
Computational Genetic
Chemistry ver. 2.0

JAMES BONNAR

email: bonnarj@gmail.com

Ψ

APPLIED RESEARCH PRESS

October 2016

Copyright c©2016 by James Bonnar. All rights reserved worldwide under the Berne con-
vention and the World Intellectual Property Organization Copyright Treaty.

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act, without the prior written permission of the Publisher.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used
their best e�orts in preparing this book, they make no representations or warranties
with respect to the accuracy or completeness of the contents of this book and speci�cally
disclaim any implied warranties of merchantability or �tness for a particular purpose. No
warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You
should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of pro�t or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

Everything is theoretically impossible, until it is done. One

could write a history of science in reverse by assembling the

solemn pronouncements of highest authority about what

could not be done and could never happen.

Robert A. Heinlein, 1952

placeholder

Preface

In this book we discuss the technical and non-technical reasons science has
been unable to �nd cures for heritable diseases, despite the exponential
increase in knowledge of disease mechanisms we currently witness. New
directions in scienti�c research and protocols are suggested that may help
bring about actual cures for genetic diseases through pharmacological gene
therapy. A computational paradigm, called the omega algorithm, is devel-
oped, implemented and applied to �nd compounds that could potentially
correct the ∆F508 mutation responsible for cystic �brosis. Links to down-
loadable �les, including an extensive chemical reaction database, are given
in Appendix B to assist the reader with further studies.

The chapters that follow are the �rst published report on the initial re-
sults of a long-term project originally conceived over �fteen years ago. At
that time, I was a student of chemistry and physics at the University of
Wisconsin-Parkside, near the completion of my degree. An involvement
with an independent study research course in the physics department deal-
ing with the divergences in how Bohr's correspondence principle predicts
highly-energized (Rydberg) atoms should behave and their actual chaotic
behavior (quantum chaos) provided my �rst encounter with the unknown
and the insu�ciency of fundamental theory to e�ciently model complex
systems. To my surprise, that �rst experience with ine�ective or incom-
plete scienti�c theory and practice radically undermined most of my basic
conceptions about the completeness, capabilities, validity and practice of
contemporary science and the reasons for both its successes and failures.

i

ii

Those conceptions were practical � I shared the same perspective on science
that an engineer probably would. In this, I mean I took a constructive utili-
tarian point of view, rather than an analytical point of view on the ultimate
objectives of science. The goal of any scienti�c endeavor, for me, was to
ultimately be able to control, alter or build with the object of study. This
instinct has deep roots in American culture and comes quite naturally to a
creature possessing an opposable thumb. The results of this value system
was a gradual change in my career plans over the course of my education
� from premed to biochemistry to mathematics and physics. In some part
the work presented in this book is a reintegration of everything I learned.

My �rst opportunity to vigorously pursue the ideas set forth in this book
came with the development of Mathematica 7 (Stephan Wolfram et al., Wol-
fram Research, Inc.), but were not successful until the advent of the machine
learning algorithms present in Mathematica 10. Many wrong avenues were
taken along the way. Without the freedom from low-level programming
tasks that Mathematica provides, the development of this new technique
would have been far more di�cult and most likely would not have been
achieved. Much of my time in previous years was spent on the study of
programming proper. In particular, I continued to program in C and Java,
quite laboriously reproducing the algorithms I wished to use to answer a
single question, if in fact that question could even be answered using that
algorithm in practice. However, with the addition of Mathematica to my
repertoire, my research has progressed at a rate 100-fold quicker. Stephan
Wolfram, the original creator of Mathematica, who graduated from Caltech
with his doctorate in theoretical physics at the age of nineteen, is the great-
est single contributor to modern computer mathematics.

Far more than other recent scholars, Wolfram and his group has shown that
a bold reconsideration of the primitives of science can be quite bene�cial,
though we now live in a period of rigid thought in the theoretical sciences,
despite the fact that technology has become very progressive. The theo-
retical sciences have unfortunately become mired with politics, elitism and
endeavors totally unsupported by experimental evidence.

To recap, much of my time in previous years was spent exploring �elds
without apparent relation to biomedical science, but in which the totality
of research could be uni�ed and generalized � the importance of which his-
tory is now bringing to light. It has become deeply set into the social order

iii

of science not to do this. Only specialization is rewarded or respected, and
being a generalist can be misconstrued as having a lack of direction. The
adage �no good deed goes unpunished� applies in the scienti�c world.

Fortunately, the ideas I thereby assimilated oriented my research and pro-
vided a sca�old for most of my more advanced thinking. The same orien-
tation and sca�old gave a unity and direction to my thoughts in all of my
research. Even further, my work is a direct expression of my subconscious
machinery at work. Quite literally, some of my ideas and solutions came
to me �in my dreams�. These forces always play a role in truly creative
scienti�c research. Others are a testament to the way in which new exper-
imental or computational technology may help a researcher overcome an
incompatible theory. Experimental technology has a long history of induc-
ing the formation of new theories. New computational technology will do
the same in the sense that it allows scientists to seriously entertain more
complex theories without the subconscious fear of not being able to do any-
thing with the theory. In this way, my work chronicles the emergence of a
new theoretical framework.

An early solidifying experience in the development of my career was the
experience of being berated by a mathematician for not pursuing the math-
ematical approach to science very early in my academic career. The experi-
ence made a lasting impression on me. There exists very di�erent attitudes
about how science should be done in the non-mathematical versus the math-
ematical sciences (by non-mathematical sciences I mean biology and most
of chemistry, and by mathematical sciences I mean physics, engineering,
computer science and mathematics itself). The number and extent of dis-
agreements between these two groups concerning the nature of true science
and how it should be done is surprising. But history forces me to doubt
that the mathematics-based natural sciences are any more legitimate or
permanent in their conclusions than the non-mathematical sciences are. It
is not a good thing to get overly impressed by the existence of a mathemat-
ical model to describe a theory. It does not necessarily impart truth to the
theory. Mathematics is in�nitely �exible � it can model anything, whether
we assign true or false meaning to the equations is a matter of interpretation.

Yet, somehow, the practice of physics and engineering fail to evoke the same
frustration over fundamental objectives that are endemic among �elds such
as cancer research or chemical synthesis. Meditating upon the source of that

iv

di�erence in these two communities led me to the realization that learned
roles play a dominant part in scienti�c research. These are universally-
recognized (and enforced) modes of operation that provide not only a subset
of admissible problem domains to a group of practitioners, but also a lim-
ited subset of admissible solution domains to that group. Biologists don't
typically scribble partial di�erential equations on the chalkboard when dis-
cussing gene expression, nor do chemists talk about the latest algorithmic
advancements in numerical analysis when discussing molecular dynamics
calculations. Molecular biologists attempt gene therapy with molecular
biology tools (virus vectors). Chemists treat disease with small organic
molecules relatively easy to synthesize. These seem like reasonable modes
of operation only because cultural expectation allows for them and tradi-
tions demand them. Once this realization occurred, my research direction
was legitimized and justi�ed in my mind, and a new outlook emerged.

Since my most important objective is to change the way familiar systems
are evaluated, the occassional sketchiness in this book is no drawback. I
want the readers to use their imaginations. Chance favors the prepared
mind, as the saying goes. If the reader's own frame of mind is open to the
sort of suggestions given, he or she may �nd the material much easier to
learn and digest, and improve upon.

The take on science developed in my research suggests several new avenues
of investigation which I'm convinced will prove fruitful. And the manner in
which unexpected results occurred has gained my attention � each of these
results merits further detailed study. In my view, every scienti�c discovery
worth publishing alters the perspective of the person reading about it. Then
that change of perspective itself should have an e�ect upon the content of
future publications and research.

