
Fortran

i

Fortran

i

About the Tutorial

Fortran was originally developed by a team at IBM in 1957 for scientific calculations.

Later developments made it into a high level programming language. In this tutorial, we

will learn the basic concepts of Fortran and its programming code.

Audience

This tutorial is designed for the readers who wish to learn the basics of Fortran.

Prerequisites

This tutorial is designed for beginners. A general awareness of computer programming

languages is the only prerequisite to make the most of this tutorial.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Fortran

ii

Table of Contents

About the Tutorial ··i

Audience ··i

Prerequisites ··i

Copyright & Disclaimer ···i

Table of Contents ·· ii

1. FORTRAN ─ OVERVIEW ·· 1

Facts about Fortran ···1

2. FORTRAN ─ ENVIRONMENT SETUP ·· 2

Setting up Fortran in Windows ··2

How to Use G95 ··3

3. FORTRAN ─ BASIC SYNTAX ··· 4

A Simple Program in Fortran ···4

Basics ··5

Identifier ···5

Keywords ··6

4. FORTRAN ─ DATA TYPES ·· 8

Integer Type ··8

Real Type ··9

Complex Type·· 10

Logical Type ·· 11

Character Type ·· 11

Implicit Typing ··· 11

Fortran

iii

5. FORTRAN ─ VARIABLES ·· 12

Variable Declaration·· 12

6. FORTRAN ─ CONSTANTS ·· 15

Named Constants and Literals ··· 15

7. FORTRAN ─ OPERATORS ·· 17

Arithmetic Operators ·· 17

Relational Operators ··· 19

Logical Operators ·· 21

Operators Precedence in Fortran ·· 23

8. FORTRAN ─ DECISIONS ·· 26

If…then Construct ··· 27

If… then… else Construct ··· 29

if...else if...else Statement ··· 31

Nested If Construct ··· 33

Select Case Construct ·· 34

Nested Select Case Construct ·· 37

9. FORTRAN ─ LOOPS··· 39

do Loop ··· 40

do-while Loop ··· 43

Nested Loops ·· 45

Loop Control Statements··· 46

Exit Statement ·· 47

Cycle Statement ·· 48

Stop Statement ··· 50

Fortran

iv

10. FORTRAN ─ NUMBERS ··· 51

Integer Type ·· 51

Real Type ·· 52

Complex Type·· 53

The Range, Precision, and Size of Numbers ··· 55

The Kind Specifier ··· 57

11. FORTRAN ─ CHARACTERS ·· 59

Character Declaration ··· 59

Concatenation of Characters ··· 60

Some Character Functions ··· 61

Checking Lexical Order of Characters ·· 64

12. FORTRAN ─ STRINGS ·· 66

String Declaration ··· 66

String Concatenation ··· 67

Extracting Substrings ··· 68

Trimming Strings ··· 70

Left and Right Adjustment of Strings ··· 70

Searching for a Substring in a String ·· 71

13. FORTRAN ─ ARRAYS ··· 73

Declaring Arrays ·· 73

Assigning Values·· 74

Some Array Related Terms ·· 76

Passing Arrays to Procedures ·· 76

Array Sections ··· 79

Array Intrinsic Functions ··· 81

Fortran

v

14. FORTRAN ─ DYNAMIC ARRAYS ··· 99

Use of Data Statement ·· 100

Use of Where Statement ··· 102

15. FORTRAN ─ DERIVED DATA TYPES ··· 104

Defining a Derived data type ··· 104

Accessing Structure Members ··· 104

Array of Structures ·· 106

16. FORTRAN ─ POINTERS ··· 109

Declaring a Pointer Variable ·· 109

Allocating Space for a Pointer ··· 109

Targets and Association ·· 110

17. FORTRAN ─ BASIC INPUT OUTPUT ··· 114

Formatted Input Output ·· 114

The Format Statement ·· 119

18. FORTRAN ─ FILE INPUT OUTPUT ·· 120

Opening and Closing Files ·· 120

19. FORTRAN ─ PROCEDURES ·· 127

Function ·· 127

Subroutine ·· 129

Recursive Procedures ·· 131

Internal Procedures ··· 133

20. FORTRAN ─ MODULES ··· 135

Syntax of a Module ··· 135

Using a Module into your Program·· 135

Fortran

vi

Accessibility of Variables and Subroutines in a Module ··· 137

21. FORTRAN ─ INTRINSIC FUNCTIONS ·· 140

Numeric Functions ·· 140

Mathematical Functions ·· 143

Numeric Inquiry Functions ·· 145

Floating-Point Manipulation Functions ··· 145

Bit Manipulation Functions ··· 146

Character Functions ·· 147

Kind Functions ··· 148

Logical Function ·· 148

22. FORTRAN ─ NUMERIC PRECISION ·· 149

The Kind Attribute ··· 149

Inquiring the Size of Variables ··· 150

Obtaining the Kind Value ·· 151

23. FORTRAN ─ PROGRAM LIBRARIES ·· 153

24. FORTRAN ─ PROGRAMMING STYLE ··· 154

25. FORTRAN ─ DEBUGGING PROGRAM ·· 155

The gdb Debugger ··· 155

The dbx Debugger ··· 156

Fortran

1

Fortran, as derived from Formula Translating System, is a general-purpose, imperative

programming language. It is used for numeric and scientific computing.

Fortran was originally developed by IBM in the 1950s for scientific and engineering

applications. Fortran ruled this programming area for a long time and became very

popular for high performance computing, because.

It supports:

 Numerical analysis and scientific computation

 Structured programming

 Array programming

 Modular programming

 Generic programming

 High performance computing on supercomputers

 Object oriented programming

 Concurrent programming

 Reasonable degree of portability between computer systems

Facts about Fortran

 Fortran was created by a team, led by John Backus at IBM in 1957.

 Initially the name used to be written in all capital, but current standards and

implementations only require the first letter to be capital.

 Fortran stands for FORmula TRANslator.

 Originally developed for scientific calculations, it had very limited support for

character strings and other structures needed for general purpose programming.

 Later extensions and developments made it into a high level programming

language with good degree of portability.

 Original versions, Fortran I, II and III are considered obsolete now.

 Oldest version still in use is Fortran IV, and Fortran 66.

 Most commonly used versions today are : Fortran 77, Fortran 90, and Fortran 95.

 Fortran 77 added strings as a distinct type.

 Fortran 90 added various sorts of threading, and direct array processing.

1. Fortran ─ Overview

Fortran

2

Setting up Fortran in Windows

G95 is the GNU Fortran multi-architechtural compiler, used for setting up Fortran in

Windows. The windows version emulates a unix environment using MingW under

windows. The installer takes care of this and automatically adds g95 to the windows

PATH variable.

You can get the stable version of G95 from here :

2. Fortran ─ Environment Setup

Fortran

3

How to Use G95

During installation, g95 is automatically added to your PATH variable if you select the

option “RECOMMENDED”. This means that you can simply open a new Command Prompt

window and type “g95” to bring up the compiler. Find some basic commands below to

get you started.

Command Description

g95 –c hello.f90 Compiles hello.f90 to an object file named hello.o

g95 hello.f90 Compiles hello.f90 and links it to produce an

executable a.out

g95 -c h1.f90 h2.f90 h3.f90 Compiles multiple source files. If all goes well,

object files h1.o, h2.o and h3.o are created

g95 -o hello h1.f90 h2.f90 h3.f90 Compiles multiple source files and links them

together to an executable file named 'hello'

Command line options for G95:

-c Compile only, do not run the linker.

-o Specify the name of the output file, either an object file or the
executable.

Multiple source and object files can be specified at once. Fortran files are indicated by

names ending in ".f", ".F", ".for", ".FOR", ".f90", ".F90", ".f95", ".F95", ".f03" and ".F03".

Multiple source files can be specified. Object files can be specified as well and will be

linked to form an executable file.

Fortran

4

A Fortran program is made of a collection of program units like a main program,

modules, and external subprograms or procedures.

Each program contains one main program and may or may not contain other program

units. The syntax of the main program is as follows:

program program_name

implicit none

! type declaration statements

! executable statements

end program program_name

A Simple Program in Fortran

Let’s write a program that adds two numbers and prints the result:

program addNumbers

! This simple program adds two numbers

 implicit none

! Type declarations

 real :: a, b, result

! Executable statements

 a = 12.0

 b = 15.0

 result = a + b

 print *, 'The total is ', result

end program addNumbers

When you compile and execute the above program, it produces the following result:

The total is 27.0000000

3. Fortran ─ Basic Syntax

Fortran

5

Please note that:

 All Fortran programs start with the keyword program and end with the

keywordend program, followed by the name of the program.

 The implicit none statement allows the compiler to check that all your variable

types are declared properly. You must always use implicit none at the start of

every program.

 Comments in Fortran are started with the exclamation mark (!), as all characters

after this (except in a character string) are ignored by the compiler.

 The print * command displays data on the screen.

 Indentation of code lines is a good practice for keeping a program readable.

 Fortran allows both uppercase and lowercase letters. Fortran is case-insensitive,
except for string literals.

Basics

The basic character set of Fortran contains:

 the letters A ... Z and a ... z

 the digits 0 ... 9

 the underscore (_) character

 the special characters = : + blank - * / () [] , . $ ' ! " % & ; < > ?

Tokens are made of characters in the basic character set. A token could be a keyword,

an identifier, a constant, a string literal, or a symbol.

Program statements are made of tokens.

Identifier

An identifier is a name used to identify a variable, procedure, or any other user-defined

item. A name in Fortran must follow the following rules:

 It cannot be longer than 31 characters.

 It must be composed of alphanumeric characters (all the letters of the alphabet,

and the digits 0 to 9) and underscores (_).

 First character of a name must be a letter.

 Names are case-insensitive

Fortran

6

Keywords

Keywords are special words, reserved for the language. These reserved words cannot be

used as identifiers or names.

The following table, lists the Fortran keywords:

Non-I/O keywords

allocatable allocate assign assignment block data

call case character common complex

contains continue cycle data deallocate

default do double precision else else if

elsewhere end block data end do end function end if

end interface end module end program end select end subroutine

end type end where entry equivalence exit

external function go to if implicit

in inout integer intent interface

intrinsic kind len logical module

namelist nullify only operator optional

out parameter pause pointer private

program public real recursive result

return save select case stop subroutine

target then type type() use

Where While

Fortran

7

I/O related keywords

backspace close endfile format inquire

pen print read rewind Write

Fortran

8

Fortran provides five intrinsic data types, however, you can derive your own data types

as well. The five intrinsic types are:

 Integer type

 Real type

 Complex type

 Logical type

 Character type

Integer Type

The integer types can hold only integer values. The following example extracts the

largest value that can be held in a usual four byte integer:

program testingInt

implicit none

 integer :: largeval

 print *, huge(largeval)

end program testingInt

When you compile and execute the above program it produces the following result:

2147483647

Note that the huge() function gives the largest number that can be held by the specific

integer data type. You can also specify the number of bytes using the kind specifier. The

following example demonstrates this:

program testingInt

implicit none

 !two byte integer

 integer(kind=2) :: shortval

 !four byte integer

 integer(kind=4) :: longval

4. Fortran ─ Data Types

Fortran

9

 !eight byte integer

 integer(kind=8) :: verylongval

 !sixteen byte integer

 integer(kind=16) :: veryverylongval

 !default integer

 integer :: defval

 print *, huge(shortval)

 print *, huge(longval)

 print *, huge(verylongval)

 print *, huge(veryverylongval)

 print *, huge(defval)

end program testingInt

When you compile and execute the above program, it produces the following result:

32767

2147483647

9223372036854775807

170141183460469231731687303715884105727

2147483647

Real Type

It stores the floating point numbers, such as 2.0, 3.1415, -100.876, etc.

Traditionally there are two different real types, the default real type and double

precisiontype.

However, Fortran 90/95 provides more control over the precision of real and integer

data types through thekindspecifier, which we will study in the chapter on Numbers.

The following example shows the use of real data type:

Fortran

10

program division

implicit none

 ! Define real variables

 real :: p, q, realRes

 ! Define integer variables

 integer :: i, j, intRes

 ! Assigning values

 p = 2.0

 q = 3.0

 i = 2

 j = 3

 ! floating point division

 realRes = p/q

 intRes = i/j

 print *, realRes

 print *, intRes

end program division

When you compile and execute the above program it produces the following result:

0.666666687

0

Complex Type

This is used for storing complex numbers. A complex number has two parts, the real

part and the imaginary part. Two consecutive numeric storage units store these two

parts.

For example, the complex number (3.0, -5.0) is equal to 3.0 – 5.0i

We will discuss Complex types in more detail, in the Numbers chapter.

Fortran

11

Logical Type

There are only two logical values: .true. and .false.

Character Type

The character type stores characters and strings. The length of the string can be

specified by len specifier. If no length is specified, it is 1.

For example,

character (len=40) :: name

name = “Zara Ali”

The expression, name(1:4) would give the substring “Zara”.

Implicit Typing

Older versions of Fortran allowed a feature called implicit typing, i.e., you do not have to

declare the variables before use. If a variable is not declared, then the first letter of its

name will determine its type.

Variable names starting with i, j, k, l, m, or n, are considered to be for integer variable

and others are real variables. However, you must declare all the variables as it is good

programming practice. For that you start your program with the statement:

implicit none

This statement turns off implicit typing.

Fortran

12

A variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable should have a specific type, which determines the size and

layout of the variable's memory; the range of values that can be stored within that

memory; and the set of operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character.

A name in Fortran must follow the following rules:

 It cannot be longer than 31 characters.

 It must be composed of alphanumeric characters (all the letters of the alphabet,

and the digits 0 to 9) and underscores (_).

 First character of a name must be a letter.

 Names are case-insensitive.

Based on the basic types explained in previous chapter, following are the variable types:

Type Description

Integer It can hold only integer values.

Real It stores the floating point numbers.

Complex It is used for storing complex numbers.

Logical It stores logical Boolean values.

Character It stores characters or strings.

Variable Declaration

Variables are declared at the beginning of a program (or subprogram) in a type

declaration statement.

Syntax for variable declaration is as follows:

type-specifier :: variable_name

5. Fortran ─ Variables

Fortran

13

For example,

integer :: total

real :: average

complex :: cx

logical :: done

character(len=80) :: message ! a string of 80 characters

Later you can assign values to these variables, like,

total = 20000

average = 1666.67

done = .true.

message = “A big Hello from Tutorials Point”

cx = (3.0, 5.0) ! cx = 3.0 + 5.0i

You can also use the intrinsic function cmplx, to assign values to a complex variable:

cx = cmplx (1.0/2.0, -7.0) ! cx = 0.5 – 7.0i

cx = cmplx (x, y) ! cx = x + yi

Example

The following example demonstrates variable declaration, assignment and display on

screen:

program variableTesting

implicit none

 ! declaring variables

 integer :: total

 real :: average

 complex :: cx

 logical :: done

 character(len=80) :: message ! a string of 80 characters

 !assigning values

 total = 20000

 average = 1666.67

 done = .true.

Fortran

14

 message = "A big Hello from Tutorials Point"

 cx = (3.0, 5.0) ! cx = 3.0 + 5.0i

 Print *, total

 Print *, average

 Print *, cx

 Print *, done

 Print *, message

end program variableTesting

When the above code is compiled and executed, it produces the following result:

20000

1666.67004

(3.00000000, 5.00000000)

T

A big Hello from Tutorials Point

Fortran

15

The constants refer to the fixed values that the program cannot alter during its

execution. These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating

constant, a character constant, a complex constant, or a string literal. There are only

two logical constants : .true. and .false.

The constants are treated just like regular variables, except that their values cannot be

modified after their definition.

