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ABSTRACT
Text analysis tools are nowadays required to process increas-
ingly large corpora which are often organized as small files
(abstracts, news articles, etc). Cloud computing offers a con-
venient, on-demand, pay-as-you-go computing environment
for solving such problems. We investigate provisioning on
the Amazon EC2 cloud from the user perspective, attempt-
ing to provide a scheduling strategy that is both timely and
cost effective. We rely on the empirical performance of the
application of interest on smaller subsets of data, to con-
struct an execution plan. A first goal of our performance
measurements is to determine an optimal file size for our ap-
plication to consume. Using the subset-sum first fit heuristic
we reshape the input data by merging files in order to match
as closely as possible the desired file size. This also speeds
up the task of retrieving the results of our application, by
having the output be less segmented. Using predictions of
the performance of our application based on measurements
on small data sets, we devise an execution plan that meets
a user specified deadline while minimizing cost.

Categories and Subject Descriptors
C.2.4 [Distributed Computing]: Cloud Computing—Pro-
visioning

General Terms
Performance, Design

Keywords
Cloud Computing, Provisioning, Amazon EC2, Text Pro-
cessing

1. INTRODUCTION
As the amount of available text information increases rapidly
(online news articles, reviews, abstracts, etc.), text analy-
sis applications need to process larger corpora. Increased

computational resources are needed to support this anal-
ysis. Building and maintaining a cluster requires signifi-
cant initial investments (hardware, physical space) and op-
erational costs (power, cooling, management). Amortizing
these costs demands for high utilization of the resources.
This however limits the ability of projects to grow their re-
source needs when necessary. Recently, commercially of-
fered cloud computing [8] solutions (Amazon EC2, GoGrid,
SimetriQ, Rackspace) have become an attractive alternative
to in-house clusters. They offer many advantages: customiz-
able virtual machines, on-demand provisioning, usage based
costs, fault tolerance. Some of the drawbacks are on the
side of performance guarantees and security In a cluster en-
vironment the user typically delegates the task of resource
allocation to the local resource manager, while the cloud
user can take control of this step. We see this as an op-
portunity to steer application execution in such a way as to
meet a user deadline while also minimizing costs.

A considerable amount of recent work has focused on ana-
lyzing the performance and cost effectiveness of such plat-
forms for different classes of applications: CPU intensive or
I/O intensive scientific computing applications [10, 5, 17,
11], service-oriented applications [6], latency-sensitive appli-
cations [3]. Other work has focused on quantifying the vari-
ation in received quality of service [12]. Some of this work
relies on simulations of a cloud environment, while most of it
uses Amazon’s Elastic Computing Cloud (EC2) as a testbed.

In this paper, we consider typical text processing applica-
tions (grep, part of speech tagging, named entity recog-

nition) and attempt to provide a good execution plan for
them on Amazon EC2. Our input data sets consist of a large
number of small files. We assume knowledge of the distri-
bution of the file sizes in the input data set, and no knowl-
edge of the internals of the application we are running. Our
first goal is to quantify the performance gap suffered by our
applications if consuming small files. To achieve this goal
we observe the application’s behavior on Amazon EC2 for
different file sizes and identify a suitable file size or range
of sizes. We then reshape our input data by grouping and
concatenating files to match the preferred size as closely as
possible. The text processing applications we consider do
not need to be further modified to be capable to consume
the concatenated larger input files. This approach will also
imply a lower number of output files which implies a shorter



retrieval time for the application results. This results in a
shortened makespan for the application. In terms of cost,
the per-byte cost being constant, the only benefit results
from the shorter makespan.

A second goal of our work is to use our application as a
benchmark on Amazon EC2 to determine a good execution
plan for the entire input data. In order to devise a schedule
we need estimates of the application runtime on Amazon
resources. We observe the application’s behavior on EC2
instances for small subsets of our data and then attempt to
determine a predictor of runtimes for larger subsets of our
final workload. We consider linear, power law and exponen-
tial functions as predictors.