CONTENTS

Preface . i

Chapter 1 A New Light 1

Chapter 2 History and Epistemology 7

Chapter 3 Software You'll Need 11
3.1 Mathematica . 11
3.2 Marvin Suite . 11

Chapter 4 SMILES Strings 13
4.1 Canonicalization . 14
4.2 SMILES Speci�cation Rules . 15

Atoms . 15
Bonds . 16
Branches . 17
Cyclic Structures . 17
Disconnected Structures . 18

4.3 Isomeric SMILES . 18
Isotopic Speci�cation . 18
Con�guration Around Double Bonds . 19
Con�guration Around Tetrahedral Centers 20

4.4 SMILES Conventions . 21
Hydrogens . 21
Aromaticity . 22

4.5 Extensions for Reactions . 23
4.6 SMILES Chemical Reaction Database . 24

Chapter 5 Markovian Text Generator 29
5.1 SMILES String Generation . 32

Chapter 6 Cystic Fibrosis 35
6.1 Protein Structure . 36
6.2 Common Disease Causing Mutation . 37
6.3 Factors That A�ect the Disease Phenotype 39
6.4 Towards a Cure for Cystic Fibrosis . 39

v

vi

Chapter 7 Omega Algorithm 43

Chapter 8 Extended Omega Algorithm 55

Appendix A generate_markov_text.py 59

Appendix B Resources 69

1

A New Light

What I would like to do in this chapter is elucidate a bit the scienti�c
structure I spent the last twenty years struggling to build � a structure
which in the end proved embarrassingly simple to implement. It is a way
of thinking which has some very exciting implications both now and well
into the future. I had gotten interested in the semantics of representations
(assignment of meaning to syntax) and had also been thinking about the
equivalence of di�erent representations in physics. For example, the equiv-
alence of matrix and wave mechanics. Equally important, I had also been
studying the correspondence principle and had been meditating a great deal
on the implications of this phenomena in terms of computational e�ciency.
Newtonian calculations on large scale objects are far more e�cient than
sum total quantum mechanical calculations would be on the object's parts.

Even orthodox viewpoints often demonstrate the fact that simplicity can
be found in the most complex phenomena of nature. What is unortho-
dox about my viewpoint is the belief that simplicity can always be found
in the complex, if one is willing to see things in a new light. From the
high-level di�erential equations that describe turbulent �uid �ows, to the
wave mechanics describing electron behavior about the nucleus, these are
all examples of simplicity found in phenomena which could be treated at
far more complicated deeper levels. Deepening a theory brings increased
understanding, but not necessarily an ability to compute things better.
There is actually merit in looking for what one may think of as more su-
per�cial theories for the purposes of doing computations e�ciently. Two
theories which say very di�erent things in the general may say essentially

1

2

the same thing, they are equivalent, in some limited domain. I believe I
have found a way to derive computationally-e�cient, secondary theories to
model phenomena already explained by computationally-ine�cient primary
theories within certain limited problem domains. Speci�cally, we shall be
extracting the knowledge inherent in a chemical reaction database and ap-
plying it to make predictions about reactions involving complex molecular
species, namely, determination of molecules to react with a ssDNA sequence
to transform the sequence in some desired way � this process is called the
omega algorithm. What we will compute is in e�ect a necessary but not-
necessarily-su�cient condition that a proposed molecule would produce the
transformed sequence when reacted with the initial sequence of DNA. This
allows us to tremendously narrow down our search of chemical space for the
proper reactant in an e�ort to cure a heritable disease.

It is a common misconception that the study of complex, deep phenomena
such as say, quantum �eld theory, will enable one to easily �gure out what
is going on in higher-level systems such as say, a methane molecule. It
seems reasonable � the whole is just the sum of its parts, right? But when
one tries to actually do such a thing, things rarely work out, except in the
simplest of cases. Reductionism has its bene�ts, but putting something
back together is not the mirror inverse of tearing it apart, especially in re-
gards to computation on complex microscopic systems such as biomolecules.
Gradually, I began to realize that there is a fundamental problem with the
whole approach science is using to describe such systems. It is commonly
believed that to describe such systems, one must build from the bottom
up. But this is a fallacy. In the �rst place, we are not truly building from
the bottom up (how many chemists use string theory to describe the hy-
drogen molecule?). Secondly, I have found experimentally that it is more
productive, computationally-e�cient theories can always be found, if one
uses surface-level theories. By surface-level theory, I mean not a lower-level
or higher-level theory, but a theory that employs data concerning the level
about which the theory is meant to make predictions. This in no way min-
imizes the importance of microscopic descriptions of matter, but what I
mean by this is that it is more e�ective to use molecular structure itself as
the data from which we build our theories about the behavior of molecular
structures. It is not necessary to build up from say, mathematical models
intended to describe the electrons within atoms, to describe say, a protein's
catalytic behavior (at least as far as computing its behavior).

3

But one may be asking how we are to �nd such theories. The quantum the-
ory of molecular structure itself was so hard won. How are we to �nd these
new surface-level theories? The good news is that it is not only possible, but
the process of �nding these mathematical models has been automated and
are very easily implemented. Computationally-e�cient theories of chemical
reactivity can and have been found using nearest-neighbors analysis of a
database of SMILES strings that describe chemical reactions, but we will
discuss more on that later.

If one looks at history, the use of mathematics to describe natural phe-
nomena has been a de�ning feature of the advanced sciences. It has been
observed that the more advanced the science, the more mathematical it
becomes. Even in biology, we now see mathematics making an inroad in
the form of data analysis or what has come to be called �bioinformatics�.
But despite the existence of sub�elds such as �chemical physics�, one may
be surprised to learn that such sub�elds often have little to do with the
practice of the rest of the �eld. For example, organic chemists deal with
synthesizing molecules of such high complexity that physical chemists have
little chance to add anything helpful to the organic chemist's work in prac-
tice. The theoretical does provide understanding, but is often of little to no
predictive value because the computations cannot be done.

Imagine an alternate universe in which the equations of electromagnetism
were so inscrutable to numerical computation that electrical engineers could
not do reliable computations on systems any more complex than the com-
mon light bulb. In this world, engineers could analyze and understand even
the most complex supercomputers found laying around, but could not build
a radio if their lives depended on it. At the �nest universities, courses are
taught on subjects such as �combinatorial electronics�, in which students
are taught how to build random appliances and develop assays to detect
good appliances. These are precisely the strange set of circumstances un-
der which chemists must live. They must do so because the equations they
have been taught must be used to do legitimate, acceptable computations
on chemical systems are not amenable to accurate numerical computation
in regards to complex systems. This is a result of conditioning and social
pressure, not scienti�c necessity.

Is there someway to go beyond the accepted paradigm in thinking about
complex systems? What are the necessary ingredients of a computation

4

concerning a system we know is composed of �parts�? How is it that nature
can form complex systems with equal ease as it forms simple systems? In
looking for the ingredients or �primitives� of an e�cient computation, might
we also be inadvertently also be learning something about nature itself? It
was discovered many years ago by Richard Feynman that the movement
of subatomic particles could be accounted for if, in moving from place to
place, the particle was considered to take all possible paths. These paths
add up, but only some of them add to the sum signi�cantly. So nature
itself, even at its deepest levels, displays this tendency of computational
e�ciency. The crucial thing to understand is that these primitives do not
need to be based on the smallest parts of the complex system.

But if one is to do computations on natural systems at all, then one is
going to have to implicitly assume that nature follows de�nite rules, which
appears to be the case. But exactly who is to de�ne what the complete

set of rules are for us? In nature, there are rules, but then there are rules
governing the rules, and then there are rules governing the rules that govern
the rules, and so forth. The classical laws of physics must be satis�ed by
quantum mechanics in the limit of large numbers, the laws of ordinary quan-
tum mechanics must be satis�ed by string theory, and so on. Is there any
way to make these observations systematic and useful? In the past, there
was no way to do so, but now we have computers. What sort of computer
program is relevant to the determination of computational primitives? In
programming we are used to developing long, complicated programs suited
to a particular task. But here we need a way to derive, in general, the
e�cient computational primitives of a problem domain, in particular those
of chemical reactivity. Such an algorithm was implemented by the author
and is presented in this book � it is a machine learning algorithm, a form
of string transformation learning, for equating ordered pairs of character
strings to a single number, deriving just what the rule or map is governing
the relation between the ordered pairs in general, and then using this rule
to make predictions on novel cases in the domain of the map. In this scheme
the strings of characters represent molecules. I have coined the algorithm
for �nding reactants that transform an initial strand of DNA to some de-
sired product strand of DNA the omega algorithm.

