit ordinal if it is neither 0 nor a successor. Since
ω has 0 as a member, it cannot be 0. Suppose for reductio that it is a
successor. Then there is some c such that ω= c′. Now c ∈ c′, so c ∈ω.
This means that c is a natural number, then so is c′, i.e.,ω, but that would
mean that ω ∈ω, contrary to T12. Hence ¬Sc(ω), and so Lim(ω).

Consider now the ordinal number ω′. It is a successor, but not a natural
number. It too has a successor ω′′, and so on. However, in order to
obtain any further limit ordinals, such as ω+ω (a.k.a. ω2), we need
a principle postulating the existence of sets stronger than Z2 alone.
Fraenkel suggested the following (and this is the primary difference
between Z and ZF):

The axiom of replacement:
ZF9: (∀x)((∀y) (∀z1) (∀z2)(A [y, z1]∧A [y, z2]→ z1 = z2)→

(∃y) (∀z)(z ∈ y↔ (∃y1)(y1 ∈ x ∧A [y1, z]))),
where z2 does not become bound inA [y, z2].

This is called the axiom of replacement bcause, beginning with any set x ,
it postulates the existence of a set y , got by replacing members of x with
the result of some function on those members. (Above, interpretA [t , u]
as meaning that the function in question assigns u to t as “argument”.)

This is a powerful axiom, and indeed, strictly stronger than the axiom of
separation. Indeed, the usual form of the axiom of separation, viz:

(∀y) (∃z) (∀x)(x ∈ z↔ x ∈ y ∧A [x])

can be proven from ZF9 straightaway.

ZF9 completes the axioms of ZF.

E. Relations, Functions and Recursion in ZF

In set theory, relations are often treated as sets of ordered pairs. (I might
prefer the “extension of a relation” to “relation”, but I am out-numbered.)

Definitions:

(t is relation):
R(t) for (∀x)(x ∈ t → (∃y) (∃z)x = 〈y , z〉)

(t is a function):
F(t) for R(t)∧ (∀x) (∀y) (∀z)(〈x , y〉 ∈ t ∧ 〈x , z〉 ∈ t → y = z)

(domain of t):
D(t) for {x |x ∈

⋃

(
⋃

(t))∧ (∃y)〈x , y〉 ∈ t}

(range of t):
I(t) for {x |x ∈

⋃

(
⋃

(t))∧ (∃y)〈y , x 〉 ∈ t}

(value of function t for u as argument):
t ‘‘u for
⋃

({x |x ∈ I(t)∧ 〈u, x 〉 ∈ t})

(Cartesian product of t and u):
t × u for {x |x ∈ ℘(℘(t ∪ u))∧ (∃y) (∃z)(y ∈ t ∧ z ∈ u ∧ x = 〈y , z〉)}

Indirectly, the axiom of replacement allows us to deduce the existence
of a relation, considered as a set of ordered-pairs, corresponding to any
“function”A [y, z], with any set x as domain.

We can now deduce the existence of recursively defined functions. In-
formally, we say that a function g on the natural numbers is defined by
simple recursion in terms of a value a and a function f when g(0) = a
and for all other natural numbers, g(n+ 1) = f (g(n)).

The principle of simple recursion asserts the existence of function g as a
set of ordered pairs for any function f and value a. In ZF:

T29. `ZF (∀x) (∀y)(F(x)∧ I(x) ⊆ D(x)∧ y ∈ D(x) →
(∃!z)(F(z)∧ω= D(z)∧ I(z) ⊆ D(x)∧ z‘‘0= y ∧

(∀y2)(y2 ∈ω→ z‘‘y ′2 = x ‘‘(z‘‘y2))))

46

Proof sketch: Suppose F(x)∧ I(x) ⊆ D(x)∧ y ∈ D(x). Now consider the
set of relations E defined as:
{z|z ∈ ℘(ω× D(x))∧ 〈0, y〉 ∈ z ∧

(∀x2) (∀y2)(〈x2, y2〉 ∈ z→ 〈x ′2, x ‘‘y2〉 ∈ z)}
This is the set of all relations that contain 〈0, y〉 and always the ordered
pair 〈x ′2, x ‘‘y2〉 whenever it contains 〈x2, y2〉. Consider now the set of
ordered pairs
⋂

(E), i.e., what all members of E have in common. We
can prove that

⋂

(E) represents a function having the desired traits of
the consequent (and that it is the only such function). For a fuller sketch
that it does, see Hatcher, pp. 161–62.

This proof also gives us a recipe for defining simple recursive functions
among the natural numbers. E.g., we might introduce the following
definitions:

S for {x |x ∈ω×ω∧ (∃y)(x = 〈y, y ′〉)}
+t for
⋂

({z|z ∈ ℘(ω×ω)∧ 〈0, t 〉 ∈ z∧
(∀x2) (∀y2)(〈x2, y2〉 ∈ z→ 〈x ′2, S‘‘y2〉 ∈ z)})

(t + u) for +t ‘‘u

HOMEWORK

Give similar definitions for multiplication. I.e., first define ·t as the set
of ordered pairs 〈n, m〉 for which t times n is m, and then define t · u.
Hint: use +t .

The downside to such definitions of addition and multiplication is that
they are (correctly) defined only for the natural numbers. Nevertheless
with them we could obtain analogues to the remaining theorems of
system S:

`ZF (∀x)(N(x)→ x + 0= x)
`ZF (∀x) (∀y)(N(x)∧ N(y)→ x + y ′ = (x + y)′)
`ZF (∀x)(N(x)→ x · 0= 0)
`ZF (∀x) (∀y)(N(x)∧ N(y)→ x · y ′ = (x · y) + x)

From this, it follows that ZF can capture all of Peano arithmetic, and
hence can represent all recursive functions and express all recursive
relations. (Unfortunately, ZF has its own Gödel sentence, and so has
undecidable sentences.)

F. Infinite Ordinals

Speaking loosely, if a and b are ordinal numbers, the ordinal number
a+ b is regarded as the order-type had by a well-ordered sequence got
by appending a sequence with ordinal number b after a sequence with
ordinal number a.

Since ω is the ordinal number of sequences that could be depicted as
follows:

• ⇒ •⇒ •⇒ •⇒ •⇒ •⇒ . . .

It follows that ω + 1, or ω′ is the ordinal number of a series of the
following form:

• ⇒ •⇒ •⇒ •⇒ •⇒ •⇒ . . .•

Here there is a “last” member of the series, but there are infinitely many
members of the series preceding the last member.

ω+ 2 or ω′′ is the ordinal number of a series of the following form:

• ⇒ •⇒ •⇒ •⇒ •⇒ •⇒ . . .• ⇒ •

In ZF, we define ordinals as exemplar well-ordered sets having a certain
order type. Thus ω is the set containing the members 0, 1, 2, 3, 4, . . .
ω′ is the set containing 0, 1, 2, 3, 4, . . . , ω.
ω′′ is the set set containing 0, 1, 2, 3, 4, . . . ω, ω′.
We can similarly define ω′′′, ω′′′′, etc.

The ordinal number ω+ω or ω2 is the ordinal number of well-ordered
series having the form:

• ⇒ •⇒ •⇒ •⇒ •⇒ •⇒ . . .• ⇒ •⇒ •⇒ •⇒ •⇒ •⇒ . . .

We cannot obtain ω+ω using the definition of + given in the previous
section: it is defined only over natural numbers. Nevertheless we can
use the axiom of replacement to prove the existence of such ordinals.

Consider the wff below, abbreviated M(y, z):

N(y)∧ F(z)∧ D(z) = y ∧ z‘‘0=ω∧ (∀y2)(y
′
2 ∈ y → z‘‘y ′2 = (z‘‘y2)

′)

47

Intuitively, this says that y is a natural number, and z is a function whose
domain is y (remember that a natural number is the set of all natural
numbers less than it), and whose value for 0 is ω and whose value for 1
is ω′, and whose value for 2 is ω′′ and so on. We can prove that such a
z exists for every natural number:

`ZF (∀y)(y ∈ω→ (∃z)M(y, z))

We can also establish that this wff is functional, i.e.:

`ZF (∀y) (∀z1) (∀z2)(M(y, z1)∧M(y, z2)→ z1 = z2)

It follows by the axiom of replacement that:

`ZF (∃x) (∀z)(z ∈ x ↔ (∃y)(y ∈ω∧M(y, z)))

Call the set postulated by this theorem m. Then m is the set of all such
functions from natural numbers to corresponding successors of ω. The
sum set
⋃

(m) is thus the set of ordered pairs of the form 〈0,ω〉, 〈1,ω′〉,
〈2,ω′′〉, and so on. Its range, I(

⋃

(m)) is the set of all successors of ω,
and hence ω2 or ω+ω would be the well-ordered set ω∪ I(

⋃

(m)).

(This does not allow us to defineω2 outright in ZF, since “m” is a dummy
constant arrived at from EI, not an actual constant of the language. But
clearly such large ordinals are included in the domain of quantification
for the language.)

By similar means, we could obtain ω + ω + ω, and further, ω2, or
ω+ω+ . . . , the ordinal number corresponding to a well-ordered series
of the form:

• ⇒ •⇒ . . .• ⇒ •⇒ . . .• ⇒ •⇒ . . .• ⇒ •⇒ . . .• ⇒ •⇒

(I.e., a denumerable number of denumerable sequences following after
one another.)

G. Cardinal Numbers and the Axiom of Choice

Cardinal numbers measure the size of a set. We say that sets have the
same size, or same cardinality, when there is a 1–1 function having one
set as domain and the other as range.

Definitions:

F1(t) for F(t)∧ (∀x) (∀y) (∀z)(〈x , z〉 ∈ t ∧ 〈y , z〉 ∈ t → x = y)
t ∼= u for (∃x)(F1(x)∧ t = D(x)∧ u = I(x))
t 6∼= u for ¬t ∼= u

It then follows (by proofs similar to those in a problem on exam 1):

(Ref∼=) `ZF (∀x) x ∼= x
(Sym∼=) `ZF (∀x) (∀y)(x ∼= y → y ∼= x)

(Trans∼=) `ZF (∀x) (∀y) (∀z)(x ∼= y ∧ y ∼= z→ x ∼= z)

Hatcher writes “t Sm u” instead of “t ∼= u”.

HOMEWORK

Informally sketch a proof showing that: `ZF ω
∼=ω′

Since the Frege-Russell definition of cardinal numbers cannot be used in
ZF, we use representative sets having a given cardinality. In particular,
cardinals are identified with particular ordinal numbers having a given
cardinality. Because multiple ordinals (such as ω and ω′) can have the
same cardinality, we must select only one such number as the cardinal
number for that cardinality. It is convenient to pick the least ordinal (as
ordered by membership).

Definition:

Card(t) for On(t)∧ (∀x)(x ∈ t → x 6∼= t)

We can also define greater-than and less-than relations among sets in
virtue of their cardinality as follows:

Definitions:

t � u for (∃x)(x ⊆ u ∧ t ∼= x)
t ≺ u for t � u ∧¬u � t

We can also define what is for a set to be finite or infinite:

Fin(t) for (∃x)(x ∈ω∧ t ∼= x)
Inf(t) for ¬Fin(t)

One potential downfall of this way of defining cardinals is that we do
not yet have any guarantee that every set is of the same cardinality as

48

an ordinal. A proof of this result, viz.:

`ZFC (∀x) (∃y)(On(y)∧ x ∼= y)

requires the axiom of choice. The usual formulation of this axiom is as
follows:

(AC) (∀x) (∃y)(F(y)∧ (∀z)(z ⊆ x ∧ z 6= 0→ y ‘‘z ∈ z))

This states that for every set x , there is a function y that has as value, for
any nonempty subset z of x as argument, some member of that subset.
This gives us a way of “selecting” a member from every subset.

Hatcher instead formulates the axiom in a more convenient way as
follows:

ZFC10: (∀x)(x 6= 0→ σ(x) ∈ x)

Definition: ZFC is the system obtained from ZF by adding ZFC10 as an
axiom.

Here “σ” is taken as a primitive function constant, which returns, for
any set as argument some member of that set. Since “σ” is a primitive
function constant, it is not defined as a set of ordered pairs, and indeed,
no such set as the set of all ordered pairs 〈z,σ(z)〉 can be proven to exist,
although by means of the axiom of replacement, for any set x , one can
establish the existence of a set of ordered pairs of this form where z ⊆ x ,
i.e., one can establish (AC) above.

ZFC10 has been shown to be independent of the axioms of ZF, and indeed,
both (AC) and its negation are consistent with ZF1–ZF9.

Very rough sketch of proof of:
`ZFC (∀x) (∃y)(On(y)∧ x ∼= y)

Let x be any set. For every ordinal t we can define a function f t from t
to members of x as follows:

⋂

({z|z ∈ ℘(t×x)∧(∀y)(y ∈ t → 〈y,σ(x−{x2|x2 ∈ x∧(∃y2)(y2 ∈ y∧〈y2, x2〉 ∈ z)})〉 ∈ z)})

I.e., what is in common between all sets of ordered pairs sharing the

following:

〈0,σ(x)〉
〈1,σ(x − {σ(x)})〉
〈2,σ(x − {σ(x),σ(x − {σ(x)})})〉
etc.

Call σ(x), “x:0”, and σ(x − {σ(x)}), “x:1”, and σ(x − {σ(x),σ(x −
{σ(x)})}), “x:2”, and so on.

If t is greater than ω, then this intersection will also contain, e.g.:

〈ω,σ(x − {x:0, x:1, x:2, x:3, . . . })〉

Now consider the wff below, abbreviated O(y, z):

(On(z)∧ f z′ ‘‘(z) = y ∧ (∀z2)(z2 ∈ z→ f z′ ‘‘(z2) 6= y)) ∨

(z = 0∧ (∀z2)(On(z2)→ f z′2 ‘‘(z2) 6= y))

This says that z is the least ordinal such that x:z = y or z = 0 if there
is no such ordinal. This wff is functional, i.e., for a given member y
of x it cannot hold for more than one z, and hence, by the axiom of
replacement, there is a set s such that:

(∀z)(z ∈ s↔ (∃y)(y ∈ x ∧O(y, z)))

This set s is thus the set of all ordinals which are the least ordinals
corresponding to a given member of x in the ordering generated by the
choice function σ.

Consider now the set
⋃

(s): the set of all members of any ordinal in s.
Notice that since ordinals only have other ordinals as members,

⋃

(s) is
the set of all ordinals “less” than any member of s. In fact,

⋃

(s) is itself
an ordinal, at least as great as any ordinal in s. Hence

⋃

(s)′ is greater
than any ordinal in s.

49

It follows that x ⊆ I(f
⋃

(s)′). For if not, then notice that x−I(f
⋃

(s)′)would
be non-empty. Since f

⋃

(s)′′ ‘‘
⋃

(s)′ = σ(x − I(f
⋃

(s)′)), it would follow
that O(σ(x − I(f

⋃

(s)′)),
⋃

(s)′), and hence that
⋃

(s)′ was a member of
s, which is impossible. Basically, this says that the ordinal

⋃

(s)′ is big
enough to “order” the members of x .

Now consider the set {y|y ∈
⋃

(s)′′ ∧ x ⊆ I(f y)}. This is the set of all
ordinals big enough to order x . This set is non-empty, since

⋃

(s)′ is a
member. By the axiom of regularity, there is an ordinal b, which is a
member of this set and which contains no members in common with this
set. (In effect, b the lowest such ordinal.) Hence On(b) and x ⊆ I(f b).

Now consider the function f b. By the definition of f t , the domain of f b

must be b, and the range of f b must be a subset of x . Since x ⊆ I(f b)
and I(f b) ⊆ x , it follows that x = I(f b).

We now show that f b is a 1–1 function. Suppose that 〈y1, x1〉 ∈ f b

and 〈y2, x1〉 ∈ f b. Since y1 and y2 are members of b, which is an
ordinal, they are ordinals themselves. Since ordinals are well-ordered
by ∈, we have either y2 ∈ y1 or y1 ∈ y2 or y1 = y2. Suppose that
y2 ∈ y1. By the definition of f b, since 〈y1, x1〉 ∈ f b, it must be that
x1 = σ(x − {x2|x2 ∈ x ∧ (∃y2)(y2 ∈ y1 ∧ 〈y2, x2〉 ∈ f b)}). But notice we
have y2 ∈ y1 ∧ 〈y2, x1〉 ∈ f b, so (∃y2)(y2 ∈ y1 ∧ 〈y2, x1〉 ∈ f b) by EG.
But this means that x1 ∈ {x2|x2 ∈ x ∧ (∃y2)(y2 ∈ y1 ∧ 〈y2, x2〉 ∈ f b)}
and hence x1 /∈ x − {x2|x2 ∈ x ∧ (∃y2)(y2 ∈ y1 ∧ 〈y2, x2〉 ∈ f b)}. By
ZFC10, it follows that x − {x2|x2 ∈ x ∧ (∃y2)(y2 ∈ y1 ∧ 〈y2, x2〉 ∈ f b)}
must be the empty set. This is only possible only if x is the empty set,
or x ⊆ {x2|x2 ∈ x ∧ (∃y2)(y2 ∈ y1 ∧ 〈y2, x2〉 ∈ f b)}. But x cannot be
the empty set, since x1 ∈ x . Moreover, it cannot be that x ⊆ {x2|x2 ∈
x ∧ (∃y2)(y2 ∈ y1 ∧ 〈y2, x2〉 ∈ f b)}, since this would mean that y1 = b,
which is impossible, since y1 ∈ b. By an exactly parallel argument, it
follows that it cannot be that y1 ∈ y2. So y1 = y2, and F1(f b).

Then F1(f b)∧ D(f b) = b ∧ I(f b) = x . Thus b ∼= x . Hence by (Sym∼=),
x ∼= b. So (∃y)(On(y) ∧ x ∼= y). This holds for any set x , and so
`ZFC (∀x) (∃y)(On(y)∧ x ∼= y), QED.

HOMEWORK

Prove: `ZFC (∀x) (∃y)(Card(y)∧ x ∼= y)

Hint: apply the axiom of regularity to the set of all ordinals equinumerous
with x less than or equal-to the ordinal given by the theorem proven
above.