1.1 Background
The Elastic Computing Cloud (EC2) from Amazon offers
its customers on-demand resizable computing capacity in
the cloud with a pay-as-you-go pricing scheme. Amazon re-
lies on Xen virtualization to offer its customers virtual hosts
with different configurations. The user can request different
instance types (small, medium, large) with different CPU,
memory and I/O performance. The instance classification is
based on the notion of an EC2 compute unit which is equiv-
alent to a 1.0-1.2 GHz 2007 Opteron 2007 Xeon processor.
The user can choose among a range of Amazon Machine
Images (AMIs) with different configurations (32-bit/64-bit
architecture, Fedora/Windows/Ubuntu). Users can modify
AMIs to suit their needs and reuse and share these images.

Amazon allows the user to place an instance in one of the
3 completely independent EC2 regions (US-east, US-west,
EU-west). This would allow the user to pick a location closer
to where their data is available. Within a region, the users
can choose to place their instances in different availability
zones which are constructed by Amazon to be insulated from
one another’s failure. For example, the US-east region has 4
availability zones (us-east-1a, us-east-1b, us-east-1c and us-
east-1d). These zones are defined separately for each user.
Amazon’s SLA commitment is 99.95% availability for each
Amazon EC2 Region for every user.

Amazon instances come with ephemeral storage (160GB for
small instances). Amazon also offers the possibility to pur-
chase Elastic Block Store (EBS) persistent storage. EBS
volumes are exposed as raw block devices and can be at-
tached to an instance and persist beyond the life of that
instance. Multiple EBS volumes may be attached to the
same instance, but an EBS volume may not be attached to
multiple instances at the same time. The root partition of
an instance may be of type instance-store in which case its
contents are lost in case of a crash, or of type ebs in which
case its contents are persistent.

Amazon offers storage independent of EC2 via the Simple
Storage Service (S3). Users can store an unlimited num-
ber of objects each of size of up to 5GB. Multiple instances
can access this storage in parallel with low latency, which is
however higher and more variable than that for EBS.

The pricing for these services are summarized in the Table
1. We note the pricing scheme for instances where we pay
a flat rate for an hour or partial hour ($0.1 ∗ dhe). This

Table 1: AWS services pricing
Resource Type Pricing

EC2
Compute $ 0.10/hr (or part. hr)

m1.small Transfer in free ($0.1/GB after June 2010)
Transfer out $0.15/GB

Transf. within free
zone or S3

S3
Storage $0.15/GB/month

Transfer in free ($0.1/GB after June 2010)
Transfer out $0.15/GB

PUT $0.01 per 1,000 requests
GET $0.01 per 10,000 requests

EBS
Storage $0.1/GB/month

I/O $0.1/million I/O requests
Transfer in free ($0.1/GB after June 2010)

Transfer out $0.15/GB

has implications for devising a good execution plan for an
application. Once an instance is up and running, we should
always plan to let it continue to run at least to the full hour
unless this prevents us from meeting the user deadline.

Amazon has also started to offer spot instances as of De-
cember 2009. The price for these instances depends on cur-
rent supply/demand conditions in the Amazon cloud. The
user can specify a maximum amount he is willing to pay
for a wall-clock hour of computation and can configure her
instance to resume whenever this maximum bid becomes
higher than the current market offer. This is advantageous
when time is less important of a consideration than cost.
Applications are required to be able to resume cleanly in
order to best take advantage of spot instances. In our work,
we are interested in being able to give cost effective execu-
tion plans when there are makespan constraints and so we
use instances that can be acquired on demand.

2. MOTIVATION
Our work is motivated by the computational needs of a
project analyzing a large collection of online news articles.
While the size of a single article is relatively small (a few
dozen kilobytes), the total number of articles (tens of mil-
lions) and total volume of text (close to a terabyte) make
the efficient processing this data set challenging. In partic-
ular, we consider the idea of reshaping the original data,
characterized by millions of small fragments with significant
size differences, into large blocks of similar size. Processing
these large blocks in parallel in the cloud is more attractive
than dealing with the original data for two reasons. First,
much of the overhead of starting many new instances and
processes is avoided, making the overall processing more ef-
ficient. Second, the execution times for the similarly-sized
blocks of data may also be relatively similar, thus enabling
the estimation of the total running time and the optimiza-
tion of the cost for typical pricing schemes given a deadline.

