

SQLite

i

About the Tutorial

SQLite is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. SQLite is the most widely deployed SQL

database engine in the world. The source code for SQLite is in the public domain.

This tutorial will give you a quick start with SQLite and make you comfortable with SQLite

programming.

Audience
This tutorial has been prepared for beginners to help them understand the basic-to-

advanced concepts related to SQLite Database Engine.

Prerequisites

Before you start practicing various types of examples given in this reference, we assume

that you are already aware about what is a database, especially RDBMS and what is a

computer programming language.

Disclaimer & Copyright

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

SQLite

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Disclaimer & Copyright ... i
Table of Contents .. ii

SQLITE BASICS ... 1

 SQLite ─ Overview ... 2
What is SQLite? ... 2
Why SQLite? .. 2
SQLite ─ A Brief History ... 3
SQLite Limitations .. 3
SQLite Commands ... 3

 SQLite ─ Installation .. 5
Install SQLite on Windows ... 5
Install SQLite on Linux ... 5
Install SQLite on Mac OS X ... 6

 SQLite ─ Commands .. 7

 SQLite ─ Syntax ... 11

 SQLite ─ Data Type .. 18
SQLite Storage Classes ... 18
SQLite Affinity Type ... 18
SQLite Affinity and Type Names .. 19

 SQLite ─ CREATE Database .. 21
The .dump Command .. 22

 SQLite ─ ATTACH Database ... 23

 SQLite ─ DETACH Database ... 24

 SQLite ─ CREATE Table .. 25

 SQLite ─ DROP Table ... 27

 SQLite ─ INSERT Query .. 28

 SQLite ─ SELECT Query .. 31

 SQLite ─ Operators .. 34
What is an Operator in SQLite? ... 34
SQLite Arithmetic Operators ... 34
SQLite Comparison Operators ... 35
SQLite Logical Operators ... 38
SQLite Bitwise Operators ... 42

SQLite

iii

 SQLite ─ Expressions ... 44
SQLite - Boolean Expression .. 44
SQLite - Numeric Expression ... 45
SQLite - Date Expression .. 45

 SQLite ─ WHERE Clause ... 46

 SQLite ─ AND & OR Operators ... 50
The AND Operator ... 50
The OR Operator ... 51

 SQLite ─ UPDATE Query .. 53

 SQLite ─ DELETE Query .. 55

 SQLite ─ LIKE Clause .. 57

 SQLite ─ GLOB Clause .. 60

 SQLite ─ LIMIT Clause .. 63

 SQLite ─ ORDER BY Clause ... 65

 SQLite ─ GROUP BY Clause .. 67

 SQLite ─ HAVING Clause .. 70

 SQLite ─ DISTINCT Keyword .. 72

ADVANCED SQLITE .. 74

 SQLite ─ PRAGMA ... 75
auto_vacuum Pragma.. 75
cache_size Pragma .. 76
case_sensitive_like Pragma ... 76
count_changes Pragma ... 76
database_list Pragma .. 76
encoding Pragma ... 76
freelist_count Pragma ... 77
index_info Pragma ... 77
index_list Pragma .. 77
journal_mode Pragma ... 77
max_page_count Pragma .. 78
page_count Pragma ... 78
page_size Pragma .. 78
parser_trace Pragma ... 78
recursive_triggers Pragma ... 79
schema_version Pragma.. 79
secure_delete Pragma ... 79
sql_trace Pragma ... 79
synchronous Pragma ... 80
temp_store Pragma ... 80

SQLite

iv

temp_store_directory Pragma .. 80
user_version Pragma ... 81
writable_schema Pragma .. 81

 SQLite ─ Constraints .. 82
NOT NULL Constraint ... 82
DEFAULT Constraint .. 83
UNIQUE Constraint .. 83
PRIMARY KEY Constraint ... 84
CHECK Constraint .. 84
Dropping Constraint .. 85

 SQLite ─ JOINS ... 86
The CROSS JOIN ... 87
The INNER JOIN ... 88
The OUTER JOIN .. 89

 SQLite ─ UNION Clause.. 90
The UNION ALL Clause ... 92

 SQLite ─ NULL Values .. 94

 SQLite ─ ALIAS Syntax ... 97

 SQLite ─ Triggers ... 100
Listing Triggers ... 102
Dropping Triggers .. 103

 SQLite ─ Indexes.. 104
The CREATE INDEX Command ... 104
The DROP INDEX Command .. 106

 SQLite – INDEXED BY Clause .. 107

 SQLite ─ ALTER TABLE Command .. 109

 SQLite ─ TRUNCATE TABLE Command ... 111

 SQLite ─ Views .. 112
Creating Views ... 112
Dropping Views ... 113

 SQLite ─ Transactions .. 114
Properties of Transactions ... 114
Transaction Control ... 114

 SQLite ─ Subqueries .. 117
Subqueries with SELECT Statement ... 117
Subqueries with INSERT Statement ... 118
Subqueries with UPDATE Statement ... 119
Subqueries with DELETE Statement .. 120

 SQLite ─ AUTOINCREMENT ... 121

SQLite

v

 SQLite ─ Injection .. 123
Preventing SQL Injection ... 123

 SQLite ─ EXPLAIN .. 125

 SQLite ─ VACUUM ... 127
Manual VACUUM .. 127
Auto-VACCUM ... 127

 SQLite ─ Date & Time .. 129
Time Strings ... 129
Modifiers ... 130
Formatters ... 130

 SQLite ─ Useful Functions .. 133
SQLite COUNT Function ... 134
SQLite MAX Function ... 135
SQLite MIN Function .. 135
SQLite AVG Function ... 135
SQLite SUM Function ... 136
SQLite RANDOM Function ... 136
SQLite ABS Function .. 136
SQLite UPPER Function .. 136
SQLite LOWER Function ... 137
SQLite LENGTH Function ... 137
SQLite sqlite_version Function .. 138

SQLITE INTERFACES ... 139

 SQLite ─ C/C++ .. 140
C/C++ Interface APIs .. 140
Connect to Database ... 141
Create a Table .. 142
INSERT Operation .. 143
SELECT Operation .. 145
UPDATE Operation .. 147
DELETE Operation .. 149

 SQLite ─ Java ... 152
Installation ... 152
Connect to Database ... 152
Create a Table .. 153
INSERT Operation .. 154
SELECT Operation .. 155
UPDATE Operation .. 157
DELETE Operation .. 159

 SQLite ─ PHP ... 162
Installation ... 162
PHP Interface APIs ... 162
Connect to Database ... 163
Create a Table .. 164

SQLite

vi

INSERT Operation .. 165
SELECT Operation .. 166
UPDATE Operation .. 168
DELETE Operation .. 169

 SQLite ─ Perl ... 172
Installation ... 172
DBI Interface APIs .. 172
Connect to Database ... 174
Create a Table .. 175
INSERT Operation .. 176
SELECT Operation .. 177
UPDATE Operation .. 179
DELETE Operation .. 180

 SQLite ─ Python .. 183
Installation ... 183
Python sqlite3 module APIs ... 183
Connect to Database ... 186
Create a Table .. 186
INSERT Operation .. 187
SELECT Operation .. 188
UPDATE Operation .. 189
DELETE Operation .. 190

SQLite

1

SQLite Basics

SQLite

2

This chapter helps you understand what is SQLite, how it differs from SQL, why it is needed

and the way in which it handles the applications Database.

SQLite is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. SQLite is one of the fastest-growing

database engines around, but that's growth in terms of popularity, not anything to do with

its size. The source code for SQLite is in the public domain.

What is SQLite?

SQLite is an in-process library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. It is a database, which is zero-

configured, which means like other databases you do not need to configure it in your

system.

SQLite engine is not a standalone process like other databases, you can link it statically or

dynamically as per your requirement with your application. SQLite accesses its storage

files directly.

Why SQLite?

 SQLite does not require a separate server process or system to operate

(serverless).

 SQLite comes with zero-configuration, which means no setup or administration

needed.

 A complete SQLite database is stored in a single cross-platform disk file.

 SQLite is very small and light weight, less than 400KiB fully configured or less than

250KiB with optional features omitted.

 SQLite is self-contained, which means no external dependencies.

 SQLite transactions are fully ACID-compliant, allowing safe access from multiple

processes or threads.

 SQLite supports most of the query language features found in SQL92 (SQL2)

standard.

 SQLite is written in ANSI-C and provides simple and easy-to-use API.

 SQLite is available on UNIX (Linux, Mac OS-X, Android, iOS) and Windows (Win32,

WinCE, WinRT).

 SQLite ─ Overview

SQLite

3

SQLite ─ A Brief History

 2000 - D. Richard Hipp designed SQLite for the purpose of no administration

required for operating a program.

 2000 - In August, SQLite 1.0 released with GNU Database Manager.

 2011 - Hipp announced to add UNQl interface to SQLite DB and to develop UNQLite

(Document oriented database).

SQLite Limitations

There are few unsupported features of SQL92 in SQLite which are listed in the following

table.

Feature Description

RIGHT

OUTER JOIN
Only LEFT OUTER JOIN is implemented.

FULL OUTER

JOIN
Only LEFT OUTER JOIN is implemented.

ALTER

TABLE

The RENAME TABLE and ADD COLUMN variants of the ALTER TABLE

command are supported. The DROP COLUMN, ALTER COLUMN, ADD

CONSTRAINT are not supported.

Trigger

support

FOR EACH ROW triggers are supported but not FOR EACH STATEMENT

triggers.

VIEWs
VIEWs in SQLite are read-only. You may not execute a DELETE, INSERT,

or UPDATE statement on a view.

GRANT and

REVOKE

The only access permissions that can be applied are the normal file

access permissions of the underlying operating system.

SQLite Commands

The standard SQLite commands to interact with relational databases are similar to SQL.

They are CREATE, SELECT, INSERT, UPDATE, DELETE and DROP. These commands can be

classified into groups based on their operational nature.

DDL - Data Definition Language

Command Description

CREATE Creates a new table, a view of a table, or other object in database.

ALTER Modifies an existing database object, such as a table.

SQLite

4

DROP
Deletes an entire table, a view of a table or other object in the

database.

DML - Data Manipulation Language

Command Description

INSERT Creates a record

UPDATE Modifies records

DELETE Deletes records

DQL - Data Query Language

Command Description

SELECT Retrieves certain records from one or more tables

SQLite

5

SQLite is famous for its great feature zero-configuration, which means no complex setup

or administration is needed. This chapter will take you through the process of setting up

SQLite on Windows, Linux and Mac OS X.

Install SQLite on Windows

Step 1: Go to SQLite download page, and download precompiled binaries from Windows

section.

Step 2: Download sqlite-shell-win32-*.zip and sqlite-dll-win32-*.zip zipped files.

Step 3: Create a folder C:\>sqlite and unzip above two zipped files in this folder, which

will give you sqlite3.def, sqlite3.dll and sqlite3.exe files.

Step 4: Add C:\>sqlite in your PATH environment variable and finally go to the command

prompt and issue sqlite3 command, which should display the following result.

C:\>sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

Install SQLite on Linux

Today, almost all the flavors of Linux OS are being shipped with SQLite. So you just issue

the following command to check if you already have SQLite installed on your machine.

$sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

If you do not see the above result, then it means you do not have SQLite installed on your

Linux machine. Following are the steps to install SQLite:

Step 1: Go to SQLite download page and download sqlite-autoconf-*.tar.gz from source

code section.

 SQLite ─ Installation

http://www.sqlite.org/download.html
http://www.sqlite.org/download.html

SQLite

6

Step 2: Run the following command.

$tar xvfz sqlite-autoconf-3071502.tar.gz

$cd sqlite-autoconf-3071502

$./configure --prefix=/usr/local

$make

$make install

The above command will end with SQLite installation on your Linux machine, which you

can verify as explained above.

Install SQLite on Mac OS X

Though the latest version of Mac OS X comes pre-installed with SQLite, but if you do not

have installation available then just follow these steps:

Step 1: Go to SQLite download page, and download sqlite-autoconf-*.tar.gz from source

code section.

Step 2: Run the following command.

$tar xvfz sqlite-autoconf-3071502.tar.gz

$cd sqlite-autoconf-3071502

$./configure --prefix=/usr/local

$make

$make install

The above procedure will end with SQLite installation on your Mac OS X machine, which

you can verify by issuing the following command:

$sqlite3

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

Finally, you have SQLite command prompt where you can issue SQLite commands for your

exercises.

http://www.sqlite.org/download.html

SQLite

7

This chapter will take you through simple and useful commands used by SQLite

programmers. These commands are called SQLite dot commands and exception with these

commands is that they should not be terminated by a semi-colon (;).

Let's start with typing a simple sqlite3 command at command prompt which will provide

you with SQLite command prompt where you will issue various SQLite commands.

$sqlite3

SQLite version 3.3.6

Enter ".help" for instructions

sqlite>

For a listing of the available dot commands, you can enter ".help" any time. For example:

sqlite>.help

The above command will display a list of various important SQLite dot commands, which

are listed in the following table.

Command Description

.backup ?DB?

FILE
Backup DB (default "main") to FILE

.bail ON|OFF Stop after hitting an error. Default OFF

.databases List names and files of attached databases

.dump ?TABLE?
Dump the database in an SQL text format. If TABLE specified, only

dump tables matching LIKE pattern TABLE

.echo ON|OFF Turn command echo on or off

.exit Exit SQLite prompt

.explain ON|OFF
Turn output mode suitable for EXPLAIN on or off. With no args, it

turns EXPLAIN on

.header(s)

ON|OFF
Turn display of headers on or off

.help Show this message

 SQLite ─ Commands

SQLite

8

.import FILE

TABLE
Import data from FILE into TABLE

.indices ?TABLE?
Show names of all indices. If TABLE specified, only show indices

for tables matching LIKE pattern TABLE

.load FILE

?ENTRY?
Load an extension library

.log FILE|off Turn logging on or off. FILE can be stderr/stdout

.mode MODE

Set output mode where MODE is one of:

 csv Comma-separated values

 column Left-aligned columns

 html HTML <table> code

 insert SQL insert statements for TABLE

 line One value per line

 list Values delimited by .separator string

 tabs Tab-separated values

 tcl TCL list elements

.nullvalue STRING

Print STRING in place of NULL values

.output FILENAME

Send output to FILENAME

.output stdout

Send output to the screen

.print STRING...

Print literal STRING

.prompt MAIN

CONTINUE

Replace the standard prompts

.quit

Exit SQLite prompt

SQLite

9

.read FILENAME

Execute SQL in FILENAME

.schema ?TABLE?

Show the CREATE statements. If TABLE specified, only show

tables matching LIKE pattern TABLE

.separator

STRING

Change separator used by output mode and .import

.show

Show the current values for various settings

.stats ON|OFF

Turn stats on or off

.tables

?PATTERN?

List names of tables matching a LIKE pattern

.timeout MS

Try opening locked tables for MS milliseconds

.width NUM NUM

Set column widths for "column" mode

.timer ON|OFF

Turn the CPU timer measurement on or off

Let's try .show command to see default setting for your SQLite command prompt.

sqlite>.show

 echo: off

 explain: off

 headers: off

 mode: column

nullvalue: ""

 output: stdout

separator: "|"

 width:

sqlite>

Make sure there is no space in between sqlite> prompt and dot command, otherwise it

will not work.

SQLite

10

Formatting Output

You can use the following sequence of dot commands to format your output.

sqlite>.header on

sqlite>.mode column

sqlite>.timer on

sqlite>

The above setting will produce the output in the following format.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

CPU Time: user 0.000000 sys 0.000000

The sqlite_master Table

The master table holds the key information about your database tables and it is

called sqlite_master. You can see its schema as follows:

sqlite>.schema sqlite_master

This will produce the following result.

CREATE TABLE sqlite_master (

 type text,

 name text,

 tbl_name text,

 rootpage integer,

 sql text

);

SQLite

11

SQLite is followed by a unique set of rules and guidelines called Syntax. This chapter lists

all the basic SQLite Syntax.

Case Sensitivity

Important point to be noted is that SQLite is case insensitive, but there are some

commands, which are case sensitive like GLOB and glob have different meaning in SQLite

statements.

Comments

SQLite comments are extra notes, which you can add in your SQLite code to increase its

readability and they can appear anywhere; whitespace can occur, including inside

expressions and in the middle of other SQL statements but they cannot be nested.

SQL comments begin with two consecutive "-" characters (ASCII 0x2d) and extend up to

and including the next newline character (ASCII 0x0a) or until the end of input, whichever

comes first.

You can also use C-style comments, which begin with "/*" and extend up to and including

the next "*/" character pair or until the end of input, whichever comes first. C-style

comments can span multiple lines.

sqlite>.help -- This is a single line comment

SQLite Statements

All the SQLite statements start with any of the keywords like SELECT, INSERT, UPDATE,

DELETE, ALTER, DROP, etc., and all the statements end with a semicolon (;).

SQLite ANALYZE Statement

ANALYZE;

or

ANALYZE database_name;

or

ANALYZE database_name.table_name;

SQLite AND/OR Clause

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION-1 {AND|OR} CONDITION-2;

 SQLite ─ Syntax

SQLite

12

SQLite ALTER TABLE Statement

ALTER TABLE table_name ADD COLUMN column_def...;

SQLite ALTER TABLE Statement (Rename)

ALTER TABLE table_name RENAME TO new_table_name;

SQLite ATTACH DATABASE Statement

ATTACH DATABASE 'DatabaseName' As 'Alias-Name';

SQLite BEGIN TRANSACTION Statement

BEGIN;

or

BEGIN EXCLUSIVE TRANSACTION;

SQLite BETWEEN Clause

SELECT column1, column2....columnN

FROM table_name

WHERE column_name BETWEEN val-1 AND val-2;

SQLite COMMIT Statement

COMMIT;

SQLite CREATE INDEX Statement

CREATE INDEX index_name

ON table_name (column_name COLLATE NOCASE);

SQLite CREATE UNIQUE INDEX Statement

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2,...columnN);

SQLite CREATE TABLE Statement

CREATE TABLE table_name(

 column1 datatype,

 column2 datatype,

SQLite

13

 column3 datatype,

 columnN datatype,

 PRIMARY KEY(one or more columns)

);

SQLite CREATE TRIGGER Statement

CREATE TRIGGER database_name.trigger_name

BEFORE INSERT ON table_name FOR EACH ROW

BEGIN

 stmt1;

 stmt2;

END;

SQLite CREATE VIEW Statement

CREATE VIEW database_name.view_name AS

SELECT statement....;

SQLite CREATE VIRTUAL TABLE Statement

CREATE VIRTUAL TABLE database_name.table_name USING weblog(access.log);

or

CREATE VIRTUAL TABLE database_name.table_name USING fts3();

SQLite COMMIT TRANSACTION Statement

COMMIT;

SQLite COUNT Clause

SELECT COUNT(column_name)

FROM table_name

WHERE CONDITION;

SQLite DELETE Statement

SQLite

14

DELETE FROM table_name

WHERE {CONDITION};

SQLite DETACH DATABASE Statement

DETACH DATABASE 'Alias-Name';

SQLite DISTINCT Clause

SELECT DISTINCT column1, column2....columnN

FROM table_name;

SQLite DROP INDEX Statement

DROP INDEX database_name.index_name;

SQLite DROP TABLE Statement

DROP TABLE database_name.table_name;

SQLite DROP VIEW Statement

DROP INDEX database_name.view_name;

SQLite DROP TRIGGER Statement

DROP INDEX database_name.trigger_name;

SQLite EXISTS Clause

SELECT column1, column2....columnN

FROM table_name

WHERE column_name EXISTS (SELECT * FROM table_name);

SQLite EXPLAIN Statement

EXPLAIN INSERT statement...;

or

EXPLAIN QUERY PLAN SELECT statement...;

SQLite GLOB Clause

SELECT column1, column2....columnN

SQLite

15

FROM table_name

WHERE column_name GLOB { PATTERN };

SQLite GROUP BY Clause

SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column_name;

SQLite HAVING Clause

SELECT SUM(column_name)

FROM table_name

WHERE CONDITION

GROUP BY column_name

HAVING (arithematic function condition);

SQLite INSERT INTO Statement

INSERT INTO table_name(column1, column2....columnN)

VALUES (value1, value2....valueN);

SQLite IN Clause

SELECT column1, column2....columnN

FROM table_name

WHERE column_name IN (val-1, val-2,...val-N);

SQLite Like Clause

SELECT column1, column2....columnN

FROM table_name

WHERE column_name LIKE { PATTERN };

SQLite NOT IN Clause

SELECT column1, column2....columnN

FROM table_name

SQLite

16

WHERE column_name NOT IN (val-1, val-2,...val-N);

SQLite ORDER BY Clause

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION

ORDER BY column_name {ASC|DESC};

SQLite PRAGMA Statement

PRAGMA pragma_name;

For example:

PRAGMA page_size;

PRAGMA cache_size = 1024;

PRAGMA table_info(table_name);

SQLite RELEASE SAVEPOINT Statement

RELEASE savepoint_name;

SQLite REINDEX Statement

REINDEX collation_name;

REINDEX database_name.index_name;

REINDEX database_name.table_name;

SQLite ROLLBACK Statement

ROLLBACK;

or

ROLLBACK TO SAVEPOINT savepoint_name;

SQLite SAVEPOINT Statement

SAVEPOINT savepoint_name;

SQLite SELECT Statement

SQLite

17

SELECT column1, column2....columnN

FROM table_name;

SQLite UPDATE Statement

UPDATE table_name

SET column1 = value1, column2 = value2....columnN=valueN

[WHERE CONDITION];

SQLite VACUUM Statement

VACUUM;

SQLite WHERE Clause

SELECT column1, column2....columnN

FROM table_name

WHERE CONDITION;

SQLite

18

SQLite data type is an attribute that specifies the type of data of any object. Each column,

variable and expression has related data type in SQLite.