Definitions:

(These match the definitions given informally on p. 41.)

t -Irr(u) for R(t)∧ (∀x)(x ∈ u → 〈x , x 〉 /∈ t)
t -Trans(u) for R(t)∧ (∀x) (∀y) (∀z)(x ∈ u ∧ y ∈ u ∧ z ∈ u →

(〈x , y〉 ∈ t ∧ 〈y , z〉 ∈ t → 〈x , z〉 ∈ t))
t -Part(u) for t -Irr(u)∧ t -Trans(u)
t -Con(u) for R(t)∧ (∀x) (∀y)(x ∈ u ∧ y ∈ u ∧ x 6= y →

〈x , y〉 ∈ t ∨ 〈y , x 〉 ∈ t)
t -Tot(u) for t -Irr(u)∧ t -Trans(u)∧ t -Con(u)
t -We(u) for t -Tot(u)∧ (∀x)(x ⊆ u ∧ x 6= 0 →

(∃y)(y ∈ x ∧ (∀z)(z ∈ x ∧ z 6= y → 〈y , z〉 ∈ t)))

Consequences of the above results

1) The trichotomy principle:

(TP) `ZFC (∀x) (∀y)(x � y ∨ y � x)

2) The well ordering principle:

(WO) `ZFC (∀x) (∃y) y-We(x)

In fact, both the well-ordering principle and the trichotomy principle are
equivalent to the axiom of choice, in the sense that (AC) would folow
from either of them, if added as an axiom to ZF. I.e.:

`ZF (AC)↔ (TP)

`ZF (AC)↔ (WO)

Notice that these results hold in weaker ZF, not just in ZFC.

Other equivalent principles include:

3) The multiplicative axiom:

50

(MP) `ZFC (∀x)((∀y)(y ∈ x → y 6= 0)∧ (∀y) (∀z)(y ∈ x ∧ z ∈ x
∧y 6= z→ y ∩ z = 0)→ (∃y) (∀z)(z ∈ x → (∃!x1)(x1 ∈ y ∩ z)))

I.e., for every set of disjoint, non-empty sets, there is a set having
exactly one member from each.

4) Zorn’s lemma:

(ZL) `ZFC (∀x) (∀y)((y-Part(x)∧ (∀z)(z ⊆ x ∧ y-Tot(z) →
(∃x1)(x1 ∈ x ∧ (∀z1)(z1 ∈ z→ z1 = x1 ∨ 〈z1, x1〉 ∈ y)))) →

(∃x1)(x1 ∈ x ∧ (∀z1)(z1 ∈ x → 〈x1, z1〉 /∈ y)))

I.e., every partially ordered set x which is such that every totally
ordered subset has an “upper bound” has a “maximal” element.

(The theorem proven above, that every set is equinumerous with some
ordinals, is also equivalent to (AC) in ZF.)

Additional consequences of the axiom of choice

5) Every infinite set has a denumerable subset:

`ZFC (∀x)(Inf(x)→ω� x)

6) Every infinite set is equinumerous with one of its proper subsets
(i.e., is “Dedekind-infinite”):

`ZFC (∀x)(Inf(x)→ (∃y)(y ⊆ x ∧ y 6= x ∧ x ∼= y))

It has been proven by Kurt Gödel that ZFC is consistent if ZF consistent.

H. Cantor’s Theorem and the Continuum Hypothesis

On the last exam, one problem I gave involved proving the following for
System F:

(∀x) x 6∼= ℘(x)

In its essentials the same proof can be replicated in ZF. It follows that
there are different sizes of infinite sets, since, e.g.:

ω 6∼= ℘(ω)

The cardinality of ℘(ω) is sometimes called the cardinality of the con-
tinuum since it can be proven that there are this many real numbers, or
points on a geometric line. It is also called c, i1, or 2ℵ0 . It represents the
number of different subsets of natural numbers there are. (Each subset
is the result of making ℵ0 many yes/or or in-or-out choices: hence there
are 2ℵ0 possible choice combinations.)

Cantor conjectured that there are no sets with cardinalities in between ℵ0

and 2ℵ0 , or that ℵ1 = 2ℵ0 . This has come to be known as the Continuum
Hypothesis. Since, in ZF, ω is our representative ordinal with cardinality
ℵ0, we can represent the hypothesis as follows:

(CH) ¬ (∃x)(ω≺ x ∧ x ≺ ℘(ω))

It has been shown (by Paul Cohen) that the above is independent of the
axioms of ZF and ZFC. However, it has also been shown (by Kurt Gödel)
that it is not inconsistent with the axioms of ZF or ZFC. Neither it nor its
negation can be proven in ZF(C).

The same holds for the Generalized Continuum Hypothesis, which sug-
gests that there is never any sets of infinite cardinality in between that
of an infinite set and its powerset:

(GCH) (∀y)(Inf(y)→¬ (∃x)(y ≺ x ∧ x ≺ ℘(y)))

These hypotheses are controversial, but given their consistency, they are
sometimes suggested as additional axioms for set theory.

It is perhaps worth noting that (AC) is provable in ZF + (GCH).

XVII. von Neumann/Bernays/Gödel (NBG)
and Mostowski/Kelley/Morse (MKM)
Set Theories

Rivaling ZF in popularity is a theory of sets originally formulated by
John von Neumann (1925) and further specified and examined by Paul
Bernays (1937) and Kurt Gödel (1940).

51

The chief hallmark of NBG is its distinction between sets and proper
classes. Sets are collections of objects, postulated to exist when built up
by iterative processes, much like the sets of ZF. Classes are postulated
to exist as the extensions of certain concepts applicable to sets. Some
classes are sets, some are not. In particular, a class is a set when it a
member of a class. A proper class is a class that is not a set. While a
proper class can have members, it is not itself a member of any classes.

Generally, proper classes are very large collections, such as the univer-
sal class (of which all sets are members), and the class of all ordinals
numbers, etc.

A. Syntax

The syntax of NBG is the same as that of ZF, except that we shall use
uppercase letters W , X , Y and Z (with or without numerical subscripts)
for individual variables. (This does not preclude NBG from being a
first-order system, since these are officially the only sort of variable, and
the difference in notation is trivial.)

We use X , Y , Z in the metalanguage schematically for such variables.

Definitions:

M(t) for (∃X) t ∈ X
Pr(t) for ¬M(t)

M(t) means “t is a set” (from the German word Menge). “Pr(t)” means
“t is a proper class”.

Lowercase letters are introduced as abbreviations for quantification re-
stricted to sets.

Definitions:

Where x is a lowercase letter used as variable (x , y , z, etc.) written with
or without a numerical subscript, and X is the first (uppercase) variable
not inA [x]:

(∀x)A [x] for (∀X)(M(X)→A [X])
(∃x)A [x] for (∃X)(M(X)∧A [X])
{x |A [x]} for {X |A [X]}

Definition: A wffA is said to be predicative iff all quantifiers inA are
restricted to quantification over sets.

For the most part, it is harmless to treat the restricted quantifiers as
normal quantifiers for a different type of object, with, e.g., rules like UI,
UG, EG, etc., so long as in proofs, the different types of variables are kept
straight. Notice however that one needs M(t) to instantiate a variable
of the form (∀x) . . . x . . . to t .

B. Formulation

The proper axioms of NBG are the following:

NBG0. (∀x)(x ∈ {x |A [x]}↔A [x]), whereA [x] is any predicative
wff.

NBG1. (∀X) (∀Y)(X = Y → (A [X , X]→ A [X , Y])), where Y does
not occur bound inA [X , X].

NBG2. (∀x)M({y|y ∈ x ∧A [y]}), whereA [y] is predicative.

NBG3. M(0)∧ (∀x) x /∈ 0

NBG4. (∀x)(M(℘(x))∧ (∀y)(y ∈ ℘(x)↔ y ⊆ x))

NBG5. (∀x) (∀y)(M({x , y})∧ (∀z)(z ∈ {x , y}↔ z = x ∨ z = y))

NBG6. (∀x)(M(
⋃

(x))∧ (∀y)(y ∈
⋃

(x)↔ (∃z)(z ∈ x ∧ y ∈ z)))

NBG7. (∀X)(X 6= 0→ (∃y)(y ∈ X ∧ y ∩ X = 0))

NBG8. M(ω)∧ (∀x)(x ∈ω↔ N(x))

NBG9. (∀x)((∀y) (∀z1) (∀z2)(A [y, z1]∧A [y, z2]→ z1 = z2) →
(∃y) (∀z)(z ∈ y↔ (∃y1)(y1 ∈ x ∧A [y1, z]))), whereA [y, z1] is

predicative and z2 does not become bound inA [y, z2].

Notice that the axioms NBG1–9 correspond to ZF1–9 save that the pos-
tulate the existence of sets whose members are sets having certain condi-

52

tions. NBG0 postulates the existence of classes. It appears superficially
similar to the problematic axiom schema of System F, but notice that
even without the restriction to predicative wffs, NBG0 really reads:

(∀X)(M(X)→ (X ∈ {x |A [x]}↔A [X]))

HOMEWORK

Prove: `NBG Pr({y|y /∈ y})

Although, as formulated above, NBG0, NBG1, NBG2 and NBG9 are
schemata, it is possible to formulate NBG using a finite number of axioms.
This is easiest if we abandon the use of the vbto {x |A [x]} and the
constant function signs ℘,

⋃

, etc.

Formulated this way, the following are called “the axioms of class exis-
tence”:

(∃X) (∀y) (∀z)(〈y, z〉 ∈ X ↔ y ∈ z)
(∀X) (∀Y) (∃Z) (∀x)(x ∈ Z ↔ x ∈ X ∧ x ∈ Y)
(∀X) (∃Y) (∀z)(z ∈ Y ↔ z /∈ X)
(∀X) (∃Y) (∀x)(x ∈ Y ↔ (∃y)(〈x , y〉 ∈ X))
(∀X) (∃Y) (∀x) (∀y)(〈x , y〉 ∈ Y ↔ x ∈ X)
(∀X) (∃Y) (∀x) (∀y) (∀z)(〈x , y, z〉 ∈ Y ↔〈y, z, x〉 ∈ X)
(∀X) (∃Y) (∀x) (∀y) (∀x)(〈x , y, z〉 ∈ Y ↔〈x , z, y〉 ∈ X)

All instances of the following version of NBG0 are then derivable as
theorems:

(∃Y) (∀x)(x ∈ Y ↔A [x]), for any predicativeA [x].

The other axioms are formulated as follows:

LL:
(∀X) (∀Y)(X = Y → (∀Z)(X ∈ Z → Y ∈ Z))
Pairing:
(∀x) (∀y) (∃z) (∀w)(w ∈ z↔ w= x ∨w= y)
Null set:
(∃x) (∀y) y /∈ x
Sum set:

(∀x) (∃y) (∀z)(z ∈ y↔ (∃w)(z ∈ w∧w ∈ y))
Power set:
(∀x) (∃y) (∀z)(z ∈ y↔ z ⊆ x)
Separation:
(∀x) (∀X) (∃y) (∀z)(z ∈ y↔ z ∈ x ∧ x ∈ X)
Infinity:
(∃x)((∃y)(y ∈ x ∧ (∀z) z /∈ y)∧

(∀y)(y ∈ x → (∃z)(z ∈ x ∧ (∀w)(w ∈ z↔ w ∈ y ∨w= y))))
Replacement:
(∀X)(F(X)→ (∀x) (∃y) (∀z)(z ∈ y↔ (∃w)(〈w, z〉 ∈ X ∧w ∈ x)))
Regularity:
(∀X)(X 6= 0→ (∃y)(y ∈ X ∧ y ∩ X = 0))

This marks a contrast from ZF, which cannot be axiomatized with a finite
number of axioms.

Mostowski-Kelley-Morse set theory (System MKM) is just like NBG, ex-
cept removing the “predicativity” restrictions on NBG0, NBG2 and NBG9.

C. Development of Mathematics

It is possible to define individual Frege-Russell numbers in NBG: e.g.,
one might define 1 as follows:

1 for {x | (∃y) x = {y}}

Here “1” would name the class of all one-membered sets. The problem
with such definitions is that this is a proper class, not a set. Hence, it is
not itself a member of anything, and it would then become impossible
to have a set containing all the natural numbers, etc. Consequently,
mathematics is typically developed in NBG just as it is in ZF. E.g., we
define x ′ as x ∪ {x}, and define On(x) and N(x) as before.

Unlike ZF, in NBG there is a class of all ordinal numbers, viz., {x |On(x)}.
However, it is a proper class.

Precisely the same sets can be proven to exist in ZF as compared to NBG.
The notation for proper classes simplifies certain proofs, and allows an

53

easier or more economical way to state certain axioms or results, as with
the single axiom of replacement.

In fact, the relationship between ZF and NBG can be more precisely
characterized as follows:

(1) While ZF is not strictly speaking a subtheory of NBG (since it is not
strictly the case that every theorem of ZF is a theorem of NBG), for
every theorem A of ZF there is a theorem A ∗ of NBG obtained
by replacing all the quantifiers of the ZF formula with restricted
quantifiers for sets.

Proof sketch: For every proper axiom of ZF, A , either A ∗ is an
axiom of NBG or any easy consequence of the axioms of NBG. The
two systems have the same inference rules.

It follows that if ZF is inconsistent, then NBG is inconsistent as well.
(And hence that if NBG is consistent, so is ZF.)

(2) Similarly if A is a predicative wff of the language of NBG, and
`NBGA , then the corresponding wff,A † of ZF obtained by replacing
all the restricted quantifiers ofA with regular quantifiers is such
that `ZFA †.

It follows from the above that if NBG is inconsistent, then ZF is
inconsistent as well. (Notice that if NBG is inconsistent, then every
wff of NBG is a theorem, including both some predicative wff and
its negation. The corresponding wff and its negation would then
both be theorems of ZF.) It follows that if ZF is consistent, then so is
NBG.

(3) Result: ZF is consistent iff NBG is consistent.

NBG is a proper subtheory of MKM, and MKM is strictly stronger, since
the consistency of NBG can be proven in MKM.

XVIII. Set Theory with Urelements

As we have formulated them, systems Z, ZF, NBG and MKM do not allow
entities other than classes (or sets) in their domains of quantification.
According to the definition of identity

t = u for (∀x)(x ∈ t ↔ x ∈ u)

all entities that have no members or elements are identical to the empty
set.

However it does not take much to alter the systems in order to make
them consistent with having non-classes, typically called urelements (or
sometimes, individuals) within the domains of quantification.

A. The Systems ZU/ZFU

We begin by adding to our language a new monadic predicate letter ‘K ’.
“K(t)” is to mean “t is a set or class”. (In Z or ZF there is no distinction
made between sets and classes.)

Definition:

U(t) for ¬K(t)

(We could have taken ‘U ’ as primitive, and defined ‘K ’ in terms of it; it
would not make a significant difference to the system.)

Mimicking Hatcher’s introduction of the constant ‘ω’, we will introduce
a new constant ‘u’ for the set of all urelements.

We also modify the syntax and use boldface nonitalicized letters w, x,
y and z—with or without subscripts—for our variables. As with NBG,
this does not prevent the language from being first-order. I use italicized
boldface letters x, etc., schematically for such variables.

Non-boldface letters (w, x , y and z) are introduced for restrictive quan-
tification over classes/sets, as in NBG. In particular:

Definitions:

54

Where x is a non-bold variable and x is the first bold-face variable not in
A [x]:

(∀x)A [x] for (∀x)(K(x)→A [x])
(∃x)A [x] for (∃x)(K(x)∧A [x])

{x |x ∈ t ∧A [x]} for {x|x ∈ t ∧A [x]∧ K(x)}

For reasons that should be clear from the above, the normal definition of
identity is not appropriate. One may choose either to take the identity
relation as a primitive 2-place predicate, and build the system upon
the predicate calculus with identity rather than the predicate calculus
simpliciter. Alternatively, one may adopt the following rather counterin-
tuitive definitions:

t = u for (K(t)∧ K(u)∧ (∀x)(x ∈ t ↔ x ∈ u))∨
(U(t)∧ U(u)∧ (∀x)(t ∈ x↔ u ∈ x))

t ⊆ u for K(t)∧ K(u)∧ (∀x)(x ∈ t → x ∈ u)

The axioms of ZU are the following:

ZU0a. (∀x) (∀y)(x ∈ y→ K(y))
ZU0b. K(u)∧ (∀x)(U(x)↔ x ∈ u)
ZU1. (∀x) (∀y)(x = y→ (A [x,x]→A [x,y])), where y does not occur
bound inA [x,x].
ZU2. (∀x) (∀x)(x ∈ {y|y ∈ x ∧A [y]}↔ x ∈ x ∧A [x]), where x does
not become bound in the contextA [x].
ZU3. K(0)∧ 0= {x|x ∈ 0∧ x 6= x}
ZU4. (∀x) (∀y)(x ∈ ℘(y)↔ x ⊆ y)
ZU5. (∀x) (∀y) (∀z)(x ∈ {y,z}↔ x= y∨ x= z)
ZU6. (∀x) (∀y)(x ∈

⋃

(y)↔ (∃z)(z ∈ y ∧ x ∈ z))
ZU7. (∀x)(x 6= 0→ (∃y)(y ∈ x ∧¬ (∃z)(z ∈ y∧ z ∈ x)))
ZU8. (∀x)(x ∈ω↔ N(x))3

ZFU and ZFCU would also add these:

ZFU9. (∀x)((∀y) (∀z1) (∀z2)(A [y,z1]∧A [y,z2]→ z1 = z2) →
(∃y) (∀z)(z ∈ y↔ (∃y1)(y1 ∈ x ∧A [y1,z]))),
where z2 does not become bound inA [y,z2].

ZFCU10. (∀x)(x 6= 0→ σ(x) ∈ x)
3The definition of On(t) would also require K(t), and so N(t) would also require

K(t).

Metatheoretic results:
Z is consistent iff ZU is consistent.
ZF is consistent iff ZFU is consistent.
ZFC is consistent iff ZFCU is consistent.

To obtain a system NBGU (for NBG with urelements), it would be neces-
sary to adopt the following definitions (for set and element, respectively):

M(t) for K(t)∧ (∃x) t ∈ x
E(t) for M(t)∨ U(t)

Uppercase letters could then be used as restricted quantifiers for all
classes, and lowercase for sets only, so that (∀X)A [X] would mean
(∀x)(K(x)→A [x]) and (∀x)A [x] would mean (∀x)(M(x)→A [x]),
etc.

The axioms of NBG would then need to be modified like those of ZF were
modified for ZFU.

HOMEWORK

Prove: `ZU (∀x) (∀y)K({x,y})

XIX. Relative Consistency

We have several times cited results to the effect that one system is con-
sistent if another is. This is established by a relative consistency proof.