Named Constants and Literals

There are two types of constants:

 Literal constants

 Named constants

A literal constant have a value, but no name.

For example, following are the literal constants:

Type Example

Integer constants 0 1 -1 300 123456789

Real constants 0.0 1.0 -1.0 123.456 7.1E+10 -52.715E-30

Complex constants (0.0, 0.0) (-123.456E+30, 987.654E-29)

Logical constants .true. .false.

Character constants "PQR" "a" "123'abc$%#@!"

" a quote "" "

'PQR' 'a' '123"abc$%#@!'

' an apostrophe '' '

A named constant has a value as well as a name.

Named constants should be declared at the beginning of a program or procedure, just

like a variable type declaration, indicating its name and type. Named constants are

declared with the parameter attribute. For example,

6. Fortran ─ Constants

Fortran

16

real, parameter :: pi = 3.1415927

Example

The following program calculates the displacement due to vertical motion under gravity.

program gravitationalDisp

! this program calculates vertical motion under gravity

implicit none

 ! gravitational acceleration

 real, parameter :: g = 9.81

 ! variable declaration

 real :: s ! displacement

 real :: t ! time

 real :: u ! initial speed

 ! assigning values

 t = 5.0

 u = 50

 ! displacement

 s = u * t - g * (t**2) / 2

 ! output

 print *, "Time = ", t

 print *, 'Displacement = ',s

end program gravitationalDisp

When the above code is compiled and executed, it produces the following result:

Time = 5.00000000

Displacement = 127.374992

Fortran

17

An operator is a symbol that tells the compiler to perform specific mathematical or

logical manipulations. Fortran provides the following types of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

Let us look at all these types of operators one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by Fortran. Assume

variable Aholds 5 and variable B holds 3 then:

Operator Description Example

+ Addition Operator, adds two operands. A + B will give 8

- Subtraction Operator, subtracts second operand
from the first.

A - B will give 2

* Multiplication Operator, multiplies both operands. A * B will give 15

/ Division Operator, divides numerator by de-
numerator.

A / B will give 1

** Exponentiation Operator, raises one operand to the

power of the other.

A ** B will give 125

Example

Try the following example to understand all the arithmetic operators available in Fortran:

program arithmeticOp

! this program performs arithmetic calculation

implicit none

 ! variable declaration

7. Fortran ─ Operators

Fortran

18

 integer :: a, b, c

 ! assigning values

 a = 5

 b = 3

 ! Exponentiation

 c = a ** b

 ! output

 print *, "c = ", c

 ! Multiplication

 c = a * b

 ! output

 print *, "c = ", c

 ! Division

 c = a / b

 ! output

 print *, "c = ", c

 ! Addition

 c = a + b

 ! output

 print *, "c = ", c

 ! Subtraction

 c = a - b

 ! output

 print *, "c = ", c

Fortran

19

end program arithmeticOp

When you compile and execute the above program, it produces the following result:

c = 125

c = 15

c = 1

c = 8

c = 2

Relational Operators

Following table shows all the relational operators supported by Fortran. Assume

variable Aholds 10 and variable B holds 20, then:

Operator Equivalent Description Example

== .eq. Checks if the values of two operands are

equal or not, if yes then condition becomes

true.

(A == B) is
not true.

/= .ne. Checks if the values of two operands are

equal or not, if values are not equal then
condition becomes true.

(A != B) is
true.

> .gt. Checks if the value of left operand is greater

than the value of right operand, if yes then
condition becomes true.

(A > B) is
not true.

< .lt. Checks if the value of left operand is less

than the value of right operand, if yes then
condition becomes true.

(A < B) is

true.

>= .ge. Checks if the value of left operand is greater

than or equal to the value of right operand, if

yes then condition becomes true.

(A >= B) is
not true.

<= .le. Checks if the value of left operand is less

than or equal to the value of right operand, if
yes then condition becomes true.

(A <= B) is
true.

Example

Fortran

20

Try the following example to understand all the logical operators available in Fortran:

program logicalOp

! this program checks logical operators

implicit none

 ! variable declaration

 logical :: a, b

 ! assigning values

 a = .true.

 b = .false.

 if (a .and. b) then

 print *, "Line 1 - Condition is true"

 else

 print *, "Line 1 - Condition is false"

 end if

 if (a .or. b) then

 print *, "Line 2 - Condition is true"

 else

 print *, "Line 2 - Condition is false"

 end if

 ! changing values

 a = .false.

 b = .true.

 if (.not.(a .and. b)) then

 print *, "Line 3 - Condition is true"

 else

 print *, "Line 3 - Condition is false"

 end if

 if (b .neqv. a) then

Fortran

21

 print *, "Line 4 - Condition is true"

 else

 print *, "Line 4 - Condition is false"

 end if

 if (b .eqv. a) then

 print *, "Line 5 - Condition is true"

 else

 print *, "Line 5 - Condition is false"

 end if

end program logicalOp

When you compile and execute the above program it produces the following result:

Line 1 - Condition is false

Line 2 - Condition is true

Line 3 - Condition is true

Line 4 - Condition is true

Line 5 - Condition is false

Logical Operators

Logical operators in Fortran work only on logical values .true. and .false.

The following table shows all the logical operators supported by Fortran. Assume variable

A holds .true. and variable B holds .false. , then:

Operator Description Example

.and. Called Logical AND operator. If both the

operands are non-zero, then condition becomes

true.

(A .and. B) is false.

.or. Called Logical OR Operator. If any of the two

operands is non-zero, then condition becomes

true.

(A .or. B) is true.

.not. Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true

then Logical NOT operator will make false.

!(A .and. B) is true.

.eqv. Called Logical EQUIVALENT Operator. Used to

check equivalence of two logical values.

(A .eqv. B) is false.

Fortran

22

.neqv. Called Logical NON-EQUIVALENT Operator. Used

to check non-equivalence of two logical values.

(A .neqv. B) is true.

Example

Try the following example to understand all the logical operators available in Fortran:

program logicalOp

! this program checks logical operators

implicit none

 ! variable declaration

 logical :: a, b

 ! assigning values

 a = .true.

 b = .false.

 if (a .and. b) then

 print *, "Line 1 - Condition is true"

 else

 print *, "Line 1 - Condition is false"

 end if

 if (a .or. b) then

 print *, "Line 2 - Condition is true"

 else

 print *, "Line 2 - Condition is false"

 end if

 ! changing values

 a = .false.

 b = .true.

 if (.not.(a .and. b)) then

 print *, "Line 3 - Condition is true"

 else

 print *, "Line 3 - Condition is false"

 end if

Fortran

23

 if (b .neqv. a) then

 print *, "Line 4 - Condition is true"

 else

 print *, "Line 4 - Condition is false"

 end if

 if (b .eqv. a) then

 print *, "Line 5 - Condition is true"

 else

 print *, "Line 5 - Condition is false"

 end if

end program logicalOp

When you compile and execute the above program it produces the following result:

Line 1 - Condition is false

Line 2 - Condition is true

Line 3 - Condition is true

Line 4 - Condition is true

Line 5 - Condition is false

Operators Precedence in Fortran

Operator precedence determines the grouping of terms in an expression. This affects

how an expression is evaluated. Certain operators have higher precedence than others;

for example, the multiplication operator has higher precedence than the addition

operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has

higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with

the lowest appear at the bottom. Within an expression, higher precedence operators will

be evaluated first.

Category Operator Associativity

Logical NOT and negative sign .not. (-) Left to right

Fortran

24

Exponentiation ** Left to right

Multiplicative * / Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND .and. Left to right

Logical OR .or. Left to right

Assignment = Right to left

Example

Try the following example to understand the operator precedence in Fortran:

program precedenceOp

! this program checks logical operators

implicit none

 ! variable declaration

 integer :: a, b, c, d, e

 ! assigning values

 a = 20

 b = 10

 c = 15

 d = 5

 e = (a + b) * c / d ! (30 * 15) / 5

 print *, "Value of (a + b) * c / d is : ", e

Fortran

25

 e = ((a + b) * c) / d ! (30 * 15) / 5

 print *, "Value of ((a + b) * c) / d is : ", e

 e = (a + b) * (c / d); ! (30) * (15/5)

 print *, "Value of (a + b) * (c / d) is : ", e

 e = a + (b * c) / d; ! 20 + (150/5)

 print *, "Value of a + (b * c) / d is : " , e

end program precedenceOp

When you compile and execute the above program it produces the following result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

Fortran

26

Decision making structures require that the programmer specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be

executed, if the condition is determined to be true, and optionally, other statements to

be executed if the condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages:

Fortran provides the following types of decision making constructs.

Statement Description

If… then construct An if… then… end if statement consists of a logical
expression followed by one or more statements.

If… then...else construct An if… then statement can be followed by an optional else

statement, which executes when the logical expression is

false.

8. Fortran ─ Decisions

http://localhost/fortran/If_then_construct.htm
http://localhost/fortran/If_then_else_construct.htm

Fortran

27

nested if construct You can use one if or else if statement inside
another if or else if statement(s).

select case construct A select case statement allows a variable to be tested for
equality against a list of values.

nested select case
construct

You can use one select case statement inside another select
case statement(s).

If…then Construct

An if… then statement consists of a logical expression followed by one or more

statements and terminated by an end if statement.

Syntax

The basic syntax of an if… then statement is:

if (logical expression) then

 statement

end if

However, you can give a name to the if block, then the syntax of the named if

statement would be, like:

[name:] if (logical expression) then

 ! various statements

 . . .

end if [name]

If the logical expression evaluates to true, then the block of code inside the if…then

statement will be executed. If logical expression evaluates to false, then the first set of

code after the end if statement will be executed.

http://localhost/fortran/nested_if_construct.htm
http://localhost/fortran/select_case_construct.htm
http://localhost/fortran/nested_select_case_construct.htm
http://localhost/fortran/nested_select_case_construct.htm

Fortran

28

Flow Diagram

Example 1

program ifProg

implicit none

 ! local variable declaration

 integer :: a = 10

 ! check the logical condition using if statement

 if (a < 20) then

 ! if condition is true then print the following

 print*, "a is less than 20"

 end if

 print*, "value of a is ", a

end program ifProg

Fortran

29

When the above code is compiled and executed, it produces the following result:

a is less than 20

 value of a is 10

Example 2

This example demonstrates a named if block:

program markGradeA

implicit none

 real :: marks

 ! assign marks

 marks = 90.4

 ! use an if statement to give grade

 gr: if (marks > 90.0) then

 print *, " Grade A"

 end if gr

 end program markGradeA

When the above code is compiled and executed, it produces the following result:

Grade A

If… then… else Construct

An if… then statement can be followed by an optional else statement, which executes

when the logical expression is false.

Syntax

The basic syntax of an if… then… else statement is:

if (logical expression) then

 statement(s)

else

 other_statement(s)

end if

Fortran

30

However, if you give a name to the if block, then the syntax of the named if-else

statement would be, like:

[name:] if (logical expression) then

 ! various statements

 . . .

 else

 !other statement(s)

 . . .

end if [name]

If the logical expression evaluates to true, then the block of code inside the if…then

statement will be executed, otherwise the block of code inside the else block will be

executed.

Flow Diagram

Example

program ifElseProg

implicit none

 ! local variable declaration

 integer :: a = 100

Fortran

31

 ! check the logical condition using if statement

 if (a < 20) then

 ! if condition is true then print the following

 print*, "a is less than 20"

 else

 print*, "a is not less than 20"

 end if

 print*, "value of a is ", a

end program ifElseProg

When the above code is compiled and executed, it produces the following result:

a is not less than 20

value of a is 100

if...else if...else Statement

An if statement construct can have one or more optional else-if constructs. When

the ifcondition fails, the immediately followed else-if is executed. When the else-if also

fails, its successor else-if statement (if any) is executed, and so on.

The optional else is placed at the end and it is executed when none of the above

conditions hold true.

 All else statements (else-if and else) are optional.

 else-if can be used one or more times

 else must always be placed at the end of construct and should appear only once.

Syntax

The syntax of an if...else if...else statement is:

[name:]

if (logical expression 1) then

 ! block 1

else if (logical expression 2) then

 ! block 2

else if (logical expression 3) then

 ! block 3

else

Fortran

32

 ! block 4

end if [name]

Example

program ifElseIfElseProg

implicit none

 ! local variable declaration

 integer :: a = 100

 ! check the logical condition using if statement

 if(a == 10) then

 ! if condition is true then print the following

 print*, "Value of a is 10"

 else if(a == 20) then

 ! if else if condition is true

 print*, "Value of a is 20"

 else if(a == 30) then

 ! if else if condition is true

 print*, "Value of a is 30"

 else

 ! if none of the conditions is true

 print*, "None of the values is matching"

 end if

 print*, "exact value of a is ", a

end program ifElseIfElseProg

When the above code is compiled and executed, it produces the following result:

None of the values is matching

exact value of a is 100

Fortran

33

Nested If Construct

You can use one if or else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows:

if (logical_expression 1) then

 !Executes when the boolean expression 1 is true

 …

 if(logical_expression 2)then

 ! Executes when the boolean expression 2 is true

 …

 end if

end if

Example

program nestedIfProg

implicit none

 ! local variable declaration

 integer :: a = 100, b= 200

 ! check the logical condition using if statement

 if(a == 100) then

 ! if condition is true then check the following

 if(b == 200) then

 ! if inner if condition is true

 print*, "Value of a is 100 and b is 200"

 end if

 end if

 print*, "exact value of a is ", a

 print*, "exact value of b is ", b

end program nestedIfProg

Fortran

34

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200

exact value of a is 100

exact value of b is 200

Select Case Construct

A select case statement allows a variable to be tested for equality against a list of

values. Each value is called a case, and the variable being selected on is checked for

each select case.

Syntax

The syntax for the select case construct is as follows:

[name:] select case (expression)

 case (selector1)

 ! some statements

 ... case (selector2)

 ! other statements

 ...

 case default

 ! more statements

 ...

end select [name]

The following rules apply to a select statement:

 The logical expression used in a select statement could be logical, character, or

integer (but not real) expression.

 You can have any number of case statements within a select. Each case is

followed by the value to be compared to and could be logical, character, or

integer (but not real) expression and determines which statements are executed.

 The constant-expression for a case, must be the same data type as the variable

in the select, and it must be a constant or a literal.

 When the variable being selected on, is equal to a case, the statements following

that case will execute until the next case statement is reached.

 The case default block is executed if the expression in select case (expression)

does not match any of the selectors.

Fortran

35

Flow Diagram

Example 1

program selectCaseProg

implicit none

 ! local variable declaration

 character :: grade = 'B'

 select case (grade)

 case ('A')

 print*, "Excellent!"

 case ('B')

Fortran

36

 case ('C')

 print*, "Well done"

 case ('D')

 print*, "You passed"

 case ('F')

 print*, "Better try again"

 case default

 print*, "Invalid grade"

 end select

 print*, "Your grade is ", grade

end program selectCaseProg

When the above code is compiled and executed, it produces the following result:

Your grade is B

Specifying a Range for the Selector

You can specify a range for the selector, by specifying a lower and upper limit separated

by a colon:

case (low:high)

The following example demonstrates this:

Example 2

program selectCaseProg

implicit none

 ! local variable declaration

 integer :: marks = 78

 select case (marks)

 case (91:100)

 print*, "Excellent!"

Fortran

37

 case (81:90)

 print*, "Very good!"

 case (71:80)

 print*, "Well done!"

 case (61:70)

 print*, "Not bad!"

 case (41:60)

 print*, "You passed!"

 case (:40)

 print*, "Better try again!"

 case default

 print*, "Invalid marks"

 end select

 print*, "Your marks is ", marks

end program selectCaseProg

When the above code is compiled and executed, it produces the following result:

Well done!

