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2. Propositional Equivalences

2.1. Tautology/Contradiction/Contingency.
DEFINITION 2.1.1. A tautology is a proposition that is always true.

ExXAMPLE 2.1.1. pV —p

DEFINITION 2.1.2. A contradiction is a proposition that is always false.

EXAMPLE 2.1.2. p A —p

DEFINITION 2.1.3. A contingency is a proposition that is neither a tautology
nor a contradiction.

ExXAMPLE 2.1.3. pV q— —r

Discussion

One of the important techniques used in proving theorems is to replace, or sub-
stitute, one proposition by another one that is equivalent to it. In this section we will
list some of the basic propositional equivalences and show how they can be used to
prove other equivalences.

Let us look at the classic example of a tautology, p V —p. The truth table

p‘ﬁp‘pvﬁp
TIF| T
FIT| T

shows that p V —p is true no matter the truth value of p.

[Side Note. This tautology, called the law of excluded middle, is a
direct consequence of our basic assumption that a proposition is a
statement that is either true or false. Thus, the logic we will discuss
here, so-called Aristotelian logic, might be described as a “2-valued”
logic, and it is the logical basis for most of the theory of modern
mathematics, at least as it has developed in western culture. There
is, however, a consistent logical system, known as constructivist,
or intuitionistic, logic which does not assume the law of excluded
middle. This results in a 3-valued logic in which one allows for
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a third possibility, namely, “other.” In this system proving that a
statement is “not true” is not the same as proving that it is “false,”
so that indirect proofs, which we shall soon discuss, would not be
valid. If you are tempted to dismiss this concept, you should be
aware that there are those who believe that in many ways this type
of logic is much closer to the logic used in computer science than
Aristotelian logic. You are encouraged to explore this idea: there
is plenty of material to be found in your library or through the
worldwide web.]

The proposition p V =(p A q) is also a tautology as the following the truth table
illustrates.

q) | ~(pAg)|pValpAa)

RIS R RS
SRS R P
ST T RS

T
T
T
T

R

EXERCISE 2.1.1. Build a truth table to verify that the proposition (p < q)N(—pAq)
s a contradiction.

2.2. Logically Equivalent.

DEFINITION 2.2.1. Propositions r and s are logically equivalent if the statement
r <> s is a tautology.

Notation: If r and s are logically equivalent, we write

r &= S.

Discussion

A second notation often used to mean statements r and s are logically equivalent
is 7 = s. You can determine whether compound propositions r and s are logically
equivalent by building a single truth table for both propositions and checking to see
that they have exactly the same truth values.

Notice the new symbol r < s, which is used to denote that r and s are logically
equivalent, is defined to mean the statement r < s is a tautology. In a sense the
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symbols < and < convey similar information when used in a sentence. However,
r < s is generally used to assert that the statement r < s is, in fact, true while the
statement r < s alone does not imply any particular truth value. The symbol < is
the preferred shorthand for “is equivalent to.”

2.3. Examples.

EXAMPLE 2.3.1. Show that (p — q) A (¢ — p) is logically equivalent to p < q.

Solution 1. Show the truth values of both propositions are identical.

Truth Table:

plalp—aq|la—p|lp=9N(@—Dp)|p—q
TIT| T T T T
T|\F| F T F F
FIT| T F F F
FIF| T T T T

Solution 2. Ezamine every possible case in which the statement (p — q) A (¢ — p)
may not have the same truth value as p < q

Case 1. Suppose (p — q) N (q — p) is false and p < q is true. There are two possible
cases where (p — q) A (¢ — p) is false. Namely, p — q is false or ¢ — p
is false (mote that this covers the possibility both are false since we use the
inclusive “or” on logic).

(a) Assume p — q is false. Then p is true and q is false. But if this is the
case, the p < q 1is false.

(b) Assume q — p is false. Then q is true and p is false. But if this is the
case, the p < q 1is false.

Case 2. Suppose (p — q) A (¢ — p) is true and p < q is false. If the latter is false,
the p and q do not have the same truth value and the there are two possible
ways this may occur that we address below.

(a) Assume p is true and q is false. Then p — q is false, so the conjunction
also must be false.

(b) Assume p is false and q is true. Then q — p is false, so the conjunction
is also false.

We exhausted all the possibilities, so the two propositions must be logically equivalent.
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Discussion

This example illustrates an alternative to using truth tables to establish the equiv-
alence of two propositions. An alternative proof is obtained by excluding all possible
ways in which the propositions may fail to be equivalent. Here is another example.

EXAMPLE 2.3.2. Show =(p — q) is equivalent to p \ —q.

Solution 1. Build a truth table containing each of the statements.

pla|~q|p—q|~(p—q) | PN
T|T|F| T F F
T|F|T| F T T
FIT| F| T F F
FIF|T| T F F

Since the truth values for =(p — ¢) and pA—q are exactly the same for all possible
combinations of truth values of p and ¢, the two propositions are equivalent.

Solution 2. We consider how the two propositions could fail to be equivalent. This
can happen only if the first is true and the second is false or vice versa.

Case 1. Suppose —(p — q) is true and p A —q is false.
—(p — ¢q) would be true if p — ¢ is false. Now this only occurs if p is true
and ¢ is false. However, if p is true and ¢ is false, then p A =g will be true.
Hence this case is not possible.

Case 2. Suppose —(p — q) is false and p A —q is true.
p A —q is true only if p is true and ¢ is false. But in this case, =(p — ¢) will
be true. So this case is not possible either.

Since it is not possible for the two propositions to have different truth values, they
must be equivalent.

EXERCISE 2.3.1. Use a truth table to show that the propositions p < q and —~(p@®q)
are equivalent.

EXERCISE 2.3.2. Use the method of Solution 2 in Example 2.53.2 to show that the
propositions p < q and =(p ® q) are equivalent.
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2.4. Important Logical Equivalences. The logical equivalences below are im-
portant equivalences that should be memorized.

Identity Laws: pANT & p
pVF&Dp

Domination Laws: pVT < T
pANF & F

Idempotent Laws: pVpESD

PAp<SDp

Double Negation —(-p) & p

Law:

Commutative Laws: pVqg< qVp
PANG<=qAp

Associative Laws: (pVqgVr<pV(gVr)

(A AT pA(GAT)

Distributive Laws:  pV (gAr)< (pV g A(pVr)

De Morgan’s Laws:  —(pAq) < —pV —q

Absorption Laws: pA(pVq) < p
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Implication Law: (p—q) < (—pVq)

Contrapositive Law: (p — q) < (=g — —p)

Tautology: pV-p&sT

Contradiction: pA—p& F

Equivalence: (p—q) N(g—p)<(p<q)
Discussion

Study carefully what each of these equivalences is saying. With the possible
exceptions of the De Morgan Laws, they are fairly straight-forward to understand.
The main difficulty you might have with these equivalences is remembering their
names.

EXAMPLE 2.4.1. Use the logical equivalences above and substitution to establish
the equivalence of the statements in Example 2.3.2.

Solution.
—~(p—q) & ~(-pVq) Implication Law
& —p A —q  De Morgan’s Law
S p A g Double Negation Law

This method is very similar to simplifying an algebraic expression. You are using

the basic equivalences in somewhat the same way you use algebraic rules like 2z —3z =
(x4 1)(x — 3)
—x or =x+1.
xr—3
EXERCISE 2.4.1. Use the propositional equivalences in the list of important logical
equivalences above to prove [(p — q) A —q] — —p is a tautology.

EXERCISE 2.4.2. Use truth tables to verify De Morgan’s Laws.

2.5. Simplifying Propositions.
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ExXAMPLE 2.5.1. Use the logical equivalences above to show that —~(p V —(p A q))
1s a contradiction.

Solution.

~(pV-pAg)
< -pA-(=(pAq)) De Morgan’s Law

< -pA(pAq) Double Negation Law

< (-pAp)Ag Associative Law

< FAq Contradiction

& F Domination Law and Commutative Law

EXAMPLE 2.5.2. Find a simple form for the negation of the proposition “If the
sun 1s shining, then I am going to the ball game.”

Solution. This proposition is of the form p — q. As we showed in Example 2.3.2 its
negation, =(p — q), is equivalent to p A —q. This is the proposition

“The sun is shining, and I am not going to the ball game.”

Discussion

The main thing we should learn from Examples 2.3.2 and 2.5.2 is that the negation
of an implication is not equivalent to another implication, such as “If the sun is
shining, then I am not going to the ball game” or “If the sun is not shining, I am
going to the ball game.” This may be seen by comparing the corresponding truth
tables:

plglp——q|~(p—q < (PAq) | p—q
T|T| F F T
TIF| T T T
F|T| T F T
F|IF| T F F

If you were to construct truth tables for all of the other possible implications of the
form » — s, where each of r and s is one of p, —p, ¢, or —¢, you will observe that
none of these propositions is equivalent to —(p — q).
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The rule =(p — ¢q) < p A =g should be memorized. One way to memorize this
equivalence is to keep in mind that the negation of p — ¢ is the statement that
describes the only case in which p — ¢ is false.

EXERCISE 2.5.1. Which of the following are equivalent to —(p — r) — —q? There
may be more than one or none.

(1) =(p—r) Vg
(2) (pA-r)Vq

(3) (~p — 1)V q
(4) g — (p—r)

(5) ~q — (=p — )
(6) ~¢ — (-p V)
(7) ~q — =(p — )

EXERCISE 2.5.2. Which of the following is the negation of the statement “If you
go to the beach this weekend, then you should bring your books and study”?

(1) If you do not go to the beach this weekend, then you should not bring your
books and you should not study.

(2) If you do not go to the beach this weekend, then you should not bring your
books or you should not study.

(3) If you do not go to the beach this weekend, then you should bring your books
and study.

(4) You will not go to the beach this weekend, and you should not bring your
books and you should not study.

(5) You will not go to the beach this weekend, and you should not bring your
books or you should not study.

(6) You will go to the beach this weekend, and you should not bring your books
and you should not study.

(7) You will go to the beach this weekend, and you should not bring your books
or you should not study.

EXERCISE 2.5.3. p is the statement “I will prove this by cases”, q is the statement
“There are more than 500 cases,” and r is the statement “I can find another way.”
State the negation of (—r V —q) — p. in simple English. Do not use the expression
“It is not the case.”

2.6. Implication.

DEFINITION 2.6.1. We say the proposition r implies the proposition s and write
r= s ifr — s is a tautology.

This is very similar to the ideas previously discussed regarding the < verses <.
We use r = s to imply that the statement r — s is true, while that statement r — s
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alone does not imply any particular truth value. The symbol = is often used in proofs
as a shorthand for “implies.”

EXERCISE 2.6.1. Prove (p — q) A =q = —p.
EXERCISE 2.6.2. Prove p A (p — q) — —q is a contingency using a truth table.
EXERCISE 2.6.3. Prove p — (pV q) is a tautology using a verbal argument.

EXERCISE 2.6.4. Prove (p A q) — p is a tautology using the table of propositional
equivalences.

EXERCISE 2.6.5. Prove [(p — q) A (¢ — 7)] = (p — 1) using a truth table.
EXERCISE 2.6.6. Prove [(p V q) A —p| = q using a verbal argument.

EXERCISE 2.6.7. Prove (pAq) — (pV q) is a tautology using the table of proposi-
tional equivalences.

2.7. Normal or Canonical Forms.

DEFINITION 2.7.1. Fvery compound proposition in the propositional variables p,
q, T, ..., 1s uniquely equivalent to a proposition that is formed by taking the disjunction
of conjunctions of some combination of the variables p, q,r, ... or their negations. This
1s called the disjunctive normal form of a proposition.

Discussion

The disjunctive normal form of a compound proposition is a natural and useful
choice for representing the proposition from among all equivalent forms, although it
may not be the simplest representative. We will find this concept useful when we
arrive at the module on Boolean algebra.

2.8. Examples.

ExAMPLE 2.8.1. Construct a proposition in disjunctive normal form that is true
precisely when

(1) p is true and q is false
Solution. p A —¢q
(2) p is true and q is false or when p is true and q is true.