Relative consistency proofs can take two forms. One is to show that
a model can be constructed for a given theory using the sets that can
be proven to exist in another theory. Since a theory is consistent if it
has a model, this shows that the theory in question is consistent if the
theory in which the model is constructed is. This method is slightly
more controversial, however, since the proof that every system that has
a model is consistent makes use of a fair amount of set theory that may
itself be contested.

Another more direct way towards establishing relative consistency is to
give an argument that any proof of an inconsistency in one system could

55

be mirrored to produce an inconsistency in another. We give an example
of such a proof below.

The Consistency of ST relative to System ZF

Definition: Let ℘n(t) represent n occurrences of ℘ applied to t , so that,
e.g., ℘3(t) is ℘(℘(℘(t))). (Limiting case, ℘0(t) is just t itself.)

Lemma 1: For every n, we have `ZF ℘
n(t) ∈ ℘n+1(t).

Proof: from repeated applications of T6 and Z4.

We now sketch the following translation scheme between the languages
of ST and ZF:

(i) Begin with a formulaA of ST.
(ii) Replace each occurrence of (∀x n)B[x n] with (∀y)(y ∈ ℘n(ω)→
B[y]), where y is the first variable of ZF’s language not yet used in
the translation.

(iii) Replace each occurrence of {x n|B[x n]} with {y |y ∈ ℘n(ω)∧B[y]},
where y is, again, the first variable of ZF’s language not yet used in
the translation.

(iv) for each free variable x n of A , replace all free occurrences of x n

with y (the first variable of ZF’s language not yet used) and prefix
the result with y ∈ ℘n(ω) →

IfA is a wff of ST, let (A)Z be the wff of ZF that results from the steps
above. LetA # be the result of only applying steps (i)–(iii) and replacing
each typed variable with the type free variable that would replace it in
step (iv).

Example: If A is (∀x1) x1 ∈ y2, then A # is (∀x)(x ∈ ℘(ω)→ x ∈ y)
and (A)Z is y ∈ ℘(℘(ω))→ (∀x)(x ∈ ℘(ω)→ x ∈ y)

Lemma 2: IfA is an axiom of ST, then `ZF (A)Z .

Proof:

SupposeA is an axiom of ST. There are the following cases to consider.

1). A is a truth-table tautology; then (A)Z is also a truth-table tautol-
ogy, whence `ZF (A)Z .

2). A takes the form (∀x n)B[x n]→B[t n] where t n is free for x n in
B[x n]. We have the following as an axiom of ZF: (∀y)(y ∈ ℘n(ω)→
B#[y]) → ((t n)# ∈ ℘n(ω) → B#[(t n)#]). By SL, (*) (t n)# ∈
℘n(ω) → ((∀y)(y ∈ ℘n(ω) → B#[y]) → B#[(t n)#]). Because
t n is a term of ST, it is either a variable or a term of the form
{zn−1|C [zn−1]} where n ≥ 1. If t n is a variable then it is free in
A , and (A)Z follows from (*) by at most ST (TC) alone. If t n is a
term of the form {zn−1|C [zn−1]}, then (t n)# takes the form {z|z ∈
℘n−1(ω)∧C #[z]}. It then follows by Z2 that `ZF (t n)# ⊆ ℘n−1(ω),
and hence, by Z4 that `ZF (t n)# ∈ ℘n(ω). By this and (*) we get
`ZF (∀y)(y ∈ ℘n(ω)→B#[y])→B#[(t n)#]. From this, `ZF (A)Z
follows by at most SL (TC) alone.

3). A takes the form (∀x n)(C → B[x n]) → (C → (∀x n)B[x n]),
where C does not contain x n free. By a simple proof, we have
(*) `ZF (∀y)(y ∈ ℘n(ω) → (C # → B#[y])) → (∀y)(C # → (y ∈
℘n(ω)→B#[y])). We also have an axiom of Z: `ZF (∀y)(C # →
(y ∈ ℘n(ω)→B#[y]))→ (C #→ (∀y)(y ∈ ℘n(ω)→B#[y])). By
HS, `ZF (∀y)(y ∈ ℘n(ω) → (C # → B#[y])) → (C # → (∀y)(y ∈
℘n(ω)→B#[y])). By SL, we get `ZF (A)Z .

4). A is an instance of ST1, (∀x n)(x n ∈ {zn|B[zn]}↔B[x n]). We
have `ZF (∀y)(y ∈ ℘n(ω) → (y ∈ {z|z ∈ ℘n(ω) ∧ B#[z]} ↔
B#[y])) as an easy consequence of Z2. By SL, `ZF (A)Z .

5). A is an instance of ST2, i.e., (∀xn+1) (∀yn+1)((∀zn)(zn ∈ xn+1↔
zn ∈ yn+1)→ xn+1 = yn+1). Given ST’s definition of identity (A)Z
is (∀x)(x ∈ ℘n+1(ω)→ (∀y)(y ∈ ℘n+1(ω)→ ((∀z)(z ∈ ℘n(ω)→
(z ∈ x ↔ z ∈ y)) → (∀z)(z ∈ ℘n+2(ω) → (x ∈ z ↔ y ∈ z))))).
This can be proven in ZF as follows:

(1) 1. x ∈ ℘n+1(ω) Hyp
(1) 2. x ⊆ ℘n(ω) 1, Z4 QL
(3) 3. y ∈ ℘n+1(ω) Hyp
(3) 4. y ⊆ ℘n(ω) 3, Z4 QL
(5) 5. (∀z)(z ∈ ℘n(ω)→ (z ∈ x ↔ z ∈ y)) Hyp
(6) 6. z ∈ x Hyp

56

(1,6) 7. z ∈ ℘n(ω) 2, 6, Df. ⊆ QL
(1,5,6) 8. z ∈ y 5, 6, 7 QL
(1,5) 9. z ∈ x → z ∈ y 6–8 CP
(3,5) 10. z ∈ y → z ∈ x CP like 6–8
(1,3,5) 11. (∀z)(z ∈ x ↔ z ∈ y) 9, 10 BI, UG
(1,3,5) 12. x = y 11 Df. =

13. z ∈ ℘n+2(ω)→ (x ∈ z↔ x ∈ z) Taut
(1,3,5) 14. z ∈ ℘n+2(ω)→ (x ∈ z↔ y ∈ z) 12, 13 LL
(1,3,5) 15. (∀z)[14] 14 UG
(1,3) 16. [5]→ [15] 5–15 CP
(1) 17. [3]→ [16] 3–16 CP
(1) 18. (∀y)[17] 17 UG

19. [1]→ [18] 1–18 CP
20. (∀x)[19] 19 UG

6). A is ST3, i.e., (∃x3)((∀x0)〈x0, x0〉 /∈ x3 ∧ (∀x0) (∃y0)〈x0, y0〉 ∈
x3 ∧ (∀x0) (∀y0) (∀z0)(〈x0, y0〉 ∈ x3 ∧ 〈y0, z0〉 ∈ x3 → 〈x0, z0〉 ∈
x3)) . Then (A)Z is (∃x)(x ∈ ℘(℘(℘(ω)))∧(∀y)(y ∈ω→ 〈y, y〉 /∈
x) ∧ (∀z)(z ∈ ω → (∃x1)(x1 ∈ ω ∧ 〈z, x1〉 ∈ x)) ∧ (∀y1)(y1 ∈
ω → (∀z1)(z1 ∈ ω → (∀x2)(x2 ∈ ω → (〈y1, z1〉 ∈ x ∧ 〈z1, x2〉 ∈
x → 〈y1, x2〉 ∈ x))))). Consider the relation E, defined as follows:
{x |x ∈ ℘(℘(ω))∧ (∃y) (∃z)(x = 〈y, z〉 ∧ y ∈ z)}, i.e., the less-than
relation among members of ω. We have all of the following:
`ZF E ∈ ℘(℘(℘(ω)))
`ZF (∀y)(y ∈ω→ 〈y, y〉 /∈ E)
`ZF (∀z)(z ∈ω→ (∃x1)(x1 ∈ω∧ 〈z, x1〉 ∈ E))
`ZF (∀y1)(y1 ∈ω→ (∀z1)(z1 ∈ω→ (∀x2)(x2 ∈ω →

(〈y1, z1〉 ∈ E ∧ 〈z1, x2〉 ∈ E→ 〈y1, x2〉 ∈ E))))
Hence, we get `ZF (A)Z by Conj and EG.

Lemma 3: For any wffA , if `STA , then `ZF (A)Z .

Proof:

Assume `ST A . By definition, there is an ordered sequence of wffs
B1, . . . ,Bn, where Bn is A and for each Bi, where 1 ≤ i ≤ n, ei-
ther (a)Bi is an axiom, (b)Bi follows from previous members by MP,
or (c) Bi follows from previous members by UG. We shall prove by
strong/complete induction on its line number that for each suchBi, we

have `ZF (Bi)Z . (We can assume that we already have `ZF (B j)Z for all
1≤ j < i.) There are three cases to consider.

(a) Bi is an axiom of ST. By Lemma 2, we have `ZF (Bi)Z .

(b) Bi follows by previous members of the sequence by MP. Hence,
there are previous members of the sequence B j and Bk where
Bk takes the form (B j → Bi). By the inductive hypothesis, we
have `ZF (B j)Z and `ZF (Bk)Z , i.e., `ZF y1 ∈ ℘

m1(ω) → (y2 ∈
℘m2(ω)→ . . . (B j)#), where y1, y2, etc., are the free variables of
(B j)#, and `ZF y1 ∈ ℘

m1(ω)→ (y2 ∈ ℘
m2(ω)→ . . . (z1 ∈ ℘q1(ω)→

(z2 ∈ ℘q2(ω)→ . . . ((B j)# → (Bi)#)))), where z1, z2 are the free
variables of (Bi)# not in (B j)#. By SL, `ZF y1 ∈ ℘

m1(ω)→ (y2 ∈
℘m2(ω) → . . . (z1 ∈ ℘q1(ω) → (z2 ∈ ℘q2(ω) → . . . (Bi)#))). Also,
by SL, one can pull to the front those variables in the list y1, y2 that
do not occur free in (Bi)#. By UG, and UI, one can instantiate each
such variable to obtain an antecedent either of the form ℘mi−1(ω) ∈
℘mi(ω) or of the form 0 ∈ω, and discharge them by Lemma 1 (or
T19 and ZF8) and MP, resulting in `ZF (Bi)Z .

(c) Bi follows by previous members of the sequence by UG. hence,
there is some previous member of the sequence B j and Bi takes
the form (∀x n)B j. By the inductive hypothesis, we have `ZF y1 ∈
℘m1(ω)→ (y2 ∈ ℘

m2(ω)→ . . . (B j)#), where y1, y2, etc., are the
free variables of (B j)#. Let z be the variable we use to replace
x n. Most likely, it occurs in the list y1, y2, but even if not, we can
push it in (or add it then push it in) to the end, to get `ZF y1 ∈
℘m1(ω)→ (y2 ∈ ℘

m2(ω)→ . . . (z ∈ ℘n(ω)→ (B j)#)). By QL, `ZF

y1 ∈ ℘
m1(ω) → (y2 ∈ ℘

m2(ω) → . . . (∀z)(z ∈ ℘n(ω) → (B j)#)),
which is `ZF (Bi)Z .

Hence, for all suchBi, `ZF (Bi)Z , and sinceA isBn, we have `ZF (A)Z .
Hence, if `STA then `ZF (A)Z .

Finally, we are ready to establish our main result: if ZF is consistent, then
ST is consistent.

We shall prove the transposition: If ST is inconsistent, then ZF is incon-
sistent. Suppose that ST is inconsistent. From any contradiction in

57

ST, everything follows. Hence there are closed wffs A and ¬A such
that `ST A and `ST ¬A . By Lemma 3, it follows that `ZF (A)Z and
`ZF (¬A)Z . Since A is closed, (¬A)Z is ¬(A)Z , and so `ZF ¬(A)Z ,
and ZF is inconsistent as well.

More or less the same line of proof can be used to show:

• that ST is relative to NBG (or even weaker system Z, since nothing
in the above uses the axiom of replacement); and

• that HOPC (the higher-order predicate calculus) is consistent relative
to ZF.

Other relative consistency results (e.g., that ZF is consistent relative to
NBG) can be carried out using similar “translation” schemes.

XX. Quine’s System NF

We now turn our attention to less common approaches to the foundations
of mathematics, with very different philosophical motivations. Two of
the most influential were developed by W. V. Quine.

A. Background

The system of Quine’s “New Foundations” was meant as a compromise
between the limitations of type-theory and the naiveté of unrestricted
set abstraction as in system F.

In system ST, a formula is only regarded as well-formed when the type
of any term preceding the sign “∈” is always one less than the type of
the term following the sign. Hence the following is well-formed:

x1 ∈ y2 ∧ y2 ∈ z3

Whereas the following is not:

x1 ∈ y2 ∧ y2 ∈ x1

In Principia Mathematica, Whitehead and Russell often employed a device
known as typical ambiguity when stating general results and giving
proofs. The upshot was that they would leave off type indices, leaving
it to the reader to determine the types of the terms as being any types
consistent with the rules governing what formulas are well-formed. Thus
instead of writing the single formula:

(∀x0) (∃y1) (∀z0)(z0 ∈ y1↔ z0 = x0)

Or the explicitly schematic:

(∀xn) (∃yn+1) (∀zn)(zn ∈ yn+1↔ zn = xn)

They would write simply:

(∀x) (∃y) (∀z)(z ∈ y↔ z = x)

It would then be understood that the reader could understand the vari-
ables to be of any type consistent with it being a wff, so that the reader
could take the above as any of:

(∀x0) (∃y1) (∀z0)(z0 ∈ y1↔ z0 = x0)

(∀x1) (∃y2) (∀z1)(z1 ∈ y2↔ z1 = x1)

(∀x2) (∃y3) (∀z2)(z2 ∈ y3↔ z2 = x2), etc.

This leads to the question as to whether it might be possible to have a
system like type-theory but in which variables simply do not have types,
but in which a formula would only be well-formed if it were possible to
place superscripts on all the terms such that a number placed for a term
preceding “∈” were always one less than the number placed on the term
following it.

That is, consider a first-order language with only one type of variable,
with a single two-place predicate, ∈, and no further predicates, constants
or function-letters or vbtos. Then consider the following definition:

Definition: A formulaA is stratified iff there is a function F from the
variables ofA to natural numbers such that for any portion ofA of the
form x ∈ y , it holds that F(x) + 1= F(y).

58

In other words, a formula is stratified iff it would be possible to regard
it as the “typically ambiguous” representation of a possible wff of ST.
Thus, e.g., “(∀x) (∃y) (∀z)(z ∈ y↔ z = x)” is stratified in virtue of the
function assigning 0 to both x and z, and 1 to y. However y ∈ y or
x /∈ x are unstratified.

Notice that the distinction between stratified and unstratified formulas
applies to formulas of an untyped language. (Roughly, a wff A of an
untyped language is stratified iff it could be translated into the typed
language of ST.)

One suggestion (not taken up by Quine) is to restrict well-formed for-
mulas to stratified formulas and attempt to carry out mathematics in a
type-free language, but in which it is be impossible to even to speak of the
existence of, e.g., a Russell class, since, e.g., (∃y) (∀x)(x ∈ y↔ x /∈ x)
is unstratified.

Quine takes things a step further. One question that arises is whether
type-restrictions should really be restrictions on meaning or what is well-
formed. Even if one regards sets as divided into different types, so that
a set is never a member of itself, but only ever a member of sets the
next type-up, does this mean that “x ∈ x” should be meaningless or
syntactically ill-formed? (Indeed, one cannot even state that no set can
be a member of itself, since, (∀x) x /∈ x is not well-formed!)

Quine proposes a system not in which stratification is adopted as a
criterion for well-formedness, but in which stratification is used as a
criterion for determining what sets or classes exist. That is, he takes
an underlying idea behind the theory of types and modifies it from a
theory restricting the meaningfulness of certain formulas to a theory of
ontological economy, or a theory restricting what sets are postulated to
exist.

(In particular, {x |A [x]} is postulated to exist only when A [x] or an
equivalent wff is stratified.)

The result is a type-free first-order system whose variables are unre-
stricted in scope: ranging over everything. Moreover, unstratified for-
mulas are allowed in the language: “x ∈ x”, “y /∈ y” are nevertheless
wffs, even though Quine does not postulate the existence of sets of all

and only those things satisfying such formulas.

B. Syntax of NF

As Quine himself formulated NF, it had only a single binary connective
(“∈”), and no additional predicates, constants, function letters or vbtos.

Quine adopted Russell’s theory of descriptions, wherepon a quasi-term

ιxA [x], read “the x such that A [x]” would be used as part of a
contextual definition:

B[ιxA [x]] is an abbreviation for:

(∃x)((∀y)(A [y]↔ y = x)∧B[x])

I.e., “one and only one thing satisfiesA [x] and it also satisfiesB”.

Those of you familiar with Russell’s theory of descriptions know that
such “contextual definitions” give rise to scope ambiguities. For ex-
ample, does ¬F(ιx Gx) mean (∃x)((∀y)(G y ↔ y = x) ∧ ¬F x) or
¬ (∃x)((∀y)(G y↔ y = x)∧ F x)?

For Quine, since the only place where terms may occur is flanking the
sign ∈, he gives explicit definitions for atomic wffs containing description
“quasi-terms” as follows:

ιx A [x] ∈ z for (∃x)((∀y)(A [y]↔ y = x)∧ x ∈ z)
z ∈ ιx A [x] for (∃x)((∀y)(A [y]↔ y = x)∧ z ∈ x)

ιx A [x] ∈ ιzB[z] for (∃x)((∀y)(A [y]↔ y = x)∧
(∃z)((∀y)(B[y]↔ y = z)∧ x ∈ z))

Such definitions are applied to atomic parts of a wff, so descriptions
always have narrow scope. Quine then introduces class abstracts by
means of descriptions:

{x |A [x]} abbreviates ιy (∀x)(x ∈ y ↔A [x])

In order to sidestep such complications regarding descriptions, Hatcher
formulates NF using the vbto {x |A [x]} as primitive. He must then give
a definition of stratification according to which the function must assign
a number to every term of a wff, and the number assigned to a term of

59

the form {x |A [x]} must be one more than the number assigned to the
variable x . Then, in any portion of the form t ∈ u in any stratified wff
A , the number assigned to u must be one more than that assigned to t .