You would use these data types while creating your tables. SQLite uses a more general

dynamic type system. In SQLite, the datatype of a value is associated with the value itself,

not with its container.

SQLite Storage Classes

Each value stored in an SQLite database has one of the following storage classes:

Storage Class Description

NULL The value is a NULL value.

INTEGER
The value is a signed integer, stored in 1, 2, 3, 4, 6, or 8 bytes

depending on the magnitude of the value.

REAL
The value is a floating point value, stored as an 8-byte IEEE floating

point number.

TEXT
The value is a text string, stored using the database encoding (UTF-

8, UTF-16BE or UTF-16LE)

BLOB The value is a blob of data, stored exactly as it was input.

SQLite storage class is slightly more general than a datatype. The INTEGER storage class,

for example, includes 6 different integer datatypes of different lengths.

SQLite Affinity Type

SQLite supports the concept of type affinity on columns. Any column can still store any

type of data but the preferred storage class for a column is called its affinity. Each table

column in an SQLite3 database is assigned one of the following type affinities:

Affinity Description

TEXT This column stores all data using storage classes NULL, TEXT or BLOB.

NUMERIC This column may contain values using all five storage classes.

INTEGER
Behaves the same as a column with NUMERIC affinity, with an

exception in a CAST expression.

 SQLite ─ Data Type

SQLite

19

REAL
Behaves like a column with NUMERIC affinity except that it forces

integer values into floating point representation.

NONE

A column with affinity NONE does not prefer one storage class over

another and no attempt is made to coerce data from one storage class

into another.

SQLite Affinity and Type Names

Following table lists down various data type names which can be used while creating

SQLite3 tables with the corresponding applied affinity.

Data Type Affinity

 INT

 INTEGER

 TINYINT

 SMALLINT

 MEDIUMINT

 BIGINT

 UNSIGNED BIG INT

 INT2

 INT8

INTEGER

 CHARACTER(20)

 VARCHAR(255)

 VARYING CHARACTER(255)

 NCHAR(55)

 NATIVE CHARACTER(70)

 NVARCHAR(100)

 TEXT

 CLOB

TEXT

 BLOB

 no datatype specified
NONE

 REAL
REAL

SQLite

20

 DOUBLE

 DOUBLE PRECISION

 FLOAT

 NUMERIC

 DECIMAL(10,5)

 BOOLEAN

 DATE

 DATETIME

NUMERIC

Boolean Datatype

SQLite does not have a separate Boolean storage class. Instead, Boolean values are stored

as integers 0 (false) and 1 (true).

Date and Time Datatype

SQLite does not have a separate storage class for storing dates and/or times, but SQLite

is capable of storing dates and times as TEXT, REAL or INTEGER values.

Storage Class Date Format

TEXT A date in a format like "YYYY-MM-DD HH:MM:SS.SSS"

REAL
The number of days since noon in Greenwich on November 24,

4714 B.C.

INTEGER The number of seconds since 1970-01-01 00:00:00 UTC

You can choose to store dates and times in any of these formats and freely convert

between formats using the built-in date and time functions.

SQLite

21

In SQLite, sqlite3 command is used to create a new SQLite database. You do not need to

have any special privilege to create a database.

Syntax

Basic syntax of sqlite3 command is as follows:

$sqlite3 DatabaseName.db

Always, database name should be unique within the RDBMS.

Example

If you want to create a new database <testDB.db>, then SQLITE3 statement would be as

follows:

$sqlite3 testDB.db

SQLite version 3.7.15.2 2013-01-09 11:53:05

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

The above command will create a file testDB.db in the current directory. This file will be

used as database by SQLite engine. If you have noticed while creating database, sqlite3

command will provide a sqlite> prompt after creating a database file successfully.

Once a database is created, you can verify it in the list of databases using the following

SQLite .databases command.

sqlite>.databases

seq name file

--- --------------- ----------------------

0 main /home/sqlite/testDB.db

You will use SQLite .quit command to come out of the sqlite prompt as follows:

sqlite>.quit

$

 SQLite ─ CREATE Database

SQLite

22

The .dump Command

You can use .dump dot command to export complete database in a text file using the

following SQLite command at the command prompt.

$sqlite3 testDB.db .dump > testDB.sql

The above command will convert the entire contents of testDB.db database into SQLite

statements and dump it into ASCII text file testDB.sql. You can perform restoration from

the generated testDB.sql in a simple way as follows:

$sqlite3 testDB.db < testDB.sql

At this moment your database is empty, so you can try above two procedures once you

have few tables and data in your database. For now, let's proceed to the next chapter.

SQLite

23

Consider a case when you have multiple databases available and you want to use any one

of them at a time. SQLite ATTACH DATABASE statement is used to select a particular

database, and after this command, all SQLite statements will be executed under the

attached database.

Syntax

Following is the basic syntax of SQLite ATTACH DATABASE statement.

ATTACH DATABASE 'DatabaseName' As 'Alias-Name';

The above command will also create a database in case the database is already not

created, otherwise it will just attach database file name with logical database 'Alias-Name'.

Example

If you want to attach an existing database testDB.db, then ATTACH DATABASE statement

would be as follows:

sqlite> ATTACH DATABASE 'testDB.db' as 'TEST';

Use SQLite .database command to display attached database.

sqlite> .database

seq name file

--- --------------- ----------------------

0 main /home/sqlite/testDB.db

2 test /home/sqlite/testDB.db

The database names main and temp are reserved for the primary database and database

to hold temporary tables and other temporary data objects. Both of these database names

exist for every database connection and should not be used for attachment, otherwise you

will get the following warning message.

sqlite> ATTACH DATABASE 'testDB.db' as 'TEMP';

Error: database TEMP is already in use

sqlite> ATTACH DATABASE 'testDB.db' as 'main';

Error: database TEMP is already in use

 SQLite ─ ATTACH Database

SQLite

24

SQLite DETACH DATABASE statement is used to detach and dissociate a named

database from a database connection which was previously attached using ATTACH

statement. If the same database file has been attached with multiple aliases, then DETACH

command will disconnect only the given name and rest of the attachment will still continue.

You cannot detach the main or temp databases.

If the database is an in-memory or temporary database, the database will be destroyed

and the contents will be lost.

Syntax

Following is the basic syntax of SQLite DETACH DATABASE 'Alias-Name' statement.

DETACH DATABASE 'Alias-Name';

Here, 'Alias-Name' is the same alias, which you had used while attaching the database

using ATTACH statement.

Example

Consider you have a database, which you created in the previous chapter and attached it

with 'test' and 'currentDB' as we can see using .database command.

sqlite>.databases

seq name file

--- --------------- ----------------------

0 main /home/sqlite/testDB.db

2 test /home/sqlite/testDB.db

3 currentDB /home/sqlite/testDB.db

Let's try to detach 'currentDB' from testDB.db using the following command.

sqlite> DETACH DATABASE 'currentDB';

Now, if you will check the current attachment, you will find that testDB.db is still connected

with 'test' and 'main'.

sqlite>.databases

seq name file

--- --------------- ----------------------

0 main /home/sqlite/testDB.db

2 test /home/sqlite/testDB.db

 SQLite ─ DETACH Database

SQLite

25

SQLite CREATE TABLE statement is used to create a new table in any of the given

database. Creating a basic table involves naming the table and defining its columns and

each column's data type.

Syntax

Following is the basic syntax of CREATE TABLE statement.

CREATE TABLE database_name.table_name(

 column1 datatype PRIMARY KEY(one or more columns),

 column2 datatype,

 column3 datatype,

 columnN datatype,

);

CREATE TABLE is the keyword telling the database system to create a new table. The

unique name or identifier for the table follows the CREATE TABLE statement. Optionally,

you can specify database_name along with table_name.

Example

Following is an example which creates a COMPANY table with ID as the primary key and

NOT NULL are the constraints showing that these fields cannot be NULL while creating

records in this table.

sqlite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

Let us create one more table, which we will use in our exercises in subsequent chapters.

sqlite> CREATE TABLE DEPARTMENT(

 ID INT PRIMARY KEY NOT NULL,

 DEPT CHAR(50) NOT NULL,

 EMP_ID INT NOT NULL

);

 SQLite ─ CREATE Table

SQLite

26

You can verify if your table has been created successfully using SQLite

command .tables command, which will be used to list down all the tables in an attached

database.

sqlite>.tables

COMPANY DEPARTMENT

Here, you can see the COMPANY table twice because its showing COMPANY table for main

database and test.COMPANY table for 'test' alias created for your testDB.db. You can get

complete information about a table using the following SQLite .schema command.

sqlite>.schema COMPANY

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

SQLite

27

SQLite DROP TABLE statement is used to remove a table definition and all associated

data, indexes, triggers, constraints, and permission specifications for that table.

You have to be careful while using this command because once a table is deleted then all

the information available in the table would also be lost forever.

Syntax

Following is the basic syntax of DROP TABLE statement. You can optionally specify the

database name along with table name as follows:

DROP TABLE database_name.table_name;

Example

Let us first verify COMPANY table and then we will delete it from the database.

sqlite>.tables

COMPANY test.COMPANY

This means COMPANY table is available in the database, so let us drop it as follows:

sqlite>DROP TABLE COMPANY;

sqlite>

Now, if you try .TABLES command, then you will not find COMPANY table anymore.

sqlite>.tables

sqlite>

It shows nothing which means the table from your database has been dropped

successfully.

 SQLite ─ DROP Table

SQLite

28

SQLite INSERT INTO Statement is used to add new rows of data into a table in the

database.

Syntax

Following are the two basic syntaxes of INSERT INTO statement.

INSERT INTO TABLE_NAME [(column1, column2, column3,...columnN)]

VALUES (value1, value2, value3,...valueN);

Here, column1, column2, ... columnN are the names of the columns in the table into which

you want to insert data.

You may not need to specify the column(s) name in the SQLite query if you are adding

values for all the columns of the table. However, make sure the order of the values is in

the same order as the columns in the table. The SQLite INSERT INTO syntax would be as

follows:

INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);

Example

Consider you already have created COMPANY table in your testDB.db as follows:

sqlite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

 SQLite ─ INSERT Query

SQLite

29

Now, the following statements would create six records in COMPANY table.

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Paul', 32, 'California', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Allen', 25, 'Texas', 15000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'David', 27, 'Texas', 85000.00);

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Kim', 22, 'South-Hall', 45000.00);

You can create a record in COMPANY table using the second syntax as follows:

INSERT INTO COMPANY VALUES (7, 'James', 24, 'Houston', 10000.00);

All the above statements would create the following records in COMPANY table. In the next

chapter, you will learn how to display all these records from a table.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Populate One Table Using Another Table

You can populate data into a table through select statement over another table provided

another table has a set of fields, which are required to populate the first table. Here is the

syntax:

SQLite

30

INSERT INTO first_table_name [(column1, column2, ... columnN)]

 SELECT column1, column2, ...columnN

 FROM second_table_name

 [WHERE condition];

For now, you can skip the above statement. First, let's learn SELECT and WHERE clauses

which will be covered in subsequent chapters.

SQLite

31

SQLite SELECT statement is used to fetch the data from a SQLite database table which

returns data in the form of a result table. These result tables are also called result sets.

Syntax

Following is the basic syntax of SQLite SELECT statement.

SELECT column1, column2, columnN FROM table_name;

Here, column1, column2 ... are the fields of a table, whose values you want to fetch. If

you want to fetch all the fields available in the field, then you can use the following syntax:

SELECT * FROM table_name;

Example

Consider COMPANY table with the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example to fetch and display all these records using SELECT statement.

Here, the first three commands have been used to set a properly formatted output.

sqlite>.header on

sqlite>.mode column

sqlite> SELECT * FROM COMPANY;

 SQLite ─ SELECT Query

SQLite

32

Finally, you will get the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

If you want to fetch only selected fields of COMPANY table, then use the following query:

sqlite> SELECT ID, NAME, SALARY FROM COMPANY;

The above query will produce the following result.

ID NAME SALARY

---------- ---------- ----------

1 Paul 20000.0

2 Allen 15000.0

3 Teddy 20000.0

4 Mark 65000.0

5 David 85000.0

6 Kim 45000.0

7 James 10000.0

Setting Output Column Width

Sometimes, you will face a problem related to THE truncated output in case of .mode

column which happens because of default width of the column to be displayed. What you

can do is, you can set column displayable column width using .width num,

num.... command as follows:

sqlite>.width 10, 20, 10

sqlite>SELECT * FROM COMPANY;

SQLite

33

The above .width command sets the first column width to 10, the second column width

to 20 and the third column width to 10. Finally, the above SELECT statement will give the

following result.

ID NAME AGE ADDRESS SALARY

---------- -------------------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Schema Information

As all the dot commands are available at SQLite prompt, hence while programming with

SQLite, you will use the following SELECT statement with sqlite_master table to list down

all the tables created in your database.

sqlite> SELECT tbl_name FROM sqlite_master WHERE type = 'table';

Assuming you have only COMPANY table in your testDB.db, this will produce the following

result.

tbl_name

COMPANY

You can list down complete information about COMPANY table as follows:

sqlite> SELECT sql FROM sqlite_master WHERE type = 'table' AND tbl_name =

'COMPANY';

Assuming you have only COMPANY table in your testDB.db, this will produce the following

result.

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

)

SQLite

34

What is an Operator in SQLite?

An operator is a reserved word or a character used primarily in an SQLite statement's

WHERE clause to perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQLite statement and to serve as

conjunctions for multiple conditions in a statement.

 Arithmetic operators

 Comparison operators

 Logical operators

 Bitwise operators

SQLite Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then SQLite arithmetic operators will

be used as follows:

Operator Description Example

+ Addition - Adds values on either side of the operator
a + b will

give 30

-
Subtraction - Subtracts the right hand operand from the left

hand operand

a - b will

give -10

* Multiplication - Multiplies values on either side of the operator
a * b will

give 200

/
Division - Divides the left hand operand by the right hand

operand

b / a will

give 2

%
Modulus - Divides the left hand operand by the right hand

operand and returns the remainder

b % a will

give 0

SQLite - Arithmetic Operators Example

Following are some simple examples showing the usage of SQLite Arithmetic Operators.

sqlite> .mode line

sqlite> select 10 + 20;

 SQLite ─ Operators

SQLite

35

10 + 20 = 30

sqlite> select 10 - 20;

10 - 20 = -10

sqlite> select 10 * 20;

10 * 20 = 200

sqlite> select 10 / 5;

10 / 5 = 2

sqlite> select 12 % 5;

12 % 5 = 2

SQLite Comparison Operators

Assume variable a holds 10 and variable b holds 20, then SQLite comparison operators

will be used as follows:

Operator Description Example

==
Checks if the values of two operands are equal or not, if yes

then the condition becomes true.

(a == b)

is not

true.

=
Checks if the values of two operands are equal or not, if yes

then the condition becomes true.

(a = b) is

not true.

!=
Checks if the values of two operands are equal or not, if the

values are not equal, then the condition becomes true.

(a != b)

is true.

<>
Checks if the values of two operands are equal or not, if the

values are not equal, then the condition becomes true.

(a <> b)

is true.

>

Checks if the values of the left operand is greater than the

value of the right operand, if yes then the condition becomes

true.

(a > b) is

not true.

<
Checks if the values of the left operand is less than the value

of the right operand, if yes then the condition becomes true.

(a < b) is

true.

SQLite

36

>=

Checks if the value of the left operand is greater than or equal

to the value of the right operand, if yes then the condition

becomes true.

(a >= b)

is not

true.

<=

Checks if the value of the left operand is less than or equal to

the value of the right operand, if yes then the condition

becomes true.

(a <= b)

is true.

!<

Checks if the value of the left operand is not less than the

value of the right operand, if yes then the condition becomes

true.

(a !< b)

is false.

!>

Checks if the value of the left operand is not greater than the

value of the right operand, if yes then the condition becomes

true.

(a !> b)

is true.

SQLite - Comparison Operators Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

The following example will show the usage of various SQLite Comparison Operators.

Here, we have used WHERE clause, which will be explained in a separate chapter but for

now you can understand that WHERE clause is used to put a conditional statement along

with SELECT statement.

Following SELECT statement lists down all the records having SALARY greater than

50,000.00.

sqlite> SELECT * FROM COMPANY WHERE SALARY > 50000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

SQLite

37

Following SELECT statement lists down all the records having SALARY equal to 20,000.00.

sqlite> SELECT * FROM COMPANY WHERE SALARY = 20000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

Following SELECT statement lists down all the records having SALARY not equal to

20,000.00.

sqlite> SELECT * FROM COMPANY WHERE SALARY != 20000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records having SALARY not equal to

20,000.00.

sqlite> SELECT * FROM COMPANY WHERE SALARY <> 20000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records having SALARY greater than or

equal to 65,000.00.

sqlite> SELECT * FROM COMPANY WHERE SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

SQLite

38

SQLite Logical Operators

Here is a list of all the logical operators available in SQLite.

Operator Description

AND
The AND operator allows the existence of multiple conditions in a SQL

statement's WHERE clause.

BETWEEN
The BETWEEN operator is used to search for values that are within a set of

values, given the minimum value and the maximum value.

EXISTS
The EXISTS operator is used to search for the presence of a row in a

specified table that meets a certain criteria.

IN
The IN operator is used to compare a value to a list of literal values that

have been specified.