There are many other large collections of text that share
the same characteristics as our target dataset. For example,
social scientists are interested in the ever-growing myriad
of short texts generated by social network activities such
as status updates, tweets, comments, and reviews. Bioinfor-
matics researchers often analyze a large number of abstracts,



posters, slides, and full papers in order to extract new and
emerging patterns of interactions among proteins, genes, and
diseases.

3. EXPERIMENTAL SETUP
In this section, we describe the resources we use on EC2 and
the characteristics of our data sets.

3.1 EC2 setup
Small instances have been shown to be less stable [6, 18, 3]
but more cost effective. Our experiments use small instances
since they are most common and most cost effective. We use
a basic Amazon EC2 32-bit small instance running Fedora
Core 8. Each such instance is configured with 1.7 GB mem-
ory, 1 EC2 compute unit, 160GB local storage, 15GB EBS
root partition. The cost of an instance is $0.1 per hour or
partial hour. Payment is due only for the time when the
instance is in the running state and not while it is starting
up (pending state) or shutting down (shutting down state)
or once it is in the terminated state.

We use the local instance storage for most of our experi-
ments. Using EBS volumes, though adding to the cost of
execution, has an advantage in simplifying how the execu-
tion plan would adapt to failure or bad performance. If we
decide an instance is not performing well, we may decide to
let it run to the full hour while starting up another instance
and attaching the EBS volume to it once it is ready. For an
I/O intensive application, a simple calculation shows that if
working with a slow instance with an average read speed of
60 MB/s, we could process approximately 210GB of data if
we let the instance run for the next hour. If switching to an-
other instance that is likely fast and consistent, even when
paying a penalty of 3 minutes for the new instance startup
and EBS volume attachment (which we might minimize by
staring this instance while the previous one is stopping), we
would still be able to process an extra 57 GB. If the instance
happens to be slow we miss processing 10 GB.

3.2 Data
We use two data sets in our experiments. The first is a set of
HTML articles that are part of our Newslab collection. The
Newslab data comprises of roughly 75 million news articles
collected from Google News during the year of 2008. We use
a subset of this data that corresponds to English language
articles. This set comprises of approximately 18 million files
adding up to a volume of almost 900GB. The majority of the
files are less than 50KB and the distribution of the file sizes
exhibits a long tail. The largest file size is 43MB. Figure
1 shows the distribution up to files of size 300KB. The file
sizes are considered as multiples of 10K.

The second data set consists of 400000 English language text
files, extracted from a subset of HTML English language
articles. The majority of the files are small (<5KB), while
the largest file is 705KB in size. The plot below shows the
frequency distribution of the sizes of the files up to 160KB.
The distribution has a long tail (Figure 2).

Figure 1: Frequency distribution for the HTML
dataset HTML 18mil (10KB bin)
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Figure 2: Frequency distribution for the text dataset
Text 400K (1KB bins)

4. PERFORMANCE ESTIMATION
Any execution strategy for an application on a set of re-
sources relies on the expectation of how the application per-
forms on each resources. Performance estimation can be
done through analytical modeling [13], [4], empirically [7]
and by relying on historical data [15]. In our setup, we
have knowledge of the characteristics of the data set, but no
knowledge of application behavior.

Our approach is to first request a small instance and measure
its performance using bonnie++ [1] to ensure that it is of
high quality (over 60MB/s block read/write performance).
We repeat the performance measurement to check if the be-
havior of the instance is stable in time. This turns out to
be the case for most instances. We repeat this step until we
receive an instance that performs well.

We then send small probes of our data set to the local storage
of the instance. Initially we send a single file (probe PV0

orig of
volume V0, in its original form) and measure the execution
time the application on that input. We pick the initial file to
send to be among the smallest in our data set. We repeat the
application performance measurements 5 times and keep the
average and standard deviation. If the average value is small
and the standard deviation is large, we continue to profile



the application performance for larger volumes of data.

The next step is to carve out a larger volume V1 = k ∗ V0,
with an appropriate k based on the amount of time taken to
process the initial probe. From the original probe for volume
V1, PV1

orig we use the first fit bin packing algorithm to merge
the original files into desired unit file sizes (s0, ..., sn). We
pick s0 larger than the maximum file size in the original
set. We then conveniently choose s1...sn as multiples of s0,
such that we perform the bin packing once to obtain PV1

s0

and then directly derive the remaining probes PV1
s1 ..., P

V1
sn .