So long as one deals only with terms of the form {x |A [x]} whenA [x]
is stratified, the differences between Hatcher’s practice and Quine’s are
trivial.

Additional definitions can be added showing a remarkable similarity to
those for System F:

Definitions:

t /∈ u for ¬t ∈ u
t = u for (∀x)(x ∈ t ↔ x ∈ u)
t 6= u for ¬t = u
t ⊆ u for (∀x)(x ∈ t → x ∈ u)
{t} for {x |x = t}

{t , u} for {x |x = t ∨ x = u}
〈t , u〉 for {{t}, {t , u}}

t for {x |x /∈ t}
(t ∩ u) for {x |x ∈ t ∧ x ∈ u}
(t ∪ u) for {x |x ∈ t ∨ x ∈ u}
(t − u) for {x |x ∈ t ∧ x /∈ u}
℘(t) for {x |x ⊆ t}

V for {x |x = x}
Λ for {x |x 6= x}

We say that a term {x |A [x]} is stratified whenA [x] is stratified. All
of the abstracts used above are stratified if t and u are, though notice
that when embedded in a larger wff, the function must be able to assign
the same value to t and u in any wff in which t = u, t 6= u, t ⊆ u, {t , u},
〈t , u〉, t ∩ u, t ∪ u, or t − u appear.

The definition of identity here rules out urelements, or forces us (as
Quine deems “harmless”) to identify an urelement with its own singleton.
(In fact, it may not be so harmless!)

C. Axiomatization

Mostly due their difference as to whether or not to take the vbto
{x |A [x]} as primitive, Quine and Hatcher give slightly different ax-
iomatizations. The differences are unimportant, as we shall now prove.

Hatcher’s Formulation

NF has the following proper axiom schemata:

NF1. (∀x) (∀y)(x = y → (A [x , x]→A [x , y])), where y does not
occur bound inA [x , x].

NF2. (∀x)(x ∈ {y |A [y]}↔A [x]), provided thatA [y] is stratified,
and x does not become bound when placed in the contextA [x].

NF2 appears superficially the same as F2, except for the limitation to
stratified formulas. In fact, the limit of F2 to stratifed formulas is the
only difference between NF and System F.

Quine’s Formulation

Instead of NF2 as above, Quine adopts the existential posit:

NF2′. (∃y) (∀x)(x ∈ y↔A [x]), whereA [x] is stratified and does
not contain y free.

However, given his understanding of {x |A [x]} as a definite description,
from NF2′ one can derive Hatcher’s NF2 as follows:

Assume throughout thatA [y] is stratified.

(1) 1. x ∈ {y |A [y]} Hyp
(1) 2. x ∈ ιz (∀y)(y ∈ z↔A [y]) 1 Df. {y |A [y]}
(1) 3. (∃z)((∀w)((∀y)(y ∈w ↔A [y])↔w = z)∧ x ∈ z) 2 Df. ιz
(1) 4. (∀w)((∀y)(y ∈w ↔A [y])↔w = b)∧ x ∈ b 3 EI
(1) 5. (∀y)(y ∈ b↔A [y])↔ b = b 4 Simp, UI

6. b = b Ref=
(1) 7. (∀y)(y ∈ b↔A [y]) 5, 6 BMP

60

(1) 8. x ∈ b↔A [x] 7 UI
(1) 9.A [x] 4, 8 SL

10. x ∈ {y |A [y]} →A [x] 1–9 CP
(11) 11.A [x] Hyp

12. (∃y) (∀x)(x ∈ y↔A [x]) NF2′

13. (∀x)(x ∈ c↔A [x]) 12 EI
(11) 14. x ∈ c 11, 13 UI, BMP
(15) 15. (∀y)(y ∈w ↔A [y]) Hyp

16. y ∈ c↔A [y] 13 UI
(15) 17. y ∈w ↔A [y] 15 UI
(15) 18. y ∈w ↔ y ∈ c 16, 17 SL
(15) 19. w = c 18, UG, Df. =

20. (∀y)(y ∈w ↔A [y])→w = c 15–19 CP
(21) 21. w = c Hyp
(21) 22. (∀x)(x ∈w ↔A [x]) 13, 21 LL
(21) 23. (∀y)(y ∈w ↔A [y]) 22 UI, UG

24. w = c→ (∀y)(y ∈w ↔A [y]) 21–23 CP
25. (∀y)(y ∈w ↔A [y])↔w = c 20, 24 BI
26. (∀w)((∀y)(y ∈w ↔A [y])↔w = c) 25 UG

(11) 27. (∀w)((∀y)(y ∈w ↔A [y])↔w = c)∧ x ∈ c 14, 26 Conj
(11) 28. (∃z)((∀w)((∀y)(y ∈w ↔A [y])↔w = z)∧ x ∈ z) 27 EG
(11) 29. x ∈ {y |A [y]} 28 Dfs. {y |A [y]}, ιz

30.A [x]→ x ∈ {y |A [y]} 11–29 CP
31. (∀x)(x ∈ {y |A [y]}↔A [x]) 10, 30 BI, UG

We also have the following derived rules on Quine’s formulation:

UI*: (∀x)B[x] `NFB[{y |A [y]}], provided thatA [y] is stratified and
{y |A [y]} contains no free variables that become bound in the context
B[{y |A [y]}].

EG*: B[{y |A [y]}] `NF (∃x)B[x], provided that A [y] is stratified
and {y |A [y]} contains no free variables that become bound in the
contextB[{y |A [y]}].

It is therefore harmless to treat {y |A [y]} as though it were a standard
term, provided that it is stratified. Thus in what follows we shall not
worry about the differences between Quine’s and Hatcher’s formulations.

Notice that ifA [y] is not stratified, and is not equiva-
lent to any stratified wff, then, there is no proof that
the term {y |A [y]} is a “proper description”. If there
no such unique class matching this description, any
atomic wff or atomic part of a wff containing it is al-
ways false.

For instance, x /∈ x is not stratified, and so any atomic
wff containing {x |x /∈ x} is false, and indeed, in
Quine’s formulation demonstrably so.
`NF {x |x /∈ x} /∈ {x |x /∈ x}

From the above no contradiction follows, as we do not
have an instance of NF2 of the form:

(∀y)(y ∈ {x |x /∈ x}↔ y /∈ y)

D. Development of Mathematics

Many theorems of NF are proven exactly as they are for system F. Hence
we shall not usually bother to give the details.

T0. `NF (∀x) x = x
T1. `NF (∀x) x ∈ V
T1a. `NF V ∈ V

Notice that T1a marks a point of departure of NF from both ZF and
ST. Some sets are members of themselves. (Given Quine’s intention to
identify individuals as their singletons, they too would be members of
themselves.)

61

T2. `NF (∀x) x ⊆ V
T3. `NF ℘(V) = V
T4. `NF (∀x) x /∈ Λ

Some mathematical definitions are below. Again, they are similar to
those for System F. Notice that the barrier present to using the Frege-
Russell definition of numbers as classes of like-membered classes does
not exist for NF. (Notice, moreover, that we cannot use the von Neumann
numbers, since x ∪ {x} is unstratified.)

We can even define Nc(t) for “the cardinal number of t ,” i.e., the number
to which t belongs.

Definitions:

0 for {Λ}
t ′ for {x | (∃y)(y ∈ x ∧ x − {y} ∈ t)}
N for {x | (∀y)(0 ∈ y ∧ (∀z)(z ∈ y → z′ ∈ y)→ x ∈ y)}

Fin for {x | (∃y)(y ∈ N ∧ x ∈ y)}
Inf for Fin

R for {x | (∀y)(y ∈ x → (∃z1) (∃z2)(y = 〈z1, z2〉))}
F for {x |x ∈ R∧ (∀y) (∀z1) (∀z2)(〈y, z1〉 ∈ x ∧ 〈y, z2〉 ∈ x → z1 = z2)}

F1 for {x |x ∈ F ∧ (∀y) (∀z1) (∀z2)(〈z1, y〉 ∈ x ∧ 〈z2, y〉 ∈ x → z1 = z2)}
D(t) for {x | (∃y)〈x , y〉 ∈ t}
I(t) for {y | (∃x)〈x , y〉 ∈ t}

t ∼= u for (∃x)(x ∈ F1 ∧ D(x) = t ∧ I(x) = u)
Nc(t) for {x |x ∼= t}
(t + u) for {x | (∃y) (∃z)(x = y ∪ z ∧ y ∈ t ∧ z ∈ u ∧ y ∩ z = Λ)}

1 for 0′

2 for 1′

3 for 2′, etc.

T5. `NF 0 ∈ N (=Peano postulate 1)
T6. `NF (∀x)(x ∈ N → x ′ ∈ N) (=Peano postulate 2)
T7. `NF (∀x)0 6= x ′ (=Peano postulate 3)
T8. `NF (∀x)(0 ∈ x ∧ (∀y)(y ∈ x → y ′ ∈ x)→ N ⊆ x)
T9. `NF A [0] ∧ (∀x)(x ∈ N ∧A [x] → A [x ′]) → (∀x)(x ∈ N →
A [x]), whereA [x] is any stratified wff.

The above theorem is a weaker version of the fifth Peano postulate. Its

weaker because it limits the application of mathematical induction to
stratified formulas. This is often seen as a defect of the system. (Fixing
this defect was one of Quine’s motivations for creating System ML, which
we shall discuss soon.)

The remaining Peano postulate, viz.:

(∀x) (∀y)(x ∈ N ∧ y ∈ N ∧ x ′ = y ′→ x = y)

is a theorem of NF. However, its proof is very complicated, and indeed
follows from what many see as another defect of system NF: that the
negation of the axiom of choice is a theorem. As we explained in our
discussions of this result in F and ST, this Peano postulate requires that
there be an infinite number of objects, or that the universal set V is not a
member of any natural number.

Notice that we cannot establish an infinite set using the sort of proof
we used for System F, in which we proved that the set ω has an infinite
number of members. The definition given for ω cannot be given since
x ∪ {x} is not stratified.

In his original article, Quine notes that Λ, {Λ}, {{Λ}}, {{{Λ}}}, . . . can
each be shown to be different from each other. However, we cannot
define a set that contains all and only members of this series. It is
tempting to attempt to define such a set using the abstract:

{x | (∀y)(Λ ∈ y ∧ (∀z)(z ∈ y → {z} ∈ y)→ x ∈ y)}

But this term is not stratified either.

We shall discuss how it is that the existence of an infinite set can be
established for NF a bit later.

Some other results:

T10. `NF (∀x1) (∀x2) (∀y1) (∀y2)(〈x1, y1〉= 〈x2, y2〉 ↔
x1 = x2 ∧ y1 = y2)

T11. `NF (∀x) x ∼= x

62

T12. `NF (∀x) (∀y)(x ∼= y → y ∼= x)
T13. `NF (∀x) (∀y) (∀z)(x ∼= y ∧ y ∼= z→ x ∼= z)

From which we derive Hume’s Law in the form:

(HL) `NF (∀x) (∀y)(Nc(x) = Nc(y)↔ x ∼= y)

Definitions:

t 6∼= u for ¬t ∼= u
℘u(t) for {x | (∃y)(y ∈ t ∧ x = {y})}

℘u(t) is the set of all singletons (or “unit sets”) of members of t . So if t
is {0, 1,2}, then ℘u(t) is {{0}, {1}, {2}}. (℘u(t) is stratified if t is.)

T14. `NF 1= ℘u(V)

HOMEWORK

Prove T14.

T15. `NF (∀x) x ′ = x + 1

E. Cantorian and Non-Cantorian Sets in NF

Cantor’s theorem states that no set is equinumerous with its own power
set, i.e.:

(∀x) x 6∼= ℘(x)

This theorem is usually proven by a reductio as absurdum. Suppose for
any set a there is a 1–1 function f with a as domain and ℘(a) as range.
Let e1, e2, e3, . . . , etc. be the members of a. We can depict the mapping
between a and its powerset as something such as the following:

Members of a Members of ℘(a)
e1 ⇐⇒ {e1, e2}
e2 ⇐⇒ {e1}
e3 ⇐⇒ {e3}
e4 ⇐⇒ {e1, e2, e3}
e5 ⇐⇒ { }

...
...

Notice that in any such purported mapping, some members of a will be
mapped to a subset of a that contains it, and others won’t be. Here, e1

and e3 are members of their corresponding subsets, but the others are
not. Now, let w be the subset of a which contains all members of a not
in the subset of a onto which f maps them, i.e.:

w for {x |x ∈ a ∧ (∀y)(〈x , y〉 ∈ f → x /∈ y)}

Now, w is a subset of a, and hence a member of the powerset of a, and
therefore should be in the range of f . However, this is not possible, since
there would have to be some member of a, viz., ew of a for which w is the
value of f for ew as argument. But then one would get a contradiction
since ew ∈ w↔ ew /∈ w. Hence, there cannot be such a function as f .

This proof works for systems such as F, ZF and NBG. However, it does
not work for NF, since the definition given above for w is not stratified.

Recall that in order for a wff containing “〈x , y〉” to be stratified, it must
be possible to assign the same number to “x” and “y”. This is not possible
with w since it contains “x /∈ y”.

Hence one cannot prove that ew ∈ w ↔ ew /∈ w or even that w is a
member of ℘(a). The usual proof of Cantor’s theorem is not possible in
NF.

In fact, the negation of Cantor’s theorem is a theorem of NF. Notice that
`NF V ∼= V by T11, and by T3, `NF ℘(V) = V. By LL, `NF V ∼= ℘(V).

However, by a proof very similar to the one just given, it is possible to
establish that ℘u(x) is never equinumerous with ℘(x).

We simply consider any such mapping as:

Members of ℘u(a) Members of ℘(a)
{e1} ⇐⇒ {e1, e2}
{e2} ⇐⇒ {e1}
{e3} ⇐⇒ {e3}
{e4} ⇐⇒ {e1, e2, e3}
{e5} ⇐⇒ { }

...
...

63

We then define the subset of a that must be left out of the mapping as
follows:

w∗ for {x |x ∈ a ∧ (∀y)(〈{x}, y〉 ∈ f → x /∈ y)}

Here, the definition of w∗ is stratified. It follows that w∗ ⊆ a, and
so that w ∈ ℘(a). Therefore, there must be some ew∗ in a such that
〈{ew∗}, w∗〉 ∈ f . It then follows that ew∗ ∈ w∗↔ ew∗ /∈ w∗.

The conclusion of this line of reasoning gives us:

T16. `NF (∀x)℘u(x) 6∼= ℘(x)
T16a. `NF ℘u(V) 6∼= ℘(V)

However, in virtue of T3 (and T12), we get the following startling result:

T17. `NF V 6∼= ℘u(V)

There are not equally many members of V as there are singletons sets
taken from members of V. Sets that are not equinumerous with their own
members’ singletons are called non-Cantorian sets.

The presence of non-Cantorian sets in NF is often regarded as its oddest
feature. Notice, that the seemingly “obvious” proof that every set is
Cantorian is blocked in NF, since 〈x , {x}〉 is not stratified.

F. The Failure of the Axiom of Choice in NF

Another startling result is that the Axiom of Choice is inconsistent with
NF, i.e., one can prove its negation in NF:

`NF ¬ (∀x) (∃y)(F(y)∧(∀z)(z ⊆ x∧z 6= Λ→ (∃z1)(〈z, z1〉 ∈ y∧z1 ∈ z)))

The actual proof is somewhat complicated. However, suppose (AC) held
in NF. Apply UI on x to V. Then there would be a function y such that for
all non-empty sets z, the value of y for z would be some member of z.
If we consider the restriction of y to ℘u(V), we have a function whose
domain is ℘u(V) and whose value for every singleton is a member of that
singleton. The function in question would be a 1–1 function, since no
two singletons share a member. Hence there would be a 1–1 function

whose domain is ℘u(V) and whose range is V and it would follow that
℘u(V)∼= V, contradicting T17 (and T12).

It follows from the above that the various equivalents of the Axiom of
Choice (the multiplicative axiom, the trichotomy principle, the well-
ordering principle, etc.) are also all disprovable in NF. Since the axiom
of choice (and its equivalents) are widely accepted by practicing mathe-
maticians, this is another reason for the relative unpopularity of NF.

Another issue is its consistency, which through most of NF’s existence was
considered an unsolved question. There is, however, currently a paper
under review (by M. J. Gabbay) alleging to establish NF’s consistency
relative to traditional set theory.

Two more consequences of the failure of the axiom of choice are worth
mentioning.

1. It can be proven that the axiom of choice holds for finite sets. It
follows that the universal set is infinite, from which one can establish
the fourth Peano postulate without postulating a special axiom of
infinity (as was done by some early proponents of NF).

2. Since the generalized continuum hypothesis implies the axiom of
choice, the generalized continuum hypothesis is also disprovable in
NF.

The oddities of NF are sufficient to establish that at any rate it is less
than an ideal system for the foundations of mathematics; indeed, Quine
himself eventually stopped championing it as his sole preferred theory.

Nevertheless, the general method of finding some restriction on the
comprehension principle of naïve set theory (F2) that leaves the system
both intuitive, easy to work with, and allows for the derivation of large
portions of mathematics remains an attractive one.

64

XXI. Variants of NF (ML, NFU)

A. Quine’s ML

Perhaps the most influential variation on NF was the system ML, also
proposed by Quine, three years after proposing NF, in his book Mathe-
matical Logic (from which ML gets its name). The main motivation for
ML was to obtain an unrestricted principle of mathematical induction,
and a straightforward proof of infinite sets. (The proof of infinity for NF
that makes use of the failure of the axiom of choice had not yet been
found when Quine proposed ML.) The original version of ML was found
to be inconsistent, but it was shown that the inconsistency was simply
due to a slip in presentation. We here examine the revised version of ML
from the second edition of Quine’s book.

ML stands to NF much the way that NBG stands to ZF. ML makes a
distinction between sets and proper classes. Every wff “comprehends” a
class, but only stratified wffs “comprehend” sets.

ML is a first-order theory with only a single binary predicate, “∈”. I find
it convenient, as we did for NBG, to use capital letters for the variables,
and use lowercase letters for restricted quantification over sets. The
definition of being a set is the same as NBG.

Definitions:

M(t) for (∃X) t ∈ X

Where x is a lowercase variable, and X is the first uppercase variable
that does not occur inA [x]:
(∀x)A [x] for (∀X)(M(X)→A [X])
(∃x)A [x] for (∃X)(M(X)∧A [X])

Definition: We say that a wff is predicative if and only if all its quantifiers
are restricted quantifiers.