Your marks is 78

Nested Select Case Construct

You can use one select case statement inside another select case statement(s).

Syntax

select case(a)

 case (100)

 print*, "This is part of outer switch", a

 select case(b)

Fortran

38

 case (200)

 print*, "This is part of inner switch", a

 end select

 end select

Example

program nestedSelectCase

 ! local variable definition

 integer :: a = 100

 integer :: b = 200

 select case(a)

 case (100)

 print*, "This is part of outer switch", a

 select case(b)

 case (200)

 print*, "This is part of inner switch", a

 end select

 end select

 print*, "Exact value of a is : ", a

 print*, "Exact value of b is : ", b

end program nestedSelectCase

When the above code is compiled and executed, it produces the following result:

This is part of outer switch 100

This is part of inner switch 100

Exact value of a is : 100

Exact value of b is : 200

Fortran

39

There may be a situation, when you need to execute a block of code several number of

times. In general, statements are executed sequentially : The first statement in a

function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming

languages:

Fortran provides the following types of loop constructs to handle looping requirements.

Click the following links to check their detail.

Loop Type Description

do loop This construct enables a statement, or a series of statements, to be

carried out iteratively, while a given condition is true.

do while loop Repeats a statement or group of statements while a given condition is

true. It tests the condition before executing the loop body.

nested loops You can use one or more loop construct inside any other loop

construct.

9. Fortran ─ Loops

Fortran

40

do Loop

The do loop construct enables a statement, or a series of statements, to be carried out

iteratively, while a given condition is true.

Syntax

The general form of the do loop is:

do var = start, stop [,step]

 ! statement(s)

 …

end do

Where,

 the loop variable var should be an integer

 start is initial value

 stop is the final value

 step is the increment, if this is omitted, then the variable var is increased by

unity

For example:

! compute factorials

do n = 1, 10

 nfact = nfact * n

 ! printing the value of n and its factorial

 print*, n, " ", nfact

end do

Flow Diagram

Here is the flow of control for the do loop construct:

 The initial step is executed first, and only once. This step allows you to declare

and initialize any loop control variables. In our case, the variable var is initialised

with the value start.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it

is false, the body of the loop does not execute and flow of control jumps to the

next statement just after the loop. In our case, the condition is that the variable

var reaches its final value stop.

Fortran

41

 After the body of the loop executes, the flow of control jumps back up to the

increment statement. This statement allows you to update the loop control

variable var.

 The condition is now evaluated again. If it is true, the loop executes and the

process repeats itself (body of loop, then increment step, and then again

condition). After the condition becomes false, the loop terminates.

Example 1

This example prints the numbers 11 to 20:

program printNum

implicit none

 ! define variables

 integer :: n

 do n = 11, 20

 ! printing the value of n

Fortran

42

 print*, n

 end do

end program printNum

When the above code is compiled and executed, it produces the following result:

11

12

13

14

15

16

17

18

19

20

Example 2

This program calculates the factorials of numbers 1 to 10:

program factorial

implicit none

 ! define variables

 integer :: nfact = 1

 integer :: n

 ! compute factorials

 do n = 1, 10

 nfact = nfact * n

 ! print values

 print*, n, " ", nfact

 end do

end program factorial

Fortran

43

When the above code is compiled and executed, it produces the following result:

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

do-while Loop

It repeats a statement or a group of statements while a given condition is true. It tests

the condition before executing the loop body.

Syntax

do while (logical expr)

 statements

end do

Flow Diagram

Fortran

44

Example

program factorial

implicit none

 ! define variables

 integer :: nfact = 1

 integer :: n = 1

 ! compute factorials

 do while (n <= 10)

 nfact = nfact * n

 n = n + 1

 print*, n, " ", nfact

 end do

end program factorial

When the above code is compiled and executed, it produces the following result:

2 1

3 2

4 6

5 24

6 120

7 720

8 5040

9 40320

10 362880

11 3628800

Fortran

45

Nested Loops

You can use one or more loop construct inside any another loop construct. You can also

put labels on loops.

Syntax

iloop: do i = 1, 3

 print*, "i: ", i

 jloop: do j = 1, 3

 print*, "j: ", j

 kloop: do k = 1, 3

 print*, "k: ", k

 end do kloop

 end do jloop

end do iloop

Example

program nestedLoop

implicit none

 integer:: i, j, k

 iloop: do i = 1, 3

 jloop: do j = 1, 3

 kloop: do k = 1, 3

 print*, "(i, j, k): ", i, j, k

 end do kloop

 end do jloop

 end do iloop

end program nestedLoop

Fortran

46

When the above code is compiled and executed, it produces the following result:

(i, j, k): 1 1 1

(i, j, k): 1 1 2

(i, j, k): 1 1 3

(i, j, k): 1 2 1

(i, j, k): 1 2 2

(i, j, k): 1 2 3

(i, j, k): 1 3 1

(i, j, k): 1 3 2

(i, j, k): 1 3 3

(i, j, k): 2 1 1

(i, j, k): 2 1 2

(i, j, k): 2 1 3

(i, j, k): 2 2 1

(i, j, k): 2 2 2

(i, j, k): 2 2 3

(i, j, k): 2 3 1

(i, j, k): 2 3 2

(i, j, k): 2 3 3

(i, j, k): 3 1 1

(i, j, k): 3 1 2

(i, j, k): 3 1 3

(i, j, k): 3 2 1

(i, j, k): 3 2 2

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

Fortran supports the following control statements. Click the following links to check their

detail.

Control
Statement

Description

exit If the exit statement is executed, the loop is exited, and the

execution of the program continues at the first executable statement

http://localhost/fortran/fortran_exit.htm

Fortran

47

after the end do statement.

cycle If a cycle statement is executed, the program continues at the start
of the next iteration.

stop If you wish execution of your program to stop, you can insert a stop

statement

Exit Statement

Exit statement terminates the loop or select case statement, and transfers execution to

the statement immediately following the loop or select.

Flow Diagram

Example

program nestedLoop

implicit none

integer:: i, j, k

 iloop: do i = 1, 3

 jloop: do j = 1, 3

 kloop: do k = 1, 3

 print*, "(i, j, k): ", i, j, k

http://localhost/fortran/fortran_cycle.htm
http://localhost/fortran/fortran_stop.htm

Fortran

48

 if (k==2) then

 exit jloop

 end if

 end do kloop

 end do jloop

 end do iloop

end program nestedLoop

When the above code is compiled and executed, it produces the following result:

(i, j, k): 1 1 1

(i, j, k): 1 1 2

(i, j, k): 2 1 1

(i, j, k): 2 1 2

(i, j, k): 3 1 1

(i, j, k): 3 1 2

Cycle Statement

The cycle statement causes the loop to skip the remainder of its body, and immediately

retest its condition prior to reiterating.

Flow diagram

Example

Fortran

49

program cycle_example

implicit none

 integer :: i

 do i = 1, 20

 if (i == 5) then

 cycle

 end if

 print*, i

 end do

end program cycle_example

When the above code is compiled and executed, it produces the following result:

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fortran

50

Stop Statement

If you wish execution of your program to cease, you can insert a stop statement.

Example

program stop_example

implicit none

 integer :: i

 do i = 1, 20

 if (i == 5) then

 stop

 end if

 print*, i

 end do

end program stop_example

When the above code is compiled and executed, it produces the following result:

1

2

3

4

Fortran

51

Numbers in Fortran are represented by three intrinsic data types:

 Integer type

 Real type

 Complex type

Integer Type

The integer types can hold only integer values. The following example extracts the

largest value that could be hold in a usual four byte integer:

program testingInt

implicit none

 integer :: largeval

 print *, huge(largeval)

end program testingInt

When you compile and execute the above program it produces the following result:

2147483647

Please note that the huge() function gives the largest number that can be held by the

specific integer data type. You can also specify the number of bytes using

the kind specifier. The following example demonstrates this:

program testingInt

implicit none

 !two byte integer

 integer(kind=2) :: shortval

 !four byte integer

 integer(kind=4) :: longval

 !eight byte integer

 integer(kind=8) :: verylongval

10. Fortran ─ Numbers

Fortran

52

 !sixteen byte integer

 integer(kind=16) :: veryverylongval

 !default integer

 integer :: defval

 print *, huge(shortval)

 print *, huge(longval)

 print *, huge(verylongval)

 print *, huge(veryverylongval)

 print *, huge(defval)

end program testingInt

When you compile and execute the above program it produces the following result:

32767

2147483647

9223372036854775807

170141183460469231731687303715884105727

2147483647

Real Type

It stores the floating point numbers, such as 2.0, 3.1415, -100.876, etc.

Traditionally there were two different real types : the default real type and double

precision type.

However, Fortran 90/95 provides more control over the precision of real and integer

data types through the kind specifier, which we will study shortly.

The following example shows the use of real data type:

program division

implicit none

 ! Define real variables

 real :: p, q, realRes

Fortran

53

 ! Define integer variables

 integer :: i, j, intRes

 ! Assigning values

 p = 2.0

 q = 3.0

 i = 2

 j = 3

 ! floating point division

 realRes = p/q

 intRes = i/j

 print *, realRes

 print *, intRes

end program division

When you compile and execute the above program it produces the following result:

0.666666687

0

Complex Type

This is used for storing complex numbers. A complex number has two parts : the real

part and the imaginary part. Two consecutive numeric storage units store these two

parts.

For example, the complex number (3.0, -5.0) is equal to 3.0 – 5.0i

The generic function cmplx() creates a complex number. It produces a result who’s real

and imaginary parts are single precision, irrespective of the type of the input arguments.

program createComplex

implicit none

 integer :: i = 10

 real :: x = 5.17

 print *, cmplx(i, x)

end program createComplex

Fortran

54

When you compile and execute the above program, it produces the following result:

(10.0000000, 5.17000008)

The following program demonstrates complex number arithmetic:

program ComplexArithmatic

implicit none

 complex, parameter :: i = (0, 1) ! sqrt(-1)

 complex :: x, y, z

 x = (7, 8);

 y = (5, -7)

 write(*,*) i * x * y

 z = x + y

 print *, "z = x + y = ", z

 z = x - y

 print *, "z = x - y = ", z

 z = x * y

 print *, "z = x * y = ", z

 z = x / y

 print *, "z = x / y = ", z

end program ComplexArithmatic

When you compile and execute the above program it produces the following result:

(9.00000000, 91.0000000)

z = x + y = (12.0000000, 1.00000000)

z = x - y = (2.00000000, 15.0000000)

z = x * y = (91.0000000, -9.00000000)

z = x / y = (-0.283783793, 1.20270276)

Fortran

55

The Range, Precision, and Size of Numbers

The range on integer numbers, the precision and the size of floating point numbers

depends on the number of bits allocated to the specific data type.

The following table displays the number of bits and range for integers:

Number

of bits

Maximum value Reason

64 9,223,372,036,854,774,807 (2**63)–1

32 2,147,483,647 (2**31)–1

The following table displays the number of bits, smallest and largest value, and the

precision for real numbers.

Number

of bits

Largest value Smallest value Precision

64 0.8E+308 0.5E–308 15–18

32 1.7E+38 0.3E–38 6-9

The following examples demonstrate this:

program rangePrecision

implicit none

 real:: x, y, z

 x = 1.5e+40

 y = 3.73e+40

 z = x * y

 print *, z

end program rangePrecision

Fortran

56

When you compile and execute the above program it produces the following result:

x = 1.5e+40

 1

Error : Real constant overflows its kind at (1)

main.f95:5.12:

y = 3.73e+40

 1

Error : Real constant overflows its kind at (1)

Now let us use a smaller number:

program rangePrecision

implicit none

 real:: x, y, z

 x = 1.5e+20

 y = 3.73e+20

 z = x * y

 print *, z

 z = x/y

 print *, z

end program rangePrecision

When you compile and execute the above program it produces the following result:

Infinity

0.402144760

Now let’s watch underflow:

program rangePrecision

implicit none

 real:: x, y, z

 x = 1.5e-30

 y = 3.73e-60

Fortran

57

 z = x * y

 print *, z

 z = x/y

 print *, z

end program rangePrecision

When you compile and execute the above program, it produces the following result:

y = 3.73e-60

 1

Warning : Real constant underflows its kind at (1)

Executing the program....

$demo

0.00000000E+00

Infinity

The Kind Specifier

In scientific programming, one often needs to know the range and precision of data of

the hardware platform on which the work is being done.

The intrinsic function kind() allows you to query the details of the hardware’s data

representations before running a program.

program kindCheck

implicit none

 integer :: i

 real :: r

 complex :: cp

 print *,' Integer ', kind(i)

 print *,' Real ', kind(r)

 print *,' Complex ', kind(cp)

end program kindCheck

When you compile and execute the above program, it produces the following result:

Fortran

58

Integer 4

Real 4

Complex 4

You can also check the kind of all data types:

program checkKind

implicit none

 integer :: i

 real :: r

 character*1 :: c

 logical :: lg

 complex :: cp

 print *,' Integer ', kind(i)

 print *,' Real ', kind(r)

 print *,' Complex ', kind(cp)

 print *,' Character ', kind(c)

 print *,' Logical ', kind(lg)

end program checkKind

When you compile and execute the above program it produces the following result:

Integer 4

Real 4

Complex 4

Character 1

Logical 4

Fortran

59

The Fortran language can treat characters as single character or contiguous strings.

Characters could be any symbol taken from the basic character set, i.e., from the letters,

the decimal digits, the underscore, and 21 special characters.

A character constant is a fixed valued character string.

The intrinsic data type character stores characters and strings. The length of the string

can be specified by len specifier. If no length is specified, it is 1. You can refer individual

characters within a string referring by position; the left most character is at position 1.

Character Declaration

Declaring a character type data is same as other variables:

type-specifier :: variable_name

For example,

character :: reply, sex

you can assign a value like,

reply = ‘N’

sex = ‘F’

The following example demonstrates declaration and use of character data type:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=25)::greetings

 title = 'Mr. '

 firstname = 'Rowan '

 surname = 'Atkinson'

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is ', title, firstname, surname

11. Fortran ─ Characters

Fortran

60

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Concatenation of Characters

The concatenation operator //, concatenates characters.

The following example demonstrates this:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=40):: name

 character(len=25)::greetings

 title = 'Mr. '

 firstname = 'Rowan '

 surname = 'Atkinson'

 name = title//firstname//surname

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is ', name

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr.Rowan Atkinson

A big hello from Mr.Bean

Fortran

61

Some Character Functions

The following table shows some commonly used character functions along with the

description:

Function Description

len(string) It returns the length of a character string

index(string,sustring) It finds the location of a substring in another string, returns 0

if not found.

achar(int) It converts an integer into a character

iachar(c) It converts a character into an integer

trim(string) It returns the string with the trailing blanks removed.

scan(string, chars) It searches the "string" from left to right (unless back=.true.)

for the first occurrence of any character contained in "chars".

It returns an integer giving the position of that character, or

zero if none of the characters in "chars" have been found.

verify(string, chars) It scans the "string" from left to right (unless back=.true.) for

the first occurrence of any character not contained in "chars".

It returns an integer giving the position of that character, or

zero if only the characters in "chars" have been found

adjustl(string) It left justifies characters contained in the "string"

adjustr(string) It right justifies characters contained in the "string"

len_trim(string) It returns an integer equal to the length of "string"

(len(string)) minus the number of trailing blanks

repeat(string,ncopy) It returns a string with length equal to "ncopy" times the

length of "string", and containing "ncopy" concatenated copies

of "string"

Fortran

62

Example 1

This example shows the use of the index function:

program testingChars

implicit none

 character (80) :: text

 integer :: i

 text = 'The intrinsic data type character stores characters and strings.'

 i=index(text,'character')

 if (i /= 0) then

 print *, ' The word character found at position ',i

 print *, ' in text: ', text

 end if

end program testingChars

When you compile and execute the above program it produces the following result:

The word character found at position 25

in text : The intrinsic data type character stores characters and strings.