NOT IN
The negation of IN operator is used to compare a value to a list of literal

values that have been specified.

LIKE
The LIKE operator is used to compare a value to similar values using

wildcard operators.

GLOB
The GLOB operator is used to compare a value to similar values using

wildcard operators. Also, GLOB is case sensitive, unlike LIKE.

NOT

The NOT operator reverses the meaning of the logical operator with which

it is used. Example, NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a

negate operator.

OR
The OR operator is used to combine multiple conditions in an SQL

statement's WHERE clause.

IS NULL The NULL operator is used to compare a value with a NULL value.

IS The IS operator work like =

IS NOT The IS operator work like !=

|| Adds two different strings and make a new one.

UNIQUE
The UNIQUE operator searches every row of a specified table for uniqueness

(no duplicates).

SQLite

39

SQLite - Logical Operators Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following are simple examples showing the usage of SQLite Logical Operators. Following

SELECT statement lists down all the records where AGE is greater than or equal to 25 and

salary is greater than or equal to 65000.00.

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 AND SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is greater than or equal

to 25 OR salary is greater than or equal to 65000.00.

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 OR SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is not NULL, which

means all the records because none of the record has AGE equal to NULL.

sqlite> SELECT * FROM COMPANY WHERE AGE IS NOT NULL;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

SQLite

40

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does

not matter what comes after 'Ki'.

sqlite> SELECT * FROM COMPANY WHERE NAME LIKE 'Ki%';

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does

not matter what comes after 'Ki'.

sqlite> SELECT * FROM COMPANY WHERE NAME GLOB 'Ki*';

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where AGE value is either 25 or 27.

sqlite> SELECT * FROM COMPANY WHERE AGE IN (25, 27);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE value is neither 25 nor

27.

sqlite> SELECT * FROM COMPANY WHERE AGE NOT IN (25, 27);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

SQLite

41

Following SELECT statement lists down all the records where AGE value is in BETWEEN 25

AND 27.

sqlite> SELECT * FROM COMPANY WHERE AGE BETWEEN 25 AND 27;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement makes use of SQL sub-query where sub-query finds all the

records with AGE field having SALARY > 65000 and later WHERE clause is being used

along with EXISTS operator to list down all the records where AGE from the outside query

exists in the result returned by the sub-query.

sqlite> SELECT AGE FROM COMPANY

 WHERE EXISTS (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

AGE

32

25

23

25

27

22

24

Following SELECT statement makes use of SQL sub-query where subquery finds all the

records with AGE field having SALARY > 65000 and later WHERE clause is being used

along with > operator to list down all the records where AGE from the outside query is

greater than the age in the result returned by the sub-query.

sqlite> SELECT * FROM COMPANY

 WHERE AGE > (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

SQLite

42

SQLite Bitwise Operators

Bitwise operator works on bits and performs bit-by-bit operation. Following is the truth

table for & and |.

p q p & q p | q

0 0 0 0

0 1 0 1

1 1 1 1

1 0 0 1

Assume if A = 60 and B = 13, then in binary format, they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

~A = 1100 0011

The Bitwise operators supported by SQLite language are listed in the following table.

Assume variable A holds 60 and variable B holds 13, then:

Operator Description Example

&

Binary AND Operator copies a bit to

the result, if it exists in both

operands.

(A & B) will give 12 which is 0000

1100

|
Binary OR Operator copies a bit, if it

exists in either operand.

(A | B) will give 61 which is 0011

1101

~

Binary Ones Complement Operator is

unary and has the effect of 'flipping'

bits.

(~A) will give -61 which is 1100

0011 in 2's complement form due to

a signed binary number

<<

Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 will give 240 which is 1111

0000

SQLite

43

>>

Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15 which is 0000

1111

SQLite - Bitwise Operators Example

Following are simple examples showing the usage of SQLite Bitwise Operators.

sqlite> .mode line

sqlite> select 60 | 13;

60 | 13 = 61

sqlite> select 60 & 13;

60 & 13 = 12

sqlite> select 60 ^ 13;

10 * 20 = 200

sqlite> select (~60);

(~60) = -61

sqlite> select (60 << 2);

(60 << 2) = 240

sqlite> select (60 >> 2);

(60 >> 2) = 15

SQLite

44

An expression is a combination of one or more values, operators, and SQL functions that

evaluate to a value.

SQL Expressions are like formulas and they are written in query language. You can also

use to query the database for a specific set of data.

Syntax

Consider the basic syntax of the SELECT statement as follows:

SELECT column1, column2, columnN

FROM table_name

WHERE [CONDITION | EXPRESSION];

Following are the different types of SQLite expressions.

SQLite - Boolean Expression

SQLite Boolean Expressions fetch the data on the basis of matching single value. Following

is the syntax:

SELECT column1, column2, columnN

FROM table_name

WHERE SINGLE VALUE MATCHTING EXPRESSION;

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is a simple example showing the usage of SQLite Boolean Expressions.

sqlite> SELECT * FROM COMPANY WHERE SALARY = 10000;

ID NAME AGE ADDRESS SALARY

 SQLite ─ Expressions

SQLite

45

---------- ---------- ---------- ---------- ----------

4 James 24 Houston 10000.0

SQLite - Numeric Expression

These expressions are used to perform any mathematical operation in any query. Following

is the syntax:

SELECT numerical_expression as OPERATION_NAME

[FROM table_name WHERE CONDITION] ;

Here, numerical_expression is used for mathematical expression or any formula. Following

is a simple example showing uthe sage of SQLite Numeric Expression.

sqlite> SELECT (15 + 6) AS ADDITION

ADDITION = 21

There are several built-in functions such as avg(), sum(), count(), etc., to perform what

is known as aggregate data calculations against a table or a specific table column.

sqlite> SELECT COUNT(*) AS "RECORDS" FROM COMPANY;

RECORDS = 7

SQLite - Date Expression

Date Expression returns the current system date and time values. These expressions are

used in various data manipulations.

sqlite> SELECT CURRENT_TIMESTAMP;

CURRENT_TIMESTAMP = 2013-03-17 10:43:35

SQLite

46

The SQLite WHERE clause is used to specify a condition while fetching the data from one

table or multiple tables.

If the given condition is satisfied, means true, then it returns the specific value from the

table. You will have to use WHERE clause to filter the records and fetch only the necessary

records.

The WHERE clause not only is used in SELECT statement, but it is also used in UPDATE,

DELETE statement, etc., which will be covered in subsequent chapters.

Syntax

Following is the basic syntax of SQLite SELECT statement with WHERE clause.

SELECT column1, column2, columnN

FROM table_name

WHERE [condition]

Example

You can specify a condition using Comparison or Logical Operators such as >, <, =, LIKE,

NOT, etc. Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is a simple example showing the usage of SQLite Logical Operators. Following

SELECT statement lists down all the records where AGE is greater than or equal to

25 AND salary is greater than or equal to 65000.00.

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 AND SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

 SQLite ─ WHERE Clause

https://www.tutorialspoint.com/sqlite/sqlite_operators.htm

SQLite

47

Following SELECT statement lists down all the records where AGE is greater than or equal

to 25 OR salary is greater than or equal to 65000.00.

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 OR SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE is not NULL, which

means all the records because none of the record has AGE equal to NULL.

sqlite> SELECT * FROM COMPANY WHERE AGE IS NOT NULL;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does

not matter what comes after 'Ki'.

sqlite> SELECT * FROM COMPANY WHERE NAME LIKE 'Ki%';

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where NAME starts with 'Ki', does

not matter what comes after 'Ki'.

sqlite> SELECT * FROM COMPANY WHERE NAME GLOB 'Ki*';

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22 South-Hall 45000.0

Following SELECT statement lists down all the records where AGE value is either 25 or 27.

SQLite

48

sqlite> SELECT * FROM COMPANY WHERE AGE IN (25, 27);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement lists down all the records where AGE value is neither 25 nor

27.

sqlite> SELECT * FROM COMPANY WHERE AGE NOT IN (25, 27);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following SELECT statement lists down all the records where AGE value is in BETWEEN 25

AND 27.

sqlite> SELECT * FROM COMPANY WHERE AGE BETWEEN 25 AND 27;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following SELECT statement makes use of SQL sub-query, where sub-query finds all the

records with AGE field having SALARY > 65000 and later WHERE clause is being used

along with EXISTS operator to list down all the records where AGE from the outside query

exists in the result returned by the sub-query.

sqlite> SELECT AGE FROM COMPANY

 WHERE EXISTS (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

AGE

32

25

23

25

27

SQLite

49

22

24

Following SELECT statement makes use of SQL sub-query, where sub-query finds all the

records with AGE field having SALARY > 65000 and later WHERE clause is being used

along with > operator to list down all the records where AGE from the outside query is

greater than the age in the result returned by the sub-query.

sqlite> SELECT * FROM COMPANY

 WHERE AGE > (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

SQLite

50

The SQLite AND & OR operators are used to compile multiple conditions to narrow down

the selected data in an SQLite statement. These two operators are called conjunctive

operators.

These operators provide a means to make multiple comparisons with different operators

in the same SQLite statement.

The AND Operator

The AND operator allows the existence of multiple conditions in a SQLite statement's

WHERE clause. While using AND operator, complete condition will be assumed true when

all the conditions are true. For example, [condition1] AND [condition2] will be true only

when both condition1 and condition2 are true.

Syntax

Following is the basic syntax of AND operator with WHERE clause.

SELECT column1, column2, columnN

FROM table_name

WHERE [condition1] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an action to be taken

by the SQLite statement, whether it be a transaction or query, all conditions separated by

the AND must be TRUE.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

 SQLite ─ AND & OR Operators

SQLite

51

Following SELECT statement lists down all the records where AGE is greater than or equal

to 25 AND salary is greater than or equal to 65000.00.

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 AND SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

The OR Operator

The OR operator is also used to combine multiple conditions in a SQLite statement's

WHERE clause. While using OR operator, complete condition will be assumed true when at

least any of the conditions is true. For example, [condition1] OR [condition2] will be true

if either condition1 or condition2 is true.

Syntax

Following is the basic syntax of OR operator with WHERE clause.

SELECT column1, column2, columnN

FROM table_name

WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine N number of conditions using OR operator. For an action to be taken by

the SQLite statement, whether it be a transaction or query, only any ONE of the conditions

separated by the OR must be TRUE.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

SQLite

52

Following SELECT statement lists down all the records where AGE is greater than or equal

to 25 OR salary is greater than or equal to 65000.00.

sqlite> SELECT * FROM COMPANY WHERE AGE >= 25 OR SALARY >= 65000;

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

SQLite

53

SQLite UPDATE Query is used to modify the existing records in a table. You can use

WHERE clause with UPDATE query to update selected rows, otherwise all the rows would

be updated.

Syntax

Following is the basic syntax of UPDATE query with WHERE clause.

UPDATE table_name

SET column1 = value1, column2 = value2...., columnN = valueN

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which will update ADDRESS for a customer whose ID is 6.

sqlite> UPDATE COMPANY SET ADDRESS = 'Texas' WHERE ID = 6;

Now, COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

 SQLite ─ UPDATE Query

SQLite

54

6 Kim 22 Texas 45000.0

7 James 24 Houston 10000.0

If you want to modify all ADDRESS and SALARY column values in COMPANY table, you do

not need to use WHERE clause and UPDATE query will be as follows:

sqlite> UPDATE COMPANY SET ADDRESS = 'Texas', SALARY = 20000.00;

Now, COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 Texas 20000.0

2 Allen 25 Texas 20000.0

3 Teddy 23 Texas 20000.0

4 Mark 25 Texas 20000.0

5 David 27 Texas 20000.0

6 Kim 22 Texas 20000.0

7 James 24 Texas 20000.0

SQLite

55

SQLite DELETE Query is used to delete the existing records from a table. You can use

WHERE clause with DELETE query to delete the selected rows, otherwise all the records

would be deleted.

Syntax

Following is the basic syntax of DELETE query with WHERE clause.

DELETE FROM table_name

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which will DELETE a customer whose ID is 7.

sqlite> DELETE FROM COMPANY WHERE ID = 7;

Now COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

 SQLite ─ DELETE Query

SQLite

56

If you want to DELETE all the records from COMPANY table, you do not need to use WHERE

clause with DELETE query, which will be as follows:

sqlite> DELETE FROM COMPANY;

Now, COMPANY table does not have any record as all the records have been deleted by

DELETE statement.

SQLite

57

SQLite LIKE operator is used to match text values against a pattern using wildcards. If

the search expression can be matched to the pattern expression, the LIKE operator will

return true, which is 1. There are two wildcards used in conjunction with the LIKE operator:

 The percent sign (%)

 The underscore (_)

The percent sign represents zero, one, or multiple numbers or characters. The underscore

represents a single number or character. These symbols can be used in combinations.

Syntax

Following is the basic syntax of % and _.

SELECT FROM table_name

WHERE column LIKE 'XXXX%'

or

SELECT FROM table_name

WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name

WHERE column LIKE 'XXXX_'

or

SELECT FROM table_name

WHERE column LIKE '_XXXX'

or

SELECT FROM table_name

WHERE column LIKE '_XXXX_'

 SQLite ─ LIKE Clause

SQLite

58

You can combine N number of conditions using AND or OR operators. Here, XXXX could

be any numeric or string value.

Example

Following table lists a number of examples showing WHERE part having different LIKE

clause with '%' and '_' operators.

Statement Description

WHERE SALARY LIKE

'200%'
Finds any values that start with 200

WHERE SALARY LIKE

'%200%'
Finds any values that have 200 in any position

WHERE SALARY LIKE

'_00%'

Finds any values that have 00 in the second and third

positions

WHERE SALARY LIKE

'2_%_%'

Finds any values that start with 2 and are at least 3

characters in length

WHERE SALARY LIKE

'%2'
Finds any values that end with 2

WHERE SALARY LIKE

'_2%3'

Finds any values that has a 2 in the second position and

ends with a 3

WHERE SALARY LIKE

'2___3'

Finds any values in a five-digit number that starts with 2

and ends with 3

Let us take a real example, consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which will display all the records from COMPANY table where AGE

starts with 2.

sqlite> SELECT * FROM COMPANY WHERE AGE LIKE '2%';

SQLite

59

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which will display all the records from COMPANY table where

ADDRESS will have a hyphen (-) inside the text.

sqlite> SELECT * FROM COMPANY WHERE ADDRESS LIKE '%-%';

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

6 Kim 22 South-Hall 45000.0

SQLite

60

SQLite GLOB operator is used to match only text values against a pattern using wildcards.

If the search expression can be matched to the pattern expression, the GLOB operator will

return true, which is 1. Unlike LIKE operator, GLOB is case sensitive and it follows syntax

of UNIX for specifying THE following wildcards.

 The asterisk sign (*)

 The question mark (?)

The asterisk sign (*)represents zero or multiple numbers or characters. The question mark

(?) represents a single number or character.

Syntax

Following is the basic syntax of * and ?.

SELECT FROM table_name

WHERE column GLOB 'XXXX*'

or

SELECT FROM table_name

WHERE column GLOB '*XXXX*'

or

SELECT FROM table_name

WHERE column GLOB 'XXXX?'

or

SELECT FROM table_name

WHERE column GLOB '?XXXX'

or

SELECT FROM table_name

WHERE column GLOB '?XXXX?'

or

 SQLite ─ GLOB Clause

SQLite

61

SELECT FROM table_name

WHERE column GLOB '????'

You can combine N number of conditions using AND or OR operators. Here, XXXX could

be any numeric or string value.

Example

Following table lists a number of examples showing WHERE part having different LIKE

clause with '*' and '?' operators.

Statement Description

WHERE SALARY GLOB

'200*'
Finds any values that start with 200

WHERE SALARY GLOB

'*200*'
Finds any values that have 200 in any position

WHERE SALARY GLOB

'?00*'

Finds any values that have 00 in the second and third

positions

WHERE SALARY GLOB

'2??'

Finds any values that start with 2 and are at least 3

characters in length

WHERE SALARY GLOB '*2' Finds any values that end with 2

WHERE SALARY GLOB

'?2*3'

Finds any values that have a 2 in the second position and

end with a 3

WHERE SALARY GLOB

'2???3'

Finds any values in a five-digit number that start with 2 and

end with 3

Let us take a real example, consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

SQLite

62

7 James 24 Houston 10000.0

Following is an example, which will display all the records from COMPANY table, where

AGE starts with 2.

sqlite> SELECT * FROM COMPANY WHERE AGE GLOB '2*';

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which will display all the records from COMPANY table where

ADDRESS will have a hyphen (-) inside the text.

sqlite> SELECT * FROM COMPANY WHERE ADDRESS GLOB '*-*';

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

6 Kim 22 South-Hall 45000.0

SQLite

63

SQLite LIMIT clause is used to limit the data amount returned by the SELECT statement.

Syntax

Following is the basic syntax of SELECT statement with LIMIT clause.

SELECT column1, column2, columnN

FROM table_name

LIMIT [no of rows]

Following is the syntax of LIMIT clause when it is used along with OFFSET clause.

SELECT column1, column2, columnN

FROM table_name

LIMIT [no of rows] OFFSET [row num]

SQLite engine will return rows starting from the next row to the given OFFSET as shown

below in the last example.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which limits the row in the table according to the number of rows

you want to fetch from table.

sqlite> SELECT * FROM COMPANY LIMIT 6;

 SQLite ─ LIMIT Clause

SQLite

64

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

However in certain situations, you may need to pick up a set of records from a particular

offset. Here is an example, which picks up 3 records starting from the 3rd position.

sqlite> SELECT * FROM COMPANY LIMIT 3 OFFSET 2;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

SQLite

65

SQLite ORDER BY clause is used to sort the data in an ascending or descending order,

based on one or more columns.

Syntax

Following is the basic syntax of ORDER BY clause.

SELECT column-list

FROM table_name

[WHERE condition]

[ORDER BY column1, column2, .. columnN] [ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure whatever column

you are using to sort, that column should be available in the column-list.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example, which will sort the result in descending order by SALARY.

sqlite> SELECT * FROM COMPANY ORDER BY SALARY ASC;

 SQLite ─ ORDER BY Clause

SQLite

66

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

7 James 24 Houston 10000.0

2 Allen 25 Texas 15000.0

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

6 Kim 22 South-Hall 45000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following is an example, which will sort the result in descending order by NAME and

SALARY.

sqlite> SELECT * FROM COMPANY ORDER BY NAME, SALARY ASC;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

5 David 27 Texas 85000.0

7 James 24 Houston 10000.0

6 Kim 22 South-Hall 45000.0

4 Mark 25 Rich-Mond 65000.0

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

Following is an example, which will sort the result in descending order by NAME.

sqlite> SELECT * FROM COMPANY ORDER BY NAME DESC;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

3 Teddy 23 Norway 20000.0

1 Paul 32 California 20000.0

4 Mark 25 Rich-Mond 65000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

5 David 27 Texas 85000.0

2 Allen 25 Texas 15000.0

SQLite

67

SQLite GROUP BY clause is used in collaboration with the SELECT statement to arrange

identical data into groups.

GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the

ORDER BY clause.

Syntax

Following is the basic syntax of GROUP BY clause. GROUP BY clause must follow the

conditions in the WHERE clause and must precede ORDER BY clause if one is used.

SELECT column-list

FROM table_name

WHERE [conditions]

GROUP BY column1, column2....columnN

ORDER BY column1, column2....columnN

You can use more than one column in the GROUP BY clause. Make sure whatever column

you are using to group, that column should be available in the column-list.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

If you want to know the total amount of salary on each customer, then GROUP BY query

will be as follows:

sqlite> SELECT NAME, SUM(SALARY) FROM COMPANY GROUP BY NAME;

 SQLite ─ GROUP BY Clause

SQLite

68

This will produce following result.