One will see that here we have a systematic method for �nding the compu-
tational primitives for complex molecular systems and this provides a way
of doing all the computer experiments we shall have to do in an e�cient

5

way. For many years, developing a method for �nding these computational
primitives became an obsession. As Linus Pauling would say, the best way
to get good ideas is to get a lot of ideas. Finally, the method has developed
to the point where I can start looking at the questions in science, partic-
ularly in medicinal chemistry or gene therapy, that I want to. I feel very
much like I am using a tool that can be simply pointed at a problem and
immediately see the phenomenon in a new light, a computationally-e�cient
one at that.

Very simple rules can give incredibly complicated, even surprising behav-
ior. It is a robust, general phenomenon. How come a more fundamental ap-
proach such as this hadn't been in use in the molecular sciences for decades?
One reason is, until recently, high-speed computers were not widely avail-
able. One can see these things only by doing many computer experiments.
With our ordinary intuition alone, there just did not seem to be any reason
to even try these computer experiments. It seemed so obvious that they
wouldn't show anything interesting, at the time. We were wrong. But now,
we can see hints of this phenomenon from the past, even in mathematics
itself. As an example, the sequence of primes, irregular and able to pass
any test of randomness we have, can be generated from a simple deter-
ministic formula. Similarly, the digits of π can also be generated from a
deterministic formula, though they can also pass any test of randomness.
In the same way, nature itself seems to produce so much that seems, to us,
so complicated. But complexity is really only a matter of perspective. It is
as if nature has some secret for building complex systems.

Many scientists believe that in order to create things we have to operate
under the constraint that we have to foresee what the things we create
are going to do. So many have forced themselves into a limiting solution
space of special algorithms which only have predictable, foreseeable behav-
ior. Presumably, nature is under no such constraint, in that way somehow
producing the degree of complexity we humans fail to emulate in our cre-
ations. Using the protocols of string transformation learning, it may now
be possible to synthesize molecules and predict reactions of very complex
molecules. As Richard Feynman wrote, �What I cannot create, I do not un-
derstand.�, which was written on his chalkboard at his time of death in 1988.

Some scientists may feel uncomfortable with using these new surface-level
models when they tackle a problem. Some have a tendency to seek the

6

approval of others in how they go about solving a problem. This is where
orthodoxy comes from. But the whole point of any model is to capture
certain essential features of a system and to idealize away everything else.
If the objective is computation, what could the essential features be, other
than the computational primitives needed to perform e�ciently? Depend-
ing on what aspect one is interested in, one selects certain features to cap-
ture. A common misconception about models is that the models are sup-
posed to �be� the system itself. A model is an abstract way of reproducing
what a system does. Its the same with this string transformation learning
technique � the system represents abstractly what happens when molecular
species encounter one another. What type of model is best will depend on
what aspect of molecular behavior one is interested in. We do not have a
single model to account for everything, just a single protocol for arriving at
the models.

2

History and Epistemology

�The fundamental laws necessary for the mathematical treatment of a large

part of physics and the whole of chemistry are thus completely known, and

the di�culty lies only in the fact that application of these laws leads to equa-

tions that are too complex to be solved.� � Paul Dirac, 1929.

This well-meaning, but unfortunate, statement of Dirac's clearly expresses
the belief held by most scientists to this day that computational primitives
equate with the fundamental parts of a system. If this statement could be
erased from history and rewritten, I would write it so:

�The fundamental laws necessary for the mathematical understanding of a
large part of physics and the whole of chemistry are thus completely known,
and the di�culty lies only in the fact that direct application of these laws
leads to equations that are too complex to be solved.�

There is an old adage that claims that a whole is greater than the sum
of its parts. What that actually means is that a whole is di�erent than a
straightforward sum of its parts. But one �nds in reality, computationally
speaking, that wholes are often less than the sum of their parts. The Earth
travels about the Sun in a fairly simple trajectory determined by a simple
equation. We do not have to solve for the quantum mechanical orbits of
each subatomic particle comprising the system.

I ask the question, is it actually necessary to use very detailed quantum
mechanical calculations to predict the outcome of a chemical reaction? In

7

8

light of what we were taught, the way we were trained to think, the ques-
tion seems almost ridiculous to pose, but is it? Considering the human cost
of the limitations of current theoretical chemistry, it seems worth ponder-
ing. Just as an astrophysicist would not calculate the orbit of the Moon
around the Earth by taking into account the quantum mechanical orbits
of each subatomic particle composing it, to what degree can chemists do
the same? Seems we should not be able to get very far � �the molecules
are more proximal to the quantum mechanical scale and thus ought to be
more tightly ruled by it�, one might say. However that is false reasoning
because the Moon is just as tightly ruled by quantum mechanics as are
electrons, so says the correspondence principle. Quantum mechanics is cor-
rect at any length scale we have been able to probe, classical physics being
more an approximate statement of the properties of quantum mechanics
in the limit of large numbers. Classical physics is an epiphenomenon � a
secondary phenomenon that occurs alongside or in parallel to a primary
phenomenon � quantum physics, in this case. Thus, we cannot conclude
that simplifying epiphenomena (side e�ects) do not exist for molecular ob-
jects as well � epiphenomena unrelated to scale, but more related to the
attainment of stable intermolecular states. Further, when I was an organic
chemistry student many years ago, I was at that point in time not knowl-
edgeable in the �eld of quantum mechanics, yet I was able to predict the
outcomes of thousands of organic reactions. How was I able to learn to do
that? Thus, the epiphenomena, the rules of chemistry, must exist, it's just
that we humans are having di�culty articulating them in an explicit way.
String transformation learning solves that problem.

I want to state a principle that I am certain is universally true � The
Epiphenomenological Principle: All physical laws are secondary. Physical
laws always change as we drill down into the in�nitesimal without end, and
out into in�nity without end. Physical laws, in reality, are no more �real�
than the laws describing the behavior of an ant colony or school of �sh.
Mathematical laws, on the other hand, are not epiphenomenological. The
moral I am trying to relate here is that it is not at all inappropriate to look
for ways to do chemistry outside of strict quantum mechanical approaches,
which have serious limitations that a�ect human welfare. I am not saying
quantum mechanics isn't the best way to appraoch some problems. I don't
want to be black-and-white about things here. But let's not exclude other
facets of nature which could be very rewarding.

9

A theory that is a bit further away from reality than a more accurate theory,
however is superior in its imagery, symbolism and its ability to rationalize
scienti�c fact may retain its value in the community. For example, consider
the famous rivalry between valence bond theory and molecular orbital the-
ory. The two theories were developed at about the same time, but quickly
diverged into rival schools that have competed, sometimes fervently, on
charting the mental map and epistemology (knowledge) of chemistry. It
has been argued over the years that valence bond (VB) theory is �awed,
and that molecular orbital (MO) theory is superior for explaining things like
the structure of benzene. However, VB theory is central to the chemist's ba-
sic concept of what a chemical bond is. The once held belief that theories
should automatically be thrown away in situations such as this is incog-
nizant of the fact that even MO theory is a bit far from reality itself, and
could be replaced with a quantum electrodynamic theory of the molecule,
and so on. Each theory must be valued for the unique merits it has, as-
suming it has substantial unique merits, as VB theory does. There exist
acceptable levels of mythhology in science, and I would even go so far as
to say that often, a su�cient degree of mythology is preferable. Consider
the case of classical mechanics � a false, but delightful approximation. So I
must ask, is any science permanent? Phrased this way, perhaps. But never
permanently considered �ultimate truth�.

