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A~tract--We consider radiative transfer in a plane-parallel atmosphere bounded by a rough 
ocean surface. The problem is solved by using a Fourier series decomposition of the radiation 
field. For the case of a Lambertian surface as a boundary condition, this decomposition is 
classically achieved by developing the scattering phase matrix in a series of Legendre functions. 
For the case of a rough ocean surface, we obtain the decomposition by developing both 
the Fresnel reflection matrix and the wave facet distribution function in Fourier series. 
This procedure allows us to derive the radiance field for the case of the ruffled ocean 
surface, with a computation time only a few percent larger than for the case of a Lambertian 
surface. 

I N T R O D U C T I O N  

Remote sensing from satellites allows frequent observations with a wide coverage of  the Earth. 
In the visible range, the measured upward radiance is very sensitive to atmospheric and 
surface parameters and may provide information about these parameters. An impressive 
amount of work has been done to compute the satellite data as a function of these parameters 
which is obviously necessary to retrieve this information. In these computations, however, 
the lower boundary condition generally corresponds to a Lambert reflector. This approach 
is valid for land observations. But simulations of the satellite signal for the case of  a 
bi-directional reflectance are interesting for some land observations (for example, for water or 
ice surfaces) and for oceanic observations for which the bi-directional reflectance is related to 
the Fresnel reflection on the sea surface. Moreover, the percent polarization of  the radiation 
field, which may be valuable information, generally is not taken into account in these 
computations. 

Fraser and Walker ~ assumed a simple model of the ocean-atmosphere system (a standard 
gas on a smooth ocean) and reported the intensity and degree of polarization. For  the same 
case of  a smooth sea surface, Dave 2 and Katawar et al 3 conducted computations for more 
realistic atmospheric models. For a rough sea surface exhibiting the true complexity of  the 
boundary conditions, Raschke, 4 Plass et al 5 and Quenzel and Kaestner 6 solved the problem, 
but neglected the polarization of  diffuse radiation in the atmosphere is well as polarization of  
the reflected radiation. Ahmad and Fraser 7 and Takashima and Masuda s performed 
complete calculations accounting for the degree of  polarization and also presented some limited 
comparisons. 

The difficulty of  exact radiative transfer calculations for rough-ocean reflection is mainly 
numerical. Most radiative transfer calculations are made tractable by using Fourier series 
decomposition of  the radiation field as a function of the azimuth. For  the case of a Lambertian 
ground or of  a smooth sea surface, the boundary condition is compatible with this series expansion. 
On the other hand, this approach is not easy to follow for the case of  a rough ocean because of 
the complexity introduced by the wave slopes. Here, we solve this problem, taking into account 
radiation-field polarization. 

?To whom all correspondence should be addressed. 
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THEORETICAL BACKGROUND 

Formal transfer equation for the s Fourier component 
The radiative transfer equation in a plane-parallel finite atmosphere can be written as 

 of:.f i t ~ t t ' / ' )  - ¢ , )  , I.t c36 - P(6,  #, 4), # ,  49 ) I (6 ,  # ,  ~b') d#' d~ 

(Do 
4re exp ( f /#s ) f f (6 ,  #, q~, #,, ~bs).E,, (1) 

where 6 is the optical depth, (Do the albedo for single scattering, # the cosine of the zenith angle, 
the azimuth angle, the Es the solar irradiance; the subscript s refers to solar quantities. The 

components of the four-vector Tare the Stokes parameters/, Q, U, and V, with the meridian plane 
as reference. In Eq. (1), the kernel P(6, #, q~, #', q~') is given by 

P(#, 4~, #', q~') = L( - Z)/~(cos ~9)E(Z'), (2) 

where/~(cos ~9) is the phase matrix, with the scattering plane as reference and ~9 the scattering 
angle. We have omitted for convenience the dependence of the phase matrix on the optical depth. 
The matrices / ~ ( - ~ )  and L(Z') are required to rotate the meridian planes before and after 
scattering onto the scattering plane. 9 Here, [10 

/](Z) = 0 cos 2 Z sin 2 x 
(3)  