This is more convenient since we avoid rerunning the first
fit bin packing algorithm, but is sensitive to the quality of
the original bins of size s0. We vary the base file size up
to the maximum possible size of sn = V1. We then analyze
the performance of the original probe PV1

orig and contrast it
with the results for the other probes in order to learn of any
performance loss or gain that we would incur if the same
data was organized in smaller or larger files.

If the results for the set of probes (PV1
orig, P

V1
s0 , P

V1
s1 , ..., P

V1
sn )

are not yet stable we continue this process with larger vol-
umes. At the end of this process, we obtain measurements
along three dimensions: data volume (corresponding to each
probe set), file unit size (corresponding to each element in a
probe set) and execution time.

Collecting the results for all the sets of probes we have, we
can inspect each probe set to identify a possible preferable
file size where the execution time is minimal. Sometimes
we do not observe a single global minimum for a curve, but
rather a plateau where the execution time is minimized. We
give preference to choosing the preferred file size unit as the
minimum from later probe sets that are more stable.

5. STATIC PROVISIONING
The earlier experiments allow us to determine a best file
size unit or a range of file size units that perform better
than the original. Once we have selected a preferred file
unit size, we consider the data points relevant to that file
size unit from each probe set. We use these data points
to perform regression to obtain a predictor for execution
times as a function of data volume consumed. While this
is a simple approach, we believe we can get a satisfactory
estimate of the runtime without investing in determining
complex performance models. Since our data points are not
nearly equidistant, we perform the regression in logarithmic
space. We attempt to fit the following functions:

1. Linear y = ax : In logarithmic space, we would be
fitting Y = ln a+X, where Y = ln y; X = lnx

2. Power law y = axb : In logarithmic space: Y = ln a+
bX. We also fit functions of the form Y = aX2 + bX
which correspond to original functions y = xa ln x+b

3. Exponential y = aebx : In logarithmic space: Y =
ln a+ bx

If we obtain a good fit through these means, we can use
the predictor to estimate the total execution time of the ap-
plication T for the entire volume of data that needs to be

processed V . We assume the instances are uniform, though
this is not the case in reality. We plan to extend our mod-
els to account for variability of the instance performance in
future work.

We also assume that the data is already staged onto EBS
volumes for the grep application and can be staged onto the
local storage of the instances for the POS tagging application
in a constant time per run, assuming that the bottleneck
is the maximum throughput available at the upload site.
The pricing scheme considers a flat rate r (0.085$ for small
instances) for a full or partial hour of computation.

Then, for a given deadline D, and a linear fit y = ax:

• If D >= 1, then the cost is dP e × r. If we ignore boot
up time cost of the instances, then this would be equiv-
alent to giving an hour’s worth of computation for each
instance and a partial hour to the last instance. This
would also be the case if we pack bDc hours of compu-
tation into each instance (since the constant slope ”a”
ensures we process the same volume of data in either
case)

• If D < 1, D > time taken to process largest (unsplit-
table) file, then the cost is d P

D
e × r, where we have no

choice but to pay a full hour for instances running for
time D.

f(d) =

{
rdP e : d ≥ 1
rdP

d
e : d < 1

Further, we may repeat this process on non-overlapping sub-
sets of the total volume of data. This would allow us to ex-
plore a larger volume of our data set through random sam-
pling, at a smaller computational cost.

In general, we can improve our execution plan by considering
more closely the performance models we derived. The figures
below show possible shapes for the fitted curves.

Figure 3: Execution time as a function of data vol-
ume

For a > 0, b > 1 (f ′′ > 0) (Figure 3a), if startup time is small
enough, it will always be better to start a new instance, since
in a one-hour time slot we can process more data at smaller
volumes than at larger volumes.

For a > 0, b < 1 (f ′′ < 0) (Figure 3b), it will always be
better to pack as much data as possible by bDc than start
a new instance. We will have to compare the volume of
data that can be processed between times bDc and D to the



volume that can be processed in 1 hour from time 0 to 1 to
decide which option is cheaper.