In light of the above, some rules of e�ective research can be gleaned from
the history of science that better describe the actual mode of operation of
great scientists than the so-called �scienti�c method� does.

Four Questions E�ective Research Answers
What are the fundamental entities of which problem space is composed?
How do the fundamental entities interact?
What techniques are employed in de�ning the problem space and how
do we justify the interpretation of experimental data?
How is the solution space best de�ned?

A common misconception about science is that the invention of new theory
is the most fundamental act in science. This is not true. In fact, the most
fundamental act is reinterpretation of experimental facts. By �theoretical�
science, it is clear that the theorizing that is being done is concerned with
the interpretations of data. We theorize about X-rays, hydrogen atoms, etc.
But the more fundamental act is the assignment of causation to, or even
further, the existence of, any such object.

10

Each scienti�c �eld has an admissible problem space (understandably), and
an admissible solution space (unfortunately). Of the physical sciences,
physics seems to have the most complete solution space, borrowing from
mathematics to the point of de�ning physics as the mathematical science.
The connection of chemistry and biology to mathematics is once and twice
removed. Biology borrows heavily from chemistry, which in turn borrows
from physics. There is very little direct interaction between mathematics
and chemistry or biology. I �nd this situation unacceptable. There should
be a �chemical mathematics� as well as a �biological mathematics�. These
�elds need a solution space of their own, de�ned in terms of mathematics
in a direct fashion. So far, the greatest achievements in the sciences have
been attained when one �eld borrows and applies advancements made in
another �eld. In the molecular sciences, this has meant the application of
physics. But it has become clear that a direct route must be laid between
mathematics and chemistry in particular.

New theories do not emerge from old theories (and the belief that we must
use complex quantum mechanical codes to calculate chemical reaction out-
comes is a theory). New theories require the reevaluation of old theories.
It is the old theories which must be readjusted to the new theories.

3

Software You'll Need

There are two sets of programs you will need to execute the code in this
book, Mathematica and Marvin Suite.

3.1 Mathematica

Wolfram Research's https://www.wolfram.com/mathematica/ Mathemat-
ica is a symbolic mathematical computation program, sometimes called a
computer algebra program, used in many scienti�c, engineering, mathe-
matical and computing �elds. It was conceived by Stephan Wolfram and is
developed by Wolfram Research of Champaign, Illinois. The Wolfram Lan-
guage is the programming language used in Mathematica. To execute the
code in this book, you'll need Mathematica version 10 or later.

3.2 Marvin Suite

ChemAxon https://www.chemaxon.com allows for free download of the
Marvin Suite of products, which contains MarvinSketch, MarvinView, Mar-
vinSpace and other programs. In particular, one will be needing MarvinS-
ketch to draw in molecules and to save them as SMILES strings, and Marv-
inView to view lists of SMILES strings as 2-dimensional structural diagrams.

11

https://www.wolfram.com/mathematica/
https://www.chemaxon.com

4

SMILES Strings

The omega algorithm, a machine learning algorithm, requires that we form
an abstract model of chemical reactivity data and we then use that model
to make predictions about the reactivity of novel compounds. The most
important issue in any application of machine learning is the representa-
tion of information that is fed into the system and/or obtained from it.
The representation chosen has to be adapted to the problem and solution
space. We need a way to represent molecular structures that captures all
of the structural facets of their connectivity, yet consists of linear strings
of characters such that Mathematica's machine learning function Predict
can work with the representation. The requirements of our representation
are satis�ed by the SMILES system of specifying molecular structure. As
we will see in the next chapter, the SMILES representation is also ideal for
automatically generating novel molecules.

The simpli�ed molecular-input line-entry system (SMILES) is a speci�ca-
tion in the form of a line notation for describing the structure of chemical
species using short ASCII strings. SMILES strings can be imported by
most molecule editors for conversion back into two-dimensional drawings or
three-dimensional models of the molecules.

The original SMILES speci�cation was initiated by David Weininger at the
USEPAMid-Continent Ecology Division Laboratory in Duluth in the 1980s.
Acknowledged for their parts in the early development were Gilman Veith
and Rose Russo (USEPA) and Albert Leo and Corwin Hansh (Pomona Col-
lege) for supporting the work, and Arthur Weininger (Pomona, Daylight

13

14

CIS) and Jeremy Sco�eld (Cedar River Software, Renton, WA) for assis-
tance in programming the system. The Environmental Protection Agency
funded the initial project to develop SMILES.

SMILES contains the same information as might be found in an extended
connection table. The primary reason SMILES is more useful than a con-
nection table is that it is a linguistic construct, rather than a computer data
structure. SMILES is a true language, albeit with a simple vocabulary and
only a few grammar rules. SMILES representations of structure can in turn
be used as �words� in the vocabulary of other languages designed for storage
of chemical information and chemical intelligence.

Part of the power of SMILES is that unique SMILES exist. With stan-
dard SMILES, the name of a molecule is synonymous with its structure;
with unique SMILES, the name is universal. Anyone in the world who uses
unique SMILES to name a molecule will chose the exact same name.

4.1 Canonicalization

SMILES denotes a molecular structure as a graph with optional chiral in-
dications. This is essentially the two-dimensional picture chemists draw to
describe a molecule. SMILES describing only the labeled molecular graph
(i.e., atoms and bonds, but no chiral or isotopic information) are known as
generic SMILES. There are usually a large number of valid generic SMILES
which represent a given structure. A canonicalization algorithm exists to
generate one special generic SMILES among all valid possibilities; this spe-
cial one is known as the �unique SMILES�. SMILES written with isotopic
and chiral speci�cations are collectively known as �isomeric SMILES�. A
unique isomeric SMILES is known as an �absolute SMILES�. The following
table gives some examples:

Input SMILES Unique SMILES
OCC CCO

[CH3][CH2][OH] CCO

C-C-O CCO

C(O)C CCO

OC(=O)C(Br)(Cl)N NC(Cl)(Br)C(=O)O

ClC(Br)(N)C(=O)O NC(Cl)(Br)C(=O)O

15

4.2 SMILES Speci�cation Rules

SMILES notation consists of a series of characters containing no spaces.
Hydrogen atoms may be omitted (hydrogen-supressed graphs) or included
(hydrogen-complete graphs). Aromatic structures may be speci�ed directly
or in Kekulé form.

There are �ve generic SMILES encoding rules, corresponding to speci�ca-
tion of atoms, bonds, branches, ring closures, and disconnections. Rules for
specifying various kinds of isomerism also exist.

Atoms

Atoms are represented by their atomic symbols: this is the only required use
of letters in SMILES. Each non-hydrogen atom is speci�ed independently
by its atomic symbol enclosed in square brackets, []. The second letter
of two-character symbols must be entered in lower case. Elements in the
�organic subset� B, C, N, O, P, S, F, Cl, Br, and I may be written without
brackets if the number of attached hydrogens conforms to the lowest nor-
mal valence consistent with explicit bonds. �Lowest normal valences� are
B(3), C(4), N(3,5), O(2), P(3,5), S(2,4,6), and 1 for the halogens. Atoms in
aromatic rings are speci�ed by lower case letters, e.g., aliphatic carbon is
represented by the capital letter C, aromatic carbon by lower case c. Since
attached hydrogens are implied in the absence of brackets, the following
atomic symbols are valid SMILES notations:

C methane CH4
P phosphine PH3
N ammonia NH3
S hydrogen sul�de H2S
O water H2O
Cl hydrochloric acid HCl

Atoms with valences other than �normal� and elements not in the �organic
subset� must be described in brackets.