0 -sin2;(  cos2z ' 
0 0 0 

A usual procedure for solving the transfer equation is to consider a Fourier series expansion in 
azimuth for the radiance. If we consider an atmosphere illuminated by the solar beam [with Stokes 
parameters (E~, 0, 0, 0)] and with symmetrical boundary conditions with respect to the incident 
plane, then 

[ I(6,#, ~b) ] f P(6,#)coss(ck-~s)  ] 

Q ( f , B , ~ b ) [  =  o(2_6o  ) 
U(f,#,~b) |  = ' |US(6 ,#)s ins (~b-4~O[  " 
V(6, #, 4)) 3 I,. Vs(6, #) sin s (~b - 4~s) 3 

(4) 

If the phase matrix terms are expanded in the same manner in a Fourier series, then the complete 
problem separates into the following set of independent equations: 

~[s(6, #) (D O ~+t = Ts(6, #) _ /~s(#, #,)is(f, #,) d#' - ~-~ ps(#, #s) exp(6/#s)Es. (5) 
u T J_, 

A major advantage of Fourier series expansion of the transfer equation lies in the simplicity of 
the corresponding transfer code, since integrations on ~b and 0 are separated. Moreover, only the 
zeroth term provides answers to interesting problems such as flux computations or radiance 
estimates in the nadir-viewing direction, as involved in LANDSAT or SPOT observations; 
according to the reciprocity principle, nadir-radiance for any solar zenith angle 0s may be derived 
from radiance at the viewing angle 0s for null solar zenith angle, which requires only calculation 
of the zeroth term of the Fourier series. 

The/~s(#, us) term in Eq. (5) may be derived numerically, but a more powerful approach involves 
the use of circularly polarized states for the light representation. By assuming that the terms of 
the phase matrix are developed in Legendre polynomials Pt and associated functions P~ in the form 

Sf.o ,p,(cosO) o o ° ] 
/~(cos O) = Xf=2ytP~(cosO) Z~=ofltPt(cosO) 0 

0 0 Z~.o6tPt(cosO) -X~=2etp2(cosO) ' 
0 0 S~=2Ete~(cosO) Zf=obtPt(cosO) ..J 

(6) 
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it may be shown ~°q~ that the kernel /~(#, t#, #', $ ' )  in Eq. (1) may be expanded into the form 
L 

P(/z, ~b, #', $ ' )  = ~ ( 2 -  60,,)[cos s($ - $ ' )  ~ ( # ,  # ' )  + sin s($ -~b ' )  P,(/z, #')], ~' 
smO 

(7) 

where 
P~(u,u') = 

£LI=,Vln p~p~'t T'#=,YIP~R~' 0 0 ] 

0 0 ,V,~=~(~IT~T~'+~tR~R~') -~t~=,~tR~P~" ' 
0 0 ZI(=~Ip~R~, r~ x ~ ,~ , ,  ~ ' # l = s  ~1  a l  a l  

(8) 

and 

P:( . ,  ~') = 

I ° 0 

--T-,L, yI T~t P~' 

0 

0 Z~=,(o~IR~T~'+(IT~R~') -~L,~IT~P~' 
-T,#=,(~x I T~ R~" + (IR~ T~') 0 0 

--2;~=, et P ~ T~' 0 0 

(9) 

In these equations, PL RL T~ stand for P~(/~), R ~ ) ,  T~(/~) and P~', R~', T~' stand for PT(#'), 
R~(#'), T ~ ' ) ;  R](#) and ~(/~) are linear combinations of the generalized Legendre functions 
P[.2(g) and p22 2(#), which are defined in the Appendix. 