Example 2

This example demonstrates the use of the trim function:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=25)::greetings

 title = 'Mr.'

 firstname = 'Rowan'

 surname = 'Atkinson'

 print *, 'Here is', title, firstname, surname

Fortran

63

 print *, 'Here is', trim(title),' ',trim(firstname),' ', trim(surname)

end program hello

When you compile and execute the above program, it produces the following result:

Here is Mr. Rowan Atkinson

Here is Mr. Rowan Atkinson

Example 3

This example demonstrates the use of achar function

program testingChars

implicit none

 character:: ch

 integer:: i

 do i=65, 90

 ch = achar(i)

 print*, i, ' ', ch

 end do

end program testingChars

When you compile and execute the above program it produces the following result:

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

Fortran

64

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

Checking Lexical Order of Characters

The following functions determine the lexical sequence of characters:

Function Description

lle(char, char) Compares whether the first character is lexically less than or equal to

the second

lge(char, char) Compares whether the first character is lexically greater than or

equal to the second

lgt(char, char) Compares whether the first character is lexically greater than the

second

llt(char, char) Compares whether the first character is lexically less than the second

Example 4

The following function demonstrates the use:

Fortran

65

program testingChars

implicit none

 character:: a, b, c

 a = 'A'

 b = 'a'

 c = 'B'

 if(lgt(a,b)) then

 print *, 'A is lexically greater than a'

 else

 print *, 'a is lexically greater than A'

 end if

 if(lgt(a,c)) then

 print *, 'A is lexically greater than B'

 else

 print *, 'B is lexically greater than A'

 end if

 if(llt(a,b)) then

 print *, 'A is lexically less than a'

 end if

 if(llt(a,c)) then

 print *, 'A is lexically less than B'

 end if

end program testingChars

When you compile and execute the above program it produces the following result:

a is lexically greater than A

B is lexically greater than A

A is lexically less than a

A is lexically less than B

Fortran

66

The Fortran language can treat characters as single character or contiguous strings.

A character string may be only one character in length, or it could even be of zero

length. In Fortran, character constants are given between a pair of double or single

quotes.

The intrinsic data type character stores characters and strings. The length of the string

can be specified by len specifier. If no length is specified, it is 1. You can refer

individual characters within a string referring by position; the left most character is at

position 1.

String Declaration

Declaring a string is same as other variables:

type-specifier :: variable_name

For example,

Character(len=20) :: firstname, surname

you can assign a value like,

character (len=40) :: name

name = “Zara Ali”

The following example demonstrates declaration and use of character data type:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=25)::greetings

 title = 'Mr.'

 firstname = 'Rowan'

 surname = 'Atkinson'

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is', title, firstname, surname

12. Fortran ─ Strings

Fortran

67

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

String Concatenation

The concatenation operator //, concatenates strings.

The following example demonstrates this:

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=40):: name

 character(len=25)::greetings

 title = 'Mr.'

 firstname = 'Rowan'

 surname = 'Atkinson'

 name = title//firstname//surname

 greetings = 'A big hello from Mr. Beans'

 print *, 'Here is', name

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Fortran

68

Extracting Substrings

In Fortran, you can extract a substring from a string by indexing the string, giving the

start and the end index of the substring in a pair of brackets. This is called extent

specifier.

The following example shows how to extract the substring ‘world’ from the string ‘hello

world’:

program subString

 character(len=11)::hello

 hello = "Hello World"

 print*, hello(7:11)

end program subString

When you compile and execute the above program it produces the following result:

World

Example

The following example uses the date_and_time function to give the date and time

string. We use extent specifiers to extract the year, date, month, hour, minutes and

second information separately.

program datetime

implicit none

 character(len = 8) :: dateinfo ! ccyymmdd

 character(len = 4) :: year, month*2, day*2

 character(len = 10) :: timeinfo ! hhmmss.sss

 character(len = 2) :: hour, minute, second*6

 call date_and_time(dateinfo, timeinfo)

 ! let’s break dateinfo into year, month and day.

 ! dateinfo has a form of ccyymmdd, where cc = century, yy = year

 ! mm = month and dd = day

Fortran

69

 year = dateinfo(1:4)

 month = dateinfo(5:6)

 day = dateinfo(7:8)

 print*, 'Date String:', dateinfo

 print*, 'Year:', year

 print *,'Month:', month

 print *,'Day:', day

 ! let’s break timeinfo into hour, minute and second.

 ! timeinfo has a form of hhmmss.sss, where h = hour, m = minute

 ! and s = second

 hour = timeinfo(1:2)

 minute = timeinfo(3:4)

 second = timeinfo(5:10)

 print*, 'Time String:', timeinfo

 print*, 'Hour:', hour

 print*, 'Minute:', minute

 print*, 'Second:', second

end program datetime

When you compile and execute the above program, it gives the detailed date and time

information:

Date String: 20140803

 Year: 2014

 Month: 08

 Day: 03

 Time String: 075835.466

 Hour: 07

 Minute: 58

 Second: 35.466

Fortran

70

Trimming Strings

The trim function takes a string, and returns the input string after removing all trailing

blanks.

Example

program trimString

implicit none

 character (len=*), parameter :: fname="Susanne", sname="Rizwan"

 character (len=20) :: fullname

 fullname=fname//" "//sname !concatenating the strings

 print*,fullname,", the beautiful dancer from the east!"

 print*,trim(fullname),", the beautiful dancer from the east!"

end program trimString

When you compile and execute the above program it produces the following result:

Susanne Rizwan, the beautiful dancer from the east!

Susanne Rizwan, the beautiful dancer from the east!

Left and Right Adjustment of Strings

The function adjustl takes a string and returns it by removing the leading blanks and

appending them as trailing blanks.

The function adjustr takes a string and returns it by removing the trailing blanks and

appending them as leading blanks.

Example

program hello

implicit none

 character(len=15) :: surname, firstname

 character(len=6) :: title

 character(len=40):: name

 character(len=25):: greetings

Fortran

71

 title = 'Mr. '

 firstname = 'Rowan'

 surname = 'Atkinson'

 greetings = 'A big hello from Mr. Beans'

 name = adjustl(title)//adjustl(firstname)//adjustl(surname)

 print *, 'Here is', name

 print *, greetings

 name = adjustr(title)//adjustr(firstname)//adjustr(surname)

 print *, 'Here is', name

 print *, greetings

 name = trim(title)//trim(firstname)//trim(surname)

 print *, 'Here is', name

 print *, greetings

end program hello

When you compile and execute the above program it produces the following result:

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Here is Mr. Rowan Atkinson

A big hello from Mr. Bean

Here is Mr.RowanAtkinson

A big hello from Mr. Bean

Searching for a Substring in a String

The index function takes two strings and checks if the second string is a substring of the

first string. If the second argument is a substring of the first argument, then it returns

an integer which is the starting index of the second string in the first string, else it

returns zero.

Example

Fortran

72

program hello

implicit none

 character(len=30) :: myString

 character(len=10) :: testString

 myString = 'This is a test'

 testString = 'test'

 if(index(myString, testString) == 0)then

 print *, 'test is not found'

 else

 print *, 'test is found at index: ', index(myString, testString)

 end if

end program hello

When you compile and execute the above program, it produces the following result:

test is found at index: 11

Fortran

73

Arrays can store a fixed-size sequential collection of elements of the same type. An array

is used to store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to

the first element and the highest address to the last element.

Numbers(1) Numbers(2) Numbers(3) Numbers(4) …

Arrays can be one-dimensional (like vectors), two-dimensional (like matrices) and

Fortran allows you to create up to 7-dimensional arrays.

Declaring Arrays

Arrays are declared with the dimension attribute.

For example, to declare a one-dimensional array named number, of real numbers

containing 5 elements, you write,

real, dimension(5) :: numbers

The individual elements of arrays are referenced by specifying their subscripts. The first

element of an array has a subscript of one. The array numbers contains five real

variables –numbers(1), numbers(2), numbers(3), numbers(4), and numbers(5).

To create a 5 x 5 two-dimensional array of integers named matrix, you write:

integer, dimension (5,5) :: matrix

You can also declare an array with some explicit lower bound, for example:

real, dimension(2:6) :: numbers

integer, dimension (-3:2,0:4) :: matrix

13. Fortran ─ Arrays

Fortran

74

Assigning Values

You can either assign values to individual members, like,

numbers(1) = 2.0

or, you can use a loop,

do i=1,5

 numbers(i) = i * 2.0

end do

One-dimensional array elements can be directly assigned values using a short hand

symbol, called array constructor, like,

numbers = (/1.5, 3.2,4.5,0.9,7.2 /)

Please note that there are no spaces allowed between the brackets ‘(‘and the back slash ‘/’

Example

The following example demonstrates the concepts discussed above.

program arrayProg

 real :: numbers(5) !one dimensional integer array

 integer :: matrix(3,3), i , j !two dimensional real array

 !assigning some values to the array numbers

 do i=1,5

 numbers(i) = i * 2.0

 end do

 !display the values

 do i = 1, 5

 Print *, numbers(i)

 end do

 !assigning some values to the array matrix

 do i=1,3

 do j = 1, 3

 matrix(i, j) = i+j

Fortran

75

 end do

 end do

 !display the values

 do i=1,3

 do j = 1, 3

 Print *, matrix(i,j)

 end do

 end do

 !short hand assignment

 numbers = (/1.5, 3.2,4.5,0.9,7.2 /)

 !display the values

 do i = 1, 5

 Print *, numbers(i)

 end do

end program arrayProg

When the above code is compiled and executed, it produces the following result:

 2.00000000

 4.00000000

 6.00000000

 8.00000000

 10.0000000

 2

 3

 4

 3

 4

 5

 4

 5

 6

 1.50000000

Fortran

76

 3.20000005

 4.50000000

0.899999976

 7.19999981

Some Array Related Terms

The following table gives some array related terms:

Term Meaning

Rank It is the number of dimensions an array has. For example, for the array

named matrix, rank is 2, and for the array named numbers, rank is 1.

Extent It is the number of elements along a dimension. For example, the array

numbers has extent 5 and the array named matrix has extent 3 in both

dimensions.

Shape The shape of an array is a one-dimensional integer array, containing the

number of elements (the extent) in each dimension. For example, for the

array matrix, shape is (3, 3) and the array numbers it is (5).

Size It is the number of elements an array contains. For the array matrix, it is 9,

and for the array numbers, it is 5.

Passing Arrays to Procedures

You can pass an array to a procedure as an argument. The following example

demonstrates the concept:

program arrayToProcedure

implicit none

 integer, dimension (5) :: myArray

 integer :: i

 call fillArray (myArray)

 call printArray(myArray)

end program arrayToProcedure

Fortran

77

subroutine fillArray (a)

implicit none

 integer, dimension (5), intent (out) :: a

 ! local variables

 integer :: i

 do i = 1, 5

 a(i) = i

 end do

end subroutine fillArray

subroutine printArray(a)

 integer, dimension (5) :: a

 integer::i

 do i = 1, 5

 Print *, a(i)

 end do

end subroutine printArray

When the above code is compiled and executed, it produces the following result:

1

2

3

4

5

In the above example, the subroutine fillArray and printArray can only be called with

arrays with dimension 5. However, to write subroutines that can be used for arrays of

any size, you can rewrite it using the following technique:

program arrayToProcedure

Fortran

78

implicit none

 integer, dimension (10) :: myArray

 integer :: i

 interface

 subroutine fillArray (a)

 integer, dimension(:), intent (out) :: a

 integer :: i

 end subroutine fillArray

 subroutine printArray (a)

 integer, dimension(:) :: a

 integer :: i

 end subroutine printArray

 end interface

 call fillArray (myArray)

 call printArray(myArray)

end program arrayToProcedure

subroutine fillArray (a)

implicit none

 integer,dimension (:), intent (out) :: a

 ! local variables

 integer :: i, arraySize

 arraySize = size(a)

 do i = 1, arraySize

 a(i) = i

 end do

end subroutine fillArray

Fortran

79

subroutine printArray(a)

implicit none

 integer,dimension (:) :: a

 integer::i, arraySize

 arraySize = size(a)

 do i = 1, arraySize

 Print *, a(i)

 end do

end subroutine printArray

Please note that the program is using the size function to get the size of the array.

When the above code is compiled and executed, it produces the following result:

1

2

3

4

5

6

7

8

9

10

Array Sections

So far we have referred to the whole array, Fortran provides an easy way to refer

several elements, or a section of an array, using a single statement.

To access an array section, you need to provide the lower and the upper bound of the

section, as well as a stride (increment), for all the dimensions. This notation is called

asubscript triplet:

Fortran

80

array ([lower]:[upper][:stride], ...)

When no lower and upper bounds are mentioned, it defaults to the extents you declared,

and stride value defaults to 1.

The following example demonstrates the concept:

program arraySubsection

 real, dimension(10) :: a, b

 integer:: i, asize, bsize

 a(1:7) = 5.0 ! a(1) to a(7) assigned 5.0

 a(8:) = 0.0 ! rest are 0.0

 b(2:10:2) = 3.9

 b(1:9:2) = 2.5

 !display

 asize = size(a)

 bsize = size(b)

 do i = 1, asize

 Print *, a(i)

 end do

 do i = 1, bsize

 Print *, b(i)

 end do

end program arraySubsection

When the above code is compiled and executed, it produces the following result:

5.00000000

5.00000000

5.00000000

5.00000000

5.00000000

Fortran

81

5.00000000

5.00000000

0.00000000E+00

0.00000000E+00

0.00000000E+00

2.50000000

3.90000010

2.50000000

3.90000010

2.50000000

3.90000010

2.50000000

3.90000010

2.50000000

3.90000010

Array Intrinsic Functions

Fortran 90/95 provides several intrinsic procedures. They can be divided into 7

categories:

 Vector and matrix multiplication

 Reduction

 Inquiry

 Construction

 Reshape

 Manipulation

 Location

Vector and Matrix Multiplication

The following table describes the vector and matrix multiplication functions:

Function Description

dot_product(vector_a, vector_b)
This function returns a scalar product of two input

vectors, which must have the same length.

Fortran

82

matmul (matrix_a, matrix_b)

It returns the matrix product of two matrices,

which must be consistent, i.e. have the dimensions

like (m, k) and (k, n)

Example

The following example demonstrates dot product:

program arrayDotProduct

 real, dimension(5) :: a, b

 integer:: i, asize, bsize

 asize = size(a)

 bsize = size(b)

 do i = 1, asize

 a(i) = i

 end do

 do i = 1, bsize

 b(i) = i*2

 end do

 do i = 1, asize

 Print *, a(i)

 end do

 do i = 1, bsize

 Print *, b(i)

 end do

 Print*, 'Vector Multiplication: Dot Product:'

 Print*, dot_product(a, b)

end program arrayDotProduct

When the above code is compiled and executed, it produces the following result:

Fortran

83

1.00000000

2.00000000

3.00000000

4.00000000

5.00000000

2.00000000

4.00000000

6.00000000

8.00000000

10.0000000

Vector Multiplication: Dot Product:

110.000000

Example

The following example demonstrates matrix multiplication:

program matMulProduct

 integer, dimension(3,3) :: a, b, c

 integer :: i, j

 do i = 1, 3

 do j = 1, 3

 a(i, j) = i+j

 end do

 end do

 print *, 'Matrix Multiplication: A Matrix'

 do i = 1, 3

 do j = 1, 3

 print*, a(i, j)

 end do

 end do

 do i = 1, 3

Fortran

84

 do j = 1, 3

 b(i, j) = i*j

 end do

 end do

 Print*, 'Matrix Multiplication: B Matrix'

 do i = 1, 3

 do j = 1, 3

 print*, b(i, j)

 end do

 end do

 c = matmul(a, b)

 Print*, 'Matrix Multiplication: Result Matrix'

 do i = 1, 3

 do j = 1, 3

 print*, c(i, j)

 end do

 end do

end program matMulProduct

When the above code is compiled and executed, it produces the following result:

Matrix Multiplication: A Matrix

2

3

4

3

4

5

4

5

Fortran

85

6

 Matrix Multiplication: B Matrix

1

2

3

2

4

6

3

6

9

Matrix Multiplication: Result Matrix

20

40

60

26

52

78

32

64

96

Reduction

The following table describes the reduction functions:

Function Description

all(mask, dim)

It returns a logical value that indicates whether all

relations in mask are .true., along with only the desired

dimension if the second argument is given.

any(mask, dim)

It returns a logical value that indicates whether any

relation in mask is .true., along with only the desired

dimension if the second argument is given.

Fortran

86

count(mask, dim)

It returns a numerical value that is the number of

relations in mask which are .true., along with only the

desired dimension if the second argument is given.

maxval(array, dim, mask)

It returns the largest value in the array array, of those

that obey the relation in the third argument mask, if that

one is given, along with only the desired dimension if the

second argument dim is given.

minval(array, dim, mask)

It returns the smallest value in the array array, of those

that obey the relation in the third argument mask, if that

one is given, along with only the desired dimension if the

second argument DIM is given.

product(array, dim, mask)

It returns the product of all the elements in the array

array, of those that obey the relation in the third

argument mask, if that one is given, along with only the

desired dimension if the second argument dim is given.

sum (array, dim, mask)

It returns the sum of all the elements in the array array,

of those that obey the relation in the third argument

mask, if that one is given, along with only the desired

dimension if the second argument dim is given.

Example

The following example demonstrates the concept:

program arrayReduction

 real, dimension(3,2) :: a

 a = reshape((/5,9,6,10,8,12/), (/3,2/))

 Print *, all(a>5)

 Print *, any(a>5)

 Print *, count(a>5)

 Print *, all(a>=5 .and. a<10)

end program arrayReduction

When the above code is compiled and executed, it produces the following result:

F

T

Fortran

87

5

F

Example

The following example demonstrates the concept:

program arrayReduction

implicit none

 real, dimension(1:6) :: a = (/ 21.0, 12.0,33.0, 24.0, 15.0, 16.0 /)

 Print *, maxval(a)

 Print *, minval(a)

 Print *, sum(a)

 Print *, product(a)

end program arrayReduction

When the above code is compiled and executed, it produces the following result:

33.0000000

12.0000000

121.000000

47900160.0

Inquiry

The following table describes the inquiry functions:

Function Description

allocated(array) It is a logical function which indicates if the array is allocated.

lbound(array, dim) It returns the lower dimension limit for the array. If dim (the

dimension) is not given as an argument, you get an integer

vector, if dim is included, you get the integer value with exactly

that lower dimension limit, for which you asked.

Fortran

88

shape(source) It returns the shape of an array source as an integer vector.

size(array, dim) It returns the number of elements in an array. If dim is not

given, and the number of elements in the relevant dimension if

dim is included.

ubound(array, dim) It returns the upper dimensional limits.

Example

The following example demonstrates the concept:

program arrayInquiry

 real, dimension(3,2) :: a

 a = reshape((/5,9,6,10,8,12/), (/3,2/))

 Print *, lbound(a, dim=1)

 Print *, ubound(a, dim=1)

 Print *, shape(a)

 Print *, size(a,dim=1)

end program arrayInquiry

When the above code is compiled and executed, it produces the following result:

1

3

3 2

3

Construction

The following table describes the construction functions:

Fortran

89

Function Description

merge(tsource, fsource, mask)

This function joins two arrays. It gives the elements

in tsource if the condition in mask is .true. and

fsource if the condition in mask is .false. The two

fields tsource and fsource have to be of the same

type and the same shape. The result also is of this

type and shape. Also mask must have the same

shape.

pack(array, mask, vector)

It packs an array to a vector with the control of

mask. The shape of the logical array mask, has to

agree with the one for array, or else mask must be a

scalar. If vector is included, it has to be an array of

rank 1 (i.e. a vector) with at least as many elements

as those that are true in mask, and have the same

type as array. If mask is a scalar with the

value .true. then vector instead must have the same

number of elements as array.

spread(source, dim, ncopies)

It returns an array of the same type as the

argument source with the rank increased by one.

The parameters dim and ncopies are integer. if

ncopies is negative the value zero is used instead. If

source is a scalar, then spread becomes a vector

with ncopies elements that all have the same value

as source. The parameter dim indicates which index

is to be extended. it has to be within the range 1 and

1+(rank of source), if source is a scalar then dim has

to be one. The parameter ncopies is the number of

elements in the new dimensions.

unpack(vector, mask, array)

It scatters a vector to an array under control of

mask. The shape of the logical array mask has to

agree with the one for array. The array vector has to

have the rank 1 (i.e. it is a vector) with at least as

many elements as those that are true in mask, and

also has to have the same type as array. If array is

given as a scalar then it is considered to be an array

with the same shape as mask and the same scalar

elements everywhere.

The result will be an array with the same shape as

mask and the same type as vector. The values will

be those from vector that are accepted, while in the

Fortran

90

remaining positions in array the old values are kept.

Example

The following example demonstrates the concept:

program arrayConstruction

implicit none

 interface

 subroutine write_array (a)

 real :: a(:,:)

 end subroutine write_array

 subroutine write_l_array (a)

 logical :: a(:,:)

 end subroutine write_l_array

 end interface

 real, dimension(2,3) :: tsource, fsource, result

 logical, dimension(2,3) :: mask

 tsource = reshape((/ 35, 23, 18, 28, 26, 39 /), &

 (/ 2, 3 /))

 fsource = reshape((/ -35, -23, -18, -28, -26, -39 /), &

 (/ 2,3 /))

 mask = reshape((/ .true., .false., .false., .true., &

 .false., .false. /), (/ 2,3 /))

 result = merge(tsource, fsource, mask)

 call write_array(tsource)

 call write_array(fsource)

 call write_l_array(mask)

 call write_array(result)

end program arrayConstruction

subroutine write_array (a)

 real :: a(:,:)

 do i = lbound(a,1), ubound(a,1)

Fortran

91

 write(*,*) (a(i, j), j = lbound(a,2), ubound(a,2))

 end do

 return

end subroutine write_array

subroutine write_l_array (a)

 logical :: a(:,:)

 do i = lbound(a,1), ubound(a,1)

 write(*,*) (a(i, j), j= lbound(a,2), ubound(a,2))

 end do

 return

end subroutine write_l_array

When the above code is compiled and executed, it produces the following result:

35.0000000 18.0000000 26.0000000

23.0000000 28.0000000 39.0000000

-35.0000000 -18.0000000 -26.0000000

-23.0000000 -28.0000000 -39.0000000

T F F

F T F

35.0000000 -18.0000000 -26.0000000

-23.0000000 28.0000000 -39.0000000

Reshape

The following table describes the reshape function:

Function Description

reshape(source, shape, pad, order)

It constructs an array with a specified shape

shape starting from the elements in a given

array source. If pad is not included then the size

of source has to be at least product (shape). If

pad is included, it has to have the same type as

source. If order is included, it has to be an

integer array with the same shape as shape and

Fortran

92

the values must be a permutation of

(1,2,3,...,n), where n is the number of elements

in shape , it has to be less than, or equal to 7.

Example

The following example demonstrates the concept:

program arrayReshape

implicit none

interface

 subroutine write_matrix(a)

 real, dimension(:,:) :: a

 end subroutine write_matrix

 end interface

 real, dimension (1:9) :: b = (/ 21, 22, 23, 24, 25, 26, 27, 28, 29 /)

 real, dimension (1:3, 1:3) :: c, d, e

 real, dimension (1:4, 1:4) :: f, g, h

 integer, dimension (1:2) :: order1 = (/ 1, 2 /)

 integer, dimension (1:2) :: order2 = (/ 2, 1 /)

 real, dimension (1:16) :: pad1 = (/ -1, -2, -3, -4, -5, -6, -7, -8, &

 & -9, -10, -11, -12, -13, -14, -15, -16 /)

 c = reshape(b, (/ 3, 3 /))

 call write_matrix(c)

 d = reshape(b, (/ 3, 3 /), order = order1)

 call write_matrix(d)

 e = reshape(b, (/ 3, 3 /), order = order2)

 call write_matrix(e)

 f = reshape(b, (/ 4, 4 /), pad = pad1)

 call write_matrix(f)

Fortran

93

 g = reshape(b, (/ 4, 4 /), pad = pad1, order = order1)

 call write_matrix(g)

 h = reshape(b, (/ 4, 4 /), pad = pad1, order = order2)

 call write_matrix(h)

end program arrayReshape

subroutine write_matrix(a)

 real, dimension(:,:) :: a

 write(*,*)

 do i = lbound(a,1), ubound(a,1)

 write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

end subroutine write_matrix

When the above code is compiled and executed, it produces the following result:

21.0000000 24.0000000 27.0000000

22.0000000 25.0000000 28.0000000

23.0000000 26.0000000 29.0000000

21.0000000 24.0000000 27.0000000

22.0000000 25.0000000 28.0000000

23.0000000 26.0000000 29.0000000

21.0000000 22.0000000 23.0000000

24.0000000 25.0000000 26.0000000

27.0000000 28.0000000 29.0000000

21.0000000 25.0000000 29.0000000 -4.00000000

22.0000000 26.0000000 -1.00000000 -5.00000000

23.0000000 27.0000000 -2.00000000 -6.00000000

24.0000000 28.0000000 -3.00000000 -7.00000000

Fortran

94

21.0000000 25.0000000 29.0000000 -4.00000000

22.0000000 26.0000000 -1.00000000 -5.00000000

23.0000000 27.0000000 -2.00000000 -6.00000000

24.0000000 28.0000000 -3.00000000 -7.00000000

21.0000000 22.0000000 23.0000000 24.0000000

25.0000000 26.0000000 27.0000000 28.0000000

29.0000000 -1.00000000 -2.00000000 -3.00000000

-4.00000000 -5.00000000 -6.00000000 -7.00000000

Manipulation

Manipulation functions are shift functions. The shift functions return the shape of an

array unchanged, but move the elements.

Function Description

cshift(array, shift, dim)

It performs circular shift by shift positions to

the left, if shift is positive and to the right if it is

negative. If array is a vector the shift is being

done in a natural way, if it is an array of a

higher rank then the shift is in all sections along

the dimension dim.

If dim is missing it is considered to be 1, in

other cases it has to be a scalar integer number

between 1 and n (where n equals the rank of

array). The argument shift is a scalar integer or

an integer array of rank n-1 and the same

shape as the array, except along the dimension

dim (which is removed because of the lower

rank). Different sections can therefore be

shifted in various directions and with various

numbers of positions.

eoshift(array, shift, boundary, dim)

It is end-off shift. It performs shift to the left if

shift is positive and to the right if it is negative.

Instead of the elements shifted out new

elements are taken from boundary.

If array is a vector the shift is being done in a

Fortran

95

natural way, if it is an array of a higher rank,

the shift on all sections is along the dimension

dim. if dim is missing, it is considered to be 1,

in other cases it has to have a scalar integer

value between 1 and n (where n equals the

rank of array).

The argument shift is a scalar integer if array

has rank 1, in the other case it can be a scalar

integer or an integer array of rank n-1 and with

the same shape as the array array except along

the dimension dim (which is removed because

of the lower rank).

transpose (matrix)

It transposes a matrix, which is an array of rank

2. It replaces the rows and columns in the

matrix.

Example

The following example demonstrates the concept:

program arrayShift

implicit none

 real, dimension(1:6) :: a = (/ 21.0, 22.0, 23.0, 24.0, 25.0, 26.0 /)

 real, dimension(1:6) :: x, y

 write(*,10) a

 x = cshift (a, shift = 2)

 write(*,10) x

 y = cshift (a, shift = -2)

 write(*,10) y

 x = eoshift (a, shift = 2)

 write(*,10) x

 y = eoshift (a, shift = -2)

 write(*,10) y

Fortran

96

 10 format(1x,6f6.1)

end program arrayShift

When the above code is compiled and executed, it produces the following result:

21.0 22.0 23.0 24.0 25.0 26.0

23.0 24.0 25.0 26.0 21.0 22.0

25.0 26.0 21.0 22.0 23.0 24.0

23.0 24.0 25.0 26.0 0.0 0.0

0.0 0.0 21.0 22.0 23.0 24.0

Example

The following example demonstrates transpose of a matrix:

program matrixTranspose

implicit none

 interface

 subroutine write_matrix(a)

 integer, dimension(:,:) :: a

 end subroutine write_matrix

 end interface

 integer, dimension(3,3) :: a, b

 integer :: i, j

 do i = 1, 3

 do j = 1, 3

 a(i, j) = i

 end do

 end do

 print *, 'Matrix Transpose: A Matrix'

 call write_matrix(a)

 b = transpose(a)

Fortran

97

 print *, 'Transposed Matrix:'

 call write_matrix(b)

end program matrixTranspose

subroutine write_matrix(a)

 integer, dimension(:,:) :: a

 write(*,*)

 do i = lbound(a,1), ubound(a,1)

 write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

end subroutine write_matrix

When the above code is compiled and executed, it produces the following result:

Matrix Transpose: A Matrix

1 1 1

2 2 2

3 3 3

Transposed Matrix:

1 2 3

1 2 3

1 2 3

Location

The following table describes the location functions:

Function Description

maxloc(array, mask)

It returns the position of the greatest element in the array

array, if mask is included only for those which fulfil the

conditions in mask, position is returned and the result is an

integer vector.

Fortran

98

minloc(array, mask)

It returns the position of the smallest element in the array

array, if mask is included only for those which fulfil the

conditions in mask, position is returned and the result is an

integer vector.

Example

The following example demonstrates the concept:

program arrayLocation

implicit none

 real, dimension(1:6) :: a = (/ 21.0, 12.0,33.0, 24.0, 15.0, 16.0 /)

 Print *, maxloc(a)

 Print *, minloc(a)

end program arrayLocation

When the above code is compiled and executed, it produces the following result:

3

2

Fortran

99

A dynamic array is an array, the size of which is not known at compile time, but will be

known at execution time.

Dynamic arrays are declared with the attribute allocatable.

For example,

real, dimension (:,:), allocatable :: darray

The rank of the array, i.e., the dimensions has to be mentioned however, to allocate

memory to such an array, you use the allocate function.

allocate (darray(s1,s2))

After the array is used, in the program, the memory created should be freed using

thedeallocate function

deallocate (darray)

Example

The following example demonstrates the concepts discussed above.

program dynamic_array

implicit none

 !rank is 2, but size not known

 real, dimension (:,:), allocatable :: darray

 integer :: s1, s2

 integer :: i, j

 print*, "Enter the size of the array:"

 read*, s1, s2

 ! allocate memory

 allocate (darray(s1,s2))

 do i = 1, s1

 do j = 1, s2

 darray(i,j) = i*j

14. Fortran ─ Dynamic Arrays

Fortran

100

 print*, "darray(",i,",",j,") = ", darray(i,j)

 end do

 end do

 deallocate (darray)

end program dynamic_array

When the above code is compiled and executed, it produces the following result:

Enter the size of the array: 3,4

darray(1 , 1) = 1.00000000

darray(1 , 2) = 2.00000000

darray(1 , 3) = 3.00000000

darray(1 , 4) = 4.00000000

darray(2 , 1) = 2.00000000

darray(2 , 2) = 4.00000000

darray(2 , 3) = 6.00000000

darray(2 , 4) = 8.00000000

darray(3 , 1) = 3.00000000

darray(3 , 2) = 6.00000000

darray(3 , 3) = 9.00000000

darray(3 , 4) = 12.0000000

Use of Data Statement

The data statement can be used for initialising more than one array, or for array section

initialisation.

The syntax of data statement is:

data variable / list / ...

Example

The following example demonstrates the concept:

program dataStatement

implicit none

 integer :: a(5), b(3,3), c(10),i, j

Fortran

101

 data a /7,8,9,10,11/

 data b(1,:) /1,1,1/

 data b(2,:)/2,2,2/

 data b(3,:)/3,3,3/

 data (c(i),i=1,10,2) /4,5,6,7,8/

 data (c(i),i=2,10,2)/5*2/

 Print *, 'The A array:'

 do j = 1, 5

 print*, a(j)

 end do

 Print *, 'The B array:'

 do i = lbound(b,1), ubound(b,1)

 write(*,*) (b(i,j), j = lbound(b,2), ubound(b,2))

 end do

 Print *, 'The C array:'

 do j = 1, 10

 print*, c(j)

 end do

end program dataStatement

When the above code is compiled and executed, it produces the following result:

The A array:

7

8

9

10

11

The B array:

1 1 1

2 2 2

3 3 3

Fortran

102

The C array:

4

2

5

2

6

2

7

2

8

2

Use of Where Statement

The where statement allows you to use some elements of an array in an expression,

depending on the outcome of some logical condition. It allows the execution of the

expression, on an element, if the given condition is true.

Example

The following example demonstrates the concept:

program whereStatement

implicit none

 integer :: a(3,5), i , j

 do i = 1,3

 do j = 1, 5

 a(i,j) = j-i

 end do

 end do

 Print *, 'The A array:'

 do i = lbound(a,1), ubound(a,1)

 write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

Fortran

103

 where(a<0)

 a = 1

 elsewhere

 a = 5

 end where

 Print *, 'The A array:'

 do i = lbound(a,1), ubound(a,1)

 write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2))

 end do

end program whereStatement

When the above code is compiled and executed, it produces the following result:

The A array:

0 1 2 3 4

-1 0 1 2 3

-2 -1 0 1 2

The A array:

5 5 5 5 5

1 5 5 5 5

1 1 5 5 5

Fortran

104

Fortran allows you to define derived data types. A derived data type is also called a

structure, and it can consist of data objects of different types.

Derived data types are used to represent a record. E.g. you want to keep track of your

books in a library, you might want to track the following attributes about each book:

 Title

 Author

 Subject

 Book ID

Defining a Derived data type

To define a derived data type, the type and end type statements are used. . The type

statement defines a new data type, with more than one member for your program. The

format of the type statement is this:

type type_name

 declarations

end type

Here is the way you would declare the Book structure:

type Books

 character(len=50) :: title

 character(len=50) :: author

 character(len=150) :: subject

 integer :: book_id

end type Books

Accessing Structure Members

An object of a derived data type is called a structure

A structure of type Books can be created in a type declaration statement like:

type(Books) :: book1

The components of the structure can be accessed using the component selector

character (%):

15. Fortran ─ Derived Data Types

Fortran

105

book1%title = "C Programming"

book1%author = "Nuha Ali"

book1%subject = "C Programming Tutorial"

book1%book_id = 6495407

Note that there are no spaces before and after the % symbol.

Example

The following program illustrates the above concepts:

program deriveDataType

 !type declaration

 type Books

 character(len=50) :: title

 character(len=50) :: author

 character(len=150) :: subject

 integer :: book_id

 end type Books

 !declaring type variables

 type(Books) :: book1

 type(Books) :: book2

 !accessing the components of the structure

 book1%title = "C Programming"

 book1%author = "Nuha Ali"

 book1%subject = "C Programming Tutorial"

 book1%book_id = 6495407

 book2%title = "Telecom Billing"

 book2%author = "Zara Ali"

 book2%subject = "Telecom Billing Tutorial"

 book2%book_id = 6495700

 !display book info

Fortran

106

 Print *, book1%title

 Print *, book1%author

 Print *, book1%subject

 Print *, book1%book_id

 Print *, book2%title

 Print *, book2%author

 Print *, book2%subject

 Print *, book2%book_id

end program deriveDataType

When the above code is compiled and executed, it produces the following result:

 C Programming

 Nuha Ali

 C Programming Tutorial

 6495407

 Telecom Billing

 Zara Ali

 Telecom Billing Tutorial

 6495700

Array of Structures

You can also create arrays of a derived type:

type(Books), dimension(2) :: list

Individual elements of the array could be accessed as:

list(1)%title = "C Programming"

list(1)%author = "Nuha Ali"

list(1)%subject = "C Programming Tutorial"

list(1)%book_id = 6495407

Fortran

107

The following program illustrates the concept:

program deriveDataType

 !type declaration

 type Books

 character(len=50) :: title

 character(len=50) :: author

 character(len=150) :: subject

 integer :: book_id

 end type Books

 !declaring array of books

 type(Books), dimension(2) :: list

 !accessing the components of the structure

 list(1)%title = "C Programming"

 list(1)%author = "Nuha Ali"

 list(1)%subject = "C Programming Tutorial"

 list(1)%book_id = 6495407

 list(2)%title = "Telecom Billing"

 list(2)%author = "Zara Ali"

 list(2)%subject = "Telecom Billing Tutorial"

 list(2)%book_id = 6495700

 !display book info

 Print *, list(1)%title

 Print *, list(1)%author

 Print *, list(1)%subject

 Print *, list(1)%book_id

 Print *, list(1)%title

 Print *, list(2)%author

 Print *, list(2)%subject

Fortran

108

 Print *, list(2)%book_id

end program deriveDataType

When the above code is compiled and executed, it produces the following result:

C Programming

Nuha Ali

C Programming Tutorial

 6495407

C Programming

Zara Ali

Telecom Billing Tutorial

 6495700

Fortran

109

In most programming languages, a pointer variable stores the memory address of an

object. However, in Fortran, a pointer is a data object that has more functionalities than

just storing the memory address. It contains more information about a particular object,

like type, rank, extents, and memory address.

A pointer is associated with a target by allocation or pointer assignment.

Declaring a Pointer Variable

A pointer variable is declared with the pointer attribute.

The following examples shows declaration of pointer variables:

integer, pointer :: p1 ! pointer to integer

real, pointer, dimension (:) :: pra ! pointer to 1-dim real array

real, pointer, dimension (:,:) :: pra2 ! pointer to 2-dim real array

A pointer can point to:

 an area of dynamically allocated memory

 a data object of the same type as the pointer, with the target attribute

Allocating Space for a Pointer

The allocate statement allows you to allocate space for a pointer object. For example:

program pointerExample

implicit none

 integer, pointer :: p1

 allocate(p1)

 p1 = 1

 Print *, p1

 p1 = p1 + 4

 Print *, p1

end program pointerExample

16. Fortran ─ Pointers

Fortran

110

When the above code is compiled and executed, it produces the following result:

1

5

You should empty the allocated storage space by the deallocate statement when it is no

longer required and avoid accumulation of unused and unusable memory space.

Targets and Association

A target is another normal variable, with space set aside for it. A target variable must be

declared with the target attribute.

You associate a pointer variable with a target variable using the association operator

(=>).

Let us rewrite the previous example, to demonstrate the concept:

program pointerExample

implicit none

 integer, pointer :: p1

 integer, target :: t1

 p1=>t1

 p1 = 1

 Print *, p1

 Print *, t1

 p1 = p1 + 4

 Print *, p1

 Print *, t1

 t1 = 8

 Print *, p1

 Print *, t1

 end program pointerExample

Fortran

111

When the above code is compiled and executed, it produces the following result:

1

1

5

5

8

8

A pointer can be:

 Undefined

 Associated

 Disassociated

In the above program, we have associated the pointer p1, with the target t1, using the

=> operator. The function associated, tests a pointer’s association status.

The nullify statement disassociates a pointer from a target.

Nullify does not empty the targets as there could be more than one pointer pointing to

the same target. However, emptying the pointer implies nullification also.

Example 1

The following example demonstrates the concepts:

program pointerExample

implicit none

 integer, pointer :: p1

 integer, target :: t1

 integer, target :: t2

 p1=>t1

 p1 = 1

 Print *, p1

 Print *, t1

 p1 = p1 + 4

 Print *, p1

 Print *, t1

Fortran

112

 t1 = 8

 Print *, p1

 Print *, t1

 nullify(p1)

 Print *, t1

 p1=>t2

 Print *, associated(p1)

 Print*, associated(p1, t1)

 Print*, associated(p1, t2)

 !what is the value of p1 at present

 Print *, p1

 Print *, t2

 p1 = 10

 Print *, p1

 Print *, t2

end program pointerExample

When the above code is compiled and executed, it produces the following result:

1

1

5

5

8

8

8

T

F

T

952754640

952754640

Fortran

113

10

10

Please note that each time you run the code, the memory addresses will be different.

Example 2

program pointerExample

implicit none

 integer, pointer :: a, b

 integer, target :: t

 integer :: n

 t= 1

 a=>t

 t = 2

 b => t

 n = a + b

 Print *, a, b, t, n

end program pointerExample

When the above code is compiled and executed, it produces the following result:

2 2 2 4

Fortran

114

We have so far seen that we can read data from keyboard using the read * statement,

and display output to the screen using the print* statement, respectively. This form of

input-output is free format I/O, and it is called list-directed input-output.

The free format simple I/O has the form:

read(*,*) item1, item2, item3...

print *, item1, item2, item3

write(*,*) item1, item2, item3...

However the formatted I/O gives you more flexibility over data transfer.

Formatted Input Output

Formatted input output has the syntax as follows:

read fmt, variable_list

print fmt, variable_list

write fmt, variable_list

Where,

 fmt is the format specification

 variable-list is a list of the variables to be read from keyboard or written on

screen

Format specification defines the way in which formatted data is displayed. It consists of

a string, containing a list of edit descriptors in parentheses.

An edit descriptor specifies the exact format, for example, width, digits after decimal

point etc., in which characters and numbers are displayed.

For example:

Print "(f6.3)", pi

17. Fortran ─ Basic Input Output

Fortran

115

The following table describes the descriptors:

Descriptor Description Example

I

This is used for integer output. This takes

the form ‘rIw.m’ where the meanings of r,

w and m are given in the table below.

Integer values are right justified in their

fields. If the field width is not large

enough to accommodate an integer then

the field is filled with asterisks.

print "(3i5)", i, j, k

F

This is used for real number output. This

takes the form ‘rFw.d’ where the

meanings of r, w and d are given in the

table below. Real values are right justified

in their fields. If the field width is not

large enough to accommodate the real

number then the field is filled with

asterisks.

print "(f12.3)",pi

E

This is used for real output in exponential

notation. The ‘E’ descriptor statement

takes the form ‘rEw.d’ where the

meanings of r, w and d are given in the

table below. Real values are right justified

in their fields. If the field width is not

large enough to accommodate the real

number then the field is filled with

asterisks.

Please note that, to print out a real

number with three decimal places a field

width of at least ten is needed. One for

the sign of the mantissa, two for the zero,

four for the mantissa and two for the

exponent itself. In general, w ≥ d + 7.

print "(e10.3)",123456.0

gives ‘0.123e+06’

ES

This is used for real output (scientific

notation). This takes the form ‘rESw.d’

where the meanings of r, w and d are

given in the table below. The ‘E’ descriptor

described above differs slightly from the

traditional well known ‘scientific notation’.

Scientific notation has the mantissa in the

range 1.0 to 10.0 unlike the E descriptor

print "(es10.3)",123456.0

gives ‘1.235e+05’

Fortran

116

which has the mantissa in the range 0.1

to 1.0. Real values are right justified in

their fields. If the field width is not large

enough to accommodate the real number

then the field is filled with asterisks. Here

also, the width field must satisfy the

expression w ≥ d + 7

A

This is used for character output. This

takes the form ‘rAw’ where the meanings

of r and w are given in the table below.

Character types are right justified in their

fields. If the field width is not large

enough to accommodate the character

string then the field is filled with the first

‘w’ characters of the string.

print "(a10)", str

X

This is used for space output. This takes

the form ‘nX’ where ‘n’ is the number of

desired spaces.

print "(5x, a10)", str

/

Slash descriptor – used to insert blank

lines. This takes the form ‘/’ and forces

the next data output to be on a new line.

print "(/,5x, a10)", str

Following symbols are used with the format descriptors:

Symbol Description

c Column number

d Number of digits to right of the decimal place for real input or output

m Minimum number of digits to be displayed

n Number of spaces to skip

r
Repeat count – the number of times to use a descriptor or group of
descriptors

w Field width – the number of characters to use for the input or output

Fortran

117

Example 1

program printPi

 pi = 3.141592653589793238

 Print "(f6.3)", pi

 Print "(f10.7)", pi

 Print "(f20.15)", pi

 Print "(e16.4)", pi/100

end program printPi

When the above code is compiled and executed, it produces the following result:

3.142

3.1415927

3.141592741012573

0.3142E-01

Example 2

program printName

implicit none

 character (len=15) :: first_name

 print *,' Enter your first name.'

 print *,' Up to 20 characters, please'

 read *,first_name

 print "(1x,a)",first_name

end program printName

When the above code is compiled and executed, it produces the following result:

(assume the user enters the name Zara)

Enter your first name.

Up to 20 characters, please

Zara

Fortran

118

Example 3

program formattedPrint

implicit none

 real :: c = 1.2786456e-9, d = 0.1234567e3

 integer :: n = 300789, k = 45, i = 2

 character (len=15) :: str="Tutorials Point"

 print "(i6)", k

 print "(i6.3)", k

 print "(3i10)", n, k, i

 print "(i10,i3,i5)", n, k, i

 print "(a15)",str

 print "(f12.3)", d

 print "(e12.4)", c

 print '(/,3x,"n = ",i6, 3x, "d = ",f7.4)', n, d

end program formattedPrint

When the above code is compiled and executed, it produces the following result:

45

045

300789 45 2

300789 45 2

Tutorials Point

123.457

0.1279E-08

n = 300789 d = *******

Fortran

119

The Format Statement

The format statement allows you to mix and match character, integer and real output in

one statement. The following example demonstrates this:

program productDetails

implicit none

 character (len=15) :: name

 integer :: id

 real :: weight

 name = 'Ardupilot'

 id = 1

 weight = 0.08

 print *,' The product details are'

 print 100

 100 format (7x,'Name:', 7x, 'Id:', 1x, 'Weight:')

 print 200, name, id, weight

 200 format(1x, a, 2x, i3, 2x, f5.2)

end program productDetails

When the above code is compiled and executed, it produces the following result:

The product details are

Name: Id: Weight:

Ardupilot 1 0.08

Fortran

120

Fortran allows you to read data from, and write data into files.

In the last chapter, you have seen how to read data from, and write data to the

terminal. In this chapter you will study file input and output functionalities provided by

Fortran.

You can read and write to one or more files. The OPEN, WRITE, READ and CLOSE

statements allow you to achieve this.

Opening and Closing Files

Before using a file you must open the file. The open command is used to open files for

reading or writing. The simplest form of the command is:

open (unit = number, file = "name").

However, the open statement may have a general form:

open (list-of-specifiers)

The following table describes the most commonly used specifiers:

Specifier Description

[UNIT=] u

The unit number u could be any number in the range 9-99 and it

indicates the file, you may choose any number but every open file in
the program must have a unique number

IOSTAT= ios
It is the I/O status identifier and should be an integer variable. If the

open statement is successful then the ios value returned is zero else

a non-zero value.

ERR = err It is a label to which the control jumps in case of any error.

FILE = fname File name, a character string.

STATUS = sta

It shows the prior status of the file. A character string and can have

one of the three values NEW, OLD or SCRATCH. A scratch file is
created and deleted when closed or the program ends.

ACCESS = acc
It is the file access mode. Can have either of the two values,
SEQUENTIAL or DIRECT. The default is SEQUENTIAL.

18. Fortran ─ File Input Output

Fortran

121

FORM= frm
It gives the formatting status of the file. Can have either of the two
values FORMATTED or UNFORMATTED. The default is UNFORMATTED

RECL = rl It specifies the length of each record in a direct access file.

After the file has been opened, it is accessed by read and write statements. Once done,

it should be closed using the close statement.

The close statement has the following syntax:

close ([UNIT=]u[,IOSTAT=ios,ERR=err,STATUS=sta])

Please note that the parameters in brackets are optional.

Example

This example demonstrates opening a new file for writing some data into the file.

program outputdata

implicit none

 real, dimension(100) :: x, y

 real, dimension(100) :: p, q

 integer :: i

 ! data

 do i=1,100

 x(i) = i * 0.1

 y(i) = sin(x(i)) * (1-cos(x(i)/3.0))

 end do

 ! output data into a file

 open(1, file='data1.dat', status='new')

 do i=1,100

 write(1,*) x(i), y(i)

 end do

 close(1)

end program outputdata

Fortran

122

When the above code is compiled and executed, it creates the file data1.dat and writes

the x and y array values into it. And then closes the file.

Reading from and Writing into the File

The read and write statements respectively are used for reading from and writing into a

file respectively.

They have the following syntax:

read ([UNIT=]u, [FMT=]fmt, IOSTAT=ios, ERR=err, END=s)

write([UNIT=]u, [FMT=]fmt, IOSTAT=ios, ERR=err, END=s)

Most of the specifiers have already been discussed in the above table.

The END=s specifier is a statement label where the program jumps, when it reaches

end-of-file.

Example

This example demonstrates reading from and writing into a file.

In this program we read from the file, we created in the last example, data1.dat, and

display it on screen.

program outputdata

implicit none

 real, dimension(100) :: x, y

 real, dimension(100) :: p, q

 integer :: i

 ! data

 do i=1,100

 x(i) = i * 0.1

 y(i) = sin(x(i)) * (1-cos(x(i)/3.0))

 end do

 ! output data into a file

 open(1, file='data1.dat', status='new')

 do i=1,100

 write(1,*) x(i), y(i)

 end do

 close(1)

Fortran

123

 ! opening the file for reading

 open (2, file='data1.dat', status='old')

 do i=1,100

 read(2,*) p(i), q(i)

 end do

 close(2)

 do i=1,100

 write(*,*) p(i), q(i)

 end do

end program outputdata

When the above code is compiled and executed, it produces the following result:

0.100000001 5.54589933E-05

0.200000003 4.41325130E-04

0.300000012 1.47636665E-03

0.400000006 3.45637114E-03

0.500000000 6.64328877E-03

0.600000024 1.12552457E-02

0.699999988 1.74576249E-02

0.800000012 2.53552198E-02

0.900000036 3.49861123E-02

1.00000000 4.63171229E-02

1.10000002 5.92407547E-02

1.20000005 7.35742599E-02

1.30000007 8.90605897E-02

1.39999998 0.105371222

1.50000000 0.122110792

1.60000002 0.138823599

1.70000005 0.155002072

1.80000007 0.170096487

1.89999998 0.183526158

Fortran

124

2.00000000 0.194692180

2.10000014 0.202990443

2.20000005 0.207826138

2.29999995 0.208628103

2.40000010 0.204863414

2.50000000 0.196052119

2.60000014 0.181780845

2.70000005 0.161716297

2.79999995 0.135617107

2.90000010 0.103344671

3.00000000 6.48725405E-02

3.10000014 2.02930309E-02

3.20000005 -3.01767997E-02

3.29999995 -8.61928314E-02

3.40000010 -0.147283033

3.50000000 -0.212848678

3.60000014 -0.282169819

3.70000005 -0.354410470

3.79999995 -0.428629100

3.90000010 -0.503789663

4.00000000 -0.578774154

4.09999990 -0.652400017

4.20000029 -0.723436713

4.30000019 -0.790623367

4.40000010 -0.852691114

4.50000000 -0.908382416

4.59999990 -0.956472993

4.70000029 -0.995793998

4.80000019 -1.02525222

4.90000010 -1.04385209

5.00000000 -1.05071592

5.09999990 -1.04510069

5.20000029 -1.02641726

5.30000019 -0.994243503

5.40000010 -0.948338211

5.50000000 -0.888650239

Fortran

125

5.59999990 -0.815326691

5.70000029 -0.728716135

5.80000019 -0.629372001

5.90000010 -0.518047631

6.00000000 -0.395693362

6.09999990 -0.263447165

6.20000029 -0.122622721

6.30000019 2.53026206E-02

6.40000010 0.178709000

6.50000000 0.335851669

6.59999990 0.494883657

6.70000029 0.653881252

6.80000019 0.810866773

6.90000010 0.963840425

7.00000000 1.11080539

7.09999990 1.24979746

7.20000029 1.37891412

7.30000019 1.49633956

7.40000010 1.60037732

7.50000000 1.68947268

7.59999990 1.76223695

7.70000029 1.81747139

7.80000019 1.85418403

7.90000010 1.87160957

8.00000000 1.86922085

8.10000038 1.84674001

8.19999981 1.80414569

8.30000019 1.74167395

8.40000057 1.65982044

8.50000000 1.55933595

8.60000038 1.44121361

8.69999981 1.30668485

8.80000019 1.15719533

8.90000057 0.994394958

9.00000000 0.820112705

9.10000038 0.636327863

Fortran

126

9.19999981 0.445154816

9.30000019 0.248800844

9.40000057 4.95488606E-02

9.50000000 -0.150278628

9.60000038 -0.348357052

9.69999981 -0.542378068

9.80000019 -0.730095863

9.90000057 -0.909344316

10.0000000 -1.07807255

Fortran

127

A procedure is a group of statements that perform a well-defined task and can be

invoked from your program. Information (or data) is passed to the calling program, to

the procedure as arguments.

There are two types of procedures:

 Functions

 Subroutines

Function

A function is a procedure that returns a single quantity. A function should not modify its

arguments.

The returned quantity is known as function value, and it is denoted by the function

name.

Syntax:

Syntax for a function is as follows:

function name(arg1, arg2,)

 [declarations, including those for the arguments]

 [executable statements]

end function [name]

The following example demonstrates a function named area_of_circle. It calculates the

area of a circle with radius r.

program calling_func

 real :: a

 a = area_of_circle(2.0)

 Print *, "The area of a circle with radius 2.0 is"

 Print *, a

end program calling_func

! this function computes the area of a circle with radius r

19. Fortran ─ Procedures

Fortran

128

function area_of_circle (r)

! function result

implicit none

 ! dummy arguments

 real :: area_of_circle

 ! local variables

 real :: r

 real :: pi

 pi = 4 * atan (1.0)

 area_of_circle = pi * r**2

end function area_of_circle

When you compile and execute the above program, it produces the following result:

The area of a circle with radius 2.0 is

 12.5663710

Please note that:

 You must specify implicit none in both the main program as well as the

procedure.

 The argument r in the called function is called dummy argument.

The result Option

If you want the returned value to be stored in some other name than the function name,

you can use the result option.

You can specify the return variable name as:

function name(arg1, arg2,) result (return_var_name)

 [declarations, including those for the arguments]

 [executable statements]

end function [name]

Fortran

129

Subroutine

A subroutine does not return a value, however it can modify its arguments.

Syntax

subroutine name(arg1, arg2,)

 [declarations, including those for the arguments]

 [executable statements]

end subroutine [name]

Calling a Subroutine

You need to invoke a subroutine using the call statement.

The following example demonstrates the definition and use of a subroutine swap, that

changes the values of its arguments.

program calling_func

implicit none

 real :: a, b

 a = 2.0

 b = 3.0

 Print *, "Before calling swap"

 Print *, "a = ", a

 Print *, "b = ", b

 call swap(a, b)

 Print *, "After calling swap"

 Print *, "a = ", a

 Print *, "b = ", b

end program calling_func

subroutine swap(x, y)

implicit none

Fortran

130

 real :: x, y, temp

 temp = x

 x = y

 y = temp

end subroutine swap

When you compile and execute the above program, it produces the following result:

Before calling swap

a = 2.00000000

b = 3.00000000

After calling swap

a = 3.00000000

b = 2.00000000

Specifying the Intent of the Arguments
The intent attribute allows you to specify the intention with which arguments are used in

the procedure. The following table provides the values of the intent attribute:

Value Used as Explanation

in intent(in) Used as input values, not changed in the function

out intent(out) Used as output value, they are overwritten

inout intent(inout) Arguments are both used and overwritten

The following example demonstrates the concept:

program calling_func

implicit none

 real :: x, y, z, disc

 x= 1.0

Fortran

131

 y = 5.0

 z = 2.0

 call intent_example(x, y, z, disc)

 Print *, "The value of the discriminant is"

 Print *, disc

end program calling_func

subroutine intent_example (a, b, c, d)

implicit none

 ! dummy arguments

 real, intent (in) :: a

 real, intent (in) :: b

 real, intent (in) :: c

 real, intent (out) :: d

 d = b * b - 4.0 * a * c

end subroutine intent_example

When you compile and execute the above program, it produces the following result:

The value of the discriminant is

 17.0000000

Recursive Procedures

Recursion occurs when a programming languages allows you to call a function inside the

same function. It is called recursive call of the function.

When a procedure calls itself, directly or indirectly, is called a recursive procedure. You

should declare this type of procedures by preceding the word recursive before its

declaration.

When a function is used recursively, the result option has to be used.

Fortran

132

Following is an example, which calculates factorial for a given number using a recursive

procedure:

program calling_func

implicit none

 integer :: i, f

 i = 15

 Print *, "The value of factorial 15 is"

 f = myfactorial(15)

 Print *, f

end program calling_func

! computes the factorial of n (n!)

recursive function myfactorial (n) result (fac)

! function result

implicit none

 ! dummy arguments

 integer :: fac

 integer, intent (in) :: n

 select case (n)

 case (0:1)

 fac = 1

 case default

 fac = n * myfactorial (n-1)

 end select

end function myfactorial

Fortran

133

Internal Procedures

When a procedure is contained within a program, it is called the internal procedure of

the program. The syntax for containing an internal procedure is as follows:

program program_name

 implicit none

 ! type declaration statements

 ! executable statements

 . . .

 contains

 ! internal procedures

 . . .

end program program_name

The following example demonstrates the concept:

program mainprog

implicit none

 real :: a, b

 a = 2.0

 b = 3.0

 Print *, "Before calling swap"

 Print *, "a = ", a

 Print *, "b = ", b

 call swap(a, b)

 Print *, "After calling swap"

 Print *, "a = ", a

 Print *, "b = ", b

contains

 subroutine swap(x, y)

 real :: x, y, temp

 temp = x

 x = y

Fortran

134

 y = temp

 end subroutine swap

end program mainprog

When you compile and execute the above program, it produces the following result:

Before calling swap

a = 2.00000000

b = 3.00000000

After calling swap

a = 3.00000000

b = 2.00000000

Fortran

135

A module is like a package where you can keep your functions and subroutines, in case

you are writing a very big program, or your functions or subroutines can be used in

more than one program.

Modules provide you a way of splitting your programs between multiple files.

Modules are used for:

 Packaging subprograms, data and interface blocks.

 Defining global data that can be used by more than one routine.

 Declaring variables that can be made available within any routines you choose.

 Importing a module entirely, for use, into another program or subroutine.

Syntax of a Module

A module consists of two parts:

 a specification part for statements declaration

 a contains part for subroutine and function definitions

The general form of a module is:

module name

 [statement declarations]

 [contains [subroutine and function definitions]]

end module [name]

Using a Module into your Program

You can incorporate a module in a program or subroutine by the use statement:

use name

Please note that

 You can add as many modules as needed, each will be in separate files and
compiled separately.

 A module can be used in various different programs.

 A module can be used many times in the same program.

 The variables declared in a module specification part, are global to the module.

20. Fortran ─ Modules

Fortran

136

 The variables declared in a module become global variables in any program or
routine where the module is used.

 The use statement can appear in the main program, or any other subroutine or
module which uses the routines or variables declared in a particular module.

Example

The following example demonstrates the concept:

module constants

implicit none

 real, parameter :: pi = 3.1415926536

 real, parameter :: e = 2.7182818285

contains

 subroutine show_consts()

 print*, "Pi = ", pi

 print*, "e = ", e

 end subroutine show_consts

end module constants

program module_example

use constants

implicit none

 real :: x, ePowerx, area, radius

 x = 2.0

 radius = 7.0

 ePowerx = e ** x

 area = pi * radius**2

 call show_consts()

 print*, "e raised to the power of 2.0 = ", ePowerx

 print*, "Area of a circle with radius 7.0 = ", area

end program module_example

Fortran

137

When you compile and execute the above program, it produces the following result:

Pi = 3.14159274

e = 2.71828175

e raised to the power of 2.0 = 7.38905573

Area of a circle with radius 7.0 = 153.938049

Accessibility of Variables and Subroutines in a Module

By default, all the variables and subroutines in a module is made available to the

program that is using the module code, by the use statement.

However, you can control the accessibility of module code using

the private and publicattributes. When you declare some variable or subroutine as

private, it is not available outside the module.

Example

The following example illustrates the concept:

In the previous example, we had two module variables, e and pi. Let us make them

private and observe the output:

module constants

implicit none

 real, parameter,private :: pi = 3.1415926536

 real, parameter, private :: e = 2.7182818285

contains

 subroutine show_consts()

 print*, "Pi = ", pi

 print*, "e = ", e

 end subroutine show_consts

end module constants

program module_example

use constants

implicit none

Fortran

138

 real :: x, ePowerx, area, radius

 x = 2.0

 radius = 7.0

 ePowerx = e ** x

 area = pi * radius**2

 call show_consts()

 print*, "e raised to the power of 2.0 = ", ePowerx

 print*, "Area of a circle with radius 7.0 = ", area

end program module_example

When you compile and execute the above program, it gives the following error message:

 ePowerx = e ** x

 1

Error: Symbol 'e' at (1) has no IMPLICIT type

main.f95:19.13:

 area = pi * radius**2

 1

Error: Symbol 'pi' at (1) has no IMPLICIT type

Since e and pi, both are declared private, the program module_example cannot access

these variables anymore.

However, other module subroutines can access them:

module constants

implicit none

 real, parameter,private :: pi = 3.1415926536

 real, parameter, private :: e = 2.7182818285

contains

 subroutine show_consts()

 print*, "Pi = ", pi

 print*, "e = ", e

Fortran

139

 end subroutine show_consts

 function ePowerx(x)result(ePx)

 implicit none

 real::x

 real::ePx

 ePx = e ** x

 end function ePowerx

 function areaCircle(r)result(a)

 implicit none

 real::r

 real::a

 a = pi * r**2

 end function areaCircle

end module constants

program module_example

use constants

implicit none

 call show_consts()

 Print*, "e raised to the power of 2.0 = ", ePowerx(2.0)

 print*, "Area of a circle with radius 7.0 = ", areaCircle(7.0)

end program module_example

When you compile and execute the above program, it produces the following result:

Pi = 3.14159274

e = 2.71828175

e raised to the power of 2.0 = 7.38905573

Area of a circle with radius 7.0 = 153.938049

Fortran

140

Intrinsic functions are some common and important functions that are provided as a part

of the Fortran language. We have already discussed some of these functions in the

Arrays, Characters and String chapters.

Intrinsic functions can be categorised as:

 Numeric Functions

 Mathematical Functions

 Numeric Inquiry Functions

 Floating-Point Manipulation Functions

 Bit Manipulation Functions

 Character Functions

 Kind Functions

 Logical Functions

 Array Functions.

We have discussed the array functions in the Arrays chapter. In the following section we

provide brief descriptions of all these functions from other categories.

In the function name column,

 A represents any type of numeric variable

 R represents a real or integer variable

 X and Y represent real variables

 Z represents complex variable

 W represents real or complex variable

Numeric Functions

Function Description

ABS (A) It returns the absolute value of A

AIMAG (Z) It returns the imaginary part of a complex number Z

AINT (A [, KIND])
It truncates fractional part of A towards zero, returning a
real, whole number.

21. Fortran ─ Intrinsic Functions

Fortran

141

ANINT (A [, KIND]) It returns a real value, the nearest integer or whole number.

CEILING (A [, KIND])
It returns the least integer greater than or equal to number
A.

CMPLX (X [, Y, KIND])
It converts the real variables X and Y to a complex number

X+iY; if Y is absent, 0 is used.

CONJG (Z) It returns the complex conjugate of any complex number Z.

DBLE (A) It converts A to a double precision real number.

DIM (X, Y) It returns the positive difference of X and Y.

DPROD (X, Y) It returns the double precision real product of X and Y.

FLOOR (A [, KIND])
It provides the greatest integer less than or equal to number
A.

INT (A [, KIND])
It converts a number (real or integer) to integer, truncating
the real part towards zero.

MAX (A1, A2 [, A3,...])
It returns the maximum value from the arguments, all being
of same type.

MIN (A1, A2 [, A3,...])
It returns the minimum value from the arguments, all being
of same type.

MOD (A, P)
It returns the remainder of A on division by P, both
arguments being of the same type (A-INT(A/P)*P)

MODULO (A, P) It returns A modulo P: (A-FLOOR(A/P)*P)

NINT (A [, KIND]) It returns the nearest integer of number A

REAL (A [, KIND]) It Converts to real type

SIGN (A, B)
It returns the absolute value of A multiplied by the sign of P.
Basically it transfers the of sign of B to A.

Fortran

142

Example

program numericFunctions

implicit none

 ! define constants

 ! define variables

 real :: a, b

 complex :: z

 ! values for a, b

 a = 15.2345

 b = -20.7689

 write(*,*) 'abs(a): ',abs(a),' abs(b): ',abs(b)

 write(*,*) 'aint(a): ',aint(a),' aint(b): ',aint(b)

 write(*,*) 'ceiling(a): ',ceiling(a),' ceiling(b): ',ceiling(b)

 write(*,*) 'floor(a): ',floor(a),' floor(b): ',floor(b)

 z = cmplx(a, b)

 write(*,*) 'z: ',z

end program numericFunctions

When you compile and execute the above program, it produces the following result:

abs(a): 15.2344999 abs(b): 20.7688999

aint(a): 15.0000000 aint(b): -20.0000000

ceiling(a): 16 ceiling(b): -20

floor(a): 15 floor(b): -21

z: (15.2344999, -20.7688999)

Fortran

143

Mathematical Functions

Function Description

ACOS (X) It returns the inverse cosine in the range (0, π), in radians.

ASIN (X) It returns the inverse sine in the range (-π/2, π/2), in radians.

ATAN (X) It returns the inverse tangent in the range (-π/2, π/2), in radians.

ATAN2 (Y, X) It returns the inverse tangent in the range (-π, π), in radians.

COS (X) It returns the cosine of argument in radians.

COSH (X) It returns the hyperbolic cosine of argument in radians.

EXP (X) It returns the exponential value of X.

LOG (X) It returns the natural logarithmic value of X.

LOG10 (X) It returns the common logarithmic (base 10) value of X.

SIN (X) It returns the sine of argument in radians.

SINH (X) It returns the hyperbolic sine of argument in radians.

SQRT (X) It returns square root of X.

TAN (X) It returns the tangent of argument in radians.

TANH (X) It returns the hyperbolic tangent of argument in radians.

Fortran

144

Example

The following program computes the horizontal and vertical position x and y respectively

of a projectile after a time, t:

Where, x = u t cos a and y = u t sin a - g t2 / 2

program projectileMotion

implicit none

 ! define constants

 real, parameter :: g = 9.8

 real, parameter :: pi = 3.1415927

 !define variables

 real :: a, t, u, x, y

 !values for a, t, and u

 a = 45.0

 t = 20.0

 u = 10.0

 ! convert angle to radians

 a = a * pi / 180.0

 x = u * cos(a) * t

 y = u * sin(a) * t - 0.5 * g * t * t

 write(*,*) 'x: ',x,' y: ',y

end program projectileMotion

When you compile and execute the above program, it produces the following result:

x: 141.421356 y: -1818.57861

Fortran

145

Numeric Inquiry Functions

These functions work with a certain model of integer and floating-point arithmetic. The

functions return properties of numbers of the same kind as the variable X, which can be

real and in some cases integer.

Function Description

DIGITS (X) It returns the number of significant digits of the model.

EPSILON (X) It returns the number that is almost negligible compared to one.

In other words, it returns the smallest value such that REAL(

1.0, KIND(X)) + EPSILON(X) is not equal to REAL(1.0,

KIND(X)).

HUGE (X) It returns the largest number of the model

MAXEXPONENT (X) It returns the maximum exponent of the model

MINEXPONENT (X) It returns the minimum exponent of the model

PRECISION (X) It returns the decimal precision

RADIX (X) It returns the base of the model

RANGE (X) It returns the decimal exponent range

TINY (X) It returns the smallest positive number of the model

Floating-Point Manipulation Functions

Function Description

EXPONENT (X) It returns the exponent part of a model number

FRACTION (X) It returns the fractional part of a number

NEAREST (X, S) It returns the nearest different processor number in given

direction

Fortran

146

RRSPACING (X) It returns the reciprocal of the relative spacing of model

numbers near given number

SCALE (X, I) It multiplies a real by its base to an integer power

SET_EXPONENT (X, I) it returns the exponent part of a number

SPACING (X) It returns the absolute spacing of model numbers near

given number

Bit Manipulation Functions

Function Description

BIT_SIZE (I) It returns the number of bits of the model

BTEST (I, POS) Bit testing

IAND (I, J) Logical AND

IBCLR (I, POS) Clear bit

IBITS (I, POS, LEN) Bit extraction

IBSET (I, POS) Set bit

IEOR (I, J) Exclusive OR

IOR (I, J) Inclusive OR

ISHFT (I, SHIFT) Logical shift

ISHFTC (I, SHIFT [, SIZE]) Circular shift

NOT (I) Logical complement

Fortran

147

Character Functions

Function Description

ACHAR (I)
It returns the Ith character in the ASCII collating
sequence.

ADJUSTL (STRING)
It adjusts string left by removing any leading blanks

and inserting trailing blanks

ADJUSTR (STRING)
It adjusts string right by removing trailing blanks and
inserting leading blanks.

CHAR (I [, KIND])
It returns the Ith character in the machine specific
collating sequence

IACHAR (C)
It returns the position of the character in the ASCII
collating sequence.

ICHAR (C)
It returns the position of the character in the machine
(processor) specific collating sequence.

INDEX (STRING,
SUBSTRING [, BACK])

It returns the leftmost (rightmost if BACK is .TRUE.)
starting position of SUBSTRING within STRING.

LEN (STRING) It returns the length of a string.

LEN_TRIM (STRING)
It returns the length of a string without trailing blank

characters.

LGE (STRING_A, STRING_B) Lexically greater than or equal

LGT (STRING_A, STRING_B) Lexically greater than

LLE (STRING_A, STRING_B) Lexically less than or equal

LLT (STRING_A, STRING_B) Lexically less than

REPEAT (STRING, NCOPIES) Repeated concatenation

Fortran

148

SCAN (STRING, SET [, BACK])
It returns the index of the leftmost (rightmost if BACK

is .TRUE.) character of STRING that belong to SET, or 0
if none belong.

TRIM (STRING) Removes trailing blank characters

VERIFY (STRING, SET [, BACK]) Verifies the set of characters in a string

Kind Functions

Function Description

KIND (X) It returns the kind type parameter value.

SELECTED_INT_KIND (R)
It returns kind of type parameter for specified exponent

range.

SELECTED_REAL_KIND ([P, R])
Real kind type parameter value, given precision and

range

Logical Function

Function Description

LOGICAL (L [, KIND]) Convert between objects of type logical with different

kind type parameters

Fortran

149

We have already discussed that, in older versions of Fortran, there were two real types:

the default real type and double precision type.

However, Fortran 90/95 provides more control over the precision of real and integer

data types through the kind specifie.

The Kind Attribute

Different kind of numbers are stored differently inside the computer. The kind attribute

allows you to specify how a number is stored internally. For example,

real, kind = 2 :: a, b, c

real, kind = 4 :: e, f, g

integer, kind = 2 :: i, j, k

integer, kind = 3 :: l, m, n

In the above declaration, the real variables e, f and g have more precision than the real

variables a, b and c. The integer variables l, m and n, can store larger values and have

more digits for storage than the integer variables i, j and k. Although this is machine

dependent.

Example

program kindSpecifier

implicit none

 real(kind = 4) :: a, b, c

 real(kind = 8) :: e, f, g

 integer(kind = 2) :: i, j, k

 integer(kind = 4) :: l, m, n

 integer :: kind_a, kind_i, kind_e, kind_l

 kind_a = kind(a)

 kind_i = kind(i)

 kind_e = kind(e)

 kind_l = kind(l)

 print *,'default kind for real is', kind_a

 print *,'default kind for int is', kind_i

22. Fortran ─ Numeric Precision

Fortran

150

 print *,'extended kind for real is', kind_e

 print *,'default kind for int is', kind_l

end program kindSpecifier

When you compile and execute the above program it produces the following result:

default kind for real is 4

default kind for int is 2

extended kind for real is 8

default kind for int is 4

Inquiring the Size of Variables

There are a number of intrinsic functions that allows you to interrogate the size of

numbers.

For example, the bit_size(i) intrinsic function specifies the number of bits used for

storage. For real numbers, the precision(x) intrinsic function, returns the number of

decimal digits of precision, while the range(x) intrinsic function returns the decimal

range of the exponent.

Example

program getSize

implicit none

 real (kind = 4) :: a

 real (kind = 8) :: b

 integer (kind = 2) :: i

 integer (kind = 4) :: j

 print *,'precision of real(4) =', precision(a)

 print *,'precision of real(8) =', precision(b)

 print *,'range of real(4) =', range(a)

 print *,'range of real(8) =', range(b)

 print *,'maximum exponent of real(4) =' , maxexponent(a)

Fortran

151

 print *,'maximum exponent of real(8) =' , maxexponent(b)

 print *,'minimum exponent of real(4) =' , minexponent(a)

 print *,'minimum exponent of real(8) =' , minexponent(b)

 print *,'bits in integer(2) =' , bit_size(i)

 print *,'bits in integer(4) =' , bit_size(j)

end program getSize

When you compile and execute the above program, it produces the following result:

precision of real(4) = 6

precision of real(8) = 15

range of real(4) = 37

range of real(8) = 307

maximum exponent of real(4) = 128

maximum exponent of real(8) = 1024

minimum exponent of real(4) = -125

minimum exponent of real(8) = -1021

bits in integer(2) = 16

bits in integer(4) = 32

Obtaining the Kind Value

Fortran provides two more intrinsic functions to obtain the kind value for the required

precision of integers and reals:

 selected_int_kind (r)

 selected_real_kind ([p, r])

The selected_real_kind function returns an integer that is the kind type parameter value

necessary for a given decimal precision p and decimal exponent range r. The decimal

precision is the number of significant digits, and the decimal exponent range specifies

the smallest and largest representable number. The range is thus from 10-r to 10+r.

For example, selected_real_kind (p = 10, r = 99) returns the kind value needed for a

precision of 10 decimal places, and a range of at least 10-99 to 10+99.

Example

Fortran

152

program getKind

implicit none

 integer:: i

 i = selected_real_kind (p = 10, r = 99)

 print *,'selected_real_kind (p = 10, r = 99)', i

end program getKind

When you compile and execute the above program it produces the following result:

selected_real_kind (p = 10, r = 99) 8

Fortran

153

There are various Fortran tools and libraries. Some are free and some are paid services.

Following are some free libraries:

 RANDLIB, random number and statistical distribution generators

 BLAS

 EISPACK

 GAMS–NIST Guide to Available Math Software

 Some statistical and other routines from NIST

 LAPACK

 LINPACK

 MINPACK

 MUDPACK

 NCAR Mathematical Library

 The Netlib collection of mathematical software, papers, and databases.

 ODEPACK

 ODERPACK, a set of routines for ranking and ordering.

 Expokit for computing matrix exponentials

 SLATEC

 SPECFUN

 STARPAC

 StatLib statistical library

 TOMS

 Sorting and merging strings

The following libraries are not free:

 The NAG Fortran numerical library

 The Visual Numerics IMSL library

 Numerical Recipes

23. Fortran ─ Program Libraries

Fortran

154

Programming style is all about following some rules while developing programs. These

good practices impart values like readability, and unambiguity into your program.

A good program should have the following characteristics:

 Readability

 Proper logical structure

 Self-explanatory notes and comments

For example, if you make a comment like the following, it will not be of much

help:

! loop from 1 to 10

do i=1,10

However, if you are calculating binomial coefficient, and need this loop for nCr

then a comment like this will be helpful:

! loop to calculate nCr

do i=1,10

 Indented code blocks to make various levels of code clear.

 Self-checking codes to ensure there will be no numerical errors like division by

zero, square root of a negative real number or logarithm of a negative real

number.

 Including codes that ensure variables do not take illegal or out of range values,

i.e., input validation.

 Not putting checks where it would be unnecessary and slows down the execution.

For example:

real :: x

x = sin(y) + 1.0

if (x >= 0.0) then

 z = sqrt(x)

end if

 Clearly written code using appropriate algorithms.

 Splitting the long expressions using the continuation marker ‘&’.

 Making meaningful variable names.

24. Fortran ─ Programming Style

Fortran

155

A debugger tool is used to search for errors in the programs.

A debugger program steps through the code and allows you to examine the values in the

variables and other data objects during execution of the program.

It loads the source code and you are supposed to run the program within the debugger.

Debuggers debug a program by:

 Setting breakpoints,

 Stepping through the source code,

 Setting watch points.

Breakpoints specify where the program should stop, specifically after a critical line of

code. Program executions after the variables are checked at a breakpoint.

Debugger programs also check the source code line by line.

Watch points are the points where the values of some variables are needed to be

checked, particularly after a read or write operation.

The gdb Debugger

The gdb debugger, the GNU debugger comes with Linux operating system. For X

windows system, gdb comes with a graphical interface and the program is named xxgdb.

Following table provides some commands in gdb:

Command Purpose

break Setting a breakpoint

run Starts execution

cont Continues execution

next
Executes only the next line of source code, without stepping into any

function call

step
Execute the next line of source code by stepping into a function in case of
a function call.

25. Fortran ─ Debugging Program

Fortran

156

The dbx Debugger

There is another debugger, the dbx debugger, for Linux.

The following table provides some commands in dbx:

Command Purpose

stop[var] Sets a breakpoint when the value of variable var changes.

stop in [proc] It stops execution when a procedure proc is entered

stop at [line] It sets a breakpoint at a specified line.

run Starts execution.

cont Continues execution.

next
Executes only the next line of source code, without stepping into any
function call.

step
Execute the next line of source code by stepping into a function in
case of a function call.