[S] elemental sulfur
[Au] elemental gold

Within brackets, any attached hydrogens and formal charges must always
be speci�ed. The number of attached hydrogens is shown by the symbol H

16

followed by an optional digit. Similarly, a formal charge is shown by one
of the symbols + or -, followed by an optional digit. If unspeci�ed, the
number of attached hydrogens and charge are assumed to be zero for an
atom inside brackets. Constructions of the form [Fe+++] are synonymous
with the form [Fe+3]. Examples are:

[H+] proton
[Fe+2] iron (II) cation
[Fe++] iron (II) cation
[OH-] hydroxyl anion
[OH3+] hydronium cation
[NH4+] ammonium cation

Bonds

Single, double, triple and aromatic bonds are represented by the symbols
-, =, # and :, respectively. Adjacent atoms are assumed to be connected
to each other by a single or aromatic bond (atoms involved in aromatic
bonds being distinguished by the fact that can be designated by lower case
letters). Single and aromatic bonds may always be omitted. Examples are:

CC ethane CH3CH3
C=O formaldehyde CH2O
C=C ethene CH2=CH2
O=C=O carbon dioxide CO2
COC dimethyl ether CH3OCH3
C#N hydrogen cyanide HCN
CCO ethanol CH3CH2OH
[H][H] molecular hydrogen H2

For linear structure, SMILES notation corresponds to conventional dia-
grammatic notation except that hydrogens and single bonds are generally
omitted. For example, 6-hydroxy-1,4-hexadiene can be represented by many
equally valid SMILES, including the following three:

Structure Valid SMILES
C=CCC=CCO

CH2=CH-CH2-CH=CH=CH-CH2-OH C=C-C-C=C-C-O

OCC=CCC=C

17

Branches

Branches are speci�ed by enclosing them in parentheses, and can be nested
or stacked. In all cases, the implicit connection to a parenthesized expres-
sion is to the left. Examples are:

Triethylamine Isobutyric
acid

3-propyl-4-isopropyl-
1-heptene

CCN(CC)CC CC(C)C(=O)O C=CC(CCC)C(C(C)C)CCC

Cyclic Structures

Cyclic structures are represented by breaking one bond in each ring. The
bonds are numbered in any order, designating ring opening (or ring closure)
bonds by a digit immediately following the atomic symbol at each ring
closure. Cyclohexane is an easy example.

C1CCCCC1

CC1=CC(Br)CCC1

O1CCCCC1N1CCCCC1

18

Disconnected Structures

Disconnected compounds are written as individual structures separated by
a �.� (period). The order in which ions or ligands are listed is arbitrary.
There is no implied pairing of one charge with another, nor is it necessary to
have a zero net charge. If desired, the SMILES of one ion may be imbedded
within another as shown in the example of sodium phenoxide:

[Na+].[O-]c1ccccc1

4.3 Isomeric SMILES

This section describes the SMILES rules used to specify isotopism, con-
�guration about double bonds, and chirality. The term isomeric SMILES

collectively refers to SMILES written using these rules.

The SMILES isomer speci�cation rules allow chirality to be completely
speci�ed for any structure, if it is known. Unlike most existing chemical
nomenclatures such as CIP and IUPAC, these rules are also designed to
allow rigorous partial speci�cation of chirality. Aside from use in macros,
substructure searching, and other pattern matching operations, this is im-
portant because much of the world's available chemical information is known
for structures with incompletely resolved chiralities (not all possible chiral
centers are separated, known, or reported).

All isomer speci�cation rules in SMILES are therefore optional. The absence
of a speci�cation for any attribute implies that the value of that attribute
is unspeci�ed.

Isotopic Speci�cation

Isotopic speci�cations are indicated by preceding the atomic symbol with
a number equal to the desired integral atomic mass. An atomic mass can
only be speci�ed inside brackets. For instance:

19

SMILES Name
[12C] carbon-12
[13C] carbon-13
[C] carbon (unspeci�ed mass)
[13CH4] C-13 methane

Con�guration Around Double Bonds

Con�guration around double bonds is speci�ed by the characters / and \
which are �directional bonds� and can be thought of as kinds of single or
aromatic bonds. These symbols indicate relative directionality between the
connected atoms, and have meaning only when they occur on both atoms
which are double bonded. For instance, the following SMILES are valid for
E- and Z-1,2-di�uoroethene:

F/C=C/F F/C=C\F

F\C=C\F F\C=C/F

An important di�erence between SMILES chirality conventions and others
such as CIP is that SMILES uses a local chirality representation (as opposed
to absolute chirality), which allows partial speci�cations. An example of
this is illustrated here:

F/C=C/C=C/C F/C=C/C=CC

completely speci�ed partially speci�ed

20

Con�guration Around Tetrahedral Centers

SMILES uses a very general type of chirality speci�cation based on local
chirality. Instead of using a rule-based numbering scheme to order neighbor
atoms of a chiral center, orientations are based on the order in which neigh-
bors occur in the SMILES string. As with all other aspects of SMILES, any
valid order is acceptable.

The simplest and most common kind of chirality is tetrahedral; four neigh-
bor atoms are evenly arranged about a central atom, known as the �chiral
center�. If all four neighbors are di�erent from each other in any way, mir-
ror images of the structure will not be identical. The two mirror images
are known as �enantiomers� and are the only two forms that a tetrahedral
center can have. If two (or more) of the four neighbors are identical to
each other, the central atom will not be chiral (its mirror images can be
superimposed in space).

In SMILES, tetrahedral centers may be indicated by a simpli�ed chiral
speci�cation (@ or @@) written as an atomic property following the atomic
symbol of the chiral atom. If a chiral speci�cation is not present for a chiral
atom, its chirality is implicitly not speci�ed. For instance:

NC(C)(F)C(=O)O N[C@](C)(F)C(=O)O

NC(F)(C)C(=O)O N[C@@](F)(C)C(=O)O

unspeci�ed chirality speci�ed chirality

Looking from the amino N to the chiral C (as the SMILES is written), the
three other neighbors appear anticlockwise in the order that they are writ-
ten in the top SMILES, and clockwise in the bottom one. The symbol @
indicates that the following neighbors are listed anticlockwise, whereas @@
indicates that the neighbors are listed clockwise.

21

If the central carbon is not the very �rst atom in the SMILES and has an
implicit hydrogen attached (it can have at most one and still be chiral),
the implicit hydrogen is taken to be the �rst neighbor atom of the three
neighbors that follow a tetrahedral speci�cation. If the central carbon is
�rst in the SMILES, the implicit hydrogen is taken to be the �from� atom.
Hydrogens may always be written explicitly (as [H]) in which case they are
treated like any other atom. In each case, the implied order is exactly as
written in SMILES. For example, some of the valid SMILES for alanine are:

N[C@@]([H])(C)C(=O)O N[C@]([H])(C)C(=O)O

N[C@@H](C)C(=O)O N[C@H](C)C(=O)O

N[C@H](C(=O)O)C N[C@@H](C(=O)O)C

[H][C@}(N)(C)C(=O)O [H][C@@](N)(C)C(=O)O

[C@H](N)(C)C(=O)O [C@@H](N)(C)C(=O)O

There are many kinds of chirality other than tetrahedral. More advanced
chiral speci�cations are possible with SMILES but will not be covered here.

4.4 SMILES Conventions

Aside from the above rules, a small number of conventions are universally
used in SMILES. These are brie�y discussed below.

Hydrogens

Hydrogen atoms do not normally need to be speci�ed when writing SMILES
for most organic structures. The presence of hydrogens may be speci�ed in
three ways:

• Implicitly . . . for atoms speci�ed without brackets, from normal va-
lence assumptions.

22

• Explicitly by count . . . inside brackets, by hydrogen count supplied;
zero if unspeci�ed.

• As explicit atoms . . . as [H] atoms.

There is no distinction between �organic� and �inorganic� SMILES nomen-
clature. One may specify the number of attached hydrogens for any atom in
any SMILES. For example, propane may be entered as [CH3][CH2][CH3]
instead of CCC.