5.1 Grep
We run grep (GNU grep 2.5.1) on our first dataset consisting
of HTML files from the NewsLab data. Grep searches the
files provided as input for a matches of a provided pattern.
The CPU - I/O mix of grep is heavily influenced by the com-
plexity of the regular expression we are searching with and
the number of matches found. Complex search patterns can
tip the execution profile towards intense memory and CPU
usage. Another factor is the size of the generated output
which depends on the likelihood of finding a match and the
size of the matched results.

We restrict ourselves to the usage scenario of searching for
simple patterns consisting of English dictionary words. In
our experiments we search for a nonsense word to increase
as much as possible the likelyhood that it is not found in the
text. For a word that is not found we are sure to traverse all
the data set regardless of other settings for grep, while also
isolating from the cost incurred when also generating large
outputs.

We set our initial probe P0 to a volume of 1MB. Figure 4
shows the average execution times. We notice that the val-
ues are very small and the standard deviation over 5 mea-
surements is large. We discard these results as too unstable
and increase the volume of the probe.
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Figure 4: Execution times for grep on a 1MB volume

We gradually increase the volume of the probe and observe
that the downwards trend continues for larger volumes and
file size units. We notice that at the file size unit of 10MB
we generally reach a plateau up to 2GB (Figure 5).

A more careful sampling of the file size unit range reveals
that the plateau is not smooth as shown in Figure 6. We
observed spikes where the performance was degraded. The
results are repeatable and stable in time, which rules out a
contention state for the networked storage. Our hypothesis
is that our probes, while on the same EBS logical volume,
were placed in different locations some of which have a con-
sistently higher access time. We verified that this is indeed
a possible cause by consistently observing that creating a
clone of a large sized directory can result in performance
variations of up to a factor of 3.

We select the file size unit to be 100MB which is in the
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Figure 5: Execution times for grep on a 5GB volume
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Figure 6: Execution times for grep on 1GB, 2GB
and 10GB volumes

minimum range and for which our experiments also have
a small standard deviation. Based on the measurements we
have already collected for the split level of 100MB, we obtain
a very good linear fit (R2 = 0.999 and very small residuals
of magnitude < 1).

f(x) = −0.974 + 1.324 ∗ 10−8x (1)

We perform our experiments on a random 100GB volume
of the dataset HTML 18mil and stage in this data equally
across 100 EBS volumes. The deadline we wish to meet
dictates how to attach the available volumes to the required
number of instances. The unit of splitting of the data across
the EBS volumes determines the coarseness of deadlines we
can meet.

Let V be the total volume of 100GB, V 0 = V
100

be the volume

on each EBS device and f−1(D) = VD, the volume predicted
by our model that is required to meet a deadline D. If we
consider a deadline D < 1, if V 0 > VD, we can not directly
meet this deadline without reorganizing our data to lower
the unit volume V 0. If V 0 < VD, we can provide bVD

V 0 c
EBS devices each of volume V 0 to an instance. This would
demand that we use d V

bVD
V 0 cV 0

e = i instances. We can further

improve the likelihood of meeting the deadline by balancing



the volume across the i instances or by lowering the deadline
to be met and reevaluating the execution plan as described
in the next section .

Based on our model given by equation (1), we predict that
processing 100GB of data within D = 3600 seconds only
requires 1387.8 seconds. The actual execution time is 1975.6.
Figure 7 shows that we underestimate the deadline by almost
30%. The figure also shows a 5.6 fold improvement on the
execution time when working with 100MB files instead of
the files in their original format of a few kilobytes in size.

Figure 7: Execution times for grep for 100GB

A possible source of improvement for the predictive power of
our performance model, is to consider random samples from
our entire dataset and reestimate our predictor. From our
data set, we choose 10 random samples (without replace-
ment) of 2GB and measure the execution time of grep on
these samples, and a few of their smaller subsets. We con-
sider these samples already in the chosen 100MB file unit
size. The measurements show considerable variability: for
the 10 samples, at the 2GB volume, we obtain a minimum
processing time of 23.25 seconds, a maximum of 45.95 sec-
onds, average of 32.2. We further refit our model to the new
observations and obtain:

f(x) = 0.208 + 1.503 ∗ 10−8x (2)

The slightly higher slope of equation (2) improves the pre-
dicted execution time to 1576.44, but this only reduces the
error from 30% to 20% of the actual execution time.