When substituting Eqs. (4), (7), (8), and (9) into Eq. (1), it separates immediately into the set 
of independent Eqs. (5) with 

P ' ( . , u ' ) =  

ZL,f lIP~ P ~' T.,~..,ytPT R ~' -T_,L,yIP ~ T~' 0 

-Z#.,Yt~P~" -Z~f.,(oqTTR~'+(IRTT7 ') Z#=,(o~I~T~'+(tR~R~ ") -,-,-,rL w" --ID'P"-I 
0 -Z~=,etP~ 7" Ztz=,etP~R~ ' Z~=,fIPTP~' 

(I0) 

The required order L for the developments in Eq. (6) depends mainly on the dimension of the 
scattering particles. It is known that L = 2 for molecular scattering; scattering by terrestrial 
aerosols typically requires about L = 48. The set of coefficients/~i, Yl, 61, and El may be computed 
by using orthogonality relations for Legendre functions and polynomials (see the Appendix for 
details), ~i and ~i are linear combinations of fll and 61 as follows: 

L L 

(fit + ~51)P1(#) = ~. (o~1 + ~1)P~.2(#), (1 1) 
I - -0  I - 2  

L L 

(/~1-~l)Pl(u) = Y (~1- ~l)e'~,_,00. 02) 
I=0 1=2 

Boundary condition; reflection matrix for the rough ocean 
We now consider the atmosphere-ocean system. The boundary condition corresponding to the 

radiation scattered from the sea water is routinely accounted for by a Lambertian condition. Since 
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Fourier-series expansion of the radiation field raises no problem for such a condition, we will ignore 
this term and will limit ourselves to the surface-reflection problem. 

Should the sea surface be horizontal, an incident beam would be reflected in the specular 
direction and the boundary condition at sea level becomes 

[(6t, - c o s  co, ok) = R(o9)[(61, cos o9, ~b), (13) 

where 6~ is the optical thickness of the atmosphere, co the incident angle, and R(og) the Fresnel 
matrix, expressed as a function of the complex Fresnel coefficients by l+ 

I rtr* +rrr* r t r * - r r r *  0 0 

1 I rlr?-rrr* r l r*+rrr*  0 0 
/~(o9)=2 / 0 0 r~r*+rrr~ r tr*--r lr*  (14) 

[ o 0 r t r * - r ~ r *  rtr*+rlr~* 

Here, r t and rr depend on o9 and on the sea water complex refractive index m, according to 

x / m  -- sin E co -- m 2 cos o9 
(15) r I = 

m -- sin 2 o9 + m 2 cos o9 

cos co -- x/m 2 _ sin 2 co 
r, = (16) 

cos o9 + x/m 2 - sin 2 co 

For visible and near-infrared wavelengths, the imaginary part of m is negligible 15 so that 
R3. 4 = R4, 3 = 0. 

For the case of a rough surface, given an arbitrary observation direction (#, ~)  and the 
downward direction (/2', ~ ' ) ,  water facets exist with the normal direction N(/2,, ~Pn) such that they 
can reflect downward radiance towards the observer. The reflection geometry is shown in Fig. 1. 
According to Eq. (13), the resulting contribution d[(61,/2, ~) in [(61,/2, 4)) from the downward 
radiance 7(3~,/2', ~b') will be given by 

dT(6l,/2, $)  =f( /2 , ,  q~n)/_~( -- z)RCOg)/~(Z')T(6I, #' ,  $ ') d/2' d~b '; (17) 

/-~( - Z) and L(Z')  have been introduced to take into account the required rotations of the meridian 
planes into the reflection plane, which is no longer a vertical one, and f(/2,, ~b.) stands for the 
required weighting of R(og) by the density of water facets with the convenient inclination. 

Using analysis of aerial photographs of the glitter, Cox and Munk 16 investigated the probability 
distribution of water facet normals. They showed that it is nearly independent of ~b.. When 

(u,~p) 

x' ~ ~ ' , 9 ' )  

X 

Fig. 1. Geometry of the reflection on a wave facet. 
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accounting for the transformation of this normal probability distribution into the energetic balance 
for reflection, it may be shownI that f(p,, 4,) is given by 

In Eq. (18), r~ is related to the wind speed u by 

a2 = 0.003 + 0.0512V. (19) 

On the other hand, given the directions (p, 4) and (p’, $J’), convenient normals N are such that 

l/J -P’l 
Pn = 2 cos 0 

and the resulting reflection angle w is given by 

cos 20 = -/.&I - J~~~cos(ip - I$‘). (21) 

Equations (18)-(21) determine the problem. Clearly, f@,, 4,) and R”(p, 4, p’, 4’) [or 
z( - x)R(o)z(x’)] depend only on the azimuth difference (4 - 4’). By introducing the reflection 
matrix 

fiti, 4% P’P 4’) =f(Cln, 4,)&u, 4, $7 4% 

the boundary condition at sea level is given by 

(22) 

FOURIER-SERIES EXPANSION OF THE REFLECTION MATRIX 

In order to preserve the Fourier-series expansion of the transfer equation, we need developments 
of the MU terms in cosine or sine series of the azimuth, according to the parity of the Stokes 
parameters involved. These developments may be derived directly by numerical methods. Such a 
solution requires, however, impressive data storage and is very time consuming. On the other hand, 
we note the similarity between R”(o) and P”(cos 8) when considering (n - 2~) as the scattering 
angle 0. Therefore, Fourier-series expansion of R”(p, 4, p’, 4’) may be achieved in the same 
manner as for the case of the scattering matrix. Since this term does not depend on the sea-surface 
roughness, this calculation is only needed once. Then, by expanding the scalar termj&, 4,) into 
the Fourier series of (4 - 4’), the expected developments will be obtained as a mixture of the two 
developments. 

First, in parallel with Eq. (6), we expand the terms of R(o) in a series of appropriate Legendre 
functions of R = II - 2w into the form 

f Zf_,b,P,(cos51) z:,,g,P:(cos8) 0 0 

B(0) = 
~:=,g,P:(cosf2) zc,L_,b,P,(c0sl2) 0 0 

0 0 Zf_0d,P,(cosQ) -Cf_,e,Pf(cosSZ) . 
(24) 

1 0 0 z~_-,,e,P:(cosSZ) zf=,d,P,(c0sa) J 
Then, Fourier-series expansion of R(p, 4, p’, $‘), will be given by equations similar to Eqs. (7), 
(8) and (9), but with a,, b,, g,, d,, e,, and z,, respectively, in place of a/, A, yI, S,, c,, and c,, with 
aI and z, derived from combinations of 6, and d,, similar to those introduced in Eqs. (11) and (12). 

All of these coefficients may be obtained by appropriate (e.g., Gaussian) numerical quadratures 
by using orthogonality relations in the Legendre basis. The only problem is to develop to an 
adequate order N the Fresnel matrix R(w). The convergence of this development is correct for 
N = 48, as is illustrated in Fig. 2 for the term r, = R,,, = R2 2, and in Fig. 3 for r, = R2,, = R,,2. 
Figure 2 shows that slight difficulties occur for grazing incidences, where r, increases quickly. 
However, as a result of the vanishing irradiance for grazing incidences, the resulting error should 
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Fig. 2. Development of the reflection coefficient r~ in series 
of Legendre polynomials. The exact coefficient ( ) is 
compared with results obtained from a series development 
of order N =24  (× )  and of order N =48 ( - - - ) .  The 
range of grazing incidence angles is zoomed in the upper 

corner. 
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Fig. 3. Development of the reflection coefficient r 2 in series 
of Legendre polynomials. The exact coefficient ( ) is 
compared with results obtained from a series development 
of order N = 48 (0) .  The range of near-nadir incidence 
angles is zoomed in the upper corner for the exact case 

( ) and the development of order N = 48 ( - - - ) .  

be negligible. In Fig. 3, slight oscillations appear in rz around the nadir, but they are unimportant. 
These directions generally correspond to low polarization ratios. Moreover, these oscillations may 
be smoothed when integrating Eq. (23). Therefore, we write 

N = 48 
u ' ,  = 

n=0 
t ~n t - - q~ )Rs  (#,  # 11, (25)  (2-- tS0,,)[cosn(~b ~b )Rc(/t,/~ ) +  sinn(~b ' ~" ' 

where R2(#,/z') and ~" ' Rs(/~,/z ) are given by Eqs. (8) and (9), respectively, but with al . . . .  zl in place 
of ~t,. • . ,  ~t. 

According to the symmetry o f f ( # . ,  ~bn), we can write 

K 
f ( / ~ . ,  q~.) = ~ (2 - 6o, k) Fk(l~, #') cos k(~b - 4~') (26)  

k=0 

with 

fk (/~, /~' ) = ~--~n COS k(~b -- ~b')f(/~., q~.) dq~'. (27) 

Since this function is very sharp around the specular direction, especially for low wind speeds and 
for grazing incidences, a Gaussian quadrature is no longer valid in Eq. (27), and we used 
trapezoidal quadratures restricted to intervals A4~ = 4) -- q~' such that f(A~pmax)/f(A~ p = 0 )  = 10 -4. 
The integration step was defined by using a dichotomy method with a convergence test at 10 -4. 
For not too large incident and emergent angles, regardless of the wind speed, K = 96 provides 
a fairly good restitution o f f ( # . ,  ~b.), as is shown in Fig. 4 for 0 = 32.5 ° and 0 "  = 21.3 ° (0" will 
stand for the supplement of 0). But, for grazing angles and small wind speeds, as a result of the 
sharp feature of the glitter, 1500-2000 terms would be needed to retrieve f ( # , ,  ~b.) within the 
planned 10 -4 accuracy (see for example Fig. 5, where 0 = 0 "  = 88.4 °). Fortunately, the Fourier-se- 
ries decomposition of the radiation field requires much lower order expansions, so that such 
extensive developments of f(#n,  ~b.) will prove to be useless when introducing the boundary 
conditions. 
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Fig. 4. The function f ~ , ,  4),) is shown as a function of  
the azimuth difference 4~ = ~ b - 4 ) '  for 0 " = 2 1 . 3  ° and 
0 = 32.5 °. For three wind speeds, exact computations ( -) 
are compared with Fourier-series expansion ( ~ )  according 

to Eq. (26). 
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Fig. 5. The same as in Fig, 4 but for a wind speed equal to 
zero and for grazing angles (0 = 0 "  = 88.4 °). The probabil- 
ity function is retrieved by using 1624 terms. The 96 (A)  and 
1000 (Q) terms developments are also compared with the 

exact result. 

Finally, we substitute Eqs. (25) and (26) into Eq. (22). Since the series products may be written 
as  

N K K + N  

~.. (2 -- 6o.,)(2 -- 6O.k) cos n(dp - ~p') cos k(dp - dp')f k Rg = ~.. ( 2 - 6 o . , ) c o s p ( 4 b - ~ ' ) M ~  
n = O k = O  p=O 

(28) 
N K K + N  

~" ~_, 2 ( 2 - 6 o . ~ ) s i n n ( d p - d p ' ) c o s k ( d p - c ~ ' ) f k R ~ =  ~ 2sinp(~b-q$ ' ) .bIf ,  (29) 
n = l k = 0  p=l  

the reflection matrix will be obtained in the required form 
P 

-~(#, 4~, It', q~') = ~ (2 - 60.,)[cosp(4~ - 4~')/I,l~(it, It ') + sinp(4~ - ~')tl~f(it, It')]. (30) 
p=0 

By simple rearrangements, M~(it, It ') and )~f(it, It ') may be written as 
N 

.~I~(it, i t ' )=fp( i t ,  i t ' ) ~ ( i t ,  i t ' )+  ~ [f,+,(it ,  i t ,)+f~,-,l(it ,#,)]~,~(it ,  it,), (31) 
n = l  

N 

,~rf(it, It') = ~ [fp+.(it, It ') _flp-,,l(it,  It,)lj~(it, It,). (32) 
n = l  

These 4 x 4 matrices are in the same form as/~(i t ,  It ') and/~(i t ,  It'); they may be partitioned into 
four 2 x 2 submatrices, with zero submatrices on the trailing diagonal of .~ ( i t ,  It ') and zero 
submatrices on the leading diagonal of ~l~f(it, It'). By substituting Eqs. (4) and (30) into Eq. (23), 
the boundary condition will clearly preserve the separation of the Fourier components and, on 
account of the particular form of ~ ( i t ,  It ') and ~f( i t ,  It'), the Stokes parameter parity will also 
be preserved. Finally, the boundary condition may be expressed by 

T'(6,, It) = 37I'(it, Its)E, exp(6, ~it,) + 2n f~ 1 ~'(/'~' I t  # ) I S ( 6 1  ' It#) dit' (33) 

by writing 

.~I,(it, It') = ~I~(it, It') + 1fir(it, It')D, (34) 
where/~ = diag(1, 1, - 1, - 1). 
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The boundary condition requires integration of the diffuse downward radiance. An idea about 
the functions to integrate is given by the plots of Figs. 6 and 7. Two sets of M]. ~(#, # ' )  terms are 
shown as functions of the incident angle 0' for the two viewing zenith angles 0 = 2.8 and 84.4 °. 
The wind speed is 5 m/sec. For nadir observations, the glitter spot is obviously almost independent 
of the azimuth; therefore, the zeroth Fourier-series term is the main term of the expansion and 
follows the sharp peak of the sunglint. A major advantage of the Fourier-series expansion is 
observed for grazing angles. Since the glitter spot is very narrow, the Fourier-series convergence 
is slow. However, Fig. 7 shows that the behaviour of the M]. ~(#, # ' )  terms as functions of the 
incident zenith angles is smooth enough to apply a classical Gaussian quadrature. To check this 
statement, we considered an isotropic incident source and computed the reflected radiance for 
several viewing directions; the wind speed was 5 m/sec. For nine viewing zenith angles, Table 1 
shows the exact results, derived from a very accurate trapezoidal quadrature, as well as results 
obtained by using a Gaussian quadrature with 24 angles. The two results agree within 1%. 
Although this computation involves only the zeroth term, Fig. 7 shows that the integration problem 
would be the same for the other terms of the Fourier-series. 

Although the Fourier-series expansion of/Q(#, tk, p', ~b') may require very large orders P, the 
expansion of the scattered part of the radiation field is of order L of the/~(O) expansion. Therefore, 
we limit the analysis to this order L in the Fourier-series expansions of T(t,#,~b) and 
/~r(#, ~b, #', tk '). We let/~rL(#, ~b, #', qS") stand for the approximate reflection matrix thus obtained. 
By solving this L-term problem, the resulting error will involve only that part of the radiation field 
corresponding to light reflected from the direct sunbeam and then directly transmitted through the 
atmosphere, i.e., the sunglint term. But this term, say T~rX(6, ~, ~b), may be calculated without any 
Fourier series expansion, from 

(35) 

M~/,1 

where ~o s and Xs stand for 09 and X when the incident direction is the sun direction. Since the 
boundary condition will provide for this light the erroneous counterpart 

Tt~'(6, #, ~b) = [exp(6 - 61)/#]ff'lL(I.t, ~, I.t~, d&)E~ exp(6~/#,), (36) 

the results of the code must be corrected by T~x(6, #, 4~) - 7~rrr(6, /~, q~), the calculation of which raises 
no particular problem. 

0.15 
0 = 2 . 8  = 

0.10 

0.05 

$ 
M~,~ 

It=O 

v 

o125 o.h o35 1.o 
- COS 0 J 

Fig. 6. The Fourier-series terms M ~ . ~ ,  g ' ) ,  vs the cosine of  
the incident zenith angle, for a viewing zenith angle of  

0 =2 .8  ° 

T I I 
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SS20 

: • 0 
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0.01 

trtO,#,~b) [exp(6 6~)//a]f(#, ~b,)/[( Zs)J~(og~)Esexp(fi,/~ts), 

0'.25 o.~o o35 
- COS 0 t 

1.0 

Fig. 7. The same as in Fig. 6 but  for a viewing zenith angle 
of 0 = 84.4 °. 
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Table 1. Upward radiances 
observed at sea level for 
isotropic incident irradiance. 
The boundary condition of 
Eq. (33), for a wind speed of 
5 m/see, is integrated by using 
a Gaussian quadrature with 
24 angles. These results are 
contrasted with the exact re- 
suits derived from a suitable 
trapezoidal method (last 

column). 

cos e /1 r ,  

0.99877 0.02006 0.02008 

0.97059 0.02019 0.02020 

0.80766 0.02349 0.02349 

0.57722 0.04551 0.04552 

0.40869 0.09170 0.09176 

0.28736 0.1520 0.1522 

0.16122 0.2589 0.2594 

0.09700 0.3708 0.3716 

0.03238 0.8409 0.8368 

'o 

. . . . . . . . .  i i ! i i I , i 10 

t 
/ ] 

<=...o/ t 
• ' " . I  

2',., .Y / 
"%A • • - 

~ / / ~  "'~& o O O  OO 04 'o 

. 1  . . . . . . . . . . . .  . . . . , 

)° 60" 30  ° 0 ° 3 0  ° 6 0  ° 9 0  ° 

¢-¢,= leo" o-¢e=o ° 

,01 
oo o 
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Fig. 8. The radiance I(0) leaving the top of the atmosphere-ocean 
system, as defined by Ahmad and Fraser (see text), has been calculated 
for solar zenith angles 0 " - 2 1 . 3  and 58.8 ° at the wavelength 
2 =0 .7#m.  The results correspond to upward directions in the 
principal plane. Our computations ( and - - - )  are compared with 

the results reported by Ahmad and Fraser 7 (O and A). 

A P P L I C A T I O N  

As an example, we will now see how the specified scheme may be used in successive orders of  
the scattering code. With this method, 17'~8 we use the radiative transfer equation in its integral form 
and estimate the n-times scattered light ~.)(6, #, 4)) from ~._ 0(6, g, 4~), with ~1)(6, #, ~)  given by 
the known primary scattering from the direct sunbeam. For the case of  a black background, the 
resulting equations for each term of the Fourier series expansion of  ~.)(6, #, 4)) are, therefore, 

= - 6 ) I ~ ] P  (I.t, # , )Es  exp(6/#s) d r ' ;  (37) O,o(6')exp[-(6'  ~' ' 

for n > 1, 

7~,)(6, # > 0 )  =~-~ W o ( 6 ' ) e x p [ - ( 6 ' - 6 ) / # ]  ps(# ,#  ) (,_,)(6 ,#  ) d # '  . 

These equations apply to the upward directions (# > 0); the corresponding equations for the 
downward directions (/~ > 0) are obtained with 0 in place o f r i  as the integral upper bound. In order 
to take into account the boundary condition, it is sufficient to keep the previous expressions 
unchanged for downward radiances and to add to the expressions for upward radiances as follows. 
In Eq. (37), the light reflected from the direct sunbeam and transmitted to the level considered in 
the specified direction is proportional to 

[exp - (6i - 6)//~].gP(#, #s)Es exp(ri/U,)- (39) 
In Eq. (38), the radiance reflected from 7~,_ i)(6, g)  and transmitted to the level considered in the 
specified direction is proportional to 

2z~[exp (6 i  6 ) / # ]  I ° ~s , , - - -  M ( U , U  ) T ~ . _ , ) ( a i ,  U ' )  r i g ' ,  ( 4 0 )  
3-  I 

which involves consideration of  one reflection on the sea-surface as equivalent to one scattering 
event in the (n) enumeration. 

Q S R T  4 i / b - - - F  
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The is(6, ~) terms are calculated at discrete levels 6i and for discrete directions 0j, which are 
Gaussian points of a Gaussian quadrature of order L, with L/2  upward and L/2  downward 
directions. Therefore, the L(4 x 4) matrices ~tp(/~,/~') must first be calculated from Eqs. (31) and 
(32) for (L/2) 2 couples (0j, Ok), that is about 4L 3 terms. Next, the successive order code may be 
started, and the results are finally corrected for the error in the sunglint term, as was indicated 
previously. 

In order to test the validity of the scheme, the radiance and polarization of the light leaving the 
top of the atmosphere were calculated for a model of the ocean-atmosphere system close to that 
used by Ahmad and Fraser] The molecular component was fixed according to the US 62 standard 
atmosphere. The aerosols were spherical particles with refractive index m = 1.50- 0.0i and size 
distribution of the form 

n(r)  = C for 0.03 < r < 0.1 pm; n(r)  = C(O.1/r) 4 for 0.1 < r < 5.0#m, (41) 

which were distributed vertically according to Elterman's distribution. ]9 A wind speed of 10 m/sec 
was considered for surface-roughness modelling and calculations were performed for solar zenith 
angles of 21.3 and 58.5 ° at a wavelength 2 = 700 nm. Figures 8 and 9 show the resulting radiances 
and polarization ratios as a function of the zenith viewing angle for upward directions in the 
principal plane. The agreement with the results of Ahmad and Fraser is quite good and it is 
worthwhile to note that, compared with calculations for a black background as boundary 
condition, the computation time increased only by about 2% when taking into account the 
sea-surface reflection. 

CONCLUSIONS 

We consider the radiative transfer of polarized light in a plane-parallel atmosphere bounded by 
a rough ocean surface, with wave slope orientations governed by a distribution function. We use 
Fourier-series decomposition of the radiation field. In order to preserve the separation of the 
problem into a set of independent problems for each Fourier component, the Fresnel matrix for 
reflexion and the distribution function for slope orientations are both decomposed by Fourier-series 
of the azimuth. 

For the Fresnel matrix, this development is derived from a preliminary development in a series 
of Legendre functions or polynomials of the reflection angle. These series need to be computed only 
once and only for a few wavelengths because of the weak spectral variation of the sea-water 
refractive index. The wave-slope distribution depends only on the wind speed. The numerical 
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Fig, 9. The same legend as in Fig. 8 but for the polarization ratio. 
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difficulties encountered in its Fourier-series expansion, which are related to the sharp angular 
feature around the specular direction, have been investigated. Next, the Fourier-series decompo- 
sition of  the reflexion matrix corresponding to the boundary condition is obtained as a mixture 
of  the two developments. 

Accurate restitution of  the reflection matrix generally requires a very large order in the 
Fourier-series expansion. However, separate calculation of the sunglint term, which raises no 
particular problem, allows us to solve the rough ocean-problem with Fourier-series expansion of  
the radiation field of  the same order as for the Lambertian boundary condition. The resulting 
radiation code takes account of reflection on the rough sea-surface with computation times that 
are only few percent longer than for a black background condition. 

Reflection mechanisms, including noticeable polarization effects, are also exhibited by vegetation 
canopies, as shown by Vanderbilt and Grant, 2° or by natural surfaces, as shown by Coulson et al. z~ 
The generalization of our previous scheme to such boundary conditions will be examined in the 
future. 
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APPENDIX 

Complements about the Phase Matrix Development 

The generalized Legendre functions, introduced by Gerfand and Sapiro, 22 are defined by 
d t- , 

p~.n(#) = A~,,(1 _/~)-(,-,,)/2(1 +/~)-(,+,,)/2 dbd_, [(1 _/~)t-m(1 + #)t+,,], (A1) 

where 

( -  1) t - ' '  ( / ~ - -  r e ) l ( / +  n)! 
A~,~ = 2t(l _ m)! , , .  "+m)!(! --n)!" 

These functions are normalized by 2/(21 + 1). 

(A2) 

The Legendre polynomials correspond to m = n = 0 and the associated Legendre functions to 
m = 2 or - 2 and n = 0. All of these functions can be computed by using recurrence relations. 
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The set of  coefficients fit, ~'t, 6 .  and Ej may be derived from the Pu terms of the phase function 
according to 

~, = 2/(2l + 1) Pt.l(/~)Pl(#) d#, (A3) 
-I  

~t = 2/(2l + 1) P3.3(P)Pt(#) d#, (A4) 
-1 

f +1 ~,, = 2 / (2 t  + l )  t,~,~(~)p~(~) d~, (A5) 
-I  

E, = 2/(2t + 1) P3..(.)P,~(.) d . .  (A6) 
-I  

The functions RIs and T~s used in Eq. (8) are given by 

R'~(/~) = [Pl~.2(p) + P'~, _2(#)]/2, (A7) 

r'~(/~) = [Pt~,2(P) + pls, _2(.u)]/2. (A8) 