There are four situations where speci�cation of explicit hydrogen speci�ca-
tion is required:

• charged hydrogen, i.e., a proton, [H+]

• hydrogens connected to other hydrogens, e.g., molecular hydrogen,
[H][H]

• hydrogens connected to other than one other atom, e.g., bridging
hydrogens

• isotopic hydrogen speci�cations, e.g., heavy water, [2H]O[2H]

Aromaticity

Aromaticity must be deduced in a system such as SMILES which gener-
ates an unambiguous chemical nomenclature because of the fundamental
requirement to characterize the symmetry of a molecule. Given e�ective
aromaticy-detection algorithms, it is not necessary to enter any structure
as aromatic if the user prefers to enter an aliphatic (Kekulé-like) structure.
Entering structures as aromatic directly (i.e., by using lower case atomic
symbols) provides a shortcut to accurate chemical speci�cation and is closer
to the mental molecular model used by most chemists.

The SMILES algorithm uses an extended version of Hueckel's rule to iden-
tify aromatic molecules and ions. To qualify as aromatic, all atoms in the
ring must be sp2-hybridized and the number of available �excess� p-electrons
must satisfy Hueckel's 4N+2 criterion. As an example, benzene is written
c1ccccc1, but an entry of C1=CC=CC=C1 - cyclohexatriene, the Kekulé form
- leads to detection of aromaticity and results in an internal structural
conversion to aromatic representation. Conversely, entries of c1ccc1 and

23

c1ccccccc1 will produce the correct anti-aromatic structures for cyclobuta-
diene and cycleoctatetraene, C1=CC=C1 and C1=CC=CC=CC=C1. In such cases
the SMILES system looks for a structure that preserves the implied sp2 hy-
bridization, the implied hydrogen count, and the speci�ed formal charge, if
any. Some inputs, however, may not only be incorrect but also impossible,
such as c1cccc1. Here c1cccc1 cannot be converted to C1=CCC=C1 since
one of the carbon atoms would be sp3 with two attached hydrogens. In such
a structure alternating single and double bond assignments cannot be made.
The SMILES system will �ag this as an �impossible� input. Note that only
C, N, O, P, S, As, Se, * (wildcard) atoms can be considered aromatic.

C1=COC=C1 C1=CN=C[NH]C(=O)1

c1cocc1 c1cnc[nH]c(=O)1

4.5 Extensions for Reactions

The SMILES language is extended to handle reactions. There are two ar-
eas where SMILES is extended: distinguishing component parts of reactions
and atom maps. We will not discuss atom maps here.

Component parts of a reaction are handled by introducing the > character
as a new separator. Any reaction must have exactly two > characters in it.
Each of the >-separated components of a reaction must be a valid SMILES.

As an aside, molecule SMILES never have a > character. In a program,
one can quickly determine if a SMILES refers to a reaction or molecule by
searching for a > character in the string.

24

Examples of reaction SMILES are:

C=CCBr>>C=CCl

This is a valid SMILES reaction. Note that there are no agent molecules,
which would appear between the two > symbols. Also note that several
atoms are missing from the reaction.

[I-].[Na+].C=CCBr]>>[Na+].[Br-]C=CCl

This is a more complete version of the same reaction. It has been canoni-
calized.

C=CCBr.[Na+].[I-]>CC(=O)C>C=CCL.[Na+].[Br-]

This version of the reaction includes an agent. Note that the SMILES does
not indicate how the agent participates. Whether the agent is a solvent,
catalyst, or performs another function within the reaction must be stored
separately as data.

4.6 SMILES Chemical Reaction Database

The omega algorithm requires that we form an abstract model of chem-
ical reactivity. We will compute a map from reactants to products. A
chemical reaction database, the SMILES chemical reaction database, will
be used for this purpose and the reader may download it at the address
given in Appendix B. The SMILES Chemical Reaction Database has two
million entries and is contained in six �les, rxnlist01.smiles through
rxnlist06.smiles. All of the SMILES reaction strings in the database
follow the pattern reactants>>products, have no information regarding
agents, and are separated by newline characters. They can be read into
MarvinView or, one at a time, into MarvinSketch.

We will only be able to work with a small subset of the entire database. We
will extract reactions that are bimolecular and involve large reactants, such
that the machine learning system would learn something about the compli-
cations involved in transforming large reactants, as in a reaction involving
the speci�c transformation of DNA. We will also concentrate on reactions
involving only the organic subset of elements.

25

Some of these things are accomplished in the �rst Mathematica notebook
we discuss, rxnsfilemaker.nb, which can be downloaded from the address
in Appendix B. We shall discuss that notebook here. The �rst step is to set
your active directory to where you have the database �les stored (change
the directory name to your own directory name):

SetDirectory["/home/james/Desktop/rxns"]

/home/james/Desktop/rxns

You can check your current directory as follows:

Directory[]

/home/james/Desktop/rxns

You can see the �les in the current directory as follows:

FileNames[]

{rxnlist01.smiles, rxnlist02.smiles, rxnlist03.smiles,

rxnlist04.smiles, rxnlist05.smiles, rxnlist06.smiles}

Next we import each of the SMILES database �les as a List:

list1 = Import["rxnlist01.smiles", "List"];

list2 = Import["rxnlist02.smiles", "List"];

list3 = Import["rxnlist03.smiles", "List"];

list4 = Import["rxnlist04.smiles", "List"];

list5 = Import["rxnlist05.smiles", "List"];

list6 = Import["rxnlist06.smiles", "List"];

We join each of the lists into one large list:

list = list1~Join~list2~Join~list3~Join~list4~Join~list5~Join~list6;

We can check the length of the list as follows:

Length[list]

2000000

26

Next we want to narrow down our database to only bimolecular reactions,
e.g., of the form A.B>>C having two reactants and one product. The follow-
ing code selects only the strings matching that pattern:

bimolecularlist =

Select[list,

StringMatchQ[#, Except["."] .. ~~ "." ~~ Except["."] .. ~~ ">>" ~~ Except["."] ..] &];

Now checking the length of that list:

Length[bimolecularlist]

753113

We're only interested in reactions exclusively involving atoms in the organic
subset. The following code selects only reaction strings free of atoms not in
the organic subset:

reducedsetlist = Select[bimolecularlist,

StringFreeQ[#, {"Rb", "Cs", "Fr", "Sr", "Ba", "Ra", "Sc", "Ti", "V", "Cr",

"Mn", "Fe", "Co", "Ni", "Cu", "Zn", "Y", "Zr", "Nb", "Mo", "Tc", "Ru",

"Rh", "Pd", "Ag", "Cd", "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt",

"Au", "Hg", "Al", "Ga", "In", "Tl", "Si", "Ge", "Sn", "Pb", "As", "Sb",

"Bi", "Se", "Te", "Po", "At", "He", "Ne", "Ar", "Kr", "Xe", "Rn", "La",

"Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm",

"Yb", "Ac", "Th", "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es",

"Fm", "Md", "No"}] &];

Again checking the length of the list:

Length[reducedsetlist]

618097

We are interested in reactions involving complex molecular species, large
molecules with complex interactions. So the following code is used to select
SMILES reaction strings having a length greater than 400:

bigreactantslist = Select[reducedsetlist, StringLength[#] > 400 &];

27

Once again checking the length:

Length[bigreactantslist]

3674

We shall be taking a hundred reactions from this list in another notebook, so
to avoid taking reactions that are very similar and may have been proximal
in the database, we randomize their order:

randomizedlist = RandomSample[bigreactantslist, Length[bigreactantslist]];

We can see what symbols are used in our list (our �alphabet�) in the follow-
ing way:

(*Delete[#,0]& replaces the Head with Sequence*)

alphabet = Union[Delete[Characters[randomizedlist], 0]]

{@, #, %, (,), -, +, =, [,], \, >, ., /, 0, 1, 2, 3, 4,

5, 6, 7, 8, 9, a, B, c, C, F, g, H, I, K, l, M, n, N, o, O, P, r, s, S}

Set the current directory to where you would like to export your list, then
export it. Here, the �le name is bigrxns.smiles, which can be downloaded
as discussed in Appendix B. The entries in the �le are separated by newline
characters. The �le can then be opened in MarvinView.