NAME SUM(SALARY)

---------- -----------

Allen 15000.0

David 85000.0

James 10000.0

Kim 45000.0

Mark 65000.0

Paul 20000.0

Teddy 20000.0

Now, let us create three more records in COMPANY table using the following INSERT

statements.

INSERT INTO COMPANY VALUES (8, 'Paul', 24, 'Houston', 20000.00);

INSERT INTO COMPANY VALUES (9, 'James', 44, 'Norway', 5000.00);

INSERT INTO COMPANY VALUES (10, 'James', 45, 'Texas', 5000.00);

Now, our table has the following records with duplicate names.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

8 Paul 24 Houston 20000.0

9 James 44 Norway 5000.0

10 James 45 Texas 5000.0

Again, let us use the same statement to group-by all the records using NAME column as

follows:

sqlite> SELECT NAME, SUM(SALARY) FROM COMPANY GROUP BY NAME ORDER BY NAME;

SQLite

69

This will produce the following result.

NAME SUM(SALARY)

---------- -----------

Allen 15000

David 85000

James 20000

Kim 45000

Mark 65000

Paul 40000

Teddy 20000

Let us use ORDER BY clause along with GROUP BY clause as follows:

sqlite> SELECT NAME, SUM(SALARY)

 FROM COMPANY GROUP BY NAME ORDER BY NAME DESC;

This will produce the following result.

NAME SUM(SALARY)

---------- -----------

Teddy 20000

Paul 40000

Mark 65000

Kim 45000

James 20000

David 85000

Allen 15000

SQLite

70

HAVING clause enables you to specify conditions that filter which group results appear in

the final results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause

places conditions on groups created by GROUP BY clause.

Syntax

Following is the position of HAVING clause in a SELECT query.

SELECT

FROM

WHERE

GROUP BY

HAVING

ORDER BY

HAVING clause must follow GROUP BY clause in a query and must also precede ORDER BY

clause, if used. Following is the syntax of the SELECT statement, including HAVING clause.

SELECT column1, column2

FROM table1, table2

WHERE [conditions]

GROUP BY column1, column2

HAVING [conditions]

ORDER BY column1, column2

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

 SQLite ─ HAVING Clause

SQLite

71

8 Paul 24 Houston 20000.0

9 James 44 Norway 5000.0

10 James 45 Texas 5000.0

Following is the example, which will display the record for which the name count is less

than 2.

sqlite > SELECT * FROM COMPANY GROUP BY name HAVING count(name) < 2;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000

5 David 27 Texas 85000

6 Kim 22 South-Hall 45000

4 Mark 25 Rich-Mond 65000

3 Teddy 23 Norway 20000

Following is the example, which will display the record for which the name count is greater

than 2.

sqlite > SELECT * FROM COMPANY GROUP BY name HAVING count(name) > 2;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

10 James 45 Texas 5000

SQLite

72

SQLite DISTINCT keyword is used in conjunction with SELECT statement to eliminate all

the duplicate records and fetch only the unique records.

There may be a situation when you have multiple duplicate records in a table. While

fetching such records, it makes more sense to fetch only unique records instead of fetching

duplicate records.

Syntax

Following is the basic syntax of DISTINCT keyword to eliminate duplicate records.

SELECT DISTINCT column1, column2,.....columnN

FROM table_name

WHERE [condition]

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

8 Paul 24 Houston 20000.0

9 James 44 Norway 5000.0

10 James 45 Texas 5000.0

First, let us see how the following SELECT query returns duplicate salary records.

sqlite> SELECT name FROM COMPANY;

 SQLite ─ DISTINCT Keyword

SQLite

73

This will produce the following result.

NAME

Paul

Allen

Teddy

Mark

David

Kim

James

Paul

James

James

Now, let us use DISTINCT keyword with the above SELECT query and see the result.

sqlite> SELECT DISTINCT name FROM COMPANY;

This will produce the following result, where there is no duplicate entry.

NAME

Paul

Allen

Teddy

Mark

David

Kim

James

SQLite

74

Advanced SQLite

SQLite

75

SQLite PRAGMA command is a special command to be used to control various

environmental variables and state flags within the SQLite environment. A PRAGMA value

can be read and it can also be set based on the requirements.

Syntax

To query the current PRAGMA value, just provide the name of the pragma.

PRAGMA pragma_name;

To set a new value for PRAGMA, use the following syntax.

PRAGMA pragma_name = value;

The set mode can be either the name or the integer equivalent but the returned value will

always be an integer.

auto_vacuum Pragma

The auto_vacuum pragma gets or sets the auto-vacuum mode. Following is the simple

syntax.

PRAGMA [database.]auto_vacuum;

PRAGMA [database.]auto_vacuum = mode;

Where mode can be any of the following:

Pragma Value Description

0 or NONE

Auto-vacuum is disabled. This is the default mode which means

that a database file will never shrink in size unless it is manually

vacuumed using the VACUUM command.

1 or FULL
Auto-vacuum is enabled and fully automatic which allows a

database file to shrink as data is removed from the database.

2 or INCREMENTAL

Auto-vacuum is enabled but must be manually activated. In this

mode, the reference data is maintained, but free pages are

simply put on the free list. These pages can be recovered using

the incremental_vacuum pragma any time.

 SQLite ─ PRAGMA

SQLite

76

cache_size Pragma

The cache_size pragma can get or temporarily set the maximum size of the in-memory

page cache. Following is the simple syntax.

PRAGMA [database.]cache_size;

PRAGMA [database.]cache_size = pages;

The pages value represents the number of pages in the cache. The built-in page cache

has a default size of 2,000 pages and a minimum size of 10 pages.

case_sensitive_like Pragma

The case_sensitive_like pragma controls the case-sensitivity of the built-in LIKE

expression. By default, this pragma is false which means that the built-in LIKE operator

ignores the letter case. Following is the simple syntax.

PRAGMA case_sensitive_like = [true|false];

There is no way to query for the current state of this pragma.

count_changes Pragma

count_changes pragma gets or sets the return value of data manipulation statements

such as INSERT, UPDATE and DELETE. Following is the simple syntax.

PRAGMA count_changes;

PRAGMA count_changes = [true|false];

By default, this pragma is false and these statements do not return anything. If set to

true, each of the mentioned statement will return a one-column, one-row table consisting

of a single integer value, indicating impacted rows by the operation.

database_list Pragma

The database_list pragma will be used to list down all the databases attached. Following

is the simple syntax.

PRAGMA database_list;

This pragma will return a three-column table with one row per open or attached database

giving database sequence number, its name and the file associated.

encoding Pragma

The encoding pragma controls how strings are encoded and stored in a database file.

Following is the simple syntax.

PRAGMA encoding;

SQLite

77

PRAGMA encoding = format;

The format value can be one of UTF-8, UTF-16le, or UTF-16be.

freelist_count Pragma

The freelist_count pragma returns a single integer indicating how many database pages

are currently marked as free and available. Following is the simple syntax.

PRAGMA [database.]freelist_count;

The format value can be one of UTF-8, UTF-16le, or UTF-16be.

index_info Pragma

The index_info pragma returns information about a database index. Following is the

simple syntax.

PRAGMA [database.]index_info(index_name);

The result set will contain one row for each column contained in the index giving column

sequence, column index within table and column name.

index_list Pragma

index_list pragma lists all of the indexes associated with a table. Following is the simple

syntax.

PRAGMA [database.]index_list(table_name);

The result set will contain one row for each index giving index sequence, index name and

flag indicating whether the index is unique or not.

journal_mode Pragma

The journal_mode pragma gets or sets the journal mode which controls how the journal

file is stored and processed. Following is the simple syntax.

PRAGMA journal_mode;

PRAGMA journal_mode = mode;

PRAGMA database.journal_mode;

PRAGMA database.journal_mode = mode;

There are five supported journal modes as listed in the following table.

Pragma Value Description

DELETE
This is the default mode. Here at the conclusion of a transaction,

the journal file is deleted.

SQLite

78

TRUNCATE The journal file is truncated to a length of zero bytes.

PERSIST
The journal file is left in place, but the header is overwritten to

indicate the journal is no longer valid.

MEMORY The journal record is held in memory, rather than on disk.

OFF No journal record is kept.

max_page_count Pragma

The max_page_count pragma gets or sets the maximum allowed page count for a

database. Following is the simple syntax.

PRAGMA [database.]max_page_count;

PRAGMA [database.]max_page_count = max_page;

The default value is 1,073,741,823 which is one giga-page, which means if the default is

1 KB page size, this allows databases to grow up to one terabyte.

page_count Pragma

The page_count pragma returns the current number of pages in the database. Following

is the simple syntax.

PRAGMA [database.]page_count;

The size of the database file should be page_count * page_size.

page_size Pragma

The page_size pragma gets or sets the size of the database pages. Following is the simple

syntax.

PRAGMA [database.]page_size;

PRAGMA [database.]page_size = bytes;

By default, the allowed sizes are 512, 1024, 2048, 4096, 8192, 16384, and 32768 bytes.

The only way to alter the page size on an existing database is to set the page size and

then immediately VACUUM the database.

parser_trace Pragma

The parser_trace pragma controls printing the debugging state as it parses SQL

commands. Following is the simple syntax.

PRAGMA parser_trace = [true|false];

SQLite

79

By default, it is set to false but when enabled by setting it to true, the SQL parser will print

its state as it parses SQL commands.

recursive_triggers Pragma

The recursive_triggers pragma gets or sets the recursive trigger functionality. If

recursive triggers are not enabled, a trigger action will not fire another trigger. Following

is the simple syntax.

PRAGMA recursive_triggers;

PRAGMA recursive_triggers = [true|false];

schema_version Pragma

The schema_version pragma gets or sets the schema version value that is stored in the

database header. Following is the simple syntax.

PRAGMA [database.]schema_version;

PRAGMA [database.]schema_version = number;

This is a 32-bit signed integer value that keeps track of schema changes. Whenever a

schema-altering command is executed (like, CREATE... or DROP...), this value is

incremented.

secure_delete Pragma

The secure_delete pragma is used to control how the content is deleted from the

database. Following is the simple syntax.

PRAGMA secure_delete;

PRAGMA secure_delete = [true|false];

PRAGMA database.secure_delete;

PRAGMA database.secure_delete = [true|false];

The default value for the secure delete flag is normally off, but this can be changed with

the SQLITE_SECURE_DELETE build option.

sql_trace Pragma

The sql_trace pragma is used to dump SQL trace results to the screen. Following is the

simple syntax.

PRAGMA sql_trace;

PRAGMA sql_trace = [true|false];

SQLite must be compiled with the SQLITE_DEBUG directive for this pragma to be included.

SQLite

80

synchronous Pragma

The synchronous pragma gets or sets the current disk synchronization mode, which

controls how aggressively SQLite will write data all the way out to physical storage.

Following is the simple syntax.

PRAGMA [database.]synchronous;

PRAGMA [database.]synchronous = mode;

SQLite supports the following synchronization modes as listed in the table.

Pragma Value Description

0 or OFF No syncs at all

1 or NORMAL Sync after each sequence of critical disk operations

2 or FULL Sync after each critical disk operation

temp_store Pragma

The temp_store pragma gets or sets the storage mode used by temporary database files.

Following is the simple syntax.

PRAGMA temp_store;

PRAGMA temp_store = mode;

SQLite supports the following storage modes.

Pragma Value Description

0 or DEFAULT Use compile-time default. Normally FILE.

1 or FILE Use file-based storage.

2 or MEMORY Use memory-based storage.

temp_store_directory Pragma

The temp_store_directory pragma gets or sets the location used for temporary

database files. Following is the simple syntax.

PRAGMA temp_store_directory;

PRAGMA temp_store_directory = 'directory_path';

SQLite

81

user_version Pragma

The user_version pragma gets or sets the user-defined version value that is stored in

the database header. Following is the simple syntax.

PRAGMA [database.]user_version;

PRAGMA [database.]user_version = number;

This is a 32-bit signed integer value, which can be set by the developer for version tracking

purpose.

writable_schema Pragma

The writable_schema pragma gets or sets the ability to modify system tables. Following

is the simple syntax.

PRAGMA writable_schema;

PRAGMA writable_schema = [true|false];

If this pragma is set,tables that start with sqlite_ can be created and modified, including

the sqlite_master table. Be careful while using pragma because it can lead to complete

database corruption.

SQLite

82

Constraints are the rules enforced on data columns on a table. These are used to limit the

type of data that can go into a table. This ensures the accuracy and reliability of the data

in the database.

Constraints could be column level or table level. Column level constraints are applied only

to one column, whereas table level constraints are applied to the whole table.

Following are commonly used constraints available in SQLite.

 NOT NULL Constraint: Ensures that a column cannot have NULL value.

 DEFAULT Constraint: Provides a default value for a column when none is

specified.

 UNIQUE Constraint: Ensures that all values in a column are different.

 PRIMARY Key: Uniquely identifies each row/record in a database table.

 CHECK Constraint: Ensures that all values in a column satisfies certain conditions.

NOT NULL Constraint

By default, a column can hold NULL values. If you do not want a column to have a NULL

value, then you need to define such constraint on this column specifying that NULL is now

not allowed for that column.

A NULL is not the same as no data, rather, it represents unknown data.

Example

For example, the following SQLite statement creates a new table called COMPANY and

adds five columns, three of which, ID and NAME and AGE, specifies not to accept NULLs.

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

 SQLite ─ Constraints

SQLite

83

DEFAULT Constraint

The DEFAULT constraint provides a default value to a column when the INSERT INTO

statement does not provide a specific value.

Example

For example, the following SQLite statement creates a new table called COMPANY and

adds five columns. Here, SALARY column is set to 5000.00 by default, thus in case INSERT

INTO statement does not provide a value for this column, then by default, this column

would be set to 5000.00.

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL DEFAULT 50000.00

);

UNIQUE Constraint

The UNIQUE Constraint prevents two records from having identical values in a particular

column. In the COMPANY table, for example, you might want to prevent two or more

people from having an identical age.

Example

For example, the following SQLite statement creates a new table called COMPANY and

adds five columns. Here, AGE column is set to UNIQUE, so that you cannot have two

records with the same age.

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL UNIQUE,

 ADDRESS CHAR(50),

 SALARY REAL DEFAULT 50000.00

);

SQLite

84

PRIMARY KEY Constraint

The PRIMARY KEY constraint uniquely identifies each record in a database table. There can

be more UNIQUE columns, but only one primary key in a table. Primary keys are important

when designing the database tables. Primary keys are unique IDs.

We use them to refer to table rows. Primary keys become foreign keys in other tables,

when creating relations among tables. Due to a 'longstanding coding oversight', primary

keys can be NULL in SQLite. This is not the case with other databases.

A primary key is a field in a table which uniquely identifies each rows/records in a database

table. Primary keys must contain unique values. A primary key column cannot have NULL

values.

A table can have only one primary key, which may consist of single or multiple fields.

When multiple fields are used as a primary key, they are called a composite key.

If a table has a primary key defined on any field(s), then you cannot have two records

having the same value of that field(s).

Example

You already have seen various examples above where we have created COMPANY table

with ID as a primary key.

CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

CHECK Constraint

CHECK Constraint enables a condition to check the value being entered into a record. If

the condition evaluates to false, the record violates the constraint and isn't entered into

the table.

Example

For example, the following SQLite creates a new table called COMPANY and adds five

columns. Here, we add a CHECK with SALARY column, so that you cannot have any SALARY

Zero.

CREATE TABLE COMPANY3(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

SQLite

85

 SALARY REAL CHECK(SALARY > 0)

);

Dropping Constraint

SQLite supports a limited subset of ALTER TABLE. The ALTER TABLE command in SQLite

allows the user to rename a table or add a new column to an existing table. It is not

possible to rename a column, remove a column, or add or remove constraints from a table.

SQLite

86

SQLite Joins clause is used to combine records from two or more tables in a database. A

JOIN is a means for combining fields from two tables by using values common to each.

SQL defines three major types of joins −

 The CROSS JOIN

 The INNER JOIN

 The OUTER JOIN

Before we proceed, let's consider two tables COMPANY and DEPARTMENT. We already have

seen INSERT statements to populate COMPANY table. So just let's assume the list of

records available in COMPANY table −

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Another table is DEPARTMENT with the following definition −

CREATE TABLE DEPARTMENT(

 ID INT PRIMARY KEY NOT NULL,

 DEPT CHAR(50) NOT NULL,

 EMP_ID INT NOT NULL

);

Here is the list of INSERT statements to populate DEPARTMENT table −

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)

VALUES (1, 'IT Billing', 1);

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)

VALUES (2, 'Engineering', 2);

 SQLite ─ JOINS

SQLite

87

INSERT INTO DEPARTMENT (ID, DEPT, EMP_ID)

VALUES (3, 'Finance', 7);

Finally, we have the following list of records available in DEPARTMENT table −

ID DEPT EMP_ID

---------- ---------- ----------

1 IT Billing 1

2 Engineering 2

3 Finance 7

The CROSS JOIN

CROSS JOIN matches every row of the first table with every row of the second table. If

the input tables have x and y columns, respectively, the resulting table will have x*y

columns. Because CROSS JOINs have the potential to generate extremely large tables,

care must be taken to only use them when appropriate.

Following is the syntax of CROSS JOIN −

SELECT ... FROM table1 CROSS JOIN table2 ...

Based on the above tables, you can write a CROSS JOIN as follows −

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY CROSS JOIN DEPARTMENT;

The above query will produce the following result −

EMP_ID NAME DEPT

---------- ---------- ----------

1 Paul IT Billing

2 Paul Engineering

7 Paul Finance

1 Allen IT Billing

2 Allen Engineering

7 Allen Finance

1 Teddy IT Billing

2 Teddy Engineering

7 Teddy Finance

1 Mark IT Billing

2 Mark Engineering

7 Mark Finance

1 David IT Billing

SQLite

88

2 David Engineering

7 David Finance

1 Kim IT Billing

2 Kim Engineering

7 Kim Finance

1 James IT Billing

2 James Engineering

7 James Finance

The INNER JOIN

INNER JOIN creates a new result table by combining column values of two tables (table1

and table2) based upon the join-predicate. The query compares each row of table1 with

each row of table2 to find all pairs of rows which satisfy the join-predicate. When the join-

predicate is satisfied, the column values for each matched pair of rows of A and B are

combined into a result row.

An INNER JOIN is the most common and default type of join. You can use INNER keyword

optionally.

Following is the syntax of INNER JOIN −

SELECT ... FROM table1 [INNER] JOIN table2 ON conditional_expression ...

To avoid redundancy and keep the phrasing shorter, INNER JOIN conditions can be

declared with a USING expression. This expression specifies a list of one or more columns.

SELECT ... FROM table1 JOIN table2 USING (column1 ,...) ...

A NATURAL JOIN is similar to a JOIN...USING, only it automatically tests for equality

between the values of every column that exists in both tables −

SELECT ... FROM table1 NATURAL JOIN table2...

Based on the above tables, you can write an INNER JOIN as follows −

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY INNER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID;

The above query will produce the following result −

EMP_ID NAME DEPT

---------- ---------- ----------

1 Paul IT Billing

2 Allen Engineering

7 James Finance

SQLite

89

The OUTER JOIN

OUTER JOIN is an extension of INNER JOIN. Though SQL standard defines three types of

OUTER JOINs: LEFT, RIGHT, and FULL, SQLite only supports the LEFT OUTER JOIN.