Solution. (p A —=q)V (p A q)
(3) either p is true or q is true, and r is false

Solution. (pV q) A —r < (pA-r)V (g A—r) (Distributive Law)

(Notice that the second example could be simplified to just p.)
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Discussion

The methods by which we arrived at the disjunctive normal form in these examples
may seem a little ad hoc. We now demonstrate, through further examples, a sure-fire
method for its construction.

2.9. Constructing Disjunctive Normal Forms.

EXAMPLE 2.9.1. Find the disjunctive normal form for the proposition p — q.

Solution. Construct a truth table for p — q:

plq|p—4q
T|T T
T|\F| F
F\T T
F\|F T

p — q is true when either
p 18 true and q 18 true, or
p is false and q is true, or
p s false and q s false.
The disjunctive normal form is then

(PAq)V (=pAq)V (=pA—q)

Discussion

This example shows how a truth table can be used in a systematic way to construct
the disjunctive normal forms. Here is another example.

ExXAMPLE 2.9.2. Construct the disjunctive normal form of the proposition

(p—=q) N

Solution. Write out the truth table for (p — q) A\ —r:
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plag|rip—q|-r|(p—>gA-T
T\T|T| T |F F
TI\TIF| T |T T
T\F|T| F |F F
FlT|\T| T |F F
T\FIF| F | T F
FIT\F| T | T T
FIF|T| T |F F
FIFI\F| T | T T

The disjunctive normal form will be a disjunction of three conjunctions, one for each
row in the truth table that gives the truth value T for (p — q) A —r. These rows have
been boxed. In each conjunction we will use p if the truth value of p in that row is T
and —p if the truth value of p is F, q if the truth value of q in that row is T and —q if
the truth value of q is F, etc. The disjunctive normal form for (p — q) A —r is then

(PANgAN-T)V (D ANgA—T)V (mp A—g A -r),

because each of these conjunctions is true only for the combination of truth values of
P, q, and r found in the corresponding row. That is, (p A g A\ —r) has truth value T
only for the combination of truth values in row 2, (—-p AqA—r) has truth value T only
for the combination of truth values in row 6, etc. Their disjunction will be true for
precisely the three combinations of truth values of p, q, and r for which (p — q) A —r
s also true.

Terminology. The individual conjunctions that make up the disjunctive normal
form are called minterms. In the previous example, the disjunctive normal form for
the proposition (p — ¢) A —r has three minterms, (p A ¢ A =), (—=p A ¢ A =r), and
(=p A =g A ).

2.10. Conjunctive Normal Form. The conjunctive normal form of a propo-
sition is another “canonical form” that may occasionally be useful, but not to the same
degree as the disjunctive normal form. As the name should suggests after our discus-
sion above, the conjunctive normal form of a proposition is the equivalent form that
consists of a “conjunction of disjunctions.” It is easily constructed indirectly using
disjunctive normal forms by observing that if you negate a disjunctive normal form
you get a conjunctive normal form. For example, three applications of De Morgan’s
Laws gives

“l(pA=q)V (mpA=g) < (=pV g A(pVa)
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Thus, if you want to get the conjunctive normal form of a proposition, construct the
disjunctive normal form of its negation and then negate again and apply De Morgan’s

Laws.

ExAMPLE 2.10.1. Find the conjunctive normal form of the proposition (pA—q)Vr.

Solution.

(1) Negate: =[(p A—q) V1] < (=pVq) A —r.

(2) Find the disjunctive normal form of (—=p V q) A —r:

plqg|r|-p|-r|—-pVqg|(-pVgA-r
T|T|T|F|F| T F
T|T|F|F|T| T T
T|F|T|F|F| F F
FIT|T|T|F| T F
T|F|F|F|T| F F
FIT|F|T|T| T T
FIF|T|T|F| T F
FIF|IF|T|T| T T

The disjunctive normal form for (=p V q) A —r is

(PAGA=T)V (mp AgA=T)V (=p A =g A=)

(3) The conjunctive normal form for (p A —¢) V r is then the negation of this last
expression, which, by De Morgan’s Laws, is

(~pVogVr)A(pV-gVr)A(pVqgVr).