SetDirectory["/home/james/Desktop/notebooks/lists"];

Export["bigrxns.smiles", randomizedlist, "List"];

5

Markovian Text Generator

In this chapter we will demonstrate how to use a Markovian text genera-
tor to generate random molecules, actually pseudo-random SMILES strings
that represent candidate molecules for the omega algorithm.

In the 1948 landmark paper A Mathematical Theory of Communication,
Claude Shannon founded the �eld of information theory and revolutionized
the telecommunications industry, laying the groundwork for the Informa-
tion Age. In this paper, Shannon proposed using a Markov chain to create
a statistical model of the sequences of letters in a piece of text. Markov
chains are now widely used in machine recognition, information retrieval,
data compressionn, and spam �ltering. They also have many scienti�c
computing applications including: the genemark algorithm for gene predic-
tion, the Metropolis algorithm for measuring thermodynamic properties,
and Google's pagerank algorithm for Web search, and last but not least,
generating pseudo-random text.

Shannon approximated the statistical structure of a piece of text using a
simple mathematical model known as a Markov model. A Markov model
of order 0 predicts that each letter in the alphabet occurs with a �xed
probability. We can �t a Markov model of order 0 to a speci�c piece of
text by counting the number of occurrences of each letter in that text,
and using these counts as probabilities. For example, if the input text is
�agggcagcgggcg�, then the Markov model of order 0 predicts that each
letter is a with probabilty 2/13, c with probability 3/13, and g with proba-
bility 8/13. The following sequence of letters is a typical example generated

29

30

from this model:

a g g c g a g g g a g c g g c a g g g g . . .

An order 0 model assumes that each letter is chosen independently. This
does coincide with the statistical properties of English text, for instance,
since there is a high correlation among successive letters in an English word
or sentence. For example, the letters h and r and much more likely to follow
t than either c or x.

We obtain a more re�ned model by allowing the probability of choosing each
successive letter to depend on the preceding letters or letters. A Markov

model of order n predicts that each letter occurs with �xed probability, but
that probability depends on the previous n consecutive letters (n-gram).
For example, if the text has 100 occurrences of th, with 60 occurrences
of the, 25 occurrences of thi, 10 occurrences of tha and 5 occurrences of
tho, the Markov model of order 2 predicts that the next letter following
the 2-gram th is e with probability 3/5, i with probability 1/4, a with
probability 1/10 and o with probability 1/20.

An approach to generate text according to a Markov model is to create a
�Markov chain� and simulate a trajectory through it. A Markov chain is
comprised of a set of states, one distinguished state called the start state,
and a set of transitions from one state to another. The �gure below illus-
trates a Markov chain with 5 states and 14 transitions.

To simulate a trajectory through the Markov chain, begin at the start state.
At each step select one of the leaving arcs uniformly at random, and move
to the neighboring state. For example, if the Markov chain is in state bab,
then it will transition to state abb with probability 3/4 and to state aba

31

with probability 1/4. The following are the �rst seven steps of a possible
trajectory beginning from bbb:

bbb→bbb→bba→bab→abb→bbb→bba

A pseudo-random text can be generated according to a Markov model of
order n by building a Markov chain from a piece of text, and simulating a
trajectory through the Markov chain. A state is included for each of the dis-
tinct n-grams that occur in the text. N transitions are included, one from
each n-gram in the text to the next overlapping n-gram. Text is treated
as a cyclic string to handle boundary cases. For example, if n = 3 and the
text consists of bbbabbabbbbaba, then the �rst two transitions to add are
from bbb to bba and from bba to bab, and the last (cyclic) one is from abb
to bbb. The full Markov chain for n = 3 is illustrated in the previous �gure.

These ideas are implemented in the python script generate_markov_text.py,
which is available for download as discussed in Appendix B. The code for
the program is presented in Appendix A.

This script generates pseudo-random text using a Markov chain model. The
Markov chain encodes the statistical properties of a source text with a user-
speci�ed n-gram length.

The script can be used with two kinds of sources:

1. A text �le from which the Markov chain is built.

2. A text �le with a pre-generated Markov chain from a previous run.

The generated text can be printed on the console or written to a �le, while
the Markov chain can be exported to a �le and used later (the source �le
is no longer needed).

Usage examples:

$python generate_markov_text -s input_text.txt -l 7 -n 1000
-o output_file.txt -w markov.txt

Generates 1000 letters using a 7-gram and writes the Markov chain to
markov.txt.

32

$python generate_markov_text -r markov.txt -n 1000 -c

Reads a pre-generated Markov chain from a �le and prints 1000 letters on
the console.

5.1 SMILES String Generation

Generating pseudo-random molecules (that follow a theme) is a straightfor-
ward application of the Markovian text generator. The only complication
is the generation of invalid SMILES strings, which are mainly due to mis-
matched brackets and parentheses. We simply �lter out those occurrences.
The Mathematica notebook matchcheck.nb gives the basics of how to gen-
erate SMILES strings using the Markovian text generator.

First, set the current directory to where the input �le and the program
generate_markov_text.py is located.

SetDirectory["/home/james/Desktop/notebooks/lists"]

/home/james/Desktop/notebooks/lists

FileNames[]

{bigrxns.smiles, candidates.smiles, CFTRA.smiles,

CFTRB.smiles, CTTadducts.smiles, CTT.smiles, generated.smiles,

generate_markov_text.py, markov.txt, reactants.smiles, temp.smiles}

We have to cull the generated strings that have mismatched brackets and/or
parentheses, so we include this simple function for use later (a more e�ective
pair of functions are used in the actual �le, download the �le to study those):

balancedBracketsAndParenthesesQ[str_String] :=

StringCount[str, "("] === StringCount[str, ")"] &&

StringCount[str, "("] === StringCount[str, ")"]

Next we run the Markov generator to produce a long list of strings:

(*run markov generator*)

33

Run[

"python generate_markov_text.py -s CTTadducts.smiles -l 20 -n 1000000 -o

generated.smiles -w markov.txt"]

0

We import the output �le generated.smiles as a List.

listA = Import["generated.smiles", "List"];

Length[listA]

2868

Some of the generated strings don't include a nucleotide sequence, just an
amino acid sequence. Thus, we select on the following basis to only include
molecules that do include a nucleotide sequence.

listA =

Select[listA,

StringMatchQ[#, Except["."] .. ~~

"OC1C[C@@H](O[C@@H]1COP([O-])(=O)OC1C[C@@H](O[C@@H]1COP([O-])(=O)OC1C[C@@H](O[C@@

H]1CO" ~~ Except["."] ..] &];

We get rid of any duplicate strings:

listA = DeleteDuplicates[listA];

Length[listA]

545

listB = Select[listA, balancedBracketsAndParenthesesQ[#] &];

Length[listB]

44

Export["generated.smiles", listB, "List"];

The �le generated.smiles can now be viewed with MarvinView.

6

Cystic Fibrosis

Cystic �brosis, or CF, is an inherited disease of the secretory glands. Peo-
ple who have CF inherit two faulty genes for the disease � one from each
parent. CF mainly a�ects the lungs, pancreas, liver, intestines, sinuses and
sex organs. If you have CF, your mucus becomes thick and sticky. It builds
up in your lungs and blocks your airways. The buildup of mucus makes it
easy for bacteria to grow. This leads to repeated, serious lung infections.
Over time, these infections can severely damage your lungs.

Lung function often starts to decline in early childhood in people who have
CF. Over time, damage to the lungs can cause severe breathing problems.
Respiratory failure is the most common cause of death in people who have
CF. Often, lung transplantation is required when the disease reaches an
advanced stage.