We define a wff as stratified just as we did for NF.

The proper axiom schemata of ML are the following:

ML1. (∀X) (∀Y)(X = Y → (A [X , X]→A [X , Y])), where Y does not
occur bound inA [X , X].

ML2. (∃Z) (∀x)(x ∈ Z ↔A [x]), where A [x] does not contain Z
free.

ML3. (∀X1) . . . (∀Xn)(M(X1)∧ . . .∧M(Xn) →
(∃Z)(M(Z)∧ (∀X)(X ∈ Z ↔ M(X)∧A [X]))),

whereA [X] is predicative and stratified, and does not contain Z free,
and X1, . . . ,Xn are the free variables ofA [X] besides X .

ML2 postulates the existence of classes. ML3 postulates sets corresponding
to predicative, stratified formulas.

Using contextual definitions similar to those in NF, we obtain:

`ML (∀x)(x ∈ {y|A [y]} ↔A [x]), provided that x does not become
bound in the contextA [x].

This appears to be the same as F2, but once again, notice that the above
uses a restricted quantifier for sets. We also get:

`ML M({y|A [y]}) ∧ (∀x)(x ∈ {y|A [y]} ↔ A [x]), provided that x
does not become bound in the context A [x], and A [y] contains no
free variables besides y , andA [y] is predicative and stratified.

There are important differences between the set/proper class distinction
in ML and the similar distinction in NBG. In NBG, whether or not a class
is a set has to do with its size. In ML, the distinction has to do with its
defining membership conditions. Indeed, in ML, the universal class turns
out to be a set, and indeed, is a member of itself.

HOMEWORK

Prove: `ML {y|y = y} ∈ {y|y = y}

Definition:

N for {x | (∀Y)(0 ∈ Y ∧ (∀z)(z ∈ Y → z′ ∈ Y)→ x ∈ Y)}

From this, one gets the full principle of mathematical induction, for any
wffA [x]:

`MLA [0]∧ (∀x)(x ∈ N ∧A [x]→A [x ′])→ (∀x)(x ∈ N →A [x])

65

Hence, all of Peano arithmetic is provable in ML.

Despite the greater mathematical strength of ML, it has been proven that
ML and NF are equiconsistent: one is consistent if and only if the other
is.

B. Jensen’s System NFU

Ernest Specker proved that NF is consistent relative to system sometimes
known as simple type-theory with complete typical ambiguity, which is
obtained from ST (without the axiom of infinity), by adding an an
inference to the effect that whatever holds in one type holds in any other.
However, since this theory has not been shown consistent even relative
to ST, this does not put NF on more solid footing.

Another variant of NF, called NFU, however, has been shown consistent
relative to ST. (And since ST is consistent relative to ZF, this shows that
NFU is also consistent relative to ZF.) NFU is a relatively natural system
that one might suggest anyway as a modification of NF suited to allow
for the existence of urelements (or urelements not identified with their
own singletons.)

The syntax of NFU differs from that of NF in taking both membership
and identity as primitive. (Thus identity is not defined in terms of having
all the same members.) The system is built on the predicate calculus with
identity (and thus has the reflexivity of identity and LL as axioms). In
addition to these, it adds axioms of extensionality (for sets) and class
abstraction:

NFU1. (∀x) (∀y)((∃z)(z ∈ x)∧ (∀z)(z ∈ x ↔ z ∈ y)→ x = y)

NFU2. (∀x)(x ∈ {y |A [y]}↔A [x]), provided thatA [y] is stratified,
and x does not become bound when placed in the contextA [x].

(NFU2 is the same as NF2.)

Unlike NF, one cannot prove the negation of the axiom of choice in NFU:
nor even can one establish the existence of any infinite sets. (Unfortu-
nately, then, one also cannot prove the fourth Peano postulate without
adding some additional axioms.)

Nevertheless, the consistency of NFU to ST may show that Quine’s equat-
ing individuals with their own singletons might not have been so “harm-
less”.

XXII. Cocchiarella’s Higher-Order Variants

A. Background

Nino Cocchiarella has attempted what he calls a “reconstruction” of logi-
cism based on a higher-order system employing a notion of stratification
at least partly inspired by Quine.

The other part of motivation comes from the work of Frege (and very
early Russell). According to the way Frege thinks language works, some
expressions refer to objects, and others to concepts. Names like “Plato”,
“Berlin” and descriptions, e.g., “the largest star in the Big Dipper”, refer
to objects. The remainder of a sentence, when a referring expression
such as a name is removed, refers to a concept.

is a horse.
orbits the Sun.

Frege thought that both such expressions, and what they refer to (con-
cepts) are in some sense “incomplete” or “unsaturated”.

The above are examples of sentences from which a name has been
removed. Such expressions refer to what Frege calls first-level concepts,
or concepts applicable to objects. If one removes the name of a first-level
concept from a sentence, one is left with the name of a second-level
concept.

E.g., if we remove “is a horse” from these sentences:

Something is such that it is a horse.
If Socrates is a horse, then Plato is a horse.

We obtain:

66

Something is such that . . . (it)
If . . . (Socrates). . . , then . . . (Plato). . . .

Depending on which name of a first-level function completes the gap,
one is left with something true or something false. Second-level concepts
are applicable (or not) to first-level concepts. This forms the beginning
of a hierarchy of levels of concepts akin to what is found in higher-order
simple type-theory.

Frege regarded it as impossible for a concept to be predicated of it-
self. The reason of course is that different kinds of concepts exhibit
different kinds of incompleteness. A concept never has the right sort
of incompleteness in order to “complete” (or as Frege says, “saturate”
itself.)

“ is a horse” must be completed by a name, not something such
as “ is a horse” to yield a complete, grammatical sentence. “If
. . . (Plato). . . , then . . . (Socrates). . . ” can be completed by “ is a
horse” to form something grammatical, but not by itself, etc.

This hierarchy of levels of concepts was reflected in the grammar of
Frege’s logical language. Different styles of variables were used for
different levels, and it would be nonsense to instantiate a variable of
one type to an expression of another, or place a variable of one type in
its own argument spot, e.g., “F(F)” or “¬F(F)”. Recall that for Frege,
the expression for the first-level concept is not simply “F”, but “F()”,
revealing the incompleteness or unsaturation of the concept.

The use of different styles of variables, and different “shape” expressions
for different logical types in some ways sets Frege’s higher-order logic
apart from modern renditions that make use of lambda abstracts. If the
second level concept written in everyday English as “Something is such
that . . . (it). . . .” is written as “(∃x) . . . x . . . ”, it is quite clear that it does
not “fit” in its own blank space. It is not physically possible to violate the
type-restriction.

However, if it is written instead “[λF (∃x) F x]”, it is at least physically
possible to write, “[λF (∃x) F x]([λF (∃x) F x])”, and one would need
special grammatical rules (involving, e.g., type indices) to exclude such
a formula.

Frege went so far in analyzing ordinary language as to suggest that an
expression such as “the concept horse”, because it is not an incomplete or
gappy expression, and because it can fill the blank spot in an expression
such as “ is a horse”, or “ orbits the Sun” must not, despite
appearance, refer to a concept, but to an object.

Thus Frege thought that for every concept, there was an object that could
“go proxy for it”, i.e., would be referred to by a nominalized predicate
derived from a predicate expression for the concept. Thus, “the concept
horse”, “Humanity”, “Kindness”, etc., refer to what Cocchiarella calls
“concept-correlates”. There is also evidence, as Cocchiarella points out,
that Frege identified these “concept-correlates” with the extension or
value-range of a concept. Frege further claimed that the extension or
value-range of a concept “had its being” in the concept: that they were
in some sense, the same entity in a metaphysical sense.

For a given concept expression F(), one refers to its value-range as
“

,
α(F(α))”. In my formulation of Frege’s GG, I changed this notation

to {x |F x}, in keeping with the usual reading of Frege’s extensions of
concepts as classes. Cocchiarella, however, suggests that Frege’s logic of
value-ranges can instead be thought of as a logic of nominalized predicates,
i.e., one in which expressions for concepts can occur in both predicate
and subject positions. In effect, he is suggesting that F(

,
α(F(α))) is really

just a variation on F(F).

The effect then of including value-ranges is more or less to undo the
effects of having distinct levels. Every first-level concept corresponds to
an object: its concept-correlate (or value-range), etc. Every second-level
concept can be represented by a first-level concept which applies to an
object just in case that object is the correlate of a concept to which the
second-level concept applies. Cocchiarella calls this Frege’s “double-
correlation thesis”:

(∀M) (∃G) (∀F)(Mβ F(β)↔ G(
,
α(F(α))))

By repeating this reasoning, in effect, all concepts can be “reduced in
level” all the way down.

Of course, the introduction of concept-correlates as objects correspond-
ing to any arbitrary concept allows one in effect to apply concepts to

67

themselves, and thus obtain Russell’s paradox in the form gotten by
considering whether or not the concept whose value range is:

,
ε((∃F)(ε=

,
α(F(α))∧¬F(ε)))

applies to that very value-range.

Cocchiarella suggests a reconstruction of Frege’s logicism in which some
concepts are thought to have objects corresponding to them, others not.
To determine which ones do, and which ones don’t, Cocchiarella modifies
Quine’s notion of stratification. Here it is used not to restrict which sets
are postulated to exist, but which concepts can be “converted” into
objects.

Rather than employing Frege’s notation “
,
ε(. . .ε . . .)”, or the set theoretic

notation “{x | . . . x . . .}”, Cocchiarella employs what is now the usual
notation for forming complex predicates, viz. “[λx . . . x . . .]”. However,
such an expression, if homogenously stratified (defined below) may occur
either in a predicate or in a subject position, so that we may allow some
instances of:

[λxA [x]]([λxA [x]])

This is supposed to be analogous to Frege’s allowance of such construc-
tions as “the concept horse is a horse”, in which, a concept is predicated
of its own concept-correlate object.

Cocchiarella’s systems are formulated in the context of a second-order
logic (higher orders are not necessary given the possibility of reducing
level). Allowing suitably stratified λ-abstracts as valid substituends of
both individual and predicate variables in part undoes the usual type-
distinctions employed within a second, but this is no more dangerous
(suggests Cocchiarella) than the effect of removing the type-restrictions
of ST in favor of the stratification restrictions employed in system such
as NF.

B. The System of Homogeneous Simple Types (λ-
HST*): Syntax

Definition: An individual variable is any lowercase letter from ‘u’ to ‘z’
with or without a numerical subscript.

Definition: A predicate variable is any uppercase letter from ‘A’ to ‘T ’,
with a numerical superscript≥ 1 (indicating how many terms it is applied
to), and with or without a numerical subscript.

Well-formed expressions come in two varieties: well-formed formulas
(which have no “kind”)4 and terms (which have a kind depending on
how many arguments they can take):

Definition: A well-formed expression (wfe) is defined recursively as
follows:

(i) individual variables are well-formed expressions of type 0; predicate
variables are well-formed expressions both of kind 0 and of kind n
given by their superscripts;

(ii) if t and u are wfes of kind 0, then (t = u) is a wfe without a kind;
(iii) if P is a wfe of kind n, and t 1, . . . , t n are all wfes of kind 0, then

P (t 1, . . . , t n) is a wfe without a kind.
(iv) IfA is a wfe without a kind, and x 1, . . . , x n are distinct individual

variables, and [λx 1 . . . x nA] is homogeneously stratified (defined
below), then [λx 1 . . . x nA] is a wfe both of kind n and of kind
0; (Limiting case: if A is a wfe without a kind, and [λ A] is
homogeneously stratified, then [λA] is a wfe of type 0.)

(v) IfA is a wfe without a kind, then ¬A is a wfe without a kind;
(vi) IfA andB are each wfes without a kind, then (A ∨B) is a wfe

without a kind;
(vii) IfA is a wfe without a kind, and x is either an individual or predi-

cate variable, then (∀x)A is a wfe without a kind.

Definition: A formula or string of symbolsA made up of the elements
of the language of λ-HST* is said to be homogeneously stratified iff

4Instead of “kind”, Cocchiarella speaks of “types”; his type 1 is my “no kind” and his
type n+ 2 is my kind n+ 1.

68

there is a function f from the terms (or would-be terms) t making up
A to the natural numbers such that:

(i) if t = u occurs inA , then f (t) = f (u);
(ii) If P (t 1, . . . , t n) occurs inA , then f (t 1) = f (t 2) = . . . = f (t n), and

f (P) = f (t) + 1.
(iii) If [λx 1 . . . x nB] occurs in A then f (x 1) = f (x 2) = . . . = f (x n),

and f ([λx 1 . . . x nB]) = f (x 1) + 1.

We can see from the above, that e.g.:

[λx (∃F)(x = F ∧¬F(x))]

is not homogeneously stratified, and so does not count as a well-formed
λ-abstract in our syntax.

On the other hand, the abstract:

[λx (∃F) (∃y)(x = F ∧¬F(y))]

is homogeneously stratified, in virtue of the assignment of 0 to y, 1 to
both x and F , and 2 to the whole abstract.

If a λ-abstract occurs without binding any variables, it is meant as a name
of a proposition, so that, e.g., [λ (∀x) x = x] represents the proposition
that everything is self-identical.

λ-HST*: Formulation

Cocchiarella lays out the system using a slightly different axiomatization
of the underlying logic. However, I shall not delve into the details. It
suffices to note that it is possible to instantiate individual variables to any
term of kind 0, including lambda abstracts (if homogeneously stratified),
and to instantiate predicate variables to any term of the appropriate kind,
including lambda abstracts (again, if homogeneously stratified).

The system includes the following axiom schemata, in addition to the
standard laws for identity logic (Ref=, LL):

(λ-Conv*)
(∀y1) . . . (∀y n)([λx 1 . . . x nA [x 1, . . . , x n]](y1, . . . , y n)↔A [y1, . . . , y n]),

where x 1, . . . x n, y1, . . . , y n are distinct individual variables (and in order
to be well-formed, the λ-abstract needs to be homogeneously stratified).

(Id*)
(∀F n)([λx 1 . . . x n F n(x 1, . . . , x n)] = F n)

Although not an axiom schema of λ-HST* as such, Cocchiarella considers
adding the following in certain expansions of the system:

(Ext*):
(∀x 1) . . . (∀x n)(A [x 1, . . . , x n]↔B[x 1, . . . , x n]) →

[λx 1 . . . x nA (x 1, . . . , x n)] = [λx 1 . . . x nB(x 1, . . . , x n)]

This constrains us to take concept-correlates as extensionally individuated.
This is in keeping with Frege’s understanding of concepts as functions
from objects to truth-values.

HOMEWORK

Prove the following version of Basic Law V in Cocchiarella’s λ-HST* +
(Ext*):

`λ-HST*+(Ext*) (∀F) (∀G)(F = G↔ (∀x)(F x ↔ Gx))

The system λ-HST* + (Ext*) is roughly as powerful as (and is equicon-
sistent with) Jensen’s NFU. To obtain something equally powerful as
Quine’s NF, one must also add the assumption that every entity is a
concept-correlate:

(Q*) (for “Quine’s Thesis”)
(∀x) (∃F) x = F

Since Cocchiarella sees no reason to accept (Q*) (and indeed, alleges it
is not something Frege would accept), Cocchiarella believes that λ-HST*
+ (Ext*) is the better reconstruction of Frege’s logicism.

As a reconstruction of other views about the identity conditions of
concepts/concept-correlates, Cocchiarella also discusses a modal version
of λ-HST* (called �λ-HST*) obtained by adding the modal operator �
(for necessity) to the language, supplementing it with the axioms and
rules of S5 modal logic and weakening (Ext*) to the following:

69

(�Ext*)
(� (∀x 1) . . . (∀x n)(A [x 1, . . . , x n]↔B[x 1, . . . , x n])) →

[λx 1 . . . x nA (x 1, . . . , x n)] = [λx 1 . . . x nB(x 1, . . . , x n)]

I.e., concept-correlates are identical when they’re necessarily coextensive.
To obtain a large portion of mathematics, one must also assume that every
concept is coextensive with a rigid concept (one that either necessarily
holds or necessarily doesn’t hold of a given object or objects):

Definitions:

Rigidn for [λx (∃F n)(x = F n ∧ (∀y1) . . . (∀yn)(�F(y1, . . . , yn)∨
�¬F(y1, . . . , yn)))]

Cls for [λx (∃F1)(x = F1 ∧Rigid1(F
1))]

(PR)
(∀F n) (∃Gn)(Rigidn(G

n)∧
(∀x1) . . . (∀xn)(F n(x1, . . . , xn)↔ Gn(x1, . . . , xn)))

Adding (�Ext*) and (PR) to�λ-HST* results in a rival (more “Russellian”,
or so Cocchiarella claims) reconstruction of logicism. This system too is
equivalent with Jensen’s NFU.

Since λ-HST* + (Ext*) is only as strong as NFU, it has certain limitations
as a system for the foundations of mathematics. In particular, no theorem
of infinity is provable within it (blocking the derivation of the 4th Peano
postulate), and mathematical induction is limited to stratified formulas
(where natural numbers are defined as follows:)

Definitions:

0 for [λx (∃F)(x = F ∧ (∀y)¬F y)]
S for [λx y (∃F) (∃G)(x = F ∧ y = G ∧ (∀H)(G(H)↔

(∃z)(Hz ∧ F([λw Hw∧w 6= z]))))]
N for [λx (∀F)(F(0)∧ (∀y) (∀z)(F y ∧ S yz→ Fz)→ F x)]

To obtain something strong one must add either an axiom of infinity, or
(Q*), etc.

C. HST∗
λ
: Formulation

To obtain a stronger principle of mathematical induction, Cocchiarella
also considers a system that stands to λ-HST* the way ML stands to NF.
Cocchiarella calls the system HST∗

λ
.

We shall not discuss in full detail the exact formulation of HST∗
λ
, in part

because it does not employ a standard logical core, but instead a “free
logic” where not all well-formed terms are referential. Those of you
familiar with Hardegree’s free description logic (from his Intermediate
Logic course) may get the idea.

All λ-abstracts are considered well-formed terms, whether or not ho-
mogeneously stratified, and all are considered valid substituends of
higher-order quantifiers (e.g., “(∀F) . . .”, etc.). However, only some such
abstracts are considered valid substituends of the individual variables.
I.e., in order to instantiate a quantifier of the form “(∀x) . . . x . . .” to a
Lambda abstract (or to existentially generalize from it), one needs a
result of the form:

(∃y)([λx 1 . . . x nA [x 1, . . . , x n]] = y)

One begins only with the assumption:

(∃/HSCP*)
(∀f 1) . . . (∀f n)((∃y)(y = f 1)∧ . . . (∃y)(y = f n) →

(∃y)([λx 1 . . . x nA [x 1, . . . , x n]] = y)),
where f1, . . . , fn are the free predicate variables of
[λx 1 . . . x nA [x 1, . . . , x n]], and y is the first individual variable
not occurring therein, andA [x 1, . . . , x n] is homogeneously stratified and
bound to individuals (see below).

Definition: A wff is bound to individuals when all predicate quantifiers
(∀f) . . . in it occur in a context of the form (∀f)((∃x)(x = f) → . . .).
(The notion of being bound to individuals is analogous to the ML notion
of being predicative.)

Whence we get, e.g.:

(∃y)([λx x = x] = y)

70

However, we do not get:

(a) (∃y)([λx (∀F)(x = F →¬F x)] = y)
since the abstract in question is not homogeneously stratified.
We do, however, get:

(b) (∃G)([λx (∀F)(x = F →¬F x)] = G)
Without (a), however, the individual variables in (λ-conv*) cannot
be instantiated to the abstract [λx (∀F)(x = F → ¬F x)], thus
prevently a contradiction.

The system HST∗
λ
+ (Ext*) + (Q*) is equiconsistent with, and roughly

equally strong as, Quine’s ML. Of course, because Cocchiarella doubts
(Q*), he prefers the weaker HST∗

λ
+ (Ext*), which is roughly as strong

as MLU, which would be obtained from ML by allowing for urelements,
in the same way that NF is modified to become NFU.

While the definitions given for 0 and S are not bound to individuals, it is
possible to prove that they are equivalent to definitions using formulas
that are bound to individuals. The same cannot easily be said of N :

N for [λx (∀F)(F(0)∧ (∀y) (∀z)(F y ∧ S yz→ Fz)→ F x)]

Recall that the reason for advanting HST∗
λ

instead of the simpler λ-
HST* is to obtain an unrestricted principle of mathematical induction,
applicable to both stratified and unstratified formulas. To maintain
this, we need to keep the higher-order quantifier in F not restricted to
individuals.

Hence, Cocchiarella considers adding as an additional axiom the follow-
ing assumption:

(∃x)N = x

Thus making N an individual. (This is not actually needed, however, to
obtain any results about finite numbers.)

However, it is worth noting that, without (Q*), no theorem of infinity
in forthcoming in HST∗

λ
+ (Ext*). However, Cocchiarella regards an

axiom of infinity, when applied to concept-correlates rather than sets
or classes—or as in ST, to urelements or individuals—to have some
plausibility even as a logical truth.

Indeed, as he notes, there would need to be an infinite number of concept-
correlates if all we assume is the following:

(Inf*) (∀F n) (∀Gm) F n 6= Gm, where n and m are distinct natural
numbers.

In other words, concept-correlates corresponding to properties are never
identical to concept-correlates corresponding to two-place relations, and
concept-correlates corresponding to to two-place relations are never
identical to concept-correlates corresponding to three-place relations,
and so on. Since at least one concept-correlate (as an individual) can be
shown to exist for every kind, this means that there must be an infinite
number of concept-correlates.

XXIII. Hume’s Law, Frege’s Theorem and
Frege Arithmetic

A. Review

In our first unit, we examined a method using higher-order logic as a
foundations of mathematics in which numbers were defined as concepts
applicable to concepts: so 0 would be the concept a concept has if it
applies to nothing, 1 would be a concept a number has if it applies to
exactly one thing, and so forth. There were (at least) two pitfalls to
this approach. One was that in order to get the right identity condi-
tions for numbers, we needed to assume that concepts themselves have
extensional identity conditions. I.e., we had to add (Ext) as an axiom.

Another downfall was that if concepts are only considered as values of
higher-order variables, one cannot use them to establish the existence
of any objects. Hence, in order to establish the fourth Peano postulate,
we had simply to assume the existence of infinitely many objects or
individuals, i.e., assume (Inf).

Cocchiarella’s systems have similar drawbacks. They require some pos-
tulation similar to (Ext)—e.g., Cocchiarella’s (Ext*) or (�Ext*)—and
although, since concept-correlates are taken as objects or individuals,

71

and so one can establish the existence of some objects or individuals with-
out taking additional axioms, one still needs some further assumption in
order to derive an infinity of them.

In our first unit, we also looked at HOPA, or higher-order Peano arith-
metic, in which numbers were treated not as concepts, but as objects.
However, there the basic principles of numbers were simply taken as
axioms.

We shall now look at other second- (or higher-) order systems for the
foundations of mathematics, in which numbers are treated as objects or
individuals, but in which one does not assume an axiom of extensionality,
or take the Peano postulates (or anything similar) as primitive, but
instead attempts to derive them from some more basic—possibly logical
or at least “analytic”— assumptions.

B. Second-order Logic

We begin by sketching the syntax of the pure second-order predicate
calculus. It is more or less just a simplification of HOPC taken by just
eliminating all variables with order greater than 1. Thus the remaining
variables are of types are o (objects or individuals, (o) (properties of
objects or individuals), (o, o) (two-place relations between objects and
individuals), (o, o, o) (three-place relations between individuals), and
so on for any n-place relation between individuals. It is convenient to
replace these type symbols with speaking of variables of kind n, where
kind 0 is the kind of individuals, kind 1 is the kind of properties, kind 2
is the kind of two-place relations, and so on, as we did for Cocchiarella’s
systems. The difference, of course, is that we no longer include predicate
variables and lambda-abstracts also to be terms of kind 0.

As before, we use lowercase letters as individual variables, and uppercase
letters with superscript n for predicate variables of kind n.

Definition: A well-formed expression is defined as follows:

(i) Individual variables are well-formed expressions of kind 0; predi-
cate variables are well-formed expressions of kind n given by their
superscripts;

(ii) if P is a wfe of kind n, and t 1, . . . , t n, are n-many wfes of kind 0,
then P (t 1, . . . , t n) is a wfe without a kind;

(iii) if A is a wfe without a kind, and x 1, . . . , x n are n-many distinct
individual variables, then [λx 1 . . . x nA] is a wfe of kind n;

(iv) ifA andB are each a wfe without a kind, then (A ∨B) is a wfe
without a kind;

(v) ifA is a wfe without a kind, then ¬A is a wfe without a kind;
(vi) ifA is a wfe without a kind, and x is either an individual or predi-

cate variable, then (∀x)A [x] is a wfe without a kind.

Definitions: As before, a wfe without a kind is called a well-formed
formula (wff); a wfe with a kind is called a term.

It is typical to employ the following definition of identity for wfes of kind
0:

t = u for (∀f 1)(f 1(t)↔ f 1(u))

In addition to normal logical axioms, allowing the instantiation of quan-
tifiers with variables of type n to terms of type n, etc.), we also have a
principle of lambda conversion (λ-conv):

(∀y1) . . . (∀y n)([λx 1 . . . x nA [x 1, . . . , x n]](y1, . . . , y n)↔
A [y1, . . . , y n]),

where x 1, . . . , x n, y1, . . . , y n are distinct individual variables.

An easy consequence of λ-conv, and existential generalization for vari-
ables of kind n is the following, called the comprehension principle:

(CP)
(∃F n) (∀x1) . . . (∀x2)(F(x1, . . . , xn)↔A [x1, . . . , xn]), where
A [x1, . . . , x2] is any wff not containing F n free.

Second-order predicate logic is sometimes formulated instead by not
including λ-abstracts, but instead taking (CP) as an axiom instead. The
differences between such formulations and ours are usually trivial.

In what follows we consider certain small expansions of the above system
sufficient for arithmetic.

72

C. Frege Arithmetic

One obtains what amounts to Frege’s system GG from the above either by
allowing all Lambda abstracts as terms of kind 0—as done by Cocchiarella,
but regardless of whether or not they are stratified or predicative—or by
adding a functor that maps every concept to its “extension” or “concept-
correlate”. That is, we add to the syntax the following stipulation:

(vii) If P is a wfe of kind 1, then Ext(P) is a wfe of kind 0.

One can then add what amounts to Frege’s Basic Law V as follows:

(BLV) (∀F) (∀G)(Ext(F) = Ext(G)↔ (∀x)(F x ↔ Gx))

Ext([λxA [x]]) would then be a variant of the notations {x |A [x]} or
,
ε(A [ε]).

Unfortunately, with the following definition:

t ∈ u for (∀f 1)(u = Ext(f)∧ f (t))

BLV leads to the unrestricted theorem schema:

(∀x)(x ∈ Ext([λyA [y]])↔A [x])

And hence to Russell’s paradox.

However, the main use of BLV for Frege’s treatment of numbers was in
its definition of the number belonging to the concept F as the extension
of the concept extension of a concept equinumerous with the concept F .
I.e.:

Definitions:

Where f and g are terms of kind 1, r is an appropriate variable of kind
2, and x , y and z are variables of kind 0:

f ∼= g for
(∃r)((∀x) (∀y) (∀z)(r (x , y)∧ r (x , z)→ y = z)∧

(∀x) (∀y) (∀z)(r (y , x)∧ r (z, x)→ y = z)∧
(∀x)(f (x)→ (∃y)(g(y)∧ r (x , y)))∧

(∀x)(g(x)→ (∃y)(f (y)∧ r (y , x))))

(Note: other authors write F Eq G, Eqx(F x , Gx), F ≈ G instead of
F ∼= G.)

#(f) for Ext([λx (∃g)(x = Ext(g)∧ f ∼= g)])

Note: in a formulation of second-order logic without λ-abstracts, one
needs to use instead of the simple notation “#(f)”, a vbto, usually written
“#x :A [x]” or “Nx :A [x]” for “the number of x such thatA [x]”. With
λ-abstracts, one can write simply “#([λxA [x]])” for the same thing.

These definitions allowed Frege to obtain an important principle often
known as Hume’s Law or Hume’s Principle:

(HL) (∀F) (∀G)(#(F) = #(G)↔ F ∼= G)

After obtaining (HL), Frege derives the basic properties of numbers, i.e.,
the Peano postulates from Hume’s Law alone, and never returns to Basic
Law V.

It has been suggested (especially by Crispin Wright) that Frege’s deriva-
tion of the basic properties of numbers from (HL) should be regarded
as a substantial achievement, even if his proof of (HL) from (BLV) is
mistaken.

This suggests that instead of defining numbers as extensions, we may
take numbers as primitive, i.e., instead of:

(vii) If P is a wfe of kind 1, then Ext(P) is a wfe of kind 0.

add the stipulation:

(vii) If P is a wfe of kind 1, then #(P) is a wfe of kind 0.

Thus taking the notation #(P) as primitive, rather than defining it as
Frege did.

Frege Arithmetic (FA) is the system obtained by adding (HL) (with #()
taken as primitive) as an axiom to the second-order predicate calculus.

It turns out that FA is consistent iff PA2 is. (PA2 is second-order Peano
Arithmetic—the system like HOPA except restricting the language to 2nd
order formulas.)

73

D. Frege’s Theorem

Frege’s theorem is the result that all of Peano Arithmetic can derived in
second-order logic from HL alone (i.e., in system FA).

Definitions:

0 for #([λx x 6= x])
t P u for (∃f) (∃x)(u = #(f)∧ f (x)∧ t = #([λy f (y)∧ y 6= x]))
N(t) for (∀f)(f (0)∧ (∀x) (∀y)(f (x)∧ x P y → f (y))→ f (t))

“t P u” can be read “t precedes u” or “u is the successor or t ”.

Results:

(Ref=) `FA (∀x) x = x

Proof: UG on a tautology.

(LL) `FA (∀x) (∀y)(x = y → (A [x , x]→A [x , y])), where y is not
bound inA [x , x].

Proof: Same as in HOPC.

(Ref∼=) `FA (∀F) F ∼= F
(Sym∼=) `FA (∀F) (∀G)(F ∼= G→ G ∼= F)
(Trans∼=) `FA (∀F) (∀G) (∀H)(F ∼= G ∧ G ∼= H → F ∼= H)

Proof: Same as exam 1, question 4.

I also add:

(Ext∼=) `FA (∀F) (∀G)((∀x)(F x ↔ Gx)→ F ∼= G)

Proof: Easy result of the definition of ∼= and (Ref∼=).

(PP1) `FA N(0)

Proof: UG on a tautology.

(Zero) `FA (∀F)(#(F) = 0→¬ (∃x) F x)

Proof:

(1) 1. #(F) = 0 Hyp
(2) 2. (∃x) F x Hyp
(2) 3. Fa 2 EI
(1) 4. #(F) = #([λx x 6= x]) 1 Df. 0

5. #(F) = #([λx x 6= x])↔ F ∼= [λx x 6= x] (HL) UI×2
(1) 6. F ∼= [λx x 6= x] 4, 5 BMP
(1) 7. (∃R)((∀y) (∀z) (∀w)(Ryz ∧ Ryw→ z = w)∧

(∀y) (∀z) (∀w)(Rz y & Rwy → z = w)∧
(∀y)(F y → (∃z)([λx x 6= x](z)∧ Ryz))∧
(∀y)([λx x 6= x](y)→ (∃z)(Fz ∧ Rz y))) 6 Df. ∼=

(1) 8. (∀y)(F y → (∃z)([λx x 6= x](z)∧ Ayz)) 7 EI, Simp
(1,2) 9. (∃z)([λx x 6= x](z)∧ Aaz) 3, 8 UI, MP
(1,2) 10. [λx x 6= x](b)∧ Aab 9 EI
(1,2) 11. b 6= b 10 Simp, λ-conv

12. b = b Ref= UI
(1) 13. ¬ (∃x) F x 2, 11, 12 RAA

14. `FA (∀F)(#(F) = 0→¬ (∃x) F x) 1–13 CP, UG

(PP3) `FA (∀x)¬x P 0

Proof:

(1) 1. x P 0 Hyp
(1) 2. (∃F) (∃y)(0= #(F)∧ F y ∧ x = #([λz Fz ∧ z 6= y])) 1 Df. P
(1) 3. 0= #(A)∧ Aa ∧ x = #([λz Fz ∧ z 6= a]) 2 EI×2
(1) 4. 0= #(A) 3 Simp
(1) 5. ¬ (∃x)Ax 1, (Zero) QL
(1) 6. (∃x)Ax 3 Simp, EG

7. (∀x)¬x P 0 1, 6, 7 RAA, UG

(∼=−) `FA (∀F) (∀G) (∀x) (∀y)(F x ∧ G y ∧ F ∼= G →
[λw Fw∧w 6= x]∼= [λw Gw∧w 6= y])

Proof sketch: Assume F x ∧ G y ∧ F ∼= G. We then have a relation R
that constitutes a 1–1 correspondence between F and G. There is some
unique a such that Rxa, and some unique b such that Rb y . The relation
[λwv(Rwv ∨ (w = b ∧ v = a))∧w 6= x ∧ v 6= y] is a 1–1 correspondence
between [λw Fw∧w 6= x] and [λw Gw∧w 6= y]. To see this, notice that
there are two cases to consider. Either (x = b∧ y = a) or x 6= b∧ y 6= a).
In the first case, then the relation thus defined is precisely the same as R

74

except not holding between x and y , so all Fs other than x are mapped
to one and only one G, as before. If (x 6= b ∧ y 6= a), then the relation
defined above is similar to R except that it does not hold between x and
anything, or between anything and y , but it does hold between b and a.
Adding these as relata preserves its 1–1 status, since a is the only thing
to which b is now related, and b is the only thing that it relates to a.

(∼=+) `FA (∀F) (∀G) (∀x) (∀y)(F x ∧ G y ∧
[λw Fw∧w 6= x]∼= [λw Gw∧w 6= y]→ F ∼= G)

HOMEWORK

Briefly sketch a proof of (∼=+).

(PP4) `FA (∀x) (∀y) (∀z)(y P x ∧ z P x → y = z)

Proof:

(1) 1. y P x ∧ z P x Hyp
(1) 2. (∃F) (∃z)(x = #(F)∧ Fz∧

y = #([λw Fw∧w 6= z])) 1 Simp, Df. P
(1) 3. (∃F) (∃y)(x = #(F)∧ F y ∧

z = #([λw Fw∧w 6= y])) 1 Simp, Df. P
(1) 4. x = #(A)∧ Aa ∧ y = #([λw Aw∧w 6= a]) 2 EI×2
(1) 5. x = #(B)∧ Bb ∧ z = #([λw Bw∧w 6= b]) 3 EI×2
(1) 6. #(A) = #(B) 4, 5 Simp, LL
(1) 7. A∼= B 6, (HL) QL
(1) 8. [λwAw∧w 6= a]∼= [λw Bw∧w 6= b] 4, 5, 7, (∼=−) QL
(1) 9. #([λwAw∧w 6= a]) = #([λw Bw∧w 6= b]) 8, (HL) QL
(1) 10. y = #([λw Bw∧w 6= b]) 4, 9 Simp, LL
(1) 11. y = z 5, 10 Simp, LL

12. (∀x) (∀y) (∀z)(y P x ∧ z P x → y = z) 1–11 CP, UG×3

(PP2a) `FA (∀x) (∀y) (∀z)(x P y ∧ x P z→ y = z)

Proof: Very similar to proof of (PP4), but with (∼=+) instead of (∼=−).

(PP2b) `FA (∀x) (∀y)(N(x)∧ x P y → N(y))

Proof:

(1) 1. N(x)∧ x P y Hyp
(2) 2. F(0)∧ (∀x) (∀y)(F x ∧ x P z→ Fz) Hyp
(1) 3. (∀F)(F(0)∧ (∀y) (∀z)(F y ∧ y P z→ Fz)→ F x) 1 Simp, Df. N
(2) 4. (∀y) (∀z)(F y ∧ y P z→ Fz) 2 Simp, QL
(1,2) 5. F x 2, 3, 4 QL
(1) 6. F x ∧ x P y → F y 2 QL
(1,2) 7. F y 1, 5, 6 SL
(1) 8. F(0)∧ (∀x) (∀z)(F x ∧ x P z→ Fz)→ F y 2–7 CP
(1) 9. N(y) 8 UG, Df. N

10. (∀x) (∀y)(N(x)∧ x P y → N(y)) 1–9 CP, UG×2

(PP5a) `FAA [0]∧ (∀x) (∀y)(A [x]∧ x P y →A [y]) →
(∀x)(N(x)→A [x])

Proof:

(1) 1.A [0]∧ (∀x) (∀y)(A [x]∧ x P y →A [y]) Hyp
(2) 2. N(x) Hyp
(2) 3. (∀F)(F(0)∧ (∀y) (∀z)(F y ∧ y P z→ Fz)→ F x) 2 Df. N
(2) 4. [λwA [w]](0)∧

(∀y) (∀z)([λwA [w]](y)∧ y P z→ [λwA [w]](z))
→ [λwA [w]](x) 3 UI

(1) 5.A [0] 1 Simp
(1) 6. [λwA [w]](0) 5 λ-conv
(1) 7.A [y]∧ y P z→A [z] 1 Simp, UI
(8) 8. [λwA [w]](y)∧ y P z Hyp
(8) 9.A [y]∧ y P z 8 SL, λ-conv
(1,8) 10.A [z] 7, 9 MP
(1,8) 11. [λwA [w]](z) 10 λ-conv
(1) 12. [λwA [w]](y)∧ y P z→ [λwA [w]](z) 8–11 CP
(1,2) 13. [λwA [w]](x) 4, 6, 12 QL
(1,2) 14.A [x] 13 λ-conv
(1) 15. (∀x)(N(x)→A [x]) 2–14 CP, UG

16. [1]→ [15] 1–15 CP

(PP5) `FAA [0]∧ (∀x) (∀y)(N(x)∧A [x]∧ x P y →A [y]) →
(∀x)(N(x)→A [x])

Proof:

75

(1) 1.A [0]∧ (∀x) (∀y)(N(x)∧A [x] ∧ x P y
→ A [y]) Hyp

(1) 2. N(0)∧A [0] 1, (PP1) SL
(3) 3. N(x)∧A [x]∧ x P y Hyp
(1,3) 4.A [y] 1, 3 QL
(3) 5. N(x)∧ x P y 3 SL
(3) 6. N(y) 5, (PP2b) QL
(1,3) 7. N(y)∧A [y] 4, 6 Conj
(1) 8. (∀x) (∀y)(N(x)∧A [x]∧ x P y →

N(y)∧A [y]) 3–7 CP, UG×2
(1) 9. N(0)∧A [0] ∧ (∀x) (∀y)(N(x)∧A [x]

∧ x P y → N(y)∧A [y])
→ (∀x)(N(x)→ N(x)∧A [x]) (PP5a)

(1) 10. (∀x)(N(x)→ N(x)∧A [x]) 2, 8, 9 SL
(1) 11. (∀x)(N(x)→A [x]) 10 QL

12.A [0]∧ (∀x) (∀y)(N(x)∧A [x]
∧ x P y →A [y])→ (∀x)(N(x)→A [x]) 1–11 CP

So far we have proven four of the five Peano postulates. In English, the
second Peano postulate states that every natural number has a unique
successor which is also a natural number.

So far we have proven two lemmas, (PP2a) and (PP2b), which state that
no natural number has more than one successor, and that any successor
of a natural number is itself a natural number. What we have not yet
established is that every natural number has a successor.

Our strategy for showing this will be to show that the collection of
elements in the natural number series leading up to and including a
given natural number n always has the successor of n as its number. I.e.,
there is 1 natural number up to an including 0, 2 natural numbers up to
and including 1, 3 natural numbers up to an including 2, and so on. We
shall prove this for all natural numbers inductively, starting with 0.

Definitions:

t <N u for (∀f)((∀x) (∀y)(x P y ∧ (x = t ∨ f (x))→ f (y))→ f (u))
t ≤N u for t <N u ∨ t = u
t ≮N u for ¬t <N u

@(t) for t P #([λz z ≤N t])

(@(t) says that there are n+ 1 natural numbers up to and including n.)

(≮0) `FA (∀x) x ≮N 0

Proof:

(1) 1. x <N 0 Hyp
(1) 2. (∀F)((∀y) (∀z)(y P z ∧ (y = x ∨ F y)→ Fz)→ F(0)) 1 Df. <N

(1) 3. (∀y) (∀z)(y P z ∧ (y = x ∨ [λw w 6= 0](y)) →
[λw w 6= 0](z))→ [λw w 6= 0](0) 2 UI

(4) 4. y P z ∧ (y = x ∨ [λw w 6= 0](y)) Hyp
5. ¬y P 0 (PP3) UI

(4) 6. z 6= 0 4, 5, (LL) QL
(4) 7. [λw w 6= 0](z) 6 λ-conv

8. (∀y) (∀z)(y P z ∧ (y = x ∨ [λw w 6= 0](y)) →
[λw w 6= 0](z)) 4–7 CP, UG×2

(1) 9. [λw w 6= 0](0) 3, 8 MP
(1) 10. 0 6= 0 9 λ-conv

11. 0= 0 Ref=
12. (∀x) x ≮N 0 1, 10, 11 RAA, UG

(P<) `FA (∀x) (∀y)(x P y → x <N y)

Proof:

(1) 1. x P y Hyp
(2) 2. (∀z) (∀w)(z P w∧ (z = x ∨ Fz)→ Fw) Hyp
(2) 3. x P y ∧ (x = x ∨ F x)→ F y 2 UI×2

4. x = x Ref=
5. x = x ∨ F x 4 Add

(1,2) 6. F y 1, 3, 5 SL
(1) 7. (∀z) (∀w)(z P w∧ (z = x ∨ Fz)→ Fw)→ F y 2–7 CP
(1) 8. x <N y 7 Df. <N

9. (∀x) (∀y)(x P y → x <N y) 1–8 CP, UG×2

(Trans<) `FA (∀x) (∀y) (∀z)(x <N y ∧ y <N z→ x <N z)

Proof:

76

(1) 1. x <N y ∧ y <N z Hyp
(1) 2. (∀F)((∀z) (∀w)(z P w∧ (z = x ∨ Fz)→ Fw)→ F y) 1 Simp, Df. <N

(1) 3. (∀F)((∀x) (∀w)(x P w∧ (x = y ∨ F x)→ Fw)→ Fz) 1 Simp, Df. <N

(4) 4. (∀y) (∀w)(y P w∧ (y = x ∨ F y)→ Fw) Hyp
(1) 5. (∀z) (∀w)(z P w∧ (z = x ∨ Fz)→ Fw)→ F y 2 UI
(4) 6. (∀z) (∀w)(z P w∧ (z = x ∨ Fz)→ Fw) 4 QL
(1,4) 7. F y 5, 6 MP
(1) 8. (∀x) (∀w)(x P w∧ (x = y ∨ F x)→ Fw)→ Fz 3 UI
(9) 9. v P w∧ (v = y ∨ F v) Hyp
(9) 10. v P w 9 Simp
(9) 11. v = y ∨ F v 9 Simp
(1,4) 12. v = y → F v 7, (LL) QL
(9) 13. v 6= y → F v 11 SL
(1,4,9) 14. F v 12, 13 SL
(1,4,9) 15. v = x ∨ F v 14 Add
(1,4,9) 16. v P w∧ (v = x ∨ F v) 10, 15 Conj
(1,4,9) 17. Fw 6, 16 QL
(1,4) 18. v P w∧ (v = y ∨ F v)→ Fw 9–17 CP
(1,4) 19. (∀x) (∀w)(x P w∧ (x = y ∨ F x)→ Fw) 18 QL
(1,4) 20. Fz 8, 19 MP
(1) 21. (∀y) (∀w)(y P w∧ (y = x ∨ F y)→ Fw)→ Fz 4–20 CP
(1) 22. x <N z 21 UG, Df. <N

23. (∀x) (∀y) (∀z)(x <N y ∧ y <N z→ x <N z) 1–22 CP, UG×3

(Ref≤) `FA (∀x) x ≤N x

Proof: obvious result of (Ref=).

(<P) (∀x) (∀y)(x <N y → (∃u)(x ≤N u∧ u P y))

Proof:

(1) 1. x <N y Hyp
(1) 2. (∀F)((∀z) (∀w)(z P w∧ (z = x ∨ Fz)→ Fw)→ F y) 1 Df. <N

(1) 3. (∀z) (∀w)(z P w∧ (z = x ∨ [λv (∃u)(x ≤N u & u P v)](z))→ [λv (∃u)(x ≤N u & u P v)](w))→ [λv (∃u)(x ≤N u & u P v)](y) 2 UI
(4) 4. z P w∧ (z = x ∨ [λv (∃u)(x ≤N u & u P v)](z)) Hyp
(4) 5. z P w 4 Simp
(4) 6. z = x ∨ [λv (∃u)(x ≤N u & u P v)](z) 4 Simp
(7) 7. z = x Hyp

8. x ≤N x Ref≤ UI

77

(7) 9. x ≤N z 7, 8 LL
(4,7) 10. (∃u)(x ≤N u∧ u P w) 5, 9 QL
(4) 11. z = x → (∃u)(x ≤N y ∧ u P w) 7–10 CP
(12) 12. [λv (∃u)(x ≤N u∧ u P v](z) Hyp
(12) 13. (∃u)(x ≤N u∧ u P z) 12 λ-conv
(12) 14. x ≤N a ∧ a P z 13 EI
(12) 15. a P z 14 Simp
(12) 16. a <N z 15, (P<) QL
(12) 17. x <N a ∨ x = a 14 Simp, Df. ≤N

(12) 18. x = a→ x <N z 16, (LL) QL
19. x <N a ∧ a <N z→ x <N z (Trans<) QL

(12) 20. x <N a→ x <N z 16, 19 SL
(12) 21. x <N z 17, 18, 20 CD
(12) 22. x ≤N z 21 Add, Df. ≤N

(4,12) 23. (∃u)(x ≤N u∧ u P w) 5, 22 QL
(4) 24. [λv (∃u)(x ≤N y ∧ u P v)](z)→ (∃u)(x ≤N u∧ u P w) 12–23 CP
(4) 25. (∃u)(x ≤N u∧ u P w) 6, 11, 24 CD
(4) 26. [λv (∃u)(x ≤N y ∧ u P v)](w) 25 λ-conv

27. (∀x) (∀w)(z P w∧ (z = x ∨ [λv (∃u)(x ≤N u & u P v)](z))→ [λv (∃u)(x ≤N y ∧ u P v)](w)) 4–26 CP, UG×2
(1) 28. [λv (∃u)(x ≤N u∧ u P v)](y) 3, 27 MP
(1) 29. (∃u)(x ≤N u∧ u P y) 28 λ-conv

30. (∀x) (∀y)(x <N y → (∃u)(x ≤N u∧ u P y)) 1–29 CP, UG×2

(Irref<) `FA (∀x)(N(x)→ x ≮N x)

Proof:

1. 0≮N 0 (≮0), UI
(2) 2. x ≮N x ∧ x P y Hyp
(3) 3. y <N y Hyp
(3) 4. (∃u)(y ≤N u∧ u P y) 3, (<P) QL
(3) 5. y ≤N b ∧ b P y 4 EI
(2,3) 6. x = b 2, 5, (PP4) QL
(2,3) 7. y ≤N x 5, 6 Simp, LL
(2,3) 8. y <N x ∨ y = x 7 Df. ≤N

(3) 9. y = x → x <N x 3, (LL) QL
(2,3) 10. y 6= x 2, 9 Simp, MT
(2,3) 11. y <N x 8, 10 DS
(2) 12. x <N y 2, (P<) QL

78

(2,3) 13. x <N x 11, 12, (Trans<) QL
(2) 14. x ≮N x 2 Simp
(2) 15. y ≮N y 3, 13, 14 RAA

16. (∀x) (∀y)(x ≮N x ∧ x P y → y ≮N y) 2–15 CP, UG×2
17. (∀x)(N(x)→ x ≮N x) 1, 16, (PP5a) SL

(<Succ≤) `FA (∀x) (∀y)(x P y → (∀z)(z <N y↔ z ≤N x))

HOMEWORK

Prove (<Succ≤). Hint: use (P<), (<P), (PP4) and (Trans<).

(≤0) `FA (∀x)(x ≤N 0↔ x = 0)

Proof: easy result of (Ref≤), (≮0) and Df. ≤N.

(@Base) `FA @(0)

Proof left as exam question. Uses (≤0), (Ext∼=) and (HL).

(@Ind) `FA (∀x) (∀y)(N(x)∧ x P y ∧@(x)→@(y))

Proof:

(1) 1. N(x)∧ x P y ∧@(x) Hyp
(1) 2. x P #([λv v ≤N x]) 1 Simp, Df. @
(1) 3. (∀z)(z <N y↔ z ≤N x) 1, (<Succ≤) QL
(4) 4. [λv v ≤N x](w) Hyp
(4) 5. w≤N x 4 λ-conv
(1,4) 6. w<N y 3, 5 QL
(1) 7. N(y) 1, (PP2b) QL
(1) 8. y ≮N y 7, (Irref<) QL
(1,4) 9. w= y → y <N y 6, (LL) QL
(1,4) 10. w 6= y 8, 9 MT
(1,4) 11. w≤N y 6 Add, Df. ≤N

(1,4) 12. [λv v ≤N y](w) 11 λ-conv
(1,4) 13. [λv v ≤N y](w)∧w 6= y 10, 12 Conj
(1,4) 14. [λz[λv v ≤N y](z)∧ z 6= y](w) 13 λ-conv
(1) 15. [λv v ≤N x](w)→ [λz[λv v ≤N y](z)∧ z 6= y](w) 4–14 CP
(16) 16. [λz[λv v ≤N y](z)∧ z 6= y](w) Hyp
(16) 17. w≤N y ∧w 6= y 16 λ-conv, SL
(16) 18. w<N y 17 Df. ≤N, SL

79

(1,16) 19. w≤N x 3, 18 QL
(1,16) 20. [λv v ≤N x](w) 19 λ-conv
(1) 21. [λz[λv v ≤N y](z)∧ z 6= y](w)→ [λv v ≤N x](w) 16–20 CP
(1) 22. (∀w)([λv v ≤N x](w)↔ [λz[λv v ≤N y](z)∧ z 6= y](w)) 15, 21 BI, UG
(1) 23. [λv v ≤N x]∼= [λz[λv v ≤N y](z)∧ z 6= y] 22, (Ext∼=) QL
(1) 24. #([λv v ≤N x]) = #([λz[λv v ≤N y](z)∧ z 6= y]) 23, (HL) QL
(1) 25. x P #([λz[λv v ≤N y](z)∧ z 6= y]) 2, 24 LL
(1) 26. y = #([λz[λv v ≤N y](z)∧ z 6= y]) 1, 25, (PP2a) QL

27. #([λv v ≤N y]) = #([λv v ≤N y]) Ref=
28. [λv v ≤N y](y) (Ref≤) UI, λ-conv

(1) 29. #([λv v ≤N y]) = #([λv v ≤N y])∧ [λv v ≤N y](y)∧ y = #([λz[λv v ≤N y](z)∧ z 6= y]) 26, 27, 28 Conj
(1) 30. (∃F) (∃x)(#([λv v ≤N y]) = #(F)∧ F x ∧ y = #([λz Fz ∧ z 6= x])) 39 EG×2
(1) 31. y P #([λv v ≤N y]) 30 Df. P
(1) 32. @(y) 31 Df. @

33. (∀x) (∀y)(N(x)∧ x P y ∧@(x)→@(y)) 1–32 CP, UG×2

(PP2c) `FA (∀x)(N(x)→@(x))

Proof: direct from (@Base), (@Ind) and (PP5).

Finally we establish:

(PP2) `FA (∀x)(N(x)→ (∃!y)(x P y ∧ N(y)))

Proof sketch: Suppose N(x). By PP2c, x has a successor, viz., #([λv v ≤N x]). By PP2b, this successor is a natural number. By (PP2a), this successor
is unique.

This establishes Frege’s theorem.

E. Philosophical Reflections on Frege’s Theorem

The fact that all of Peano arithmetic (and hence almost all of ordinary mathematics) is derivable in second-order logic with only a single premise is
very substantial. It naturally prompts questions regarding the nature of (HL): is it plausible? What is its metaphysical and epistemological status?
Is it metaphysically innocent? Can it be regarded as a logical or at least analytical truth?

In many ways (HL) seems constitutive of our concept of number: an analytic truth regarding what we mean by “the number of . . . ”. It seems in
some ways to explicate what we mean by a number: a number is a thing that equinumerous collections have in common. And since it explicates
numbers in terms of the relation ∼=, itself defined only using logical constants and quantifiers, it adds support for thinking that there is some sense
in which arithmetic reduces to logic. If (HL) can be known a priori, this helps firm up the epistemology of mathematics.

80

Principles such as (HL) are sometimes called definitions by abstraction:
a number is regarded as the common thing all equinumerous collections
share, abstracting away their differences.

Frege himself rejected taking (HL) as a basic principle, since it does not
give an outright definition of terms of the form “#(F)” but only fixes
the truth conditions for identity statements formed with two terms of
this form. It does not tell us what numbers themselves are, and does not
tell us, e.g., whether or not Julius Caesar is a number. This is in part
why Frege thought it necessary to define #() in terms of his theory of
extensions, and obtain (HL) as a theorem starting with (BLV).

There are other objections to definitions in abstraction in general. (BLV)
is a kind of definition by abstraction, just replacing equinumerosity with
coextensionality. Similar principles, such as the supposition that order-
type(R) = order-type(S) iff R and S are isomorphic relations, is also
inconsistent. This casts suspicion on taking such definitions at face
value.

On the other hand, (HL) is known to be consistent (relative to PA2).

XXIV. Boolos’s (New V) and Others

Hume’s law, Basic Law V, and other “definitions by abstraction” in second-
order logic take the form:

(∀F) (∀G)(%(F) =%(G)↔ F eq G)

where “%()” is some operator (like “Ext()” or “#()”), which when
applied to a predicate variable or λ-abstract, forms a term, and “eq” is
short for some definable equivalence relation between F and G: i.e., a
reflexive, symmetric and transitive relation between properties (e.g.,
such as being coextensive or equinumerous).

One of the nice things about Basic Law V (had it been consistent) is that
it made any further axioms of this form unnecessary. “%(F)” could be
defined as Ext([λx (∃G)(x = Ext(G)∧F eq G)]), and then above abstrac-
tion principle would simply follow by Basic Law V, and the definition of
%(), just as Frege supposed for defining numbers.