OUTER JOINs have a condition that is identical to INNER JOINs, expressed using an ON,

USING, or NATURAL keyword. The initial results table is calculated the same way. Once

the primary JOIN is calculated, an OUTER JOIN will take any unjoined rows from one or

both tables, pad them out with NULLs, and append them to the resulting table.

Following is the syntax of LEFT OUTER JOIN −

SELECT ... FROM table1 LEFT OUTER JOIN table2 ON conditional_expression ...

To avoid redundancy and keep the phrasing shorter, OUTER JOIN conditions can be

declared with a USING expression. This expression specifies a list of one or more columns.

SELECT ... FROM table1 LEFT OUTER JOIN table2 USING (column1 ,...) ...

Based on the above tables, you can write an inner join as follows −

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID;

The above query will produce the following result −

EMP_ID NAME DEPT

---------- ---------- ----------

1 Paul IT Billing

2 Allen Engineerin

 Teddy

 Mark

 David

 Kim

7 James Finance

SQLite

90

SQLite UNION clause/operator is used to combine the results of two or more SELECT

statements without returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns selected, the same

number of column expressions, the same data type, and have them in the same order,

but they do not have to be of the same length.

Syntax

Following is the basic syntax of UNION.

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

UNION

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

Here the given condition could be any given expression based on your requirement.

Example

Consider the following two tables, (a) COMPANY table as follows:

sqlite> select * from COMPANY;

ID NAME AGE ADDRESS SALARY

---------- -------------------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

 SQLite ─ UNION Clause

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

91

(b) Another table is DEPARTMENT as follows:

ID DEPT EMP_ID

---------- -------------------- ----------

1 IT Billing 1

2 Engineering 2

3 Finance 7

4 Engineering 3

5 Finance 4

6 Engineering 5

7 Finance 6

Now let us join these two tables using SELECT statement along with UNION clause as

follows:

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY INNER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID

 UNION

 SELECT EMP_ID, NAME, DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID;

This will produce the following result:

EMP_ID NAME DEPT

---------- -------------------- ----------

1 Paul IT Billing

2 Allen Engineering

3 Teddy Engineering

4 Mark Finance

5 David Engineering

6 Kim Finance

7 James Finance

https://www.tutorialspoint.com/sqlite/department.sql

SQLite

92

The UNION ALL Clause

The UNION ALL operator is used to combine the results of two SELECT statements

including duplicate rows.

The same rules that apply to UNION apply to the UNION ALL operator as well.

Syntax

Following is the basic syntax of UNION ALL.

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

UNION ALL

SELECT column1 [, column2]

FROM table1 [, table2]

[WHERE condition]

Here the given condition could be any given expression based on your requirement.

Example

Now, let us join the above-mentioned two tables in our SELECT statement as follows:

sqlite> SELECT EMP_ID, NAME, DEPT FROM COMPANY INNER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID

 UNION ALL

 SELECT EMP_ID, NAME, DEPT FROM COMPANY LEFT OUTER JOIN DEPARTMENT

 ON COMPANY.ID = DEPARTMENT.EMP_ID;

This will produce the following result:

EMP_ID NAME DEPT

---------- -------------------- ----------

1 Paul IT Billing

2 Allen Engineering

3 Teddy Engineering

4 Mark Finance

5 David Engineering

6 Kim Finance

7 James Finance

1 Paul IT Billing

SQLite

93

2 Allen Engineering

3 Teddy Engineering

4 Mark Finance

5 David Engineering

6 Kim Finance

7 James Finance

SQLite

94

SQLite NULL is the term used to represent a missing value. A NULL value in a table is a

value in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that

a NULL value is different than a zero value or a field that contains spaces.

Syntax

Following is the basic syntax of using NULL while creating a table.

SQLite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

Here, NOT NULL signifies that the column should always accept an explicit value of the

given data type. There are two columns where we did not use NOT NULL which means

these columns could be NULL.

A field with a NULL value is one that has been left blank during record creation.

Example

The NULL value can cause problems when selecting data, because when comparing an

unknown value to any other value, the result is always unknown and not included in the

final results. Consider the following table, COMPANY with the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

 SQLite ─ NULL Values

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

95

Let us use UPDATE statement to set a few nullable values as NULL as follows:

sqlite> UPDATE COMPANY SET ADDRESS = NULL, SALARY = NULL where ID IN(6,7);

Now, COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22

7 James 24

Next, let us see the usage of IS NOT NULL operator to list down all the records where

SALARY is not NULL.

sqlite> SELECT ID, NAME, AGE, ADDRESS, SALARY

 FROM COMPANY

 WHERE SALARY IS NOT NULL;

The above SQLite statement will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Following is the usage of IS NULL operator, which will list down all the records where

SALARY is NULL.

sqlite> SELECT ID, NAME, AGE, ADDRESS, SALARY

 FROM COMPANY

 WHERE SALARY IS NULL;

SQLite

96

The above SQLite statement will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

6 Kim 22

7 James 24

SQLite

97

You can rename a table or a column temporarily by giving another name, which is known

as ALIAS. The use of table aliases means to rename a table in a particular SQLite

statement. Renaming is a temporary change and the actual table name does not change

in the database.

The column aliases are used to rename a table's columns for the purpose of a particular

SQLite query.

Syntax

Following is the basic syntax of table alias.

SELECT column1, column2....

FROM table_name AS alias_name

WHERE [condition];

Following is the basic syntax of column alias.

SELECT column_name AS alias_name

FROM table_name

WHERE [condition];

Example

Consider the following two tables, (a) COMPANY table is as follows:

sqlite> select * from COMPANY;

ID NAME AGE ADDRESS SALARY

---------- -------------------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

 SQLite ─ ALIAS Syntax

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

98

(b) Another table is DEPARTMENT as follows:

ID DEPT EMP_ID

---------- -------------------- ----------

1 IT Billing 1

2 Engineering 2

3 Finance 7

4 Engineering 3

5 Finance 4

6 Engineering 5

7 Finance 6

Now, following is the usage of TABLE ALIAS where we use C and D as aliases for

COMPANY and DEPARTMENT tables respectively:

sqlite> SELECT C.ID, C.NAME, C.AGE, D.DEPT

 FROM COMPANY AS C, DEPARTMENT AS D

 WHERE C.ID = D.EMP_ID;

The above SQLite statement will produce the following result.

ID NAME AGE DEPT

---------- ---------- ---------- ----------

1 Paul 32 IT Billing

2 Allen 25 Engineerin

3 Teddy 23 Engineerin

4 Mark 25 Finance

5 David 27 Engineerin

6 Kim 22 Finance

7 James 24 Finance

Consider an example for the usage of COLUMN ALIAS where COMPANY_ID is an alias of

ID column and COMPANY_NAME is an alias of name column.

sqlite> SELECT C.ID AS COMPANY_ID, C.NAME AS COMPANY_NAME, C.AGE, D.DEPT

 FROM COMPANY AS C, DEPARTMENT AS D

 WHERE C.ID = D.EMP_ID;

https://www.tutorialspoint.com/sqlite/department.sql

SQLite

99

The above SQLite statement will produce the following result.

COMPANY_ID COMPANY_NAME AGE DEPT

---------- ------------ ---------- ----------

1 Paul 32 IT Billing

2 Allen 25 Engineerin

3 Teddy 23 Engineerin

4 Mark 25 Finance

5 David 27 Engineerin

6 Kim 22 Finance

7 James 24 Finance

SQLite

100

SQLite Triggers are database callback functions, which are automatically

performed/invoked when a specified database event occurs. Following are the important

points about SQLite triggers:

 SQLite trigger may be specified to fire whenever a DELETE, INSERT or UPDATE of

a particular database table occurs or whenever an UPDATE occurs on one or more

specified columns of a table.

 At this time, SQLite supports only FOR EACH ROW triggers, not FOR EACH

STATEMENT triggers. Hence, explicitly specifying FOR EACH ROW is optional.

 Both the WHEN clause and the trigger actions may access elements of the row

being inserted, deleted, or updated using references of the form NEW.column-

name and OLD.column-name, where column-name is the name of a column from

the table that the trigger is associated with.

 If a WHEN clause is supplied, the SQL statements specified are only executed for

rows for which the WHEN clause is true. If no WHEN clause is supplied, the SQL

statements are executed for all rows.

 The BEFORE or AFTER keyword determines when the trigger actions will be

executed relative to the insertion, modification, or removal of the associated row.

 Triggers are automatically dropped when the table that they are associated with is

dropped.

 The table to be modified must exist in the same database as the table or view to

which the trigger is attached and one must use

just tablename not database.tablename.

 A special SQL function RAISE() may be used within a trigger-program to raise an

exception.

Syntax

Following is the basic syntax of creating a trigger.

CREATE TRIGGER trigger_name [BEFORE|AFTER] event_name

ON table_name

BEGIN

 -- Trigger logic goes here....

END;

 SQLite ─ Triggers

SQLite

101

Here, event_name could be INSERT, DELETE, and UPDATE database operation on the

mentioned table table_name. You can optionally specify FOR EACH ROW after table

name.

Following is the syntax for creating a trigger on an UPDATE operation on one or more

specified columns of a table.

CREATE TRIGGER trigger_name [BEFORE|AFTER] UPDATE OF column_name

ON table_name

BEGIN

 -- Trigger logic goes here....

END;

Example

Let us consider a case where we want to keep audit trial for every record being inserted

in COMPANY table, which we create newly as follows (Drop COMPANY table if you already

have it).

sqlite> CREATE TABLE COMPANY(

 ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

To keep audit trial, we will create a new table called AUDIT where the log messages will

be inserted, whenever there is an entry in COMPANY table for a new record.

sqlite> CREATE TABLE AUDIT(

 EMP_ID INT NOT NULL,

 ENTRY_DATE TEXT NOT NULL

);

Here, ID is the AUDIT record ID, and EMP_ID is the ID which will come from COMPANY

table and DATE will keep timestamp when the record will be created in COMPANY table.

Now let's create a trigger on COMPANY table as follows:

sqlite> CREATE TRIGGER audit_log AFTER INSERT

ON COMPANY

BEGIN

 INSERT INTO AUDIT(EMP_ID, ENTRY_DATE) VALUES (new.ID, datetime('now'));

END;

SQLite

102

Now, we will start actual work. Let's start inserting record in COMPANY table which should

result in creating an audit log record in AUDIT table. Create one record in COMPANY table

as follows:

sqlite> INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Paul', 32, 'California', 20000.00);

This will create one record in COMPANY table, which is as follows:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

Same time, one record will be created in AUDIT table. This record is the result of a trigger,

which we have created on INSERT operation in COMPANY table. Similarly, you can create

your triggers on UPDATE and DELETE operations based on your requirements.

EMP_ID ENTRY_DATE

---------- -------------------

1 2013-04-05 06:26:00

Listing Triggers

You can list down all the triggers from sqlite_master table as follows:

sqlite> SELECT name FROM sqlite_master

WHERE type = 'trigger';

The above SQLite statement will list down only one entry as follows:

name

audit_log

If you want to list down triggers on a particular table, then use AND clause with table

name as follows:

sqlite> SELECT name FROM sqlite_master

WHERE type = 'trigger' AND tbl_name = 'COMPANY';

The above SQLite statement will also list down only one entry as follows:

name

audit_log

SQLite

103

Dropping Triggers

Following is the DROP command, which can be used to drop an existing trigger.

sqlite> DROP TRIGGER trigger_name;

SQLite

104

Indexes are special lookup tables that the database search engine can use to speed up

data retrieval. Simply put, an index is a pointer to data in a table. An index in a database

is very similar to an index in the back of a book.

For example, if you want to reference all pages in a book that discuss a certain topic, you

first refer to the index, which lists all topics alphabetically and are then referred to one or

more specific page numbers.

An index helps speed up SELECT queries and WHERE clauses, but it slows down data input,

with UPDATE and INSERT statements. Indexes can be created or dropped with no effect

on the data.

Creating an index involves the CREATE INDEX statement, which allows you to name the

index, to specify the table and which column or columns to index, and to indicate whether

the index is in an ascending or descending order.

Indexes can also be unique, similar to the UNIQUE constraint, in that the index prevents

duplicate entries in the column or combination of columns on which there's an index.

The CREATE INDEX Command

Following is the basic syntax of CREATE INDEX.

CREATE INDEX index_name ON table_name;

Single-Column Indexes

A single-column index is one that is created based on only one table column. The basic

syntax is as follows:

CREATE INDEX index_name

ON table_name (column_name);

Unique Indexes

Unique indexes are used not only for performance, but also for data integrity. A unique

index does not allow any duplicate values to be inserted into the table. The basic syntax

is as follows:

CREATE UNIQUE INDEX index_name

on table_name (column_name);

 SQLite ─ Indexes

SQLite

105

Composite Indexes

A composite index is an index on two or more columns of a table. The basic syntax is as

follows:

CREATE INDEX index_name

on table_name (column1, column2);

Whether to create a single-column index or a composite index, take into consideration the

column(s) that you may use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should

there be two or more columns that are frequently used in the WHERE clause as filters, the

composite index would be the best choice.

Implicit Indexes

Implicit indexes are indexes that are automatically created by the database server when

an object is created. Indexes are automatically created for primary key constraints and

unique constraints.

Example

Following is an example where we will create an index in COMPANY table for salary column:

sqlite> CREATE INDEX salary_index ON COMPANY (salary);

Now, let's list down all the indices available in COMPANY table using .indices command

as follows:

sqlite> .indices COMPANY

This will produce the following result, where sqlite_autoindex_COMPANY_1 is an implicit

index which got created when the table itself was created.

salary_index

sqlite_autoindex_COMPANY_1

You can list down all the indexes database wide as follows:

sqlite> SELECT * FROM sqlite_master WHERE type = 'index';

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

106

The DROP INDEX Command

An index can be dropped using SQLite DROP command. Care should be taken when

dropping an index because performance may be slowed or improved.

The basic syntax is as follows:

DROP INDEX index_name;

You can use the following statement to delete a previously created index.

sqlite> DROP INDEX salary_index;

When Should Indexes Be Avoided?

Although indexes are intended to enhance the performance of a database, there are times

when they should be avoided. The following guidelines indicate when the use of an index

should be reconsidered.

Indexes should not be used in –

 Small tables.

 Tables that have frequent, large batch update or insert operations.

 Columns that contain a high number of NULL values.

 Columns that are frequently manipulated.

SQLite

107

The "INDEXED BY index-name" clause specifies that the named index must be used in

order to look up values on the preceding table.

If index-name does not exist or cannot be used for the query, then the preparation of the

SQLite statement fails.

The "NOT INDEXED" clause specifies that no index shall be used when accessing the

preceding table, including implied indices created by UNIQUE and PRIMARY KEY

constraints.

However, the INTEGER PRIMARY KEY can still be used to look up entries even when "NOT

INDEXED" is specified.

Syntax

Following is the syntax for INDEXED BY clause and it can be used with DELETE, UPDATE

or SELECT statement.

SELECT|DELETE|UPDATE column1, column2...

INDEXED BY (index_name)

table_name

WHERE (CONDITION);

Example

Consider table COMPANY. We will create an index and use it for performing INDEXED BY

operation.

sqlite> CREATE INDEX salary_index ON COMPANY(salary);

sqlite>

Now selecting the data from table COMPANY you can use INDEXED BY clause as follows:

sqlite> SELECT * FROM COMPANY INDEXED BY salary_index WHERE salary > 5000;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

7 James 24 Houston 10000.0

2 Allen 25 Texas 15000.0

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

6 Kim 22 South-Hall 45000.0

 SQLite – INDEXED BY Clause

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

108

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

SQLite

109

SQLite ALTER TABLE command modifies an existing table without performing a full dump

and reload of the data. You can rename a table using ALTER TABLE statement and

additional columns can be added in an existing table using ALTER TABLE statement.

There is no other operation supported by ALTER TABLE command in SQLite except

renaming a table and adding a column in an existing table.

Syntax

Following is the basic syntax of ALTER TABLE to RENAME an existing table.

ALTER TABLE database_name.table_name RENAME TO new_table_name;

Following is the basic syntax of ALTER TABLE to add a new column in an existing table.

ALTER TABLE database_name.table_name ADD COLUMN column_def...;

Example

Consider the COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let's try to rename this table using ALTER TABLE statement as follows:

sqlite> ALTER TABLE COMPANY RENAME TO OLD_COMPANY;

The above SQLite statement will rename COMPANY table to OLD_COMPANY. Now, let's try

to add a new column in OLD_COMPANY table as follows:

sqlite> ALTER TABLE OLD_COMPANY ADD COLUMN SEX char(1);

 SQLite ─ ALTER TABLE Command

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

110

COMPANY table is now changed and following will be the output from SELECT statement.

ID NAME AGE ADDRESS SALARY SEX

---------- ---------- ---------- ---------- ---------- ---

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

It should be noted that newly added column is filled with NULL values.

SQLite

111

Unfortunately, we do not have TRUNCATE TABLE command in SQLite but you can use

SQLite DELETE command to delete complete data from an existing table, though it is

recommended to use DROP TABLE command to drop the complete table and re-create it

once again.

Syntax

Following is the basic syntax of DELETE command.

sqlite> DELETE FROM table_name;

Following is the basic syntax of DROP TABLE.

sqlite> DROP TABLE table_name;

If you are using DELETE TABLE command to delete all the records, it is recommended to

use VACUUM command to clear unused space.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is the example to truncate the above table:

SQLite> DELETE FROM COMPANY;

SQLite> VACUUM;

Now, COMPANY table is truncated completely and nothing will be the output from SELECT

statement.

 SQLite ─ TRUNCATE TABLE Command

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

112

A view is nothing more than a SQLite statement that is stored in the database with an

associated name. It is actually a composition of a table in the form of a predefined SQLite

query.

A view can contain all rows of a table or selected rows from one or more tables. A view

can be created from one or many tables which depends on the written SQLite query to

create a view.

Views which are kind of virtual tables, allow the users to -

 Structure data in a way that users or classes of users find natural or intuitive.

 Restrict access to the data such that a user can only see limited data instead of a

complete table.

 Summarize data from various tables, which can be used to generate reports.

SQLite views are read-only and thus you may not be able to execute a DELETE, INSERT,

or UPDATE statement on a view. However, you can create a trigger on a view that fires on

an attempt to DELETE, INSERT, or UPDATE a view and do what you need in the body of

the trigger.

Creating Views

SQLite views are created using the CREATE VIEW statement. SQLIte views can be

created from a single table, multiple tables, or another view.

Following is the basic CREATE VIEW syntax.

CREATE [TEMP | TEMPORARY] VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

You can include multiple tables in your SELECT statement in a similar way as you use them

in a normal SQL SELECT query. If the optional TEMP or TEMPORARY keyword is present,

the view will be created in the temp database.

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

 SQLite ─ Views

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

113

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Following is an example to create a view from COMPANY table. This view will be used to

have only a few columns from COMPANY table.

sqlite> CREATE VIEW COMPANY_VIEW AS

SELECT ID, NAME, AGE

FROM COMPANY;

You can now query COMPANY_VIEW in a similar way as you query an actual table.

Following is an example:

sqlite> SELECT * FROM COMPANY_VIEW;

This will produce the following result.

ID NAME AGE

---------- ---------- ----------

1 Paul 32

2 Allen 25

3 Teddy 23

4 Mark 25

5 David 27

6 Kim 22

7 James 24

Dropping Views

To drop a view, simply use the DROP VIEW statement with the view_name. The basic

DROP VIEW syntax is as follows:

sqlite> DROP VIEW view_name;

The following command will delete COMPANY_VIEW view, which we created in the last

section.

sqlite> DROP VIEW COMPANY_VIEW;

SQLite

114

A transaction is a unit of work that is performed against a database. Transactions are units

or sequences of work accomplished in a logical order, whether in a manual fashion by a

user or automatically by some sort of a database program.