In this book, we present a computational technique (the omega algorithm)
that can help scientists �nd cures for hereditary diseases such as CF. To
�cure� such a disease means to transform the defective gene to the normal
allelic variant. The omega algorithm assesses whether a substance could

produce the desired transformation of the defective gene to the normal
gene. If the omega algorithm determines that a substance could produce
the desired change in the gene, the substance is said to pass the omega

test. Passing the omega test is a necessary but not-necessarily-su�cient
condition that needs to be met in order for the substance to have the de-
sired e�ect. Passing the omega test does not mean the substance is the
cure. However, the necessary but not-necessarily-su�cient condition allows

35

36

scientists to traverse chemical space far more e�ciently in the search for a
cure. Through the use of the omega algorithm, the cure for CF and other
genetic diseases could be found thousands of times more quickly, speeding
research towards the goal.

CFTR: The Gene Associated with Cystic Fibrosis
O�cial Gene Symbol: CFTR
Name of Gene Product: cystic �brosis transmembrane conductance
regulator
Locus: 7q31.2 - The CFTR gene is found in region q31.2 on the long
(q) arm of human chromosome 7.
Gene Structure: The normal allelic variant for this gene is about
250,000 base pairs (bp) long and contains 27 exons.
mRNA: The intron-free mRNA transcript for the CFTR gene is 6129
bp long. See the NCBI sequence record NM_000492 to access the mRNA
sequence data.
Coding Sequence (CDS): 4443 bp within the mRNA code for the
amino acid sequence of the gene's protein product.
Protein Size: The CFTR protein is 1480 amino acids long and has a
molecular weight of 168,173 Da.
Protein Function: The normal CFTR protein product is a chloride
channel protein found in membranes of cells that line passageways of the
lungs, liver, pancreas, intestines, reproductive tract and skin. CFTR is
also involved in the regulation of other transport pathways.
Associated Disorders: Defective versions of this protein, caused by
CFTR gene mutations, can lead to the development of cystic �brosis
(CF) and congenital bilateral aplasia of the vas deferens (CBAVD).

6.1 Protein Structure

CFTR is a type of protein classi�ed as an ABC (ATP-binding cassette)
transporter or tra�c ATPase. These proteins transport molecules such as
sugars, peptides, inorganic phosphate, chloride and metal cations across the
cellular membrane. CFTR transports chloride ions (Cl−) across the mem-
branes of cells in the lungs, liver, pancreas, digestive tract, reproductive
tract and skin.

37

The structure of the complete CFTR protein has not yet been experimen-
tally determined. This is because membrane proteins, such as CFTR, with
substantial hydrophobic regions are extremely di�cult to crystallize, and
X-ray crystallography can only be carried out on protein crystals. By com-
paring the CFTR protein sequence with that of other known ABC trans-
porters, models depicting the structure of CFTR have been proposed.

CFTR is made up of �ve domains: two membrane-spanning domains (MSD1
and MSD2) that form the chloride ion channel, two nucleotide-binding do-
mains (NBD1 and NBD2) that bind and hydrolyze ATP (adenosine triphos-
phate), and a regulatory (R) domain. ∆F508, the most common CF-causing
mutation, occurs in the DNA sequence that codes for the �rst nucleotide-
binding domain (NBD1).

While most ABC transporters consist of four domains (two membrane-
spanning and two nucleotide-binding domains), CFTR is the only one known
to possess a regulatory domain. Modi�cation of the regulatory domain, ei-
ther through the addition or removal of phosphate groups, has been shown
to regulate the movement of chloride ions across the membrane.

6.2 Common Disease Causing Mutation

About 70% of mutations observed in CF patients result from deletion of
three base pairs in CFTR's nucleotide sequence. This deletion causes loss
of the amino acid phenylalanine located at position 508 in the protein;
therefore this mutation is referred to as Delta F508 or ∆F508.

38

With normal CFTR, once the protein is synthesized, it is transported to the
endoplasmic reticulum (ER) and Golgi apparatus for additional processing
before being integrated into the cell membrane. When a CFTR protein
with the ∆F508 mutation reaches the ER, the quality-control mechanism
of this cellular component recognizes that the protein is folded incorrectly
and marks the defective protein for degradation. As a result, ∆F508 never
reaches the cell membrane.

People who are homozygous for the ∆F508 mutation tend to have the most
severe symptoms of cystic �brosis due to critical loss of chloride ion trans-
port. This upsets the sodium and chloride ion balance needed to maintain
the normal, thin mucus layer that is easily removed by cilia lining the
lungs and other organs. The sodium and chloride ion imbalance creates a
thick, sticky mucus layer that cannot be removed by cilia and traps bac-
teria, resulting in chronic infections. While the mechanism that leads to
lung damage is not fully understood, lung disease is the leading cause of
morbidity and mortality among CF patients.

39

6.3 Factors That A�ect the Disease Phenotype

Because CF is an autosomal recessive genetic disorder, an individual must
have two copies of a mutated CFTR gene to express the disease pheno-
type. Someone with one normal, functional copy of the CFTR gene and
one mutated copy would just be a carrier of the disorder, and would not
display typical CF symptoms. It is important to note that just because two
people might have the same two copies of the mutated CFTR gene, each
may experience very di�erent symptoms. This is becase the development
of a disorder such as CF is greatly in�uenced by environmental factors and
genetic factors other than CFTR.

According to the Cystic Fibrosis Mutation Database maintained by the
Hospital for Sick Children in Toronto, Ontario, more than 900 mutations
are known in known in the CFTR gene. Di�erent CFTR mutations result
in di�erent disease phenotypes. Some may have little or no e�ect on CFTR
function, and some may result in milder forms of disease. For example, one
study in the Netherlands indicated that CF patients who had one copy of
∆F508 and one of A455E mutation generally expressed a milder form of
pulmonary disease than those who were homozygous ∆F508.

The presence of variant forms of genes other than CFTR can also a�ect
disease phenotype. Meconium ileus (MI), a severe intestinal obstruction,
is observed in 15% to 20% of babies born with cystic �brosis. No CFTR
gene mutations have been associated with MI. A 1999 study has shown that
cystic �brosis modi�er 1 (CFM1), a modi�er gene located on chromosome
19, may determine MI susceptibility.

6.4 Towards a Cure for Cystic Fibrosis

What exactly would it mean to cure cystic �brosis? To cure this disease,
means to transform the faulty gene responsible for the disease to the normal
variant � to change the DNA sequence. How are we to accomplish that?
A pharmacological agent must be found that is small enough to enter the
cell and nucleus, that is impervious to the action of nucleases, that does
not illicit an immune response, that can selectively recognize the ∆F508
DNA sequence, and inserts a CTT oligomer at precisely the right location
(between bases 1652 and 1653) in the correct orientation.

40

In this work we will attempt to �nd substances that may transform a sub-
sequence of the ∆F508 gene to the normal sequence. This subsequence is
comprised of ten bases proximal to the CTT deletion on both the 5′ and 3′

ends. This allows for great speci�city as 420 > 1012. We shall refer to the
reactant and product subsequences as CFTRA and CFTRB, respectively,
and the change we are trying to achieve can be denoted CFTRA→CFTRB.
The genetic codes for these subsequences are given by:

CFTRA: AAAATATCAT∧TGGTGTTTCC

CFTRB: AAAATATCATCTT︸ ︷︷ ︸
insert

TGGTGTTTCC

As input to our computational procedure, the omega algorithm, we need
SMILES string representations of substances that have a �ghting chance of
producing the transformation (CFTRA.substance)→(CFTRB) when com-
bined with the initial sequence. Both sides of the proposed reaction equa-
tion, (CFTRA.substance) and (CFTRB), are evaluated by the omega algo-
rithm to see if they equate. If so, the substance is said to have passed the
omega test. For our reasonable input, we shall try CTT-peptide adducts as
shown in Fig. 6.1. A list of a variety of CTT-peptide adducts is contained
in the �le CTTadducts.smiles which is used as input to our markovian
text generator to generate a vast array of novel molecules that are varia-
tions on that general theme. The list can be viewed by opening the �le
CTTadducts.smiles in MarvinView. See Appendix B for the address to
download the �le.

The SMILES string representations for CFTRA and CFTