Chapter 13

Useful Functions

13.1. Introduction

In this chapter we consider several useful functions from D or D x D
to D that can be exploited to establish new stochastic-process limits from
given ones. We concentrate on four basic functions introduced in Section
3.5: composition, supremum, reflection and inverse. Another basic function
is addition, but it has already been treated in Sections 12.6, 12.7 and 12.11.
Our treatment of useful functions follows Whitt (1980), but the emphasis
there was on the Ji topology, even though the M; topology was used in
places. In contrast, here the emphasis is on the M; and My topologies,
although we also give results for the J; topology. As in the last chapter,
many proofs are omitted. Most of the missing proofs appear in Chapter 7
of the Internet Supplement.

Here is how this chapter is organized: We start in Section 13.2 by con-
sidering the composition map, which plays an important role in establishing
FCLTs involving a random time change. We consider composition without
centering in Section 13.2; then we consider composition with centering in
Section 13.3.

In Section 13.4 we study the supremum function, both with and without
centering. In Section 13.5 we apply the supremum results to treat the (one-
sided one-dimensional) reflection map, which arises in queueing applications.
We study the two-sided reflection map in Section 14.8.

We start studying the inverse function in Section 13.6. We study the
inverse map without centering in Section 13.6 and with centering in Section
13.7. In Section 13.8 we apply the results for inverse functions to obtain
corresponding results for closely related counting functions.

Application of these convergence-preservation results to stochastic-process
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016 CHAPTER 13. USEFUL FUNCTIONS

limits are described in Sections 7.3 and 7.4. Section 7.3 contains FCLT’s
for counting processes, while Section 7.4 contains FCLT’s for renewal-reward
processes. When there are heavy-tailed distributions, the M; topology plays
an important role.

In Chapter 3 of the Internet Supplement we discuss pointwise conver-
gence and its preservation under mappings. The perservation of pointwise
convergence focuses on relations for individual sample paths, as in the queue-
ing book by El-Taha and Stidham (1999). From Chapter 3 of the Internet
Supplement, we see that a function-space setting is not required for all con-
vergence preservation.

13.2. Composition

This section is devoted to the composition function, mapping (z,y) into
z oy, where
(zoy)(t) ==x(y(t)) forall ¢.

We have in mind a map from D¥ x D into D*, where D*¥ = D([0, c0), R¥).
The situation is much easier when we consider single times and the map is
from D* x R, to R¥. We can still take advantage of the Skorohod topology
on D, though. The following is an elementary, but important, consequence
of the local uniform convergence established in Section 12.4.

Proposition 13.2.1. (local uniform convergence) If
(Tnytn) = (z,t) in  (DF,WM) xR,
where t € Disc(x), then
Tn(ty) = z(t) in RF .

We now consider the composition map as a map from D* x D to D,
where we allow the domains of z and y to be Ry = [0,00) and we restrict
the range of y to be R;. However, that is not enough; we need additional
regularity conditions to have z oy € D.

Example 13.2.1. The need for a condition on y. To see that z oy need
not be in D without additional conditions on y, let © = Ip-1 ) and y =
271 4 Zi’f:l(—2)‘”1[271_2%,2—1_27<n+1>)- Then z,y € D, but z oy has no
limit from the left at t =1/2. =
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Henceforth in this chapter, unless stipulated otherwise, when D = DF,
so that the range of functions is R*, we let D be endowed with the strong
version of the Ji, M; or My topology, and simply write Jy, My or Ms. It
will be evident that most results also hold with the corresponding weaker
product topology.

To ensure that xoy € D, we will assume that y is also nondecreasing. We
begin by defining subsets of D = D* = D([0, c0), R¥) that we will consider.
Let Dy be the subset of all z € D with 2%(0) > 0 for all i. Let D+ and D4+ be
the subsets of functions in Dy that are nondecreasing and strictly increasing
in each coordinate. Let D,, be the subset of functions z in Dy for which
the coordinate functions z* are monotone (either increasing or decreasing)
for each i. Let Cy, Cy, Cyt and O, be the corresponding subsets of C} i.e.,
Co = C N Dy, CT = CﬂDT, CTT = CﬂD¢T, and C,, = C N Dy,.

It is important that all of these subsets are measurable subsets of D
with the Borel o-fields associated with the non-uniform Skorohod topologies,
which all coincide with the Kolmogorov o-field generated by the projection
maps; see Theorems 11.5.2 and 11.5.3.

Lemma 13.2.1. (Measurability of C in D) C is a closed subset of (D, Jy)
and so a measurable (but not closed) subset of D with the My and My topolo-
gies.

Recall that a subset of a topological space is a G subset if it is a count-

ably intersection of open subsets. Clearly, a G5 subset belongs to the Borel
o-field.

Lemma 13.2.2. (measurability of subsets of C) C,, is a closed subset of
C, C; is a closed subset of Cp, and Cyy is a G subset of Cy.

Proof. For the third relation, note that
Cit = Mpeq Naca Nii{z € C: 2'(q) — 2" (p) > 0}
q>p
where () is the set of rationals in R;. =

Lemma 13.2.3. (measurability of subsets of D) With any of the non-uniform
Skorohod topologies, Dy is a closed subset of D, Dy, is a closed subset of
Dq, D4 is a closed subset of Dy, and D4y is a G5 subset of Dy.
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Proof. For the last relation, let {¢;} be a countable dense subset of R,.
For each (j,1), let

D; 1= {z € Dy : 2" is constant over [t; At;,t; V ]} .
Then D; ;; is a closed subset of Dy and
k
Dy =052, 024 Niz1(Dy — Diji)

so that D44 is indeed a G5 subset of Dy. =
We now return to the composition map in (12.2), stating the condition
for z oy € D as a lemma.

Lemma 13.2.4. (criterion for zoy to be in D) For each x € D([0,0), RF)
and y € DT([O’ OO),R+), ToyeE D([Oa OO),Rk).

A basic result, from pp. 145, 232 of Billingsley (1968), is the follow-
ing. The continuity part involves the topology of uniform convergence on
compact intervals.

Theorem 13.2.1. (continuity of composition at continuous limits) The com-
position map from D¥ x D% to D* is measurable and continuous at (z,y) €

k 1
C xCT.

Example 13.2.2. Composition is not continuous everywhere. To see that
the composition on D! x D% is not continuous in any of the Skorohod topolo-
gies, let z, =z = I 911, n > 1, y(t) = 27 landy,(t) =2"'—n"1,0<t < 1.
Then z,, = z and ||y, —y|| = n~! —= 0, but (z,0y,)(t) = 0 and (zoy)(t) = 1,
0<t<1. =

Our goal now is to obtain additional positive continuity results under
extra conditions. We use the following elementary lemma.

Lemma 13.2.5. If y(t) € Disc(z) and y is strictly increasing and continu-
ous at t, then t € Disc(z o y).

Example 13.2.3. The need for y to be strictly increasing. To see the need
for the condition that y be strictly increasing at ¢ in Lemma 13.2.5, let
T = I[1,00) and y(t) = 1, ¢ > 0. Then (z o y)(t) = 1 for all ¢, so that zoy
is continuous. Moreover, if z, =  and y,(t) =1 —n"1, ¢t >0, n > 1, then
(2 o ypn)(t) = 0 for all n and ¢, so that z,, o y, fails to converge to x oy for
any t. =
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The following is the J; result, taken from Whitt (1980). As indicated
before, the proof appears in the Internet Supplement. The first J; com-
position results were established by Silvestrov; see Silvestrov (2000) for an
account. See Serfozo (1973, 1975) and Gut (1988) for stochastic-process
limits involving composition.

Theorem 13.2.2. (J;-continuity of composition) The composition map from
D* x D% to D¥ taking (z,y) into (zoy) is continuous at (z,y) € (C* x D%)U
(D* x CTIT) using the Jy topology throughout.

We have a different result for the M topologies:

Theorem 13.2.3. (M-continuity of composition) If (zn,yn) — (z,y) in
DF x D% and (z,y) € (D* x CTlT) U (Ck x D%), then &, oy, — x oy in DF,
where the topology throughout is My or Ma.

In most applications we have (z,y) € DF x CTIT’ as is illustrated by
the next section. That part of the M conditions is the same as for J;. The
mode of convergence in Theorem 13.2.3 for 4, — y does not matter, because
on D%, convergence in the M; and M, topologies coincides with pointwise
convergence on a dense subset of [0, c0), including 0; see Corollary 12.5.1.

It is easy to see that composition cannot in general yield convergence in
a stronger topology, because x oy = x and x, oy, = T, n > 1, when y, =
y = e, where e(t) = t, t > 0. Unlike for the J; topology, the composition
map is in general not continuous at (z,y) € C x D% in the M topologies.

Example 13.2.4. Why the J1 and M conditions differ. To see that com-
position is not continuous at (z,y) € C x D% in the M topologies, let y, y,,
x = xy be elements of D([0,0),R) defined by

y(0) = y(.5=) =0,y(.5) =.25,y(1) = 1,y(t) = t,t > 1,
Yn(0) = yn(5—n"") =0,yn(.5) = .25,yn(1) =1 yn( ) =t,t>1,
z(0) = z(.25) =z(t) =0 for ¢>0.25,z(.125) =

with the functions defined by linear interpolation elsewhere. Note that y
jumps from 0 to 0.25 at 0.5, while y, increases from 0 to 0.25 linearly
over the interval [271 — n~!,27!] for each n. Hence y, — y in the M
topologies but not in the J topologies. Note that z(y(t)) = 0, ¢ > 0, while
Tn(yn(27! — (2n)71)) = 2,(.125) = 1. Hence 7, 0y, /4 T oy as n — oo in
any of the Skorohod topologies. =
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We actually prove a more general continuity result, which covers Theo-
rem 13.2.3 as a special case.

Theorem 13.2.4. (more general M-continuity of composition) Suppose that
(Tn,yn) — (z,y) in DF x D%. If (i) y is continuous and strictly increasing
at t whenever y(t) € Disc(z) and (i) x is monotone on [y(t—),y(t)] and
y(t—),y(t) & Disc(z) whenever t € Disc(y), then x, oy, — x oy in D,
where the topology throughout is My or M.

Theorem 13.2.3 follows easily from Theorem 13.2.4: First, on D¥ x CTI, Y
is continuous, so only condition (i) need be considered; it is satisfied because
y is continuous and strictly increasing everywhere. Second on CF, x D%, T is
continuous so only condition (ii) need be considered; it is satisfied because z
is monotone everywhere. Hence it suffices to prove Theorem 13.2.4, which is
done in the Internet Supplement. The general idea in our proof of Theorem
13.2.4 is to work with the characterization of convergence using oscillation
functions evaluated at single arguments, exploiting Theorems 12.5.1 (v),
12.5.2 (iv), 12.11.1 (v) and 12.11.2 (iv).

13.3. Composition with Centering

We now consider the composition map with centering. To obtain results,
we apply both composition and addition. The results yield sufficient condi-
tions for random sums and other processes transformed by a random time
change to satisfy FCLTs, as we show in Section 7.4.

We start by establishing convergence properties of composition plus ad-
dition. We state results for the J; topology as well as the M; and M,
topologies. As before, let e be the identity map on [0, c0).

Theorem 13.3.1. (convergence preservation for composition plus addition)
Let z,z and ©,,, n > 1 be elements of D¥; lety, y, and vy, n > 1 be elements
of D}; and let ¢, € R* forn > 1. If

(Zr — € Yn, Cn(Un — vn)) = (z,y,2) in D¥ x D% x DF | (3.1)
Y € CTIT and
Disc(z oy) N Disc(z) = ¢, (3.2)
then
Ty OYp — CoUp = oy +2z in DF (3.3)

where the topology throughout is Ji, My or Ms. If the topology is My or
My, then instead of (3.2) it suffices for ' oy and 2' to have no common
discontinuities with jumps of the opposite sign for 1 <i <k.
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Proof. Note that

Tn O Yn — CpUp = (mn - Cne) oYn + Cn(yn - 'Un) .

For the M topologies, apply Theorem 13.2.3 for composition, using the
condition y € CTlT’ and Corollaries 12.7.1 and 12.11.5 for addition with
the M; and M, topologies, respectively. The J; result is proved similarly,
using Theorem 13.2.2 instead of Theorem 13.2.3. For addition with Ji, use
Remark 12.6.2. Use Theorems 12.7.3 and 12.11.6 for the weaker condition
for addition to be continuous with the M topologies. =

The standard application of Theorem 13.3.1 has ¢!, — oo as n — oo for
each ¢ and v, = bye, where b, — b. We describe that case below.

Corollary 13.3.1. (convergence preservation for composition with linear
centering) Let x, z and x,, n > 1, be elements of D¥; let y,, n > 1, be
elements of D%; let ¢, € R and b, € R satisfy |c},| — oo for each i and
b, > basn— oo. If

(2n — cpe, cn(yn — bne)) = (z,2) in D* x DF (3.4)

and
Disc(z o be) N Disc(z) = ¢ , (3.5)

then
(Zp © Yp — Cnbpe) > zoy+2 in D (3.6)

where the topology throughout is J1, My or Ms. If the topology is My or
My, then instead of condition (3.5) it suffices for z* o be and z* to have no
common discontinuities with jumps of opposite sign, 1 <i<k. =

Proof. Since |¢}| — oo as n — oo for each i, the limit in (3.4) implies that
|Yn — bpel| = 0 as n — oco. Hence ||y, — be|| = 0 as n — oo and

(Zn — €ne, Yn, cn(yn — be)) = (z,y,2) in DF x D% x D¥

where y = be. Hence we can apply Theorem 13.3.1 to obtain the desired
conclusion. =

We now consider an application of the convergence-preservation results
above to obtain a FCLT involving a random time change. Specifically, we
consider an application of Corollary 13.3.1. Let (X,(t),Yn(¢)) : t > 0} be
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random elements of D¥ x D% for each n > 1, with one of the topologies under
consideration. Let X,,, Y,, and Z,, be normalized processes constructed by

Xn(t) = 6, [Xn(nt) — pnnt], t>0
Y.(t) = 6, [Yu(nt) — Aynt], >0
Zn(t) = 6 [(Xn(Yn(nt)) — Apunnt], t>0. (3.7)

Corollary 13.3.2. (stochastic consequence with linear centering) Suppose
that (X,,Yy) is a random element of D¥ x D% for each n. If

(X,,Y,) = (U, V) in DFx D! (3.8)

with topology Jv, M1 or Ms, for theiscaled processes Xy, Yy, in (3.7) with
6n — 00, nd, L — 00, py — p with u* # 0 for all i and Ay, — X, and if

P(Disc(UoXe)NDisc(V)=¢)=1, (3.9)

then
Z, = UoXe+uV in DF (3.10)

for Z,, in (3.7) and the same topology. If the topology is My or Ms, then
instead of condition (3.9) it suffices for U'o\e and V' to almost surely have
no common discontinuities with jumps of opposite sign, 1 <1i < k.

Proof. First, since y, — p as n — oo in R¥, from condition (3.8) we
obtain
(X, pnYn) = (U,uV) in D* x D* (3.11)

from the continuous mapping theorem. Now apply Corollary 13.3.1 with
_ -1 _
Cn = 'I'L(Sn ,Um bn - Ana

Tn(t) = 6, Xp(nt) and  yu(t) = n™ 'Y, (nt) .

By the Skorohod (1956) representation theorem, there exist versions of the
processes such that almost surely

(n — cne,cn(yn — bpe)) = (z,2) as n — oo
where x = U and z = pV. Corollary 13.3.1 then yields

(Tp oY — Cpbpe) > zoy+2z as n— oo (3.12)
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almost surely in D*, where y = Ae, but the limit process in (3.12) is dis-
tributed the same as the limit process in (3.10). The almost sure convergence
in (3.12) implies the convergence in distribution in (3.10). =

A standard application of Corollary 13.3.2 is to random sums. Then, for
each n > 1, {X,(nt) : t > 0} corresponds to a sequence of partial sums; i.e.,

[nt)

Xn(nt) =Y Zn;, t>0,
j=1

where |z] is the greatest integer less than or equal to z and {Z,, j : j > 1} is
a sequence of random vectors in R* for each n. The composition then yields
a random sum, i.e.,

Ya(nt)
(@n 0 yn) () = 65" Xn (Ya(nt)) = 6.1 Y Zny
j=1

so that the limit (3.10) becomes for a random sum. We consider the special
case in which the summands Z,, ; come from a single IID sequence and the
random index Y}, () is a renewal process in Section 7.4.

Another application of Corollary 13.3.2 is to establish stochastic-process
limits that imply asymptotic validity of sequential stopping rules in stochas-
tic simulations. The asymptotic validity occurs in the limit as the desired
volume of the target confidence set decreases. See Chapter 4 of the Internet
Supplement.

We now establish a variant of Theorem 13.3.1 with nonlinear centering
terms. In the proof we apply continuity of multiplication, which we now
establish. By multiplication of z and y in D, we mean (zy)(t) = z(t)y(t)
for all . For the M topologies, the condition on the behavior at common
discontinuities is more stringent for multiplication than for addition because
of the way signs multiply.

Example 13.3.1. The need for stronger conditions. To see the need for
stronger conditions with multiplication, let z, = —1+42Ijp-1_,-1 ) and let
Yn =Y = —1+2Ip-1 ) for n > 2. Then z,, = y in (D, J1) as n — oo, but
ZnYn =1 — 2I[p-1_p—19-1), which does not converge to y? =1 in any of the
Skorohod topologies. =

Theorem 13.3.2. (continuity of multiplication) Suppose that x, — = and
yn — y in D([0,00), R) with one of the Skorohod topologies J1, My or My. If
the topology is J1, then assume that Disc(z)NDisc(y) = ¢ . If the topology is
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M or My, then assume for each t € Disc(x) N Disc(y) that z(t), z(t—), y(t)
and y(t—) are all nonnegative and [z(t) — z(t—)][y(t) — y(t—)] > 0. Then
ZTnYn — zy in D([0, 00), R) with the same topology, where (zy)(t) = z(t)y(t)
fort>0.

Proof. For Ji, we can conclude that (z,,y,) — (z,y) in D? by the J;
analog of Theorem 12.6.1; see Remark 12.6.2. It is then easy to show that
ZTnYn — zy. Use the fact that z,, — = implies that sup,{||z,|} < co. For
M;, apply the characterization in Theorem 12.5.1 (v). For Ms, apply the
characterization in Theorem 12.11.7. =

Theorem 13.3.3. (convergence preservation for composition with nonlin-
ear centering) Let x, z, € DF, y,y, € D%, y € Cip, = have a continuous
derivative © and ¢, — oo. If

en(Tp — 2,y —y) = (u,v) in DF x D (3.13)
with one of the topologies J1, M1 or My, where
Disc(u o y) N Disc(v) = ¢, (3.14)

then
cn(Zpoyn, —zoy) s uoy+ (toy)y in DF (3.15)

with the same topology, where

[(& 0 y)o](t) = [ (y()v(2), ..., 2" (y(1)w(D)]. (3-16)

If the topology is My or Ms, then instead of condition (3.14) it suffices to
have z(t) > (<)0 for all t and the functions uoy and v to have no common
discontinuities with jumps of opposite (common) sign.

Proof. Note that

cn(Tnoyn—zoy) =cnl@n —T)oyntcp(zoyn —z0Y),
Given condition (3.13), we obtain

[en(@n — ), ca(yn — 9)ya] = [u,0,9] in D¥ x D' x D!
and then, applying composition, multiplication and addition,

[Cn(xnoyn_xoyn) +(ioy)cn(yn_y)] —>uoy+(a’coy)v
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by virtue of Theorems 13.2.2, 13.2.3 and 13.3.2 and condition (3.14) (or the
alternative M-topology condition). Note that

||Cn(37n OYn — T O y) - Cn(xn OYn —Z O yn) - Cn(i.v 0 y)(yn - y)”
<llen(zoyn —z0y) —cnl(Zoy)(yn —y)| - (3.17)

However, the term on the right in (3.17) is asymptotically negligible because

Yn (t)
%uo%—xoww:w¢/ i(s)ds
y(t)

and

sup —0asn— oo,

0<s<t

yn(s)
c¢/“ i(u)du — &(y(s))en(yn(s) — y(s))

because z is uniformly continuous over bounded intervals and ||y, —yl|: — 0
as a consequence of d(c,(y, —y),v) > 0. =

13.4. Supremum

In this section we consider the supremum function, mapping D = D([0, 7], R)
into itself according to

z(t) = sup z(s), 0<t<T. (4.1)
0<s<t
We are primarily interested in the supremum function because it is closely
related to the reflection map, discussed in the next section. Another mo-
tivation is extreme-value theory; see Resnick (1987) and Embrechts et al.
(1997).

We have already observed that the map from D to R taking z into z(t)
is continuous in the My topology at all ¢ € Disc(z)¢; that is a consequence
of Theorem 12.11.7. Now we consider the map from D to D taking z into
the function z! in (4.1).

The supremum function can be thought of as the nondecreasing majo-
rant: It is easy to see that

2’ =inf{y € D : y > z, y nondecreasing} ,

where y > z if y(t) > z(t) for all t. If z € Dy, then z' € Ds.
It is easy to see that the supremum function is Lipschitz in the uniform
norm:
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Lemma 13.4.1. (Lipschitz property of the supremum function with the
uniform norm) For any z1,z2 € D([0,T],R),

o] = 23]l < o1 — 2] -
As consequences of Lemma 13.4.1, we obtain corresponding Lipschitz
properties with the J;, M; and M, metrics dj,, d; and m,, here denoted by
dyj,, dy, and dpr,. For the M topology, we use the following result.

Lemma 13.4.2. (inheritance of parametric representations) For any z €
D, if (u,r) € I(z) (Is2(z)), then (ul,r) € I(zT) (I, 2()).

Theorem 13.4.1. (Lipschitz property of the supremum function) For any
T1,T2 € D([Oa T], R);

dr (z1,22) ,

ISH
oy
—~

8

- =

8
N
N

A\

dur, (z1,22)

QL
=
—~~

8
-

8
N
~
IN

dar, (2], 7)) < dagy(@1,22) -

Example 13.4.1. Convergence preservation fails with pointwise convergence.
It is significant that analogs of Lemma 13.4.1 and Theorem 13.4.1 do not
hold for pointwise convergence: Let z,, = Ij-19,-1. Then z,(t) — 0 as

n — oo for all £, while z},(t) = 1 asn — oo forallt > 0. =

On the other hand, there is a pointwise-convergence analog of Theorem
13.4.1 for a single function; see Section 3.3 of the Internet Supplement.

Moreover, the conclusion in Theorem 13.4.1 can be recast in terms of
pointwise convergence: Since z' is nondecreasing, convergence zh — 2t in
the M topologies is equivalent to pointwise convergence at continuity points
of z', because on Dy the My and Mj topologies coincide with pointwise
convergence on a dense subset of R, including 0 and T'; see Corollary 12.5.1.
Thus the M topologies have not contributed much so far. We obtain more
useful convergence-preservation results for the supremum map with the M
topologies when we combine supremum with centering. As before, let e be
the identity map, i.e., e(t) = ¢, 0 < t < T. The proof is in the Internet
Supplement.

Theorem 13.4.2. (convergence preservation with the supremum function
and centering) Suppose that c,(z, —e) =y as n — oo in D([0,T],R) with
one of the topologies J1, My or My, where ¢, — oo.
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(a) If the topology is My or Ms, then cn(erL—e) — y in the same topology.
(b) If the topology is Ji, then cn(a:TT1 —e) = y if and only if y has no
negative jumps.

Example 13.4.2. Pointwise convergence is not enough. To see that a
pointwise convergent analog of Theorem 13.4.2 does not hold, let z, =
c;lf[n—1’2n—1] + e where ¢, — 0o. Then ¢, (Tn — €)(t) = -1 9,-11(t) — 0 as
n — oo for all ¢ > 0, while z),(t) = ¢,* +t and ¢, (z), — €)(t) = 1 for all n
sufficiently large, for ¢ > 0. =

A common case covered by Theorem 13.4.2 isy € C. If y € C, then all
modes of convergence in Theorem 13.4.2 reduce to uniform convergence and
we have ¢, (z}, — ) — y whenever ¢, (z, —€) — y. Since ¢, — 0o, under the
conditions of Theorem 13.4.2, ||z, —e|| — 0 as n — oo. By Theorem 13.4.1,
|z} — €| = 0 as well.

We use the following lemma in the proof of both Theorem 13.4.2 above
and Theorem 13.4.3 below.

Lemma 13.4.3. If z € D([0,T],R) and = has no negative jumps, then for
any € > 0 there is a 6 > 0 such that

v (z,0)= sup {z(t')—=z(t)} <e. (4.2)
oV (t—8)<t' <t
0<t<T

We can easily extend Theorem 13.4.2 to cover a case of nonlinear cen-

tering. Recall that A = A([0,77]) is the set of increasing homeomorphisms
of [0,7]. We use elements of A as the centering term.

Corollary 13.4.1. (convergence preservation with the supremum and non-
linear centering) Suppose that cp(zn — An) = y as in D([0,T],R) with one
of the topologies J1, My or My, where A, — X with A\, A, € A([0,T]) and
Cp — 00.

(a) If the topology is My or Mo, then cn(ac,T1 — A\p) — y in the same
topology.

(b) If the topology is Ji, then cn(mil — An) =y if and only if y has no
negative jumps.

Proof. Given c,(z, — A\y) — v, we have cp(zp 0 At —e) — yo A~! by
applying Theorems 13.2.2 and 13.2.3. Then Theorem 13.4.2 implies that
cn(zh o A1 —e) = yo Al with the limit holding J; if and only if y o
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A~! has no negative jumps. Clearly, y o A~! has no negative jumps if and
only if y does. Finally, apply Theorems 13.2.2 and 13.2.3 again to get
cn (xIL oAl oA, — Ay) = yo A~ o\, which implies the conclusion because
Mlody=Xlod=e =

We now obtain joint convergence in the stronger topologies on D([0, T], R?)

under the condition that the limit function have no negative jumps.

Theorem 13.4.3. (criterion for joint convergence) Suppose that c,(z, —
e) >y asn — oo in D([0,T],R) with one of the Ji, My or My topologies,
where ¢, — 00. If, in addition, y has no negative jumps, then

cn(Tn —e,z) —e) = (y,y) as n— oo (4.3)
in D([0,T],R?) with the strong version of the same topology, i.e., with SJi,
SMy or SM>.

Since addition is continuous on D? with the strong topologies, we obtain
the following corollary.

Corollary 13.4.2. Under the conditions of Theorem 13.4.3,
len(z) —z,)| =0 as n— co.

Example 13.4.3. The problem with negative jumps. To see that Corollary
13.4.2 does not hold and the simple direct argument with parametric repre-
sentations in the proof of Theorem 13.4.3 does not work for Theorem 13.4.2
when there are negative jumps, let y = —Ij1/5,1), cn = n and cp(zn —€) =¥,
i.e., z, = e + n~ly. First,

cn(z) —2,)(1/2) =1 forall n>1.

We now show what goes wrong with the parametric representations. let

u, = u and r, = r with
u(0) =u(1/3) =0, wu(2/3) =u(l) =-1 (4.4)
and
r(0) =0, r(1/3) = 1/2 = r(2/3), r(1) = 1,

with u and r defined by linear interpolation elsewhere. Then (ul,r) €
I(cy(zh — €)) for u!, = (u + nr)" —nr, so that

un (0) = up, (1/3) = up((2/3) = 0, up((2/3) +n™") =up (1) = ~1  (4.5)
with u!, defined by linear interpolation elsewhere. From (4.4) and (4.5), we

see that |ul,(2/3) —u(2/3)| = 1 for all n. Thus, to get the positive result,
different parametric representations are needed for ¢, (a:jl —e). =
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We next give an elementary result about the supremum function when
the centering is in the other direction, so that z,, must be rapidly decreasing.
Convergence z},(t) — z(0) as n — oo is to be expected, but that conclusion
can not be drawn if the My convergence in the condition is replaced by

pointwise convergence.

Theorem 13.4.4. (convergence preservation with the supremum function
when the centering is in the other direction) Suppose that ¢, — oo and
ZTn + cpe =y in D([0,T],R, My). Then

||:v£—z(y)|| -0 as n— oo,
where z(y)(t) = y(0), 0 <t < T.

Example 13.4.4. M> convergence cannot be replaced by pointwise conver-
gence. To see that the Ms convergence cannot be replaced by pointwise con-
vergence in the condition in Theorem 13.4.4, even to get pointwise conver-
gence in the conclusion, let z(t) = 0,0 <t < 1, and z,,(t) = Ip-1 9,-1)(2) -1,
0<t<1,n>1. Then z, + e — z pointwise (and not M), but z}(t) — 1
as n — oo for all £ > 0.

13.5. One-Dimensional Reflection

Closely related to the supremum function is the one-dimensional (one-
sided) reflection mapping, which we have used to construct queueing pro-
cesses. Indeed, the reflection mapping can be defined in terms of the supre-
mum mapping as

p(z)=z+ (—zVv0);

d(z)(t) = z(t) — (inf{z(s) : 0 < s <t} A0), 0<t<T, (5.1)

as in (2.5) in Section 5.2.

The Lipschitz property for the supremum function with the uniform
topology in Lemma 13.4.1 immediately implies a corresponding result for
the reflection map ¢ in (5.1).

Lemma 13.5.1. (Lipschitz property with the uniform metric) For any x1, 2 €
D([0,T],R),
[¢(x1) — d(x2)|| < 2[|w1 — z2]| -
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Proof. By (5.1),

lp(21) = pla)l| <z — ol + [|(=21 VO)T = (=22 V O)T|
< ler — @2l + (=21 V0) = (=22 VO)|| < 2[|z1 — 2. =

Example 13.5.1. The bound is tight. To see that the bound in Lemma
13.5.1 is tight, let z1(2) = 0, 0 < ¢ < 1, and x3 = —Ij1/3,1/9) + I[1/2,1] in
D([0,1],R). Then ¢(z1) = z1, while ¢(z2) = 2I}; 31}, so that [|z1 — zof = 1
and [|¢(z1) — d(z2) = 2.

Unfortunately, however, the Lipschitz property for the reflection map ¢
with the uniform topology does not even imply continuity in all the Skorohod
topologies. In particular, ¢ is not continuous in the My topology.

Example 13.5.2. Continuity fails in M. To see that the reflection map ¢
in (5.1) is not continuous in the M> topology, let z = —I}; 5 and

2,(0) =2,(1—-3n" ) =2(1-n"1) =0

and
(1 —2n"Y) = 2,(1) = ,(2) = 1

with z,, defined by linear interpolation elsewhere. Then z,, — z in D(][0, 2], R),
but ¢(z)(t) =0, 0 <t <2, and ¢(z,)(1 —n~') =1, so that ¢(z,) A o(z).
This example fails to be a counterexample for the M; topology because then
Tp A Tasn—>o00. =

We do obtain positive results with the J; and M; topologies. As before,
let dj, and dps, be the metrics in equations (3.2) and (3.4) in Section 3.3..
For the J; result, we use the following elementary lemma.

Lemma 13.5.2. For any x € D and X € A,
B(z) 0 A = d(z 0 A) .

For the M result, we use the following lemma. A fundamental difficulty
for treating the more general multidimensional reflection map is that Lemma
13.5.3 below does not extend to the multidimensional reflection map; see
Chapter 14.

Lemma 13.5.3. (preservation of parametric representations under reflec-
tions) For any x € D, if (u,r) € II(z), then (¢p(u),r) € II(¢(z)).
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Proof. First, (¢(u),r) is continuous since (u,r) is, by Lemma 13.5.1. It
suffices to show that (4(u)(s),r(s)) € T4y for all s and that (¢(u),r) is
nondecreasing in the order on I'y(,y. If ¢ € Disc(z¢), then by (5.1) ¢(u)(s) =
¢(x)(t) for each s such that r(s) = t. It remains to consider ¢ € Disc(z).
There exists an interval [a,b] C [0,1] such that r(s) = t for s € [a,b],
u(a) = z(t—) and u(b) = z(t). Moreover, by (5.1), ¢(u)(a) = ¢(z)(t—) and
d(u)(b) = ¢(z)(t), with ¢(u)(s) moving continuously and monotonically
from ¢(u)(a) to ¢(u)(b) as s increases over [a,b]. Hence (p(u)(s),r(s)) €
L4z for all s € [0, 1] and (¢(u),r) is nondecreasing in the order on T'y(,y. =

Theorem 13.5.1. (Lipschitz property with the J; and M; metrics) For
any z1,x2 € D([0,T],R),

d.h (¢($1)’ ¢(x2)) < 2dJ1 (xla w?)

and
Ay (P(21), $(32)) < 2dr, (21, 22))
where ¢ is the reflection map in (5.1).

Proof. First, for the J; metric, by Lemmas 13.5.2 and 13.5.1,
dp((z1), dlz2)) = inf{[[g(z1) oA —(z2)l| V [IA —ell}
= jof{llg(z10A) — dz2) [ VIIA —ell}
< jof{2flz1 0 A= 2ol VIIA —ell} < 2dy, (21, 22) -

Turning to M;, we use Lemma 13.5.3 to conclude that (¢(u),r) € II(¢(x))
whenever (u,r) € II(z). Then, by Lemma 13.5.1,

duy (9(21), d(22)) = inf  {Jlur —uo|| V[lr1 —rofl}

1
(ujrr; ) EN(P(x4))
i=1,2

< inf — V -
S i, (19w) = 8V Iy = ral)
< inf {2 =l V= )} < 2da (01,22)
Vg1 "
Remark 13.5.1. The Lipschitz constant. Example 13.5.1 shows that the
bounds in Theorem 13.5.1 are tight; i.e., the Lipschitz constant is 2. =

Theorem 13.5.1 covers the standard heavy-traffic regime for one single-
server queue when p = 1, where p is the traffic intensity. The next result
covers the other cases: p < 1 and p > 1. We use the following elementary
lemma in the easy case of the uniform metric.
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Lemma 13.5.4. Let d be the metric for the U, J1, M1 or My topology. Let
zVa:D — D be defined by

(zVa)t)=z(t)Va, 0<t<T. (5.2)
Then, for any x1,z9 € D,
d(z1 V a(z1), 22 Va(ze)) < d(z1,22) .

Theorem 13.5.2. (convergence preservation with centering) Suppose that
ZTn —cpe = y in D([0,T],R) with the U, J1, M1 or My topology.

(a) If ¢, = +00, then

d(xyn) —cpne—=>y+v(y) as n—oo in D
with the same topology, where
1)) = (=y(0)) VO = —(y(0) A0), 0<¢<T.
(b) If ¢;, = —o0, y(0) <0 and y has no positive jumps, then
|p(zn) —Oe|| =0 as m— o0 in D,

where e(t) =1, 0 <t <T.

Example 13.5.3. The necessity of the condition on y(0). To see the need
for the condition y(0) < 0 in Theorem 13.5.2 (b), let y(¢) = 1,0 <t < T,
cn = —n and z,(t) = (che + y)(t) = 1 — nt for all t. Then z,, — cpe =y for
all n, but ¢(z,)(0) = 1 and ¢(z,)(t) — 0 for all ¢ > 0.

13.6. Inverse

We now consider the inverse map, which arises in the study of renewal
processes, first passage times and extremal processes; see Billingsley (1968),
Gut (1988) and Resnick (1987).

It is convenient to consider the inverse map on the subset D, of z in
D = D([0,00),R) that are unbounded above and satisfy z(0) > 0. For
z € Dy, let the inverse of x be

o (t) =inf{s > 0:z(s) >t}, t>0. (6.1)

As before, let Dy be the subset of z in D with z(0) > 0, and let D4 and
Dy be the subsets of nondecreasing and strictly increasing functions in Dy.
Let D, + = D, N D+ and Dy 4+ = Dy, N Dy Clearly,

Dy €Dy €Dy, C Dy .
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13.6.1. The Standard Topologies

Recall that on Dy the M; and M; topologies reduce to pointwise con-
vergence on a dense subset including 0. The following result supplements
Lemmas 13.2.1-13.2.3.

Lemma 13.6.1. (measurability of D) Let D have one of the topologies Jy,
My or My. The subset D, is a G§ subset of Dy.

Proof. Note that B
DU = n%ozl(DO - Dn) y

where D,, is the subset of functions in Dy bounded above by n. In the non-
uniform Skorohod topologies, D,, is a closed subset of Dy, so that D, is a
G subset of Dy. =

We begin our study of the inverse function by stating some basic re-
sults. Our first result shows that the inverse map is closely related to the
supremuin.

Lemma 13.6.2. (duality) For any © € Dy, ! € Dy+ and (z71) 1 = z".
Corollary 13.6.1. For any z € Dy+, (z7!)"! = 1.

Remark 13.6.1. The left-continuous inverse. As part of Lemma 13.6.2,

z~1 is right-continuous. In some circumstances it is convenient to work

instead with the left-continuous inverse
z@t)=inf{s >0:xz(s) >t}, t>0. (6.2)

For z € Dy, z(t) = z7'(t—), t > 0, with z7!(0—) = 0. Note that z*
need not be right-continuous at 0. Indeed, z(0) > 0 = £ (0) if and only
if z71(0) > 0. If z71(0) = 0, then the completed graphs of z~! in (6.1) and
z% in (6.2) are identical, which implies that many M; and M, results for
z~! apply directly to ¢ as well under that condition. =

The left-continuous inverse has an appealing inverse property not shared
by the right-continuous inverse:

Lemma 13.6.3. (inverse relation) For any z € Dy 4 and t1,t3 > 0,

5 (t1) <ty if and only if x(to) >ty . (6.3)
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Lemma 13.6.4. For any x € D, 4,

0 < (goz H)—t < xz(z () —az(@ '(t)-), (6.4)
0 < (@toz)(t)—t < o H(a(t) —2  (2(t)-)) (6.5)
0 < (zoz)t)—t < z(z(t)) —z(z=()—), (6.6)
0 < t—(z5o0x)t) < z  z(t) -z (x(t), (6.7)
where £(0—) is interpreted as 0.
Let Ji(z) be the maximum jump of z over [0,], i.e.
Ji(z) = oiggt{w(t) —z(t—)} . (6.8)
where again z(0—) = 0.
Corollary 13.6.2. For any v € Dy 3 and t > 0,
lwoz ™ — el < Jpmry(a) (6.9)
and
||$_1 °or— e”t < Jz(t)(x_l) ) (610)

for Jy(x) in (6.8).

Lemma 13.6.5. Suppose that x € Dy y. Then x € Dy if and only if
z7l e CU,T-

We now consider the inverse together with composition applied to el-
ements of A = A([0,00)), i.e., to homeomorphisms of R, = [0,00). For
each A € A, A(0) = 0 and there is an inverse A™! with A\, A\™! € C4 and
doxt=Xxlor=e

Lemma 13.6.6. If x € Dy 4 and A1, Ay € A([0,00)), then

(Mozod)t=xtoz lont.

Proof. Note that
(AMozod) ™ (t) = inf{s>0:(A\jozol)(s) >t}
= inf{s > 0: (zoX)(s) > A" (t)}
= inf{A\, 1 (s) > 0:z(s) > \7L(t)}
= (A;l ox o A_l)(t) . =
We now turn to continuity properties of the inverse map. First we note

that the inverse map from (D,,J1) to (Dy,J1) or even from (D,,U) to
(Dy, J1) is in general not continuous.
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Example 13.6.1. The inverse is not continuous when the range has the Jy
topology. To see that the inverse map from (D, 4,U) to (Dyz,J1) is not
continuous, let z = 21}y 9) + €l]9 ) and

Ty = (2 — nil)I[O,l) + (2 + n*l)[[172+n71) + 6[[2_|_n—1,00) .
Then ||z, —z||=n"! = 0and z;! — z~! (My), but z;' A 27! (J1). =

Even for the M; topology, there are complications at the left endpoint
of the domain [0, 00).

Example 13.6.2. Complications at the left endpoint of the domain. To see
that the inverse map from (D, 4,U) to (D, 4, M) is in general not continu-
ous, let z(t) = 0,0 <t < 1,and z(t) = t,t > 1; Let z, = t/n, 0 <t < 1 and
zn(t) =t,t > 1. Then ||z, —z|lc =n "' = 0, but 2,1 (0) =0 A 1 = z71(0),
sothat z,! Az~ ! (My). =

To avoid the problem in Example 13.6.2, we can require that z71(0) = 0.
To develop an equivalent condition, let Dg,e be the subset of functions z in
D, such that z(t) =0 for 0 <t <e.
Then let
Dy =021 (Dy )¢ - (6.11)

n=1

Lemma 13.6.7. (measurability of D) With the Ji, M, or My topology,
Dy in (6.11) is a G5 subset of D,, and

={z €D, :27(0) =0} . (6.12)

Let D* = D+ND;. A key property of D} +» Dot shared by D, + because
of the comphcatlon at the origin, is that parametric representatlon (u,r) for
x directly serve as parametric representations for ! when we switch the
roles of the components u and r.

Lemma 13.6.8. (switching the roles of u and r) For xz € DZ’T, the graph
Ty serves as the graph of T'y—1 with the azes switched. Thus, (u,r) € II(x)
if and only if (r,u) € I(z7'), where II(x) is the set of My parametric
representations.

Corollary 13.6.3. (continuity on (D}, M;)) The inverse map from (D}, M)
to (Dy, M) is continuous.
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Proof. First apply Theorem 13.4.1 for the supremum. Then apply Lemma
13.6.8. =

We now generalize Corollary 13.6.3 by only requiring that the limit be
in D}. As before, the missing proof is in the Internet Supplement.

Theorem 13.6.1. (measurability and continuity at limits in D}) The in-
verse map in (6.1) from (Dy, My) to (D, 4, M1) is measurable and continuous
at z € D, i.e., for which z=*(0) = 0.

Corollary 13.6.4. . (continuity at strictly increasing functions) The in-
verse map from (Dy, Ma) to (Dy4,U) is continuous at © € Dy 44.

Proof. First, Dy 44+ C D;,T’ so that we can apply Theorem 13.6.1 to get
z;' = 27" in (Dy4,M;). However, by Lemma 13.6.4, 27! € C when
z € Dys+. Hence the M; convergence z,; L' — 71 actually holds in the

stronger topology of uniform convergence over compact subsets. =

13.6.2. The M| Topology

For cases in which the condition z7!(0) = 0 in Theorem 13.6.1 is not
satisfied, we can modify the M7 and M topologies to obtain convergence,
following Puhalskii and Whitt (1997). With these new weaker topologies,
which we call M| and M}, we do not require that z,,(0) — z(0) when z,, — z.
We construct the new topologies by extending the graph of each function z
by appending the segment [0,2(0)] = {a0 + (1 — @)z(0) : 0 < o < 1}. Let
the new graph of x € D be

I = {(z,t) € R¥ x [0,00) : z = az(t) + (1 — @)z(t—)
for 0 <a<1andt>0}, (6.13)

where z£(0—) = 0. Let II'(z) and II}(z) be the sets of all M; and My
parametric representations of I, defined just as before. We say that z, — =
in (D, M) if there exist parametric representations (un,r,) € II'(z,) and
(u,r) € I'(z), where II'(z) is the set of M| parametric representations of z,
such that

lun, —ulle V]rn—7r|t >0 as n— oo foreach ¢>0. (6.14)

We have a corresponding definition of convergence in (D, M}) using the
parametric representations in IT5(z) instead of II'(z). With the M/ topolo-
gies, we obtain a cleaner statement than Lemma 13.6.8.
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Lemma 13.6.9. (graphs of the inverse with the MZ' topology) For z € D, 4,
the graph T, serves as the graph I"$ _1 with the axes switched, so that (u,r) €
II'(z) (Iy(x)) if and only if (r,u) € I'(z™") (Iy(z~")).

Thus we get an alternative to Theorem 13.6.1.

Theorem 13.6.2. (continuity in the M, topology) The inverse map in
(6.1) from (Dy, My) to (Dy,4, M7) is continuous.

Proof. By the M) analog of Theorem 13.4.1, if z,, — z in (D,, M}),
then z, — z' in (Dut, M3). Since the M; topology coincides with the
M topology on Dy, we get z) — 2t in (Dy,r, M7). By Lemma 13.6.9, we
get (zh)! = (M) ! in (Dy+,M7). That gives the desired result because
(N l=zlforallz€ D, =

An alternative approach to the difficulty at the origin besides M] topol-
ogy on Dy ([0,00),R) is the ordinary M; topology on D,((0,00),R). The
difficulty at the origin goes away if we ignore it entirely, which we can do by
making the function domain (0, 0c0) for the image of the inverse functions.

In particular, Theorem 13.6.2 implies the following corollary.

Corollary 13.6.5. (continuity when the origin is removed from the do-
main) The inverse map in (6.1) from D, ([0, 00), My) to D, +((0,00), M) is
continuous.

Proof. Since the M} topology is weaker than My, if z,, — z in D, ([0, 00), M3),
then z, — =z in Dy([0,00), M}). Apply Theorem 13.6.2 to get z,! —
z7! in Dy4([0,00), M]). That implies z,;! — z7! for the restrictions
in Dy([t1,t2], My) for all t1,t; € Disc(z~')¢, which in turn implies that
;' = 27 in Dy +((0,00), M), =

However, in general we cannot work with the inverse on D, ((0, c0),R).

Example 13.6.3. Difficulty with the domain (0,00). To see the prob-
lem with having the function domain be (0,00), let x = e and z,(0) =
Tn(2n7Y) =0, zp(n 1) = 1, z,(t) =t —2n" 1, t > 2n7L, with z,, defined
by linear interpolation elsewhere. Then z, — z in D((0,00),R,U), but
z,' / x 1 =e, because x, (t) - lasn — oo foreach t with0 <t < 1. =

We can obtain positive results if all the functions are required to be
monotone. The following result is elementary.
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Theorem 13.6.3. (equivalent characterizations of convergence for mono-
tone functions) For z,, n > 1, z € D, +([0,00),R), the following are equiv-

alent:
Tp =z in Dy 4((0,00),R, M) ;

Tp, =T in Dy4([0,00), R, M7) ;

Zn(t) = x(t) for all t in a dense subset of (0,00) ;
o' = z7b in D((0,00),R, M) ;
' >z ' in D([0,00),R, M) ;

z, 1 (t) =z Y(t) for all t in a dense subset of (0,00).

n

6.15
6.16
6.17
6.18
6.19

(
(
(
(
(
(6.20

)
)
)
)
)
)

Example 13.6.4. The need for monotonicity. To see the advantage of M
on [0,00) over M; on (0,00), let z(t) =1,¢t >0,

IC%L(O) = O,:E}z(n_l) =1= :v}l(t), t>n"t, (6.21)
and

2p(0) =0 =27(2n7"),25(n™") = 23 (3n7") =1 =a3(t), t>3n7",
(6.22)
with z. and z2 defined by linear interpolation elsewhere. Then z. — z
in both D((0,00),R, M;) and in D([0,00),R, M]), but z2 — =z only in
D((0,00),R, M71). The monotonicity condition provides the equivalence in

Theorem 13.6.3.

13.6.3. First Passage Times

In this final subsection we consider some real-valued functions closely
related to the inverse function. Sometimes we are interested in the first
passage time to or beyond some specified level. Given any specified level
z € R, the first passage time beyond z is the function 7, : D, — R defined
in terms of the inverse function by

m.(z) = z71(2) . (6.23)

It is elementary that 7, has the following two scaling invariance proper-

ties: For any ¢ > 0,
Tez(cx) = 7, () (6.24)

and
cty(z o ce) = 1,(x) (6.25)
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where e is the identity map, i.e., e(t) =t for ¢ > 0.
Three functions closely related to the first-passage-time function 7, are
the overshoot function ~y, : D,, — R defined by

V2(z) = 2(7.(2)) — 2, (6.26)
the last-value function X\, : D,, — R defined by
Az(z) = o(72 (7)) (6.27)
and the final-jump functions 6, : D, — R defined by
0z(z) = z(72(2)) — 2(72(7)—) . (6.28)

The following continuity properties are elementary, but of course impor-
tant. It clearly does not suffice to have pointwise convergence.

Theorem 13.6.4. (continuity of first-passage-time functions) Let x be an
element of D,, that is not equal to z throughout the interval (1,(x) — €, 7,(z))
for any € > 0. If z, — x in (D, Ms), then

(Tz(xn)a 'Yz(xn)a Az (xn)a 0z (xn)) - (Tz (.’E), Y= (.’E), )\z(x)a 0z (IE))

asn — oo in RY.

The regularity condition holds almost surely for Lévy processes. Hence
we have the following consequence of Theorem 13.6.4, which we apply to
queues in Section 9.7.

Theorem 13.6.5. (convergence of first-passage-time functions for Lévy limit
processes) Let X be a Lévy process such that

P( lim X(t) =00)=1. (6.29)

t—00
If X, = X in (D, Ms), then

(T2(Xn)s 72 (Xn), A2 (Xn), 62(Xn)) = (72(X),72(X), A2(X), 0.(X))

in R* for any z > 0.
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13.7. Inverse with Centering

We continue considering the inverse map, but now with centering. We
start by considering linear centering. In particular, we consider when a limit
for ¢y, (zy, — €) implies a limit for ¢, (z,,! —e) when z, € D, = Dy([0,0),R)
and ¢, — oo. By considering the behavior at one ¢, it is natural to anticipate
that we should have c,(z,;! —e) — —y when c,(z, —e) — y. A first step
for the M topologies is to apply Theorem 13.4.2, which yields limits for
Cn (zjl — e). Thus for the M topologies, it suffices to assume that z, € Dy, 4.

For the J; topology, however, a different argument is needed to get limits
when y € C, as the following result shows.

Lemma 13.7.1. Suppose that x,, € Dy, n > 1, and ¢, — oco. if cn(wz —
e) =y and c,(z, —e) = —y (J1), then y € C.

Proof. Since z, € Dy, cn(wg — ¢e) has no negative jumps. Since the
topology is Ji and ¢, (z, —e) — vy, y has no negative jumps; e.g., see p. 301
of Jacod and Shiryaev (1987). Similarly, c,(z, ! —e) has no negative jumps.
Since c,(z,' —e) = —y (J1), —y has no negative jumps. =

The following lemma establishes a necessary condition in any of the
topologies.

Lemma 13.7.2. If 2, € Dy 1, cn(zn — €)(0) = y(0) and cn(z;' —€)(0) —
—y(0), where ¢, — oo, then y(0) = 0.

Proof. Since z, € Dy 4, 7,(0) > 0 and z,'(0) > 0. Since e(0) = 0, the
convergence c,(z, — e)(0) — y(0) implies that y(0) > 0. Similarly, the
convergence ¢, (z,;! — e)(0) = —y(0) implies that y(0) <0. =

Now we state the main limit theorem for inverse functions with centering.

Theorem 13.7.1. (inverse with linear centering) Suppose that ¢, (x,—e) —
y as n — oo in D([0,00),R) with one of the topologies Mo, My or Jy, where
Ty, € Dy, ¢, = o0 and y(0) = 0.

(a) If the topology is My or My, then c,(z,* —€) = —y as n — oo with
the same topology.

(b) If the topology is J1 and if y has no positive jumps, then c,(z,; ' —e) —
—y as n — 0o.

We can combine Lemma 13.6.6 and Theorem 13.7.1 to obtain the fol-
lowing corollary. Let A be the space of homeomorphisms of R, .
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Corollary 13.7.1. Suppose that x, € Dy and A1, Aon € A, n > 1. Let
cn — o0 and y(0) = 0. Then

cn(Agnozpodiy—e) =y in D([0,00), R, M;) (7.1)
if and only if
cn(/\l_;boa:;l0)\2_’711 —e) —» —y in D([0,00),R, M;), (7.2)

where the topology in both cases is either My or M.

We can apply Corollary 13.7.1 to obtain generalizations of Theorem
13.7.1 with nonlinear centering terms. (We obtain a more general result
at the end of the section.)

Corollary 13.7.2. (centering functions from A) Suppose that, in addition
to the conditions of Corollary 13.7.1, i, = Xi as n — oo for each i, where
i € A. Then

cn(Aop 0 Ty — /\1_;) —yoAl in (D,M) (7.3)
if and only if
cn(/\l_;b ox,t — )\2_;) — —yoX b in (D,M;). (7.4)

Proof. Apply Theorem 13.2.3 with the composition map to show that
(7.3) is equivalent to (7.1) and (7.4) is equivalent to (7.2). =
We can use Corollary 13.7.1 to obtain the following consequence.

Corollary 13.7.3. Suppose that z, € Dy, y(0) =0, ¢, — oo and a, —
a>0.If

cn(Tn —ane) >y in D
with the My or My topology, then

-1 1

cn(zt —ate) - —a"'yoa~le in D

with the same topology.
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Proof. Under the condition, (a,c,)(a, 'z, —€) — z, so that by Corollary
13.7.1, (ancy)(z,  oaze—e) — —y. Now applying the composition map with
-1 -1_ -1 -1 T . .
a, ‘e, ancn(z," —a,'e) - roa~'e. Dividing by a,, yields the conclusion. =
Stochastic limit theorems are not often expressed directly in the form of
Corollaries 13.7.1 or 13.7.3. We now state consequences of Corollary 13.7.1
that have more direct applications.

Corollary 13.7.4. Let y, € Dy and ¢1p, 20 € A, n > 1; let u(0) =0
and n/yp(n) = oo as n — oo. Let

wn(t) = 9(n) " (b2 0 yn 0 1) (nt) —nt], >0, (7.5)
and
on(t) = 9(n) " [(b1, 0y 0 dyy)(nt) —nit], 20, (7.6)
for allm > 1. Then
wp, > u in D([0,00),R) (7.7)
if and only if
Zn = —u in D([0,00,R) , (7.8)

where the topology throughout is either My or M.

Proof. Apply Corollary 13.7.1 with 2, () = n™ yn(t), i n(t) = n7 i n(nt)

and ¢, = n/y(n). Then w, = c,(Ao 0y 0o A1y —e) and z, = cn()\l_ﬂll

[¢]
Tt OAE}L —e€). =
We now consider the special case of Corollary (13.7.4) in which the home-

omorphisms ¢; ,, are linear, i.e., ¢; , = a; e, n > 1.

Corollary 13.7.5. Suppose that y, € Dy, w(0) =0, an — a > 0 and
n/p(n) — oo as n — oco. Let

Wy, = P(n) Hyn(nt) —apnt], >0, (7.9)
and
En = (n) Yy, (nt) —a,'nt], t>0. (7.10)
Then
Wy, > w in  D([0,00),R) (7.11)
if and only if
& = a'woa"te in D([0,00),R) , (7.12)

where the topology throughout is My or M.
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Proof. Apply Corollary 13.7.1 with z,(t) = n ly,(nt), Xon = a,’e,
AMgn = e and ¢, = nap/¥(n). Then W, = cy(Aopn 0z 0 A1y — €), SO
that @,, — w if and only if cn(/\fﬂlz ) :1:;1 ) Ai}l —e) - —w. However,
Cn(’\l_,}b o w;l o )\2_7711 —€) = apZn o ape (7.13)
and
—apin oape - —w if and only if %, > —a lwoa le. = (7.14)
Following Puhalskii (1994), we can generalize Theorem 13.7.1 by allowing
nonlinear centering terms. We present several results of this kind.
Theorem 13.7.2. Suppose that
cn(tn —A) = u as n—oo in D

with one of the topologies My, My or Ji, where x,, € Dy, u(0) = 0, u has
no positive jumps if the topology is J1, A € A and ¢, — 0o. Then

cnAozyt —e) = —uo ATl as n— oo (7.15)
with the same topology. If, in addition, X is absolutely continuous with
continuous positive derivative X\, then

cn(z ! =AY 5 —— as n— oo, (7.16)

n

where (u/v)(t) = u(t)/v(t), t > 0.

Proof. Apply Theorems 13.2.2 and 13.2.3 with the composition map to get
cn(ZnoA™t=XoA™!) = uoA~! as in the same topology. Since AoA™! = e, we
can apply Theorem 13.7.1 or Corollary 13.7.1 to get (7.15) with the same
topology. Now suppose that A is absolutely continuous with continuous
positive derivative A. Then

cnhozt —e)(t) = cp(hoz,t —AoATH(2)

mnl(t) .

= cn/ A(s)ds . (7.17)
AL

Since ¢, (2, —A) = u, ||z — Ay — 0 and ||z, —A7!||; = 0 as n — oo for all

t. Since A is continuous, it is uniformly continuous over bounded intervals.

Hence
o0t (s) )
sup e / Au)du — A1 ())en (21 () = A7L(s)| > 0. (7.18)
o<s<t | Ja-1(s)
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Then (7.15), (7.17) and (7.18) imply that
AoAd DNep(@ ' =A™ = —uoX™ as n— oo (7.19)

in the same topology, where (uv)(t) = u(t)v(t) for u,v € D. Finally (7.19)
implies (7.16). =

Corollary 13.7.6. Suppose that z,, € Dy 3, u(0) = 0, A € A, X is absolutely
continuous with continuous positive derivative A\ and ¢, — oo. Then

cn(@p —A) = u in D (7.20)
with one of the topologies My or My if and only if
1 1 —uo A1 .

with the same topology.

Proof. The implication (7.20)—(7.21) is directly covered by Theorem 13.7.2.
to go the other way, note that A~ € A and A ! is absolutely contin-
uous with continuous positive derivative 1/A(A™1(¢)). Moreover, if v =
—(woX1)/AoA"1in (7.21), then v(0) =0 and —(vo A)/(A oA =u. =

We can often apply the basic convergence-preservation results in com-
bination. We can combine Theorems 13.3.1 and 13.7.2 to obtain limits for
functions z,, o y,,* and z,,! o y,, with nonlinear centering.

Theorem 13.7.3. (composition plus inverse with centering) Suppose that
Tn € D, yp € Dy, ¢ — 0,

cn(Tn — 2, yn —y) — (u,v) in D x D (7.22)

with one of the J1, My or My topologies, where v(0) = 0 and v has no positive
jumps if the topology is J1, y € A, © and y are absolutely continuous with
continuous derivative T and y with § > 0 and

Disc(u) N Disc(v) = ¢ . (7.23)

Then

Zoy !
goy~!
If the topology is My or My, then instead of (7.23) it suffices for u and v to
have no common discontinuities with jumps of common (opposite) sign with
z(t) > (<)0 for all t.

cn(xnoygl—woy_l)%uoy_l—( )(on_l) in D. (7.24)
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Proof. The conditions imply that the conditions of Theorem 13.7.2 hold
for y,, so that

v 0o y_1
Cgoy!
The conditions then imply that the conditions of Theorem 13.3.3 hold with
y, ! here playing the role of y,, there. We need

in D. (7.25)

Disc(uoy™ ) N Disclvoy™') = ¢ (7.26)

but that is equivalent to (7.23). With the M topologies, we can apply
Theorems 12.7.3 and 12.11.6 to treat addition and Theorem 13.3.2 to treat
multiplication. =

We now turn to the general first passage times

(7 oyn)(t) = inf{s > 0:z,(s) > y,(t)}, t>0, (7.27)

which are elements of D when z,, € D, and y, € D;. The following is
Puhalskii’s (1994) result extended to allow discontinuous limits. For an
application to obtain heavy-traffic stochastic-process limits for waiting times
directly from corresponding heavy-traffic stochastic-process limits for queue
lengths, see Section 5.4 of the Internet Supplement.