5.2 Stanford Part of Speech tagging
The second application we consider is the Stanford Part-of-
Speech tagger [16] which is a commonly used in computa-
tional linguistics as one of the first steps in text analysis. It
is a Java application that parses a document into sentences
and further relies on language models and context to assign
a part of speech label to each word.

Our goal is to run the Stanford Part-of-Speech tagger with
the left3words model on our second data set of 1 GB size.
We wrap the default POS tagger class that is set up to parse
a single document, such that we process a set of files avoiding
the startup cost of a new JVM for every file.

We note that over 40% of our files are less than 1KB in size.
Based on this, we pick the initial file size unit s0 to be 1K,

and let V1 = 1000K. Using the subset-sum first fit heuristic,
we construct probe sets of volume 1000K. The original probe
contains over twice the number of files (2183) as the probe
with file size unit of 1K (1000). The average execution time
over 5 measurements for the probe set is shown in Figure 8.
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Figure 8: Execution times for POS tagging on a
volume of 1000K

We observe that the original level of segmentation fairs the
best and using a smaller number of larger files does not
provide any benefits. The application is memory bound and
does not benefit from dealing with larger file sizes.

Keeping the original level of segmentation for the files, we
attempt a linear fit of form f(x) = ax+ b for our measure-
ments. We obtain a good fit on which we base our predic-
tions:

f(x) = 0.327 + 0.865 ∗ 10−4x (3)

Let the total volume of our data set be V , and the desired
deadline be called D. Using the performance model in equa-
tion (3), we attempt to provide execution plans for different
deadlines.

For a deadline of one hour (D = 3600), we solve equation
(3) for y = 3600 and obtain the solution x0 which repre-
sents the amount of data that can be processed within the
deadline according to our performance model. The solution
prescribes we need i0 = d V

bx0c
e = d26.1e = 27 instances. We

then proceed to pack our data set into 27 bins. For this
step, we consider the input files in their original order. If
we apply the first fit algorithm to the file sizes sorted in de-
scending order, we are more likely to obtain bins that closely
match the prescribed capacity. However, this will result in
the first bins containing a small number of large files and the
latter bins containing many small files. Our experiments for
the POS application show that the degradation for work-
ing with large files is pronounced. We therefor choose to
consider the files in the order in which they are provided,
though improvements are possible considering more refined
information about the distribution of the file sizes. With
this approach we obtain the result shown in Figure 9:



Figure 9: POS tagging for D=1 hour, model (3)

We can improve our schedule, by uniformly distributing the
data to each instance (Figure 10). In this way, we reduce the
chance of missing the deadline, while still paying the same
cost of r ∗ i0. With the new bins of size V

i0
we meet the

deadline successfully:

Figure 10: POS tagging for D=1 hour, uniform bins,
model (3)

For deadlines larger than 1 hour, if we consider performance
prediction models that are linear, exponential or power law
and that the instance start up time is insignificant, then
the best strategy is to fit an hour of computation into as
many instances as needed to complete the task. In reality,
the instance startup times are not always insignificant and
there are limitations on the number of instances that can be
requested. For this reason, we want to find a schedule that
also limits the number of instances requested.

When solving equation (3) for D = 7200 and distributing
uniformly the data for each instance, we obtain the results
in Figure 11, which meets the deadline loosely.

A further improvement for our prediction can be obtained
by taking random samples from our data set and reevalu-
ating our performance model. To achieve this, we take 3
samples of 5MB each (without replacement) and measure
the execution times for these samples and subsets of them.
With the new data points, we obtain another linear fit of
good quality:

y = 3.086 + 0.725482 ∗ 10−4x (4)

The slope of the new model is lower than that of the model in

Figure 11: POS tagging scheduling for D=2 hours,
uniform bins, model (3)

equation (3), indicating that for the same deadline, the new
model will predict we can process more data. This matches
the observation that based on the simple linear model from
equation (3), we meet the deadline loosely enough that it
may be possible that the deadline can be met with a lower
number of instances.