Of course, when combined with unrestricted property comprehension
(CP), leads to contradictions, as do other “abstraction principles” of
roughly the same form as the above, e.g.:

Definition: t ≈ u (t is isomorphic to u) for
(∃r)((∀x) (∀y) (∀z)(r (x , y)∧ r (x , z)→ y = z)∧

(∀x) (∀y) (∀z)(r (y , x)∧ r (z, x)→ y = z)∧
(∀x) (∀y)(t (x , y)→ (∃z) (∃w)(r (x , z)∧ r (y , w)∧ u(z, w)))∧
(∀x) (∀y)(u(x , y)→ (∃z) (∃w)(r (z, x)∧ r (w , y)∧ t (z, w))))

Consider the abstraction principle:

(∀R) (∀S)(§(R) = §(S)↔ R≈ S)

This abstraction principle leads to the Burali-Forti paradox.

Nevertheless, one might be tempted to look for abstraction principles
with a wide array of uses, like Basic Law V, but without leading to a
contradiction. One such principle that has received significant attention
is George Boolos’s “New V”. It begins with certain definitions:

Definitions:

Big(f) for (∃g)((∀x)(g(x)→ f (x))∧ g ∼= [λx x = x])
Small(f) for ¬Big(f)

A “small” concept is one that applies to fewer things than there are things.
A “big” concept has as many things as there are things. (Note that a
concept does not have to appy to everything to be “big”: it suffices for it to
apply to an infinite subset of things that can be put in 1–1 correspondence
with everything.)

Definition:

f í g for (Small(f)∨ Small(g))→ (∀x)(f (x)↔ g(x))
(or equivalently, (Big(f)∧ Big(g))∨ (∀x)(f (x)↔ g(x)).)

Boolos then suggests taking the following as an axiom:

(New V) (∀F) (∀G)(∗(F) = ∗(G)↔ F í G)

“∗(F)” is read “the subtension of F”. (New V) holds that “small” concepts
have the same subtension when and only when they are coextensive,
and that all “big” concepts have the same subtension. Boolos thinks this

81

represents a natural way to represent the “limitation of size approach”
to the philosophy of sets. Indeed, with the definitions:

Definitions:

t ∈ u for (∃f)(u = ∗(f)∧ f (t))
{x |A [x]} for ∗([λx A [x]])

We get:

`FN Small([λxA [x]])→ (∀y)(y ∈ {x |A [x]}↔A [y])

HOMEWORK

Prove the theorem above.

It turns that FN—the system that adds only (New V) to the axioms
of second-order logic—is strong enough of a set theory to obtain the
Peano postulates (though it requires using the von Neumann definition
of numbers rather than the Frege-Russell definition: notice that property
of being a singleton is “big”, and so the Frege-Russell 1 is the subtension
of a “big” concept.)

(New V) is consistent. To see this we need only consider a standard
model whose domain of quantification is the set of natural numbers.
“Small” concepts would those that apply to finitely many. There are
well-known ways of “coding” finite sets of numbers using numbers. E.g.,
representing {n1, n2, . . . , nm} by raising the first m primes to the powers
of n1, n2, . . . , nm respectively and multiplying them together. Take ∗(F) to
be the result of this procedure applied to set of natural numbers satisfying
F(x) if finitely many satisfy it, to be 0 if none do, and to be 5 otherwise.
(New V) is true on this model.

Notice that (New V) can be seen as taking the form:

(∀F) (∀G)(∗(F) = ∗(G)↔ (Bad(F)∧ Bad(G))∨ (∀x)(F x ↔ Gx))

It is currently in vogue to explore definitions of “badness” (other than
bigness) to use here corresponding to different philosophical positions
on what sorts of properties can be seen as defining sets. E.g., one might
define “Bad(f)” in terms of Dummett’s notion of indefinite extensibility.

XXV. Paraconsistent Foundations

A. Paraconsistent Logic

In classical bivalent truth-functional logic, any instance of the following
schema is a tautology:

A ∧¬A →B

Because the A and B could be anything, this means that any contra-
diction would explode, leading to every wff (and its negation) being a
theorem.

A paraconsistent logic in a logic in which the inference A ,¬A ` B
is not allowed (or the corresponding semantic claim,A ,¬A �B not
considered valid).

Paraconsistent logic must at least in some sense be weaker than classical
logic, disallowing certain inferences allowed by classical logic. Consider
the standard “proof” of an arbitrary resultB fromA and ¬A :

1.A
2. ¬A
3.A ∨B 1 Add
4.B 2, 3 DS

Hence, any paraconsistent logic must block either the rule of Addition
or the rule of Disjunctive Syllogism (or, I suppose, both). Most forms of
paraconsistent logic discard the validity of Disjunctive Syllogism.

Consider Priest’s system LP (the Logic of Paradox). Every sentence of the
language can be true, false, or both. A negation is true just in case what
it negates is false, and is false just in case what it negates is true. Hence,
negations of statements that are both are also both. A disjunction is true
if either side is true, and false if both sides are false; hence a disjunction
may be both if both sides are both, or if one side is false and the other is
both.

82

A ¬A
T F
F T
B B

A B (A ∨B)
T T T
T B T
T F T
B T T
B B B
B F B
F T T
F B B
F F F

We then say that a statement is a logical truth iff it is necessarily true
or both true and false, and hence, impossibly false only. We say that an
inference is invalid if it is possible for the premises to be true or both
while the conclusion is false-only. Thus, we can see that disjunctive
syllogism is invalid:

(A ∨ B), ¬ A B
T T T F T T
T T B F T B
T T F F T F
B T T B B T
B B B B B B
B B F B B F (**)
F T T T F T
F B B T F B
F F F T F F

At the line marked (**) we see that both premises are at least true, but
the conclusion is merely false. Hence, DS must be rejected in LP.

It is also easy to see that the inference fromA and ¬A toB in general
must be rejected because of the possibility thatA is both true and false,
butB is false only.

B. Paraconsistent Set Theory: Weak or Strong?

One of the most intriguing possibilities that paraconsistent logic offers
is that of accepting a (seemingly) naïve set theory, that is a set theory
that accepts in full generality the unrestricted class abstraction principle
from Hatcher’s system F:

(∀x)(x ∈ {y|A [y]}↔A [x])

(. . . along with either a definition of identity with a Leibniz’s Law rule or
axiom, or identity taken as primitive, with the system built on identity
logic, with an extensionality axiom.)

Most likely such a theory would be inconsistent, in virtue of having a
contradiction, such as the contradiction from Russell’s paradox, as a
theorem.

{y|y /∈ y} ∈ {y|y /∈ y} ∧ {y|y /∈ y} /∈ {y|y /∈ y}

Such inconsistency, however, need not trivialize the system in the sense
that every wff ends up as a theorem, or even that “undesired” set-theoretic
or mathematical absurdities such as that 0= 1 or Λ= V are provable.

Indeed, it is possible to prove that, e.g., FLP, the system just like system
F from our first unit but with LP substituted for the core propositional
logic, is non-trivial despite being inconsistent.

Unfortunately, FLP is likely too weak to be of much use as a foundational
system for mathematics. To see this, notice that it misses some completely
fundamental basic inferences. Indeed, it does not even allow modus
ponens. Suppose we defineA ⊃B as ¬A ∨B , as usual. (I here use ⊃
rather than→ for reasons I hope become clear later on.) In that case,
the inference A ,A ⊃ B ` B is just the combination of DN and DS,
and is invalid for the same reason that DS is invalid. IfA is both true
and false, then ¬A is also both true and false, and thus, ¬A ∨B , i.e.,
A ⊃B , is true even whenB is false-only.

To capture much of mathematics, a detachable conditional is needed.
Hence, paraconsistent set theory usually adopts a stronger logical core
than LP by taking as primitive a non-truth-functional (“relevant”) con-
ditional→. This conditional is not taken as defined in terms of ∨, but

83

as a distinct primitive connective. (We may, as before, define A ∧B
as ¬(¬A ∨¬B); we defineA ↔B as (A →B)∧ (B →A), rather
than, e.g., (A ⊃B)∧ (B ⊃A) or (A ∧B)∨ (¬A ∧¬B), so it too is
non-truth-functional.

But it turns out that the logic of this new conditional→ must itself be
rather weak to avoid triviality when a set theory is added. Assuming
it allows MP, it cannot, for example, validate either of these intuitively
(and classically) valid schemata:

(Contraction) (A → (A →B))→ (A →B)
(MP-theorem) ((A →B)∧A)→B

The reason for these is that, when combined with set theory, a set-
theoretic version of Curry’s paradox threatens to lead to triviality. The
usual form of Curry’s paradox is an argument in favor of any arbitrary
conclusion B , e.g., “Santa Claus exists”. Take the sentence “If this
sentence is true, thenB .” Assume it’s true. To do so is to assume that if
it is true, thenB . We’re assuming it’s true, so under that assumption, by
modus ponens,B . Discharging our assumption, if that sentence is true,
B . But that’s what it says. Hence, it is true. By modus ponens on itself,
B .

The set theoretic version defines a set, M , of all those sets whose self-
membership implies B . That is, let M abbreviate {y|y ∈ y →B}. By
naïve class abstraction:

M ∈ {y|y ∈ y →B}↔ M ∈ M →B

In other words:

M ∈ M ↔ M ∈ M →B

Now, using (Contraction), we can proveB:

1. M ∈ M ↔ M ∈ M →B (see above)
2. M ∈ M → (M ∈ M →B) 1 BE
3. (M ∈ M →B)→ M ∈ M 1 BE
4. (M ∈ M → (M ∈ M →B))→ (M ∈ M →B) (contraction)
5. M ∈ M →B 2, 4 MP
6. M ∈ M 3, 5 MP
7.B 5, 6 MP

Hence, (Contraction) must be rejected for this conditional. So must
(MP-theorem) via a similar argument, though the rule form of MP may
be maintained.

Personally, this makes me question whether the abstraction principle
of these systems deserves its moniker “naïve”, since it disallows those
instances that would make use of a resonably strong conditional, and
hence one should not pretend as if it has no “restrictions”, but this is a
difficult matter.

C. An Example Paraconsistent Set Theory

As an example of a system that tries to thread the needle between “too
strong” and “too weak”, we examine the system of Weber (2010), built
on the work of Brady and Sylvan (Routley). The system is built upon
a core paraconsistent logic called TLQ. The system uses ∧ and ¬ as
primitive truth-functions, and defines ∨ using ∧. (Nothing turns on this,
however, and ∨ could have been taken as primitive instead.) It also
adopts a relevant conditional→ which is not defined in terms of other
truth-functions;↔ is defined in terms of it, as above. Identity is taken
as primitive; existential quantification is defined in terms of universal
quantification in the normal way. The core logic has the following axiom
schemata:

I A →A
IIa A ∧B →A
IIb A ∧B →B
III A ∧ (B ∨C)→ (A ∧B)∨ (A ∧C)

84

IV (A →B)∧ (B →C)→ (A →C)
V (A →B)∧ (A →C)→ (A →B ∧C)

VI (A →¬B)→ (B →¬A)
VII ¬¬A →A

VIII (A →B)→¬(A ∧¬B)
IXa (A →B)→ ((B →C)→ (A →C))
IXb (A →B)→ ((C →A)→ (C →B))

X (∀x)A [x]→A [u], where no free variables of u become
bound inA [u].

XI (∀x)(A →B)→ (A → (∀x)B), whereA does not contain
x free.

XII (∀x)(A ∨B)→ (A ∨ (∀x)B), whereA does not contain
x free.

And we have the following primitive inference rules:

(Conj) FromA andB , inferA ∧B .
(MP) FromA andA →B inferB .
(Cxt) FromA →B and C →D infer (B →C)→ (A →D).
(UG) FromA infer (∀x)A .

(Sub=) From u = v inferA [u]→A [v].

Some interesting results:

(DN-in) `A →¬¬A
(EM) `A ∨¬A
(NC) ` ¬(A ∧¬A)

(Inev) ` (A →¬A)→¬A
` (¬A →A)→A

(MT) A →B ,¬B ` ¬A

(Note: it may be surprising that the theory has (NC). However, in this
system all contradictions are false—it just so happens that some are true
as well.)

To be able to adequately express “all As are Bs”, the system is strengthened
from the above by adding a constant proposition t which intuitively is
taken to represent the conjunction of all theorems. Along with this, a
rule:

(t) FromA infer t →A .
From t →A inferA .

This allows us to define another conditional, A 7→B , as A ∧ t →B ,
which is in between⊃ and→ in strength. “All As are Bs” is then sometimes
taken to mean (∀x)(A [x] 7→ B[x]).

We then add two axioms for set theory, including extensionality:

(∀x) (∀y)((∀z)(z ∈ x ↔ z ∈ y)↔ x = y)

And a naïve principle of class abstraction. Weber wants this in a form
even stronger than what we found in System F. In particular, he wants to
validate the schema:

(∃x) (∀y)(y ∈ x ↔A [y])

even whenA [y] contains x free! This allows wildly circularly defined
sets, such as one defined as having exactly its own non-members as
members:

(∃x) (∀y)(y ∈ x ↔ y /∈ x)

To capture circularly defined classes using a vbto, one can employ double-
binding vbto {x y|A [x , y]}, which means “the set identical to y whose
members are all x such that” We then adopt the schema:

(∀z)(z ∈ {x y|A [x , y]}↔A [z, {x y|A [x , y]}])

To capture the silly set whose members are all its non-members, we then
have the instance:

(∀z)(z ∈ {x y|x /∈ y}↔ z /∈ {x y|x /∈ y})

We can abbreviate {x y|A [x]} whenA [x] does not contain y free as
{x |A [x]}, and then as a simplification we have the usual naïve principle:

(∀z)(z ∈ {x |A [x]}↔A [z])

Letting R abbreviate {x |x /∈ x} we have:

` R ∈ R↔ R /∈ R

85

which, via (Inev), gives both ` R ∈ R and ` R /∈ R, so the system is
inconsistent. Of course, this does not mean it is trivial.

Weird result: since there is something which is a member of R, but not a
member of R, viz., R itself, R is non-coextensional with itself, hence by
extensionality, ` R 6= R. (It also holds that ` R= R.)

This weird result means that it is undesirable to define the empty set Λ
as {x |x 6= x}, since then the empty set would have members. So Weber
uses the definition {x | (∀y) x ∈ y} instead. Similarly, V is defined not as
{x |x = x} but as {x | (∃y) x ∈ y}.

Some points about this system

• It is not known whether or not the system is trivial, though the very
similar theory obtained by replacing axiom VIII with the weaker
(EM) is known to be non-trivial.

• The deduction theorem does not hold, so one cannot in general
transform a proof ofB from the assumption thatA into a proof of
A →B .

• Weber proves that for every axiom of ZFC, except for the axiom of
foundation/regularity, a corresponding axiom can be proven in his
system.

• Using something similar to the von Neumann series of ordinals
(finite and infinite), versions of the Peano axioms can be proven.

• Notice, however, that this not mean that the system can recapture
all of Peano arithmetic (or ZFC minus foundation); since the core
logic is weakened in certain respects, capturing the axioms does not
mean capturing the theorems. It is still an open question how much
of classical mathematics is captured as a “subtheory”.

• A set On of all ordinals can be shown to exist; by the argument of
the Burali-Forti paradox, it is both a member of itself and not, and
both identical to itself and not, much like R.

• A strange argument can be given showing the universe can be well-
ordered, and hence that the axiom of choice is true.

• Cantor’s theorem, and thereby, Cantor’s paradox, can be proven.
The universe is both the largest possible size, and also smaller than
the size of its own powerset. (It is therefore bigger than itself.)

• The continuum hypothesis (and hence the generalized continuum
hypothesis as well) is at least disprovable; certain other instances
of the GCH are both provable and disprovable.

86

	The Study of Logical Systems
	Metalanguage and Object Language
	The logic of the metalanguage
	Metalinguistic variables

	First-Order Theories: Syntax
	Deduction in First-Order Theories
	Formal Semantics and Truth for First-Order Predicate Logic
	Some results covered in Mathematical Logic I
	Theories with Identity/Equality
	Variable-Binding Term Operators (vbtos)
	Introduction
	Semantics for vbtos
	Deduction for vbtos

	First-Order Peano Arithmetic
	System F
	Frege and Hatcher's System F
	Syntax of F
	Axioms of F
	Some set-theoretic notions
	Some mathematical notions
	To Infinity and Beyond
	Russell's Paradox

	The Historical Frege/System GG
	Introduction
	Primitive Function Signs and their Intended Interpretations
	Axioms and Rules of GG

	Type-Theory Generally
	The System ST (Simple Types)
	Syntax
	Axiomatics
	Basic Results
	Development of Mathematics
	Evaluation

	Higher-Order Simple Type Theories (HOSTs)
	Syntax
	Formulation
	Doing without (Ext) or (Inf)
	Some Philosophical Issues Revisited

	Ramified Type Theory
	Meta-theory for Higher-Order Logic
	Standard Semantics
	Incompletess of Standard Semantics
	Henkin Semantics

	Zermelo and Zermelo-Fraenkel Set Theories (Systems Z, ZF)
	Syntax
	Formulation of Z
	Cardinal and Ordinal Numbers in Z(F)
	Natural Numbers in ZF
	Relations, Functions and Recursion in ZF
	Infinite Ordinals
	Cardinal Numbers and the Axiom of Choice
	Cantor's Theorem and the Continuum Hypothesis

	von Neumann/Bernays/Gödel (NBG) and Mostowski/Kelley/Morse (MKM) Set Theories
	Syntax
	Formulation
	Development of Mathematics

	Set Theory with Urelements
	The Systems ZU/ZFU

	Relative Consistency
	Quine's System NF
	Background
	Syntax of NF
	Axiomatization
	Development of Mathematics
	Cantorian and Non-Cantorian Sets in NF
	The Failure of the Axiom of Choice in NF

	Variants of NF (ML, NFU)
	Quine's ML
	Jensen's System NFU

	Cocchiarella's Higher-Order Variants
	Background
	The System of Homogeneous Simple Types (-HST*): Syntax
	HST*: Formulation

	Hume's Law, Frege's Theorem and Frege Arithmetic
	Review
	Second-order Logic
	Frege Arithmetic
	Frege's Theorem
	Philosophical Reflections on Frege's Theorem

	Boolos's (New V) and Others
	Paraconsistent Foundations
	Paraconsistent Logic
	Paraconsistent Set Theory: Weak or Strong?
	An Example Paraconsistent Set Theory