Theorem 13.7.4. (Puhalskii’s theorem) Suppose that z, € Dy, y, € Dy,
Cp — 00,

cn(@n —zyyn —y) = (u,v) in D XD (7.28)

with one of the Jv, My or My topologies, where u(0) = 0, u has no positive
jumps if the topology is Ji,

Disc(uoz™! oy) N Disc(v) = ¢ , (7.29)

y € Oyt and z is absolutely continuous with a continuous positive derivative
T, then
-1 1 v—uozxzlo Yy

ez, oyp—z" 0y) — in D (7.30)

toxloy
with the same topology. If the topology is My or Mo, then instead of condition
(7.29) it suffices for uox™' oy and v to have no common discontinuities
with jumps of common sign.
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Proof. Since z is absolutely continuous with continuous positive derivative
z, * € Cy. Hence the conditions of Theorem 13.7.2 hold, so that

—yoz!

in D (7.31)

-1_ -1
cn(z, —277) = Py—
with the same topology. We now apply Theorem 13.3.3, noting that z !
has a continuous derivative 1/2(z~!(¢)). Condition (7.29) implies condition
(3.14) for w in (3.14) equal to —(uoz~')/zoz~!. Then (3.15) becomes (7.30).
With the M topologies, we can apply Theorems 12.7.3 and 12.11.6. =

Remark 13.7.1. Relating the theorems under extra conditions. Under ex-
tra regularity conditions, we can apply Theorem 13.7.2 to obtain limits for
Yn © T, from limits for z, oy, ' provided by Theorem 13.7.3. We need
u(0) =v(0) =0, z,y € A, zp,y, € Dy, and both & and y to be continuous
and positive. Since ,,y, € Dy, 7,5y, € Dys. Then A =z o yleA
and (z, oy, ')~ =y, 0z, !. From (7.16) and (7.24), we obtain

cnlynoz,' —yoz™) = 2z (7.32)

—1 -1 iboyl) -1 ) -1
— — A 7.33
? Ao\l (uoy (?Joy_l (woy™) ) e ( )
for \ =z oy~ Since \"' =yo 1,

where

1 1

A=20Y  joat=20 (7.34)
yoy- yozx—
and (i }
_ Yoz —1 —1
z——m(uoa: )+vox (7.35)

which coincides with (7.24) with the labels changed, i.e., with (z,y,u,v)
replaced by (y,z,v,u).

Similarly, under extra regularity conditions, we can apply Theorem 13.7.2
to obtain limits for ! o x,, from limits for z,,! o 3, provided by Theorem

13.7.4. We now need z,,y, € D, ;. We obtain
ealyzt oz —yLom) o 2, (7.36)

where

_ _ -1
T ("’ uow °y>oxl (7.37)
Aol
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for \=2 'oy. Since A\ ' =y loux,

1

A=Y Soat=¥2¥ 2% (7.38)
rzoxr oy T
and .
p=t 2 22 (7.39)
Yoy ox

which agrees with (7.30) with the labels changed, i.e., with (z,y,u,v) re-
placed by (y,z,v,u). =

13.8. Counting Functions

Inverse functions or first-passage-time functions are closely related to
counting functions. A counting function is defined in terms of a sequence
{sn : n > 0} of nondecreasing nonnegative real numbers with s = 0. We
can think of s, as the partial sum

Sp=x1+--+xH, n>1, (8.1)

by simply writing z; = s; — s;—1, ¢ > 1. The associated counting function
{c(t) : t > 0} is defined by

c(t) =max{k>0:s,<t}, t>0. (8.2)

To have c(t) finite for all ¢ > 0, we assume that s, — oo as n — co. We can
reconstruct the sequence {s,} from {c(t) : t > 0} by

Sp=inf{t >0:¢(t) >n}, n>0. (8.3)

The sequence {s,} and the associated function {c(t) : ¢ > 0} can serve
as sample paths for a stochastic point process on the nonnegative real line.
Then there are (countably) infinitely many points with the n*® point being
located at s,. The summands z, are then the intervals between successive
points. The most familiar case is when the sequence {z,, : n > 1} constitutes
the possible values from a sequence {X, : n > 1} of IID random variables
with values in Ry . Then the counting function {c(¢) : ¢ > 0} constitutes a
possible sample path of an associated renewal counting process {C(t) : t >
0}; see Section 7.3.

Paralleling Lemma, 13.6.3, we have the following basic inverse relation
for counting functions.
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Lemma 13.8.1. (inverse relation) For any nonnegative integer n and non-
negative real number t,

Sn <t ifand only if c(t) >n. (8.4)

We can put counting functions in the setting of inverse functions on Dy
by letting
y(t) = sy, 2 0. (8.5)

To have y € D4, we use the assumption that s, — oo as n — oo. if all the
summands are strictly positive, then

yl(t) =c(t)+1, t>0, (8.6)

where 5! is the image of the inverse map in (6.1) applied to  in (8.5). With

(8.6), limits for counting functions can be obtained by applying results in
the previous two sections.

The connection to the inverse map can also be made when the summands
x; are only nonnegative. To do so, we observe that the counting function c is
a time-transformation of y~!. both are right-continuous, but c(t) < y~1(¢).
In particular, ¢ and y can be expressed in terms of each other.

Lemma 13.8.2. (relation between counting functions and inverse functions)
For y in (8.5) and c in (8.2),

ct) = y 'y '(H)-)-), t>0, (8.7)
c(t) = y~Ht=) for all t€ Disc(c) = Disc(y™?), (8.8)
y i t) = clc(e(t), t>0. (8.9)

The three functions y, ¥y ' and c are depicted for a typical initial segment
of a sequence {sy, : n > 0} in Figure 13.1.

We can apply (8.7)—(8.9) in Lemma 13.8.1 to show that limits for scaled
counting functions with centering, are equivalent to limits for scaled inverse
functions. We use the fact that the M topologies are not altered by changing
to the left limits, because the graph is unchanged. We first consider the case
of no centering; afterwards we consider the case of centering. When there
is no centering, the M7 and M5 topologies coincide and reduce to pointwise
convergence on a dense subset of Ry including 0.

Consider a sequence of counting functions {{c,(t) : ¢ > 0} : n > 1} with
associated processes

Yn (8) = calcn (ea(1), 20, (8.10)



13.8. COUNTING FUNCTIONS 549

yy=r(t) [T

Yy~ (1)-)

Figure 13.1: The relation between the counting function ¢ and the inverse
function y ! for a typical function 1.

yn = (y;1)~!. Form scaled functions by setting
énlt) = n " calant) and §u(t) = ay'ya(nt), >0,  (8.11)
where a,, are positive real numbers with a,, — 0co. Note that

& t(t) =atc; (nt) and ¥, '(t) =n"'yulant), t>0. (8.12)

n n

Theorem 13.8.1. (asymptotic equivalence of limits for scaled processes)
Suppose that §, € Dy 4y, n > 1, for y, in (8.11). Then any one of the limits
Vo = 9, 9. =23 Y & = 3t or et = 3 in Dy([0,00),R) with the
My (= M) topology, for y,1, &, and &,* in (8.11) and (8.12), implies the
others.

We now apply the results for inverse maps with centering in Section 13.7
to obtain limits for counting functions with centering. Consider a sequence
of counting functions {{c,(t) : ¢ > 0} : n > 1} associated with a sequence
of nondecreasing sequences of nonnegative numbers {{s, : k >0} : n > 1}
defined as in (8.2). Let the scaled functions &, y,, €,! and y,,! be defined
as in (8.10)-(8.12).
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Theorem 13.8.2. (asymptotic equivalence of counting and inverse func-
tions with centering) Consider ¥, &,, and ¥, and &, as defined in (8.11)
and (8.12). Suppose that §, € Dy 3, n > 1, by — 00 and z(0) = 0. Then
any one of the limits b, (3, —€) = 2, by (&, —€) = —2, b(y,' —e) = —=
or bp(é;! —e) — z in D([0,00),R) with the My or My topology implies the
others with the same topology.

Corollary 13.8.1. Consider a sequence of nondecreasing nonnegative se-
quences {{sp i : k >0} : n > 1} with s,0 =0 and s, — 00 as k — oo for
all n. Let

Xn (t) = 5;1[3n,|_ntj - mnnt], t>0,

and
yn(t) = 0, en(nt) —m,tnt], t>0,

for cy(t) defined as in (8.2). Suppose that u(0) = 0, é, — oo, n/d, — o©
and my — m > 0 as n — oo. Then x, — u in D([0,00,R) with the M
or My topology if and only if y, — —m~luom™'e in D(]0,00),R) with the
same topology.

Proof. Apply Theorem 13.8.2, letting &, (t) = (ann)~tc,(nt) for a, = m;*

n
and, necessarily, y,(t) = nilsnylannt |- Then b,(y, — €) — z if and only if
b, (&, —e) — —z for b, — oo and z(0) = 0. However, b, (¥, —e) = uom™'le
if and only if x,, — u, while b, (&, — e) — m 'z if and only if y, — z, for

bp =n/0p = 0. =