Based on the new model in equation (4), we determine we
require 22 instances for D = 3600 (compared to the 27 deter-
mined by the earlier model) and 11 instances for D = 7200
(compared to the 14 instances required by the earlier model).
The results are shown in figures 12 and 13 respectively:

Figure 12: POS tagging for D=1 hour, random sam-
pling, model (4)

Figure 13: POS tagging for D=2 hours, random
sampling, model (4)

We note that the missed deadlines compensate for the bene-
fit would have gotten by using a smaller number of instances.



A reason for missing both deadlines when using the new
model (in equation (4)) was that we obtained very full bins,
with little opportunity to distribute the data evenly across
instances to a lesser volume (and correspondingly lesser dead-
line) than the one prescribed by D. When fitting with the
earlier model (in equation (3)) we happened to obtain the
last bin relatively empty which permitted distributing the
data uniformly over the instances at a smaller volume which
then corresponds to a lower deadline than that which we
must meet.

Based on the residuals for the model in (4), we consider it

is acceptable to assume that the relative residuals y−f(x)
f(x)

are normally distributed. We would like to have a small
probability of the residual at the predicted value exceeding
some quantity. This can be translated in the value y exceed-
ing a deadline. Assume we would like to have a less than
10% chance to exceed a deadline: P (y > D) ≤ 0.1. Or, in

terms of the relative residual: P ( y−f(x)
f(x)

> D−f(x)
f(x)

) ≤ 0.1.

Since the relative residual is assumed to be a normal ran-
dom variable (call it X), P (X > D−f(x)

f(x)
) ≤ 0.1) can be

standardized relying on the sample mean and sample stan-
dard deviation calculated from the residuals of our model

µX and σX . Then, P (Z >
D−f(x)

f(x)
−µX

σX
) ≤ 0.1, where if

P (Z > z) ≤ 0.1, gives z = 1.29.

Then, D = f(x)(1 + a), where a = 1.29σX + µX . For our
residuals, we get a = 1.525. This means, that in order to
have a 10% chance of missing the deadline D, we need to
choose x such that f(x) = D

1+a
. For D = 3600, we should

lower the deadline to D1 = 3124 and for D = 7200, we
should lower the deadline to D1 = 6247.

Figure 14: POS tagging scheduling for adjusted
D=3124, model (4)

The results for the adjusted deadlines are given in figures
14 and 15 respectively. The result for the original deadline
of 1 hour, show that we miss the deadline fewer times than
in figure 12, but pay for an equivalent 30 instance hours of
computation, which happens to be a worse fit than when
using the first model and consuming 27 instance hours only.

The results for the deadline of 2 hours show that we are no
longer missing the deadline and require 26 instance hours
of computation. Without the adjusted deadline (figure 13)
we require the same number of instance hours, but miss the
deadline. Both solutions are better than those predicted
by the first linear model (figure 11) which demands for 28
instance hours of computation.

Figure 15: POS tagging scheduling for adjusted
D=6247, model (4)

Table 2: Language complexity impact on POS tag-
ging execution time

Text Size # words Wall time(min:s)

Dubliners 370 KB 67496 6:31.94
Agnes Grey 374 KB 67755 3:47.69

Based on the calculation above, a general good strategy can
then be the following. For an initial deadline D, determine
the minimum needed instances as d V

VD
e = i. If we are to

spread the data approximately uniformly over i instances, we
would give each at least dV

i
e = VD1. The volume VD1 leads

to f(VD1) = D1. If the adjusted deadline that guarantees
a 10% chance to miss D, i.e. D

1+a
is higher than D1, we

are satisfied with distributing the data into VD1 bins over
i instances. Otherwise, we will schedule for the adjusted
deadline D

1+a
.

Another experiment highlights the performance variability
of POS tagging for texts of similar size, but different lan-
guage complexity. We choose the Dubliners novel by James

Joyce and Agnes Grey by Emily Brönte available from the
Gutenberg project [2]. The experiment was repeated 5 times
and the average wall time is shown. The results are summa-
rized in Table 2.

For our news data set we do not see a dramatic improve-
ment in the predictive power of our model derived by using
random sampling. This can be expected of corpora that
are uniform in terms of language complexity (average sen-
tence length is an important parameter for POS tagging).
For other corpora, as seen in the experiment above, random
sampling can be vital to help capture the variation in text
complexity.

6. RELATED WORK
A considerable amount of recent work focuses on investi-
gating different aspects of commercial clouds: the quality
of service received by users, the performance stability of the
environment, the performance-costs tradeoffs of running dif-
ferent classes of applications in the cloud.

[17] and [10] investigate the effectiveness of constructing vir-
tual clusters from Amazon EC2 instances for high-performance
computing. [17] relies on standard HPC benchmarks that
are CPU intensive (NAS Parallel Benchmarks) or commu-



nication intensive (mpptest) to compare the performance of
virtual clusters of EC2 instances to a real HPC cluster. [10]
performs a similar comparison using a real life memory and
CPU intensive bioinformatics application (wcd). Both au-
thors conclude that large EC2 instances fair well for CPU
intensive tasks and suffer performance losses for MPI jobs
that involve much communication over less efficient inter-
connects.

There is a lot of work that evaluates Amazon’s S3 [9, 14]
performance and cost effectiveness for storing application
data. There is little literature on the usage and performance
of EBS volumes for large scale applications.

Deelman et al [5] consider the I/O-bound Montage astron-
omy application and uses simulation to assess the cost vs
performance tradeoffs of different execution and resource
provisioning plans. One of the goals of their work is to an-
swer a question similar to ours by finding the best number of
provisioned instances and storage schemes to obtain a cost
effective schedule. Their simulations do not take into ac-
count the performance differences among different instances
and the flat rate per hour and partial hour Amazon pricing
scheme which discourages having an excessively large num-
ber of instances that run for partial hours.

Other work by Juve et al [11] builds on [5] to address the
more general question of running scientific workflow appli-
cations on EC2. They consider Montage as an I/O inten-
sive application, and two other applications that are memory
bound and CPU bound respectively and contrast the perfor-
mance and costs of running them in the cloud with running
on a typical HPC system with or without using a high per-
formance parallel file system (Lustre). They note that I/O
bound applications suffer from the absence of a high per-
formance parallel file system, while memory-intensive and
CPU-intensive applications exhibit similar performance. Their
experiments are isolated to a single EC2 instance.

Wang and Ng [18] note the effect of virtualization on network
performance, especially when the virtual machines involved
are small instances that only get at most 50% of the physical
CPU. They conclude that processor sharing and virtualiza-
tion cause large network throughput and delay variations
that can impact many applications.

Dejun et al [6] analyze the efficacy of using Amazon EC2 for
service oriented applications that need to perform reliable
resource provisioning in order to maintain user service level
agreements. They find that small instances are relatively
stable over time, but different instances can exhibit perfor-
mance of up to 4 times from each other, which complicates
provisioning.

7. FUTURE WORK
On the performance modeling side, we would like to ex-
plore the improvements of using more complex statistics
tools to improve the accuracy of our predictions. We may
use weighted curve fitting to obtain closer fits at larger vol-
umes and allow for looser fits at smaller values since the
corresponding measurements are also less stable.

We may also use performance measurements from instances

of different quality and take into account the likelihood of
receiving such instances when devising an execution plan.
For applications that use local storage, we may decide to
invest in lightweight tests to establish the quality of the in-
stances and then use different predictors for each instance
quality level to decide how much data to send to meet the
deadline.

We can also monitor application performance during exe-
cution and make dynamic scheduling decisions. If we find
unresponsive instances, we force their termination and re-
assign their task to another instance. If we find that the
application performance is not satisfactory, depending on
the severity we can decide to terminate the instance and re-
sume its task on a new instance or decide to let the instance
run up to close to a full hour and move the rest of the work
to another instance. Using EBS volumes makes dynamic
adaptation easier. We can detach a volume from a poorly
performing instance and resume work with another instance
without explicit data transfers.

A direction for our future research is also to devise good exe-
cution plans for more complex workflows arising in text pro-
cessing. We can schedule such workflows while making sure
we assign full hour subdeadlines to groups of tasks ([19]).
We plan to further explore data management possibilities
for different classes of text applications we handle.
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