A transaction is the propagation of one or more changes to the database. For example, if

you are creating, updating, or deleting a record from the table, then you are performing

transaction on the table. It is important to control transactions to ensure data integrity

and to handle database errors.

Practically, you will club many SQLite queries into a group and you will execute all of them

together as part of a transaction.

Properties of Transactions

Transactions have the following four standard properties, usually referred to by the

acronym ACID.

 Atomicity: Ensures that all operations within the work unit are completed

successfully; otherwise, the transaction is aborted at the point of failure and

previous operations are rolled back to their former state.

 Consistency: Ensures that the database properly changes state upon a

successfully committed transaction.

 Isolation: Enables transactions to operate independently of and transparent to

each other.

 Durability: Ensures that the result or effect of a committed transaction persists in

case of a system failure.

Transaction Control

Following are the commands used to control transactions:

 BEGIN TRANSACTION: To start a transaction.

 COMMIT: To save the changes, alternatively you can use END

TRANSACTION command.

 ROLLBACK: To roll back the changes.

Transactional control commands are only used with DML commands INSERT, UPDATE, and

DELETE. They cannot be used while creating tables or dropping them because these

operations are automatically committed in the database.

 SQLite ─ Transactions

SQLite

115

BEGIN TRANSACTION Command

Transactions can be started using BEGIN TRANSACTION or simply BEGIN command. Such

transactions usually persist until the next COMMIT or ROLLBACK command is encountered.

However, a transaction will also ROLLBACK if the database is closed or if an error occurs.

Following is the simple syntax to start a transaction.

BEGIN;

or

BEGIN TRANSACTION;

COMMIT Command

COMMIT command is the transactional command used to save changes invoked by a

transaction to the database.

COMMIT command saves all transactions to the database since the last COMMIT or

ROLLBACK command.

Following is the syntax for COMMIT command.

COMMIT;

or

END TRANSACTION;

ROLLBACK Command

ROLLBACK command is the transactional command used to undo transactions that have

not already been saved to the database.

ROLLBACK command can only be used to undo transactions since the last COMMIT or

ROLLBACK command was issued.

Following is the syntax for ROLLBACK command.

ROLLBACK;

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

116

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let's start a transaction and delete records from the table having age = 25. Then,

use ROLLBACK command to undo all the changes.

sqlite> BEGIN;

sqlite> DELETE FROM COMPANY WHERE AGE = 25;

sqlite> ROLLBACK;

Now, if you check COMPANY table, it still has the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Let's start another transaction and delete records from the table having age = 25 and

finally we use COMMIT command to commit all the changes.

sqlite> BEGIN;

sqlite> DELETE FROM COMPANY WHERE AGE = 25;

sqlite> COMMIT;

If you now check COMPANY table still has the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

3 Teddy 23 Norway 20000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

SQLite

117

A Subquery or Inner query or Nested query is a query within another SQLite query and

embedded within the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to

further restrict the data to be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along

with the operators such as =, <, >, >=, <=, IN, BETWEEN, etc.

There are a few rules that subqueries must follow:

 Subqueries must be enclosed within parentheses.

 A subquery can have only one column in the SELECT clause, unless multiple

columns are in the main query for the subquery to compare its selected columns.

 An ORDER BY cannot be used in a subquery, although the main query can use an

ORDER BY. The GROUP BY can be used to perform the same function as the ORDER

BY in a subquery.

 Subqueries that return more than one row can only be used with multiple value

operators, such as the IN operator.

 BETWEEN operator cannot be used with a subquery; however, BETWEEN can be

used within the subquery.

Subqueries with SELECT Statement

Subqueries are most frequently used with the SELECT statement. The basic syntax is as

follows:

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

 (SELECT column_name [, column_name]

 FROM table1 [, table2]

 [WHERE])

 SQLite ─ Subqueries

SQLite

118

Example

Consider COMPANY table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let us check the following sub-query with SELECT statement.

sqlite> SELECT *

 FROM COMPANY

 WHERE ID IN (SELECT ID

 FROM COMPANY

 WHERE SALARY > 45000) ;

This will produce the following result.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

Subqueries with INSERT Statement

Subqueries can also be used with INSERT statements. The INSERT statement uses the

data returned from the subquery to insert into another table. The selected data in the

subquery can be modified with any of the character, date, or number functions.

The basic syntax is as follows:

INSERT INTO table_name [(column1 [, column2])]

 SELECT [*|column1 [, column2]

 FROM table1 [, table2]

 [WHERE VALUE OPERATOR]

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

119

Example

Consider a table COMPANY_BKP with similar structure as COMPANY table and can be

created using the same CREATE TABLE using COMPANY_BKP as the table name. To copy

the complete COMPANY table into COMPANY_BKP, following is the syntax:

sqlite> INSERT INTO COMPANY_BKP

 SELECT * FROM COMPANY

 WHERE ID IN (SELECT ID

 FROM COMPANY) ;

Subqueries with UPDATE Statement

The subquery can be used in conjunction with the UPDATE statement. Either single or

multiple columns in a table can be updated when using a subquery with the UPDATE

statement.

The basic syntax is as follows:

UPDATE table

SET column_name = new_value

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example

Assuming, we have COMPANY_BKP table available which is a backup of COMPANY table.

Following example updates SALARY by 0.50 times in COMPANY table for all the customers,

whose AGE is greater than or equal to 27.

sqlite> UPDATE COMPANY

 SET SALARY = SALARY * 0.50

 WHERE AGE IN (SELECT AGE FROM COMPANY_BKP

 WHERE AGE >= 27);

This would impact two rows and finally COMPANY table would have the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 10000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

SQLite

120

5 David 27 Texas 42500.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Subqueries with DELETE Statement

Subquery can be used in conjunction with the DELETE statement like with any other

statements mentioned above.

The basic syntax is as follows:

DELETE FROM TABLE_NAME

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example

Assuming, we have COMPANY_BKP table available which is a backup of COMPANY table.

Following example deletes records from COMPANY table for all the customers whose AGE

is greater than or equal to 27.

sqlite> DELETE FROM COMPANY

 WHERE AGE IN (SELECT AGE FROM COMPANY_BKP

 WHERE AGE > 27);

This will impact two rows and finally COMPANY table will have the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 42500.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

SQLite

121

SQLite AUTOINCREMENT is a keyword used for auto incrementing a value of a field in

the table. We can auto increment a field value by using AUTOINCREMENT keyword when

creating a table with specific column name to auto increment it.

The keyword AUTOINCREMENT can be used with INTEGER field only.

Syntax

The basic usage of AUTOINCREMENT keyword is as follows:

CREATE TABLE table_name(

 column1 INTEGER AUTOINCREMENT,

 column2 datatype,

 column3 datatype,

 columnN datatype,

);

Example

Consider COMPANY table to be created as follows:

sqlite> CREATE TABLE COMPANY(

 ID INTEGER PRIMARY KEY AUTOINCREMENT,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL

);

Now, insert the following records into table COMPANY:

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Paul', 32, 'California', 20000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Allen', 25, 'Texas', 15000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

 SQLite ─ AUTOINCREMENT

SQLite

122

VALUES ('Teddy', 23, 'Norway', 20000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Mark', 25, 'Rich-Mond ', 65000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('David', 27, 'Texas', 85000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('Kim', 22, 'South-Hall', 45000.00);

INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)

VALUES ('James', 24, 'Houston', 10000.00);

This will insert 7 tuples into the table COMPANY and COMPANY will have the following

records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

SQLite

123

If you take user input through a webpage and insert it into a SQLite database there's a

chance that you have left yourself wide open for a security issue known as SQL Injection.

In this chapter, you will learn how to help prevent this from happening and help you secure

your scripts and SQLite statements.

Injection usually occurs when you ask a user for input, like their name, and instead of a

name they give you a SQLite statement that you will unknowingly run on your database.

Never trust user provided data, process this data only after validation; as a rule, this is

done by pattern matching. In the following example, the username is restricted to

alphanumerical chars plus underscore and to a length between 8 and 20 chars - modify

these rules as needed.

if (preg_match("/^\w{8,20}$/", $_GET['username'], $matches)){

 $db = new SQLiteDatabase('filename');

 $result = @$db->query("SELECT * FROM users WHERE username=$matches[0]");

}else{

 echo "username not accepted";

}

To demonstrate the problem, consider this excerpt:

$name = "Qadir'; DELETE FROM users;";

@$db->query("SELECT * FROM users WHERE username='{$name}'");

The function call is supposed to retrieve a record from the users table where the name

column matches the name specified by the user. Under normal

circumstances, $name would only contain alphanumeric characters and perhaps spaces,

such as the string ilia. However in this case, by appending an entirely new query to $name,

the call to the database turns into a disaster: the injected DELETE query removes all

records from users.

There are databases interfaces which do not permit query stacking or executing multiple

queries in a single function call. If you try to stack queries, the call fails but SQLite and

PostgreSQL, happily perform stacked queries, executing all of the queries provided in one

string and creating a serious security problem.

Preventing SQL Injection

You can handle all escape characters smartly in scripting languages like PERL and PHP.

Programming language PHP provides the function string sqlite_escape_string() to

escape input characters that are special to SQLite.

 SQLite ─ Injection

SQLite

124

if (get_magic_quotes_gpc())

{

 $name = sqlite_escape_string($name);

}

$result = @$db->query("SELECT * FROM users WHERE username='{$name}'");

Although the encoding makes it safe to insert the data, it will render simple text

comparisons and LIKE clauses in your queries unusable for the columns that contain the

binary data.

Note: addslashes() should NOT be used to quote your strings for SQLite queries; it will

lead to strange results when retrieving your data.

SQLite

125

SQLite statement can be preceded by the keyword "EXPLAIN" or by the phrase "EXPLAIN

QUERY PLAN" used for describing the details of a table.

Either modification causes the SQLite statement to behave as a query and to return

information about how the SQLite statement would have operated if the EXPLAIN keyword

or phrase had been omitted.

 The output from EXPLAIN and EXPLAIN QUERY PLAN is intended for interactive

analysis and troubleshooting only.

 The details of the output format are subject to change from one release of SQLite

to the next.

 Applications should not use EXPLAIN or EXPLAIN QUERY PLAN since their exact

behavior is variable and only partially documented.

Syntax

Syntax for EXPLAIN is as follows:

EXPLAIN [SQLite Query]

Syntax for EXPLAIN QUERY PLAN is as follows:

EXPLAIN QUERY PLAN [SQLite Query]

Example

Consider COMPANY table with the following records:

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

Now, let us check the following sub-query with SELECT statement:

sqlite> EXPLAIN SELECT * FROM COMPANY WHERE Salary >= 20000;

 SQLite ─ EXPLAIN

https://www.tutorialspoint.com/sqlite/company.sql

SQLite

126

This will produce the following result:

addr opcode p1 p2 p3

---------- ---------- ---------- ---------- ----------

0 Goto 0 19

1 Integer 0 0

2 OpenRead 0 8

3 SetNumColu 0 5

4 Rewind 0 17

5 Column 0 4

6 RealAffini 0 0

7 Integer 20000 0

8 Lt 357 16 collseq(BI

9 Rowid 0 0

10 Column 0 1

11 Column 0 2

12 Column 0 3

13 Column 0 4

14 RealAffini 0 0

15 Callback 5 0

16 Next 0 5

17 Close 0 0

18 Halt 0 0

19 Transactio 0 0

20 VerifyCook 0 38

21 Goto 0 1

22 Noop 0 0

Now, let us check the following Explain Query Plan with SELECT statement:

SQLite> EXPLAIN QUERY PLAN SELECT * FROM COMPANY WHERE Salary >= 20000;

order from detail

---------- ---------- -------------

0 0 TABLE COMPANY

SQLite

127

VACUUM command cleans the main database by copying its contents to a temporary

database file and reloading the original database file from the copy. This eliminates free

pages, aligns table data to be contiguous, and otherwise cleans up the database file

structure.

VACUUM command may change the ROWID of entries in tables that do not have an explicit

INTEGER PRIMARY KEY. The VACUUM command only works on the main database. It is

not possible to VACUUM an attached database file.

VACUUM command will fail if there is an active transaction. VACUUM command is a no-op

for in-memory databases. As the VACUUM command rebuilds the database file from

scratch, VACUUM can also be used to modify many database-specific configuration

parameters.

Manual VACUUM

Following is a simple syntax to issue a VACUUM command for the whole database from

command prompt:

$sqlite3 database_name "VACUUM;"

You can run VACUUM from SQLite prompt as well as follows:

sqlite> VACUUM;

You can also run VACUUM on a particular table as follows:

sqlite> VACUUM table_name;

Auto-VACCUM

SQLite Auto-VACUUM does not do the same as VACUUM rather it only moves free pages

to the end of the database thereby reducing the database size. By doing so it can

significantly fragment the database while VACUUM ensures defragmentation. Hence, Auto-

VACUUM just keeps the database small.

 SQLite ─ VACUUM

SQLite

128

You can enable/disable SQLite auto-vacuuming by the following pragmas running at SQLite

prompt:

sqlite> PRAGMA auto_vacuum = NONE; -- 0 means disable auto vacuum

sqlite> PRAGMA auto_vacuum = FULL; -- 1 means enable full auto vacuum

sqlite> PRAGMA auto_vacuum = INCREMENTAL; -- 2 means enable incremental vacuum

You can run the following command from the command prompt to check the auto-vacuum

setting:

$sqlite3 database_name "PRAGMA auto_vacuum;"

SQLite

129

SQLite supports five date and time functions as follows:

Sr.

No.
Function Example

1
date(timestring,

modifiers...)
This returns the date in this format: YYYY-MM-DD

2
time(timestring,

modifiers...)
This returns the time as HH:MM:SS

3
datetime(timestring,

modifiers...)
This returns YYYY-MM-DD HH:MM:SS

4
julianday(timestring,

modifiers...)

This returns the number of days since noon in Greenwich

on November 24, 4714 B.C.

5
strftime(timestring,

modifiers...)

This returns the date formatted according to the format

string specified as the first argument formatted as per

formatters explained below.

All the above five date and time functions take a time string as an argument. The time

string is followed by zero or more modifiers. The strftime() function also takes a format

string as its first argument. Following section will give you detail on different types of time

strings and modifiers.

Time Strings

A time string can be in any of the following formats:

Sr.

No.
Time String Example

1 YYYY-MM-DD 2010-12-30

2 YYYY-MM-DD HH:MM 2010-12-30 12:10

3 YYYY-MM-DD HH:MM:SS.SSS 2010-12-30 12:10:04.100

4 MM-DD-YYYY HH:MM 30-12-2010 12:10

5 HH:MM 12:10

6 YYYY-MM-DDTHH:MM 2010-12-30 12:10

 SQLite ─ Date & Time

SQLite

130

7 HH:MM:SS 12:10:01

8 YYYYMMDD HHMMSS 20101230 121001

9 now 2013-05-07

You can use the "T" as a literal character separating the date and the time.

Modifiers

The time string can be followed by zero or more modifiers that will alter date and/or time

returned by any of the above five functions. Modifiers are applied from the left to right.

Following modifiers are available in SQLite:

 NNN days

 NNN hours

 NNN minutes

 NNN.NNNN seconds

 NNN months

 NNN years

 start of month

 start of year

 start of day

 weekday N

 unixepoch

 localtime

 utc

Formatters

SQLite provides a very handy function strftime() to format any date and time. You can

use the following substitutions to format your date and time.

Substitution Description

%d Day of month, 01-31

%f Fractional seconds, SS.SSS

%H Hour, 00-23

SQLite

131

%j Day of year, 001-366

%J Julian day number, DDDD.DDDD

%m Month, 00-12

%M Minute, 00-59

%s Seconds since 1970-01-01

%S Seconds, 00-59

%w Day of week, 0-6 (0 is Sunday)

%W Week of year, 01-53

%Y Year, YYYY

%% % symbol

Examples

Let's try various examples now using SQLite prompt. Following command computes the

current date.

sqlite> SELECT date('now');

2013-05-07

Following command computes the last day of the current month.

sqlite> SELECT date('now','start of month','+1 month','-1 day');

2013-05-31

Following command computes the date and time for a given UNIX timestamp 1092941466.

sqlite> SELECT datetime(1092941466, 'unixepoch');

2004-08-19 18:51:06

Following command computes the date and time for a given UNIX timestamp 1092941466

and compensates for your local timezone.

sqlite> SELECT datetime(1092941466, 'unixepoch', 'localtime');

2004-08-19 13:51:06

Following command computes the current UNIX timestamp.

sqlite> SELECT strftime('%s','now');

1393348134

SQLite

132

Following command computes the number of days since the signing of the US Declaration

of Independence.

sqlite> SELECT julianday('now') - julianday('1776-07-04');

86798.7094695023

Following command computes the number of seconds since a particular moment in 2004.

sqlite> SELECT strftime('%s','now') - strftime('%s','2004-01-01 02:34:56');

295001572

Following command computes the date of the first Tuesday in October for the current year.

sqlite> SELECT date('now','start of year','+9 months','weekday 2');

2013-10-01

Following command computes the time since the UNIX epoch in seconds (like strftime

('%s','now') except includes fractional part).

sqlite> SELECT (julianday('now') - 2440587.5)*86400.0;

1367926077.12598

To convert between UTC and local time values when formatting a date, use the utc or

localtime modifiers as follows:

sqlite> SELECT time('12:00', 'localtime');

05:00:00

sqlite> SELECT time('12:00', 'utc');

19:00:00

SQLite

133

SQLite has many built-in functions to perform processing on string or numeric data.

Following is the list of few useful SQLite built-in functions and all are case in-sensitive

which means you can use these functions either in lower-case form or in upper-case or in

mixed form. For more details, you can check official documentation for SQLite.

Sr.

No.
Function & Description

1

SQLite COUNT Function

The SQLite COUNT aggregate function is used to count the number of rows in a

database table.

2

SQLite MAX Function

The SQLite MAX aggregate function allows us to select the highest (maximum)

value for a certain column.

3

SQLite MIN Function

The SQLite MIN aggregate function allows us to select the lowest (minimum)

value for a certain column.

4

SQLite AVG Function

The SQLite AVG aggregate function selects the average value for certain table

column.

5

SQLite SUM Function

The SQLite SUM aggregate function allows selecting the total for a numeric

column.

6

SQLite RANDOM Function

The SQLite RANDOM function returns a pseudo-random integer between -

9223372036854775808 and +9223372036854775807.

 SQLite ─ Useful Functions

SQLite

134

7

SQLite ABS Function

The SQLite ABS function returns the absolute value of the numeric argument.

8

SQLite UPPER Function

The SQLite UPPER function converts a string into upper-case letters.

9

SQLite LOWER Function

The SQLite LOWER function converts a string into lower-case letters.

10

SQLite LENGTH Function

The SQLite LENGTH function returns the length of a string.

11

SQLite sqlite_version Function

The SQLite sqlite_version function returns the version of the SQLite library.

Before we start giving examples on the above-mentioned functions, consider COMPANY

table with the following records.

ID NAME AGE ADDRESS SALARY

---------- ---------- ---------- ---------- ----------

1 Paul 32 California 20000.0

2 Allen 25 Texas 15000.0

3 Teddy 23 Norway 20000.0

4 Mark 25 Rich-Mond 65000.0

5 David 27 Texas 85000.0

6 Kim 22 South-Hall 45000.0

7 James 24 Houston 10000.0

SQLite COUNT Function

SQLite COUNT aggregate function is used to count the number of rows in a database table.

Following is an example:

sqlite> SELECT count(*) FROM COMPANY;

SQLite

135

The above SQLite SQL statement will produce the following result:

count(*)

7

SQLite MAX Function

SQLite MAX aggregate function allows us to select the highest (maximum) value for a

certain column. Following is an example:

sqlite> SELECT max(salary) FROM COMPANY;

The above SQLite SQL statement will produce the following result.

max(salary)

85000.0

SQLite MIN Function

SQLite MIN aggregate function allows us to select the lowest (minimum) value for a certain

column. Following is an example:

sqlite> SELECT min(salary) FROM COMPANY;

The above SQLite SQL statement will produce the following result.

min(salary)

10000.0

SQLite AVG Function

SQLite AVG aggregate function selects the average value for a certain table column.

Following is an example:

sqlite> SELECT avg(salary) FROM COMPANY;

The above SQLite SQL statement will produce the following result.

avg(salary)

37142.8571428572

SQLite

136

SQLite SUM Function

SQLite SUM aggregate function allows selecting the total for a numeric column. Following

is an example:

sqlite> SELECT sum(salary) FROM COMPANY;

The above SQLite SQL statement will produce the following result.

sum(salary)

260000.0

SQLite RANDOM Function

SQLite RANDOM function returns a pseudo-random integer between -

9223372036854775808 and +9223372036854775807. Following is an example:

sqlite> SELECT random() AS Random;

The above SQLite SQL statement will produce the following result.

Random

5876796417670984050

SQLite ABS Function

SQLite ABS function returns the absolute value of the numeric argument. Following is an

example:

sqlite> SELECT abs(5), abs(-15), abs(NULL), abs(0), abs("ABC");

The above SQLite SQL statement will produce the following result.

abs(5) abs(-15) abs(NULL) abs(0) abs("ABC")

---------- ---------- ---------- ---------- ----------

5 15 0 0.0

SQLite UPPER Function

SQLite UPPER function converts a string into upper-case letters. Following is an example:

sqlite> SELECT upper(name) FROM COMPANY;

SQLite

137

The above SQLite SQL statement will produce the following result.

upper(name)

PAUL

ALLEN

TEDDY

MARK

DAVID

KIM

JAMES

SQLite LOWER Function

SQLite LOWER function converts a string into lower-case letters. Following is an example:

sqlite> SELECT lower(name) FROM COMPANY;

The above SQLite SQL statement will produce the following result.

lower(name)

paul

allen

teddy

mark

david

kim

james

SQLite LENGTH Function

SQLite LENGTH function returns the length of a string. Following is an example:

sqlite> SELECT name, length(name) FROM COMPANY;

The above SQLite SQL statement will produce the following result.

NAME length(name)

---------- ------------

Paul 4

Allen 5

SQLite

138

Teddy 5

Mark 4

David 5

Kim 3

James 5

SQLite sqlite_version Function

SQLite sqlite_version function returns the version of the SQLite library. Following is an

example:

sqlite> SELECT sqlite_version() AS 'SQLite Version';

The above SQLite SQL statement will produce the following result.

SQLite Version

3.6.20

SQLite

139

SQLite Interfaces

SQLite

140

In this chapter, you will learn how to use SQLite in C/C++ programs.

Installation

Before you start using SQLite in our C/C++ programs, you need to make sure that you

have SQLite library set up on the machine. You can check SQLite Installation chapter to

understand the installation process.

C/C++ Interface APIs

Following are important C/C++ SQLite interface routines, which can suffice your

requirement to work with SQLite database from your C/C++ program. If you are looking

for a more sophisticated application, then you can look into SQLite official documentation.

Sr. No. API & Description

1

sqlite3_open(const char *filename, sqlite3 **ppDb)

This routine opens a connection to an SQLite database file and returns a

database connection object to be used by other SQLite routines.

If the filename argument is NULL or ':memory:', sqlite3_open() will create an

in-memory database in RAM that lasts only for the duration of the session.

If the filename is not NULL, sqlite3_open() attempts to open the database file

by using its value. If no file by that name exists, sqlite3_open() will open a

new database file by that name.

2

sqlite3_exec(sqlite3*, const char *sql, sqlite_callback, void *data,

char **errmsg)

This routine provides a quick, easy way to execute SQL commands provided

by sql argument, which can consist of more than one SQL command.

Here, the first argument sqlite3 is an open database object, sqlite_callback is

a callback for which data is the 1st argument and errmsg will be returned to

capture any error raised by the routine.

The sqlite3_exec() routine parses and executes every command given in

the sql argument until it reaches the end of the string or encounters an error.

 SQLite ─ C/C++

SQLite

141

3

sqlite3_close(sqlite3*)

This routine closes a database connection previously opened by a call to

sqlite3_open(). All prepared statements associated with the connection

should be finalized prior to closing the connection.

If any queries remain that have not been finalized, sqlite3_close() will return

SQLITE_BUSY with the error message Unable to close due to unfinalized

statements.

Connect to Database

Following C code segment shows how to connect to an existing database. If the database

does not exist, then it will be created and finally a database object will be returned.

#include <stdio.h>

#include <sqlite3.h>

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 return(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 sqlite3_close(db);

}

Now, let's compile and run the above program to create our database test.db in the

current directory. You can change your path as per your requirement.

$gcc test.c -l sqlite3

$./a.out

Opened database successfully

SQLite

142

If you are going to use C++ source code, then you can compile your code as follows:

$g++ test.c -l sqlite3

Here, we are linking our program with sqlite3 library to provide required functions to C

program. This will create a database file test.db in your directory and you will have the

following result.

-rwxr-xr-x. 1 root root 7383 May 8 02:06 a.out

-rw-r--r--. 1 root root 323 May 8 02:05 test.c

-rw-r--r--. 1 root root 0 May 8 02:06 test.db

Create a Table

Following C code segment will be used to create a table in the previously created database.

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

static int callback(void *NotUsed, int argc, char **argv, char **azColName){

 int i;

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

SQLite

143

 return(0);

 }else{

 fprintf(stdout, "Opened database successfully\n");

 }

 /* Create SQL statement */

 sql = "CREATE TABLE COMPANY(" \

 "ID INT PRIMARY KEY NOT NULL," \

 "NAME TEXT NOT NULL," \

 "AGE INT NOT NULL," \

 "ADDRESS CHAR(50)," \

 "SALARY REAL);";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, 0, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Table created successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When the above program is compiled and executed, it will create COMPANY table in your

test.db and the final listing of the file will be as follows:

-rwxr-xr-x. 1 root root 9567 May 8 02:31 a.out

-rw-r--r--. 1 root root 1207 May 8 02:31 test.c

-rw-r--r--. 1 root root 3072 May 8 02:31 test.db

INSERT Operation

Following C code segment shows how you can create records in COMPANY table created

in the above example:

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

SQLite

144

static int callback(void *NotUsed, int argc, char **argv, char **azColName){

 int i;

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 return(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 /* Create SQL statement */

 sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " \

 "VALUES (1, 'Paul', 32, 'California', 20000.00); " \

 "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " \

 "VALUES (2, 'Allen', 25, 'Texas', 15000.00); " \

 "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)" \

 "VALUES (3, 'Teddy', 23, 'Norway', 20000.00);" \

 "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)" \

 "VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, 0, &zErrMsg);

 if(rc != SQLITE_OK){

SQLite

145

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Records created successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When the above program is compiled and executed, it will create the given records in

COMPANY table and will display the following two lines:

Opened database successfully

Records created successfully

SELECT Operation

Before proceeding with actual example to fetch records, let us look at some detail about

the callback function, which we are using in our examples. This callback provides a way to

obtain results from SELECT statements. It has the following declaration:

typedef int (*sqlite3_callback)(

void*, /* Data provided in the 4th argument of sqlite3_exec() */

int, /* The number of columns in row */

char**, /* An array of strings representing fields in the row */

char** /* An array of strings representing column names */

);

If the above callback is provided in sqlite_exec() routine as the third argument, SQLite will

call this callback function for each record processed in each SELECT statement executed

within the SQL argument.

Following C code segment shows how you can fetch and display records from the COMPANY

table created in the above example.

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

static int callback(void *data, int argc, char **argv, char **azColName){

 int i;

 fprintf(stderr, "%s: ", (const char*)data);

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

SQLite

146

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 const char* data = "Callback function called";

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 return(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 /* Create SQL statement */

 sql = "SELECT * from COMPANY";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, (void*)data, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Operation done successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When the above program is compiled and executed, it will produce the following result.

Opened database successfully

Callback function called: ID = 1

SQLite

147

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 20000.0

Callback function called: ID = 2

NAME = Allen

AGE = 25

ADDRESS = Texas

SALARY = 15000.0

Callback function called: ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

Callback function called: ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

UPDATE Operation

Following C code segment shows how we can use UPDATE statement to update any record

and then fetch and display updated records from the COMPANY table.

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

static int callback(void *data, int argc, char **argv, char **azColName){

 int i;

 fprintf(stderr, "%s: ", (const char*)data);

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

SQLite

148

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 const char* data = "Callback function called";

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 return(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 /* Create merged SQL statement */

 sql = "UPDATE COMPANY set SALARY = 25000.00 where ID=1; " \

 "SELECT * from COMPANY";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, (void*)data, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

 }else{

 fprintf(stdout, "Operation done successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When the above program is compiled and executed, it will produce the following result.

SQLite

149

Opened database successfully

Callback function called: ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 25000.0

Callback function called: ID = 2

NAME = Allen

AGE = 25

ADDRESS = Texas

SALARY = 15000.0

Callback function called: ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

Callback function called: ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

DELETE Operation

Following C code segment shows how you can use DELETE statement to delete any record

and then fetch and display the remaining records from the COMPANY table.

#include <stdio.h>

#include <stdlib.h>

#include <sqlite3.h>

SQLite

150

static int callback(void *data, int argc, char **argv, char **azColName){

 int i;

 fprintf(stderr, "%s: ", (const char*)data);

 for(i=0; i<argc; i++){

 printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

 }

 printf("\n");

 return 0;

}

int main(int argc, char* argv[])

{

 sqlite3 *db;

 char *zErrMsg = 0;

 int rc;

 char *sql;

 const char* data = "Callback function called";

 /* Open database */

 rc = sqlite3_open("test.db", &db);

 if(rc){

 fprintf(stderr, "Can't open database: %s\n", sqlite3_errmsg(db));

 return(0);

 }else{

 fprintf(stderr, "Opened database successfully\n");

 }

 /* Create merged SQL statement */

 sql = "DELETE from COMPANY where ID=2; " \

 "SELECT * from COMPANY";

 /* Execute SQL statement */

 rc = sqlite3_exec(db, sql, callback, (void*)data, &zErrMsg);

 if(rc != SQLITE_OK){

 fprintf(stderr, "SQL error: %s\n", zErrMsg);

 sqlite3_free(zErrMsg);

SQLite

151

 }else{

 fprintf(stdout, "Operation done successfully\n");

 }

 sqlite3_close(db);

 return 0;

}

When the above program is compiled and executed, it will produce the following result.

Opened database successfully

Callback function called: ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 20000.0

Callback function called: ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

Callback function called: ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

SQLite

152

In this chapter, you will learn how to use SQLite in Java programs.

Installation

Before you start using SQLite in your Java programs, you need to make sure that you

have SQLite JDBC Driver and Java set up on the machine. You can check Java tutorial for

Java installation on your machine. Now, let us check how to set up SQLite JDBC driver.

Step 1: Download latest version of sqlite-jdbc-(VERSION).jar from sqlite-jdbc repository.

Step 2: Add downloaded jar file sqlite-jdbc-(VERSION).jar in your class path, or you can

use it along with -classpath option as explained in the following examples.

Following section assumes you have little knowledge about Java JDBC concepts. If you

don't, then it is suggested to spent half an hour with JDBC Tutorial to become comfortable

with the concepts explained below.

Connect to Database

Following Java programs show how to connect to an existing database. If the database

does not exist, then it will be created and finally a database object will be returned.

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Opened database successfully");

 }

}

 SQLite ─ Java

https://bitbucket.org/xerial/sqlite-jdbc/downloads
https://www.tutorialspoint.com/jdbc/jdbc-create-database.htm

SQLite

153

Now, let's compile and run the above program to create our database test.db in the

current directory. You can change your path as per your requirement. We are assuming

the current version of JDBC driver sqlite-jdbc-3.7.2.jar is available in the current path.

$javac SQLiteJDBC.java

$java -classpath ".:sqlite-jdbc-3.7.2.jar" SQLiteJDBC

Open database successfully

If you are going to use Windows machine, then you can compile and run your code as

follows:

$javac SQLiteJDBC.java

$java -classpath ".;sqlite-jdbc-3.7.2.jar" SQLiteJDBC

Opened database successfully

Create a Table

Following Java program will be used to create a table in the previously created database.

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 String sql = "CREATE TABLE COMPANY " +

 "(ID INT PRIMARY KEY NOT NULL," +

 " NAME TEXT NOT NULL, " +

 " AGE INT NOT NULL, " +

 " ADDRESS CHAR(50), " +

 " SALARY REAL)";

 stmt.executeUpdate(sql);

 stmt.close();

SQLite

154

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Table created successfully");

 }

}

When the above program is compiled and executed, it will create COMPANY table in

your test.db and final listing of the file will be as follows:

-rw-r--r--. 1 root root 3201128 Jan 22 19:04 sqlite-jdbc-3.7.2.jar

-rw-r--r--. 1 root root 1506 May 8 05:43 SQLiteJDBC.class

-rw-r--r--. 1 root root 832 May 8 05:42 SQLiteJDBC.java

-rw-r--r--. 1 root root 3072 May 8 05:43 test.db

INSERT Operation

Following Java program shows how to create records in the COMPANY table created in

above example.

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 c.setAutoCommit(false);

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 String sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " +

 "VALUES (1, 'Paul', 32, 'California', 20000.00);";

 stmt.executeUpdate(sql);

SQLite

155

 sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " +

 "VALUES (2, 'Allen', 25, 'Texas', 15000.00);";

 stmt.executeUpdate(sql);

 sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " +

 "VALUES (3, 'Teddy', 23, 'Norway', 20000.00);";

 stmt.executeUpdate(sql);

 sql = "INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) " +

 "VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);";

 stmt.executeUpdate(sql);

 stmt.close();

 c.commit();

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Records created successfully");

 }

}

When the above program is compiled and executed, it will create the given records in the

COMPANY table and will display the following two lines.

Opened database successfully

Records created successfully

SELECT Operation

Following Java program shows how to fetch and display records from the COMPANY table

created in the above example.

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

SQLite

156

 {

 Connection c = null;

 Statement stmt = null;

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 c.setAutoCommit(false);

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT * FROM COMPANY;");

 while (rs.next()) {

 int id = rs.getInt("id");

 String name = rs.getString("name");

 int age = rs.getInt("age");

 String address = rs.getString("address");

 float salary = rs.getFloat("salary");

 System.out.println("ID = " + id);

 System.out.println("NAME = " + name);

 System.out.println("AGE = " + age);

 System.out.println("ADDRESS = " + address);

 System.out.println("SALARY = " + salary);

 System.out.println();

 }

 rs.close();

 stmt.close();

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Operation done successfully");

 }

}

When the above program is compiled and executed, it will produce the following result.

Opened database successfully

SQLite

157

ID = 1

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 20000.0

ID = 2

NAME = Allen

AGE = 25

ADDRESS = Texas

SALARY = 15000.0

ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

UPDATE Operation

Following Java code shows how to use UPDATE statement to update any record and then

fetch and display the updated records from the COMPANY table.

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

SQLite

158

 try {

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 c.setAutoCommit(false);

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 String sql = "UPDATE COMPANY set SALARY = 25000.00 where ID=1;";

 stmt.executeUpdate(sql);

 c.commit();

 ResultSet rs = stmt.executeQuery("SELECT * FROM COMPANY;");

 while (rs.next()) {

 int id = rs.getInt("id");

 String name = rs.getString("name");

 int age = rs.getInt("age");

 String address = rs.getString("address");

 float salary = rs.getFloat("salary");

 System.out.println("ID = " + id);

 System.out.println("NAME = " + name);

 System.out.println("AGE = " + age);

 System.out.println("ADDRESS = " + address);

 System.out.println("SALARY = " + salary);

 System.out.println();

 }

 rs.close();

 stmt.close();

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Operation done successfully");

 }

}

When the above program is compiled and executed, it will produce the following result.

Opened database successfully

ID = 1

SQLite

159

NAME = Paul

AGE = 32

ADDRESS = California

SALARY = 25000.0

ID = 2

NAME = Allen

AGE = 25

ADDRESS = Texas

SALARY = 15000.0

ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

DELETE Operation

Following Java code shows how to use DELETE statement to delete any record and then

fetch and display the remaining records from the COMPANY table.

import java.sql.*;

public class SQLiteJDBC

{

 public static void main(String args[])

 {

 Connection c = null;

 Statement stmt = null;

 try {

SQLite

160

 Class.forName("org.sqlite.JDBC");

 c = DriverManager.getConnection("jdbc:sqlite:test.db");

 c.setAutoCommit(false);

 System.out.println("Opened database successfully");

 stmt = c.createStatement();

 String sql = "DELETE from COMPANY where ID=2;";

 stmt.executeUpdate(sql);

 c.commit();

 ResultSet rs = stmt.executeQuery("SELECT * FROM COMPANY;");

 while (rs.next()) {

 int id = rs.getInt("id");

 String name = rs.getString("name");

 int age = rs.getInt("age");

 String address = rs.getString("address");

 float salary = rs.getFloat("salary");

 System.out.println("ID = " + id);

 System.out.println("NAME = " + name);

 System.out.println("AGE = " + age);

 System.out.println("ADDRESS = " + address);

 System.out.println("SALARY = " + salary);

 System.out.println();

 }

 rs.close();

 stmt.close();

 c.close();

 } catch (Exception e) {

 System.err.println(e.getClass().getName() + ": " + e.getMessage());

 System.exit(0);

 }

 System.out.println("Operation done successfully");

 }

}

When the above program is compiled and executed, it will produce the following result.

Opened database successfully

ID = 1

NAME = Paul

SQLite

161

AGE = 32

ADDRESS = California

SALARY = 25000.0

ID = 3

NAME = Teddy

AGE = 23

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

AGE = 25

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

SQLite

162

In this chapter, you will learn how to use SQLite in PHP programs.

Installation

SQLite3 extension is enabled by default as of PHP 5.3.0. It's possible to disable it by using -

-without-sqlite3 at compile time.

Windows users must enable php_sqlite3.dll in order to use this extension. This DLL is

included with Windows distributions of PHP as of PHP 5.3.0.

For detailed installation instructions, kindly check our PHP tutorial and its official website.

PHP Interface APIs

Following are important PHP routines which can suffice your requirement to work with

SQLite database from your PHP program. If you are looking for a more sophisticated

application, then you can look into PHP official documentation.

Sr.

No.
API & Description

1

public void SQLite3::open (filename, flags, encryption_key)

Opens SQLite 3 Database. If the build includes encryption, then it will attempt

to use the key.

If the filename is given as ':memory:', SQLite3::open() will create an in-

memory database in RAM that lasts only for the duration of the session.

If the filename is actual device file name, SQLite3::open() attempts to open

the database file by using its value. If no file by that name exists, then a new

database file by that name gets created.

Optional flags used to determine how to open the SQLite database. By default,

open uses SQLITE3_OPEN_READWRITE | SQLITE3_OPEN_CREATE.

2

public bool SQLite3::exec (string $query)

This routine provides a quick, easy way to execute SQL commands provided

by sql argument, which can consist of more than one SQL command. This

routine is used to execute a result-less query against a given database.

3

public SQLite3Result SQLite3::query (string $query)

 SQLite ─ PHP

SQLite

163

This routine executes an SQL query, returning an SQLite3Result object if the

query returns results.

4

public int SQLite3::lastErrorCode (void)

This routine returns the numeric result code of the most recent failed SQLite

request.

5

public string SQLite3::lastErrorMsg (void)

This routine returns English text describing the most recent failed SQLite

request.

6

public int SQLite3::changes (void)

This routine returns the number of database rows that were updated, inserted,

or deleted by the most recent SQL statement.

7

public bool SQLite3::close (void)

This routine closes a database connection previously opened by a call to

SQLite3::open().

8

public string SQLite3::escapeString (string $value)

This routine returns a string that has been properly escaped for safe inclusion

in an SQL statement.

Connect to Database

Following PHP code shows how to connect to an existing database. If database does not

exist, then it will be created and finally a database object will be returned.

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

SQLite

164

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

?>

Now, let's run the above program to create our database test.db in the current directory.

You can change your path as per your requirement. If the database is successfully created,

then it will display the following message:

Open database successfully

Create a Table

Following PHP program will be used to create a table in the previously created database.

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 CREATE TABLE COMPANY

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL);

EOF;

SQLite

165

 $ret = $db->exec($sql);

 if(!$ret){

 echo $db->lastErrorMsg();

 } else {

 echo "Table created successfully\n";

 }

 $db->close();

?>

When the above program is executed, it will create the COMPANY table in your test.db and

it will display the following messages:

Opened database successfully

Table created successfully

INSERT Operation

Following PHP program shows how to create records in the COMPANY table created in the

above example.

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (1, 'Paul', 32, 'California', 20000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

SQLite

166

 VALUES (2, 'Allen', 25, 'Texas', 15000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

 INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);

EOF;

 $ret = $db->exec($sql);

 if(!$ret){

 echo $db->lastErrorMsg();

 } else {

 echo "Records created successfully\n";

 }

 $db->close();

?>

When the above program is executed, it will create the given records in the COMPANY

table and will display the following two lines.

Opened database successfully

Records created successfully

SELECT Operation

Following PHP program shows how to fetch and display records from the COMPANY table

created in the above example.

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

SQLite

167

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 SELECT * from COMPANY;

EOF;

 $ret = $db->query($sql);

 while($row = $ret->fetchArray(SQLITE3_ASSOC)){

 echo "ID = ". $row['ID'] . "\n";

 echo "NAME = ". $row['NAME'] ."\n";

 echo "ADDRESS = ". $row['ADDRESS'] ."\n";

 echo "SALARY = ".$row['SALARY'] ."\n\n";

 }

 echo "Operation done successfully\n";

 $db->close();

?>

When the above program is executed, it will produce the following result.

Opened database successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SQLite

168

SALARY = 65000

Operation done successfully

UPDATE Operation

Following PHP code shows how to use UPDATE statement to update any record and then

fetch and display the updated records from the COMPANY table.

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 UPDATE COMPANY set SALARY = 25000.00 where ID=1;

EOF;

 $ret = $db->exec($sql);

 if(!$ret){

 echo $db->lastErrorMsg();

 } else {

 echo $db->changes(), " Record updated successfully\n";

 }

 $sql =<<<EOF

 SELECT * from COMPANY;

EOF;

 $ret = $db->query($sql);

 while($row = $ret->fetchArray(SQLITE3_ASSOC)){

SQLite

169

 echo "ID = ". $row['ID'] . "\n";

 echo "NAME = ". $row['NAME'] ."\n";

 echo "ADDRESS = ". $row['ADDRESS'] ."\n";

 echo "SALARY = ".$row['SALARY'] ."\n\n";

 }

 echo "Operation done successfully\n";

 $db->close();

?>

When the above program is executed, it will produce the following result.

Opened database successfully

1 Record updated successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

DELETE Operation

Following PHP code shows how to use DELETE statement to delete any record and then

fetch and display the remaining records from the COMPANY table.

SQLite

170

<?php

 class MyDB extends SQLite3

 {

 function __construct()

 {

 $this->open('test.db');

 }

 }

 $db = new MyDB();

 if(!$db){

 echo $db->lastErrorMsg();

 } else {

 echo "Opened database successfully\n";

 }

 $sql =<<<EOF

 DELETE from COMPANY where ID=2;

EOF;

 $ret = $db->exec($sql);

 if(!$ret){

 echo $db->lastErrorMsg();

 } else {

 echo $db->changes(), " Record deleted successfully\n";

 }

 $sql =<<<EOF

 SELECT * from COMPANY;

EOF;

 $ret = $db->query($sql);

 while($row = $ret->fetchArray(SQLITE3_ASSOC)){

 echo "ID = ". $row['ID'] . "\n";

 echo "NAME = ". $row['NAME'] ."\n";

 echo "ADDRESS = ". $row['ADDRESS'] ."\n";

 echo "SALARY = ".$row['SALARY'] ."\n\n";

 }

 echo "Operation done successfully\n";

 $db->close();

SQLite

171

?>

When the above program is executed, it will produce the following result.

Opened database successfully

1 Record deleted successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

SQLite

172

In this chapter, you will learn how to use SQLite in Perl programs.

Installation

SQLite3 can be integrated with Perl using Perl DBI module, which is a database access

module for the Perl programming language. It defines a set of methods, variables, and

conventions that provide a standard database interface.

Following are simple steps to install DBI module on your Linux/UNIX machine:

$ wget http://search.cpan.org/CPAN/authors/id/T/TI/TIMB/DBI-1.625.tar.gz

$ tar xvfz DBI-1.625.tar.gz

$ cd DBI-1.625

$ perl Makefile.PL

$ make

$ make install

If you need to install SQLite driver for DBI, then it can be installed as follows:

$ wget http://search.cpan.org/CPAN/authors/id/M/MS/MSERGEANT/DBD-SQLite-

1.11.tar.gz

$ tar xvfz DBD-SQLite-1.11.tar.gz

$ cd DBD-SQLite-1.11

$ perl Makefile.PL

$ make

$ make install

DBI Interface APIs

Following are important DBI routines, which can suffice your requirement to work with

SQLite database from your Perl program. If you are looking for a more sophisticated

application, then you can look into Perl DBI official documentation.

 SQLite ─ Perl

SQLite

173

Sr.

No.
API & Description

1

DBI->connect($data_source, "", "", \%attr)

Establishes a database connection, or session, to the requested $data_source.

Returns a database handle object if the connection succeeds.

Datasource has the form like: DBI:SQLite:dbname='test.db' where SQLite

is SQLite driver name and test.db is the name of SQLite database file. If the

filename is given as ':memory:', it will create an in-memory database in RAM

that lasts only for the duration of the session.

If the filename is actual device file name, then it attempts to open the database

file by using its value. If no file by that name exists, then a new database file

by that name gets created.

You keep second and third parameter as blank strings and the last parameter

is to pass various attributes as shown in the following example.

2

$dbh->do($sql)

This routine prepares and executes a single SQL statement. Returns the

number of rows affected or undef on error. A return value of -1 means the

number of rows is not known, not applicable, or not available. Here, $dbh is a

handle returned by DBI->connect() call.

3

$dbh->prepare($sql)

This routine prepares a statement for later execution by the database engine

and returns a reference to a statement handle object.

4

$sth->execute()

This routine performs whatever processing is necessary to execute the

prepared statement. An undef is returned if an error occurs. A successful

execute always returns true regardless of the number of rows affected. Here,

$sth is a statement handle returned by $dbh->prepare($sql) call.

5

$sth->fetchrow_array()

This routine fetches the next row of data and returns it as a list containing the

field values. Null fields are returned as undef values in the list.

SQLite

174

6

$DBI::err

This is equivalent to $h->err, where $h is any of the handle types like $dbh,

$sth, or $drh. This returns native database engine error code from the last

driver method called.

7

$DBI::errstr

This is equivalent to $h->errstr, where $h is any of the handle types like $dbh,

$sth, or $drh. This returns the native database engine error message from the

last DBI method called.

8

$dbh->disconnect()

This routine closes a database connection previously opened by a call to DBI-

>connect().

Connect to Database

Following Perl code shows how to connect to an existing database. If the database does

not exist, then it will be created and finally a database object will be returned.

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

Now, let's run the above program to create our database test.db in the current directory.

You can change your path as per your requirement. Keep the above code in sqlite.pl file

and execute it as shown below. If the database is successfully created, then it will display

the following message:

SQLite

175

$ chmod +x sqlite.pl

$./sqlite.pl

Open database successfully

Create a Table

Following Perl program is used to create a table in the previously created database.

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(CREATE TABLE COMPANY

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL););

my $rv = $dbh->do($stmt);

if($rv < 0){

 print $DBI::errstr;

} else {

 print "Table created successfully\n";

}

$dbh->disconnect();

SQLite

176

When the above program is executed, it will create COMPANY table in your test.db and it

will display the following messages:

Opened database successfully

Table created successfully

Note: In case you see the following error in any of the operation:

DBD::SQLite::st execute failed: not an error(21) at dbdimp.c line 398

In such case, open dbdimp.c file available in DBD-SQLite installation and find

out sqlite3_prepare() function and change its third argument to -1 instead of 0. Finally,

install DBD::SQLite using make and do make install to resolve the problem.

INSERT Operation

Following Perl program shows how to create records in the COMPANY table created in the

above example.

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (1, 'Paul', 32, 'California', 20000.00));

my $rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (2, 'Allen', 25, 'Texas', 15000.00));

$rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

SQLite

177

 VALUES (3, 'Teddy', 23, 'Norway', 20000.00));

$rv = $dbh->do($stmt) or die $DBI::errstr;

$stmt = qq(INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY)

 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00););

$rv = $dbh->do($stmt) or die $DBI::errstr;

print "Records created successfully\n";

$dbh->disconnect();

When the above program is executed, it will create the given records in the COMPANY

table and it will display the following two lines:

Opened database successfully

Records created successfully

SELECT Operation

Following Perl program shows how to fetch and display records from the COMPANY table

created in the above example.

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(SELECT id, name, address, salary from COMPANY;);

my $sth = $dbh->prepare($stmt);

my $rv = $sth->execute() or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

SQLite

178

}

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

print "Operation done successfully\n";

$dbh->disconnect();

When the above program is executed, it will produce the following result.

Opened database successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

SQLite

179

UPDATE Operation

Following Perl code shows how to use UPDATE statement to update any record and then

fetch and display the updated records from the COMPANY table.

#!/usr/bin/perl

use DBI;

use strict;

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(UPDATE COMPANY set SALARY = 25000.00 where ID=1;);

my $rv = $dbh->do($stmt) or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}else{

 print "Total number of rows updated : $rv\n";

}

$stmt = qq(SELECT id, name, address, salary from COMPANY;);

my $sth = $dbh->prepare($stmt);

$rv = $sth->execute() or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

SQLite

180

print "Operation done successfully\n";

$dbh->disconnect();

When the above program is executed, it will produce the following result.

Opened database successfully

Total number of rows updated : 1

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

DELETE Operation

Following Perl code shows how to use DELETE statement to delete any record and then

fetch and display the remaining records from the COMPANY table.

#!/usr/bin/perl

use DBI;

use strict;

SQLite

181

my $driver = "SQLite";

my $database = "test.db";

my $dsn = "DBI:$driver:dbname=$database";

my $userid = "";

my $password = "";

my $dbh = DBI->connect($dsn, $userid, $password, { RaiseError => 1 })

 or die $DBI::errstr;

print "Opened database successfully\n";

my $stmt = qq(DELETE from COMPANY where ID=2;);

my $rv = $dbh->do($stmt) or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}else{

 print "Total number of rows deleted : $rv\n";

}

$stmt = qq(SELECT id, name, address, salary from COMPANY;);

my $sth = $dbh->prepare($stmt);

$rv = $sth->execute() or die $DBI::errstr;

if($rv < 0){

 print $DBI::errstr;

}

while(my @row = $sth->fetchrow_array()) {

 print "ID = ". $row[0] . "\n";

 print "NAME = ". $row[1] ."\n";

 print "ADDRESS = ". $row[2] ."\n";

 print "SALARY = ". $row[3] ."\n\n";

}

print "Operation done successfully\n";

$dbh->disconnect();

SQLite

182

When the above program is executed, it will produce the following result.

Opened database successfully

Total number of rows deleted : 1

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 25000

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000

Operation done successfully

SQLite

183

In this chapter, you will learn how to use SQLite in Python programs.

Installation

SQLite3 can be integrated with Python using sqlite3 module, which was written by Gerhard

Haring. It provides an SQL interface compliant with the DB-API 2.0 specification described

by PEP 249. You do not need to install this module separately because it is shipped by

default along with Python version 2.5.x onwards.

To use sqlite3 module, you must first create a connection object that represents the

database and then optionally you can create a cursor object, which will help you in

executing all the SQL statements.

Python sqlite3 module APIs

Following are important sqlite3 module routines, which can suffice your requirement to

work with SQLite database from your Python program. If you are looking for a more

sophisticated application, then you can look into Python sqlite3 module's official

documentation.

Sr.

No.
API & Description

1

sqlite3.connect(database [,timeout ,other optional arguments])

This API opens a connection to the SQLite database file. You can use

":memory:" to open a database connection to a database that resides in RAM

instead of on disk. If database is opened successfully, it returns a connection

object.

When a database is accessed by multiple connections, and one of the processes

modifies the database, the SQLite database is locked until that transaction is

committed. The timeout parameter specifies how long the connection should

wait for the lock to go away until raising an exception. The default for the

timeout parameter is 5.0 (five seconds).

If the given database name does not exist, then this call will create the

database. You can specify filename with the required path as well if you want

to create a database anywhere else except in the current directory.

 SQLite ─ Python

SQLite

184

2

connection.cursor([cursorClass])

This routine creates a cursor which will be used throughout of your database

programming with Python. This method accepts a single optional parameter

cursorClass. If supplied, this must be a custom cursor class that extends

sqlite3.Cursor.

3

cursor.execute(sql [, optional parameters])

This routine executes an SQL statement. The SQL statement may be parameterized (i.e.,
placeholders instead of SQL literals). The sqlite3 module supports two kinds of placeholders:

question marks and named placeholders (named style).

For example:cursor.execute("insert into people values (?, ?)", (who, age))

4

connection.execute(sql [, optional parameters])

This routine is a shortcut of the above execute method provided by the cursor

object and it creates an intermediate cursor object by calling the cursor

method, then calls the cursor's execute method with the parameters given.

5

cursor.executemany(sql, seq_of_parameters)

This routine executes an SQL command against all parameter sequences or

mappings found in the sequence sql.

6

connection.executemany(sql[, parameters])

This routine is a shortcut that creates an intermediate cursor object by calling

the cursor method, then calls the cursor.s executemany method with the

parameters given.

7

cursor.executescript(sql_script)

This routine executes multiple SQL statements at once provided in the form of

script. It issues a COMMIT statement first, then executes the SQL script it gets

as a parameter. All the SQL statements should be separated by a semicolon

(;).

SQLite

185

8

connection.executescript(sql_script)

This routine is a shortcut that creates an intermediate cursor object by calling

the cursor method, then calls the cursor's executescript method with the

parameters given.

9

connection.total_changes()

This routine returns the total number of database rows that have been modified,

inserted, or deleted since the database connection was opened.

10

connection.commit()

This method commits the current transaction. If you don’t call this method,

anything you did since the last call to commit() is not visible from other

database connections.

11

connection.rollback()

This method rolls back any changes to the database since the last call to

commit().

12

connection.close()

This method closes the database connection. Note that this does not

automatically call commit(). If you just close your database connection without

calling commit() first, your changes will be lost!

13

cursor.fetchone()

This method fetches the next row of a query result set, returning a single

sequence, or None when no more data is available.

14

cursor.fetchmany([size=cursor.arraysize])

This routine fetches the next set of rows of a query result, returning a list. An

empty list is returned when no more rows are available. The method tries to

fetch as many rows as indicated by the size parameter.

15

cursor.fetchall()

This routine fetches all (remaining) rows of a query result, returning a list. An

empty list is returned when no rows are available.

SQLite

186

Connect to Database

Following Python code shows how to connect to an existing database. If the database does

not exist, then it will be created and finally a database object will be returned.

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

Here, you can also supply database name as the special name :memory: to create a

database in RAM. Now, let's run the above program to create our database test.db in the

current directory. You can change your path as per your requirement. Keep the above

code in sqlite.py file and execute it as shown below. If the database is successfully

created, then it will display the following message.

$chmod +x sqlite.py

$./sqlite.py

Open database successfully

Create a Table

Following Python program will be used to create a table in the previously created database.

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

conn.execute('''CREATE TABLE COMPANY

 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL);''')

print "Table created successfully";

conn.close()

SQLite

187

When the above program is executed, it will create the COMPANY table in your test.db and

it will display the following messages:

Opened database successfully

Table created successfully

INSERT Operation

Following Python program shows how to create records in the COMPANY table created in

the above example.

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (1, 'Paul', 32, 'California', 20000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (2, 'Allen', 25, 'Texas', 15000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (3, 'Teddy', 23, 'Norway', 20000.00)");

conn.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00)");

conn.commit()

print "Records created successfully";

conn.close()

When the above program is executed, it will create the given records in the COMPANY

table and it will display the following two lines:

Opened database successfully

Records created successfully

SQLite

188

SELECT Operation

Following Python program shows how to fetch and display records from the COMPANY

table created in the above example.

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")

for row in cursor:

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Operation done successfully";

conn.close()

When the above program is executed, it will produce the following result.

Opened database successfully

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000.0

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000.0

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000.0

SQLite

189

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

UPDATE Operation

Following Python code shows how to use UPDATE statement to update any record and

then fetch and display the updated records from the COMPANY table.

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

conn.execute("UPDATE COMPANY set SALARY = 25000.00 where ID=1")

conn.commit

print "Total number of rows updated :", conn.total_changes

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")

for row in cursor:

 print "ID = ", row[0]

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Operation done successfully";

conn.close()

When the above program is executed, it will produce the following result.

Opened database successfully

Total number of rows updated : 1

ID = 1

NAME = Paul

SQLite

190

ADDRESS = California

SALARY = 25000.0

ID = 2

NAME = Allen

ADDRESS = Texas

SALARY = 15000.0

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

DELETE Operation

Following Python code shows how to use DELETE statement to delete any record and then

fetch and display the remaining records from the COMPANY table.

#!/usr/bin/python

import sqlite3

conn = sqlite3.connect('test.db')

print "Opened database successfully";

conn.execute("DELETE from COMPANY where ID=2;")

conn.commit

print "Total number of rows deleted :", conn.total_changes

cursor = conn.execute("SELECT id, name, address, salary from COMPANY")

for row in cursor:

 print "ID = ", row[0]

SQLite

191

 print "NAME = ", row[1]

 print "ADDRESS = ", row[2]

 print "SALARY = ", row[3], "\n"

print "Operation done successfully";

conn.close()

When the above program is executed, it will produce the following result.

Opened database successfully

Total number of rows deleted : 1

ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000.0

ID = 3

NAME = Teddy

ADDRESS = Norway

SALARY = 20000.0

ID = 4

NAME = Mark

ADDRESS = Rich-Mond

SALARY = 65000.0

Operation done successfully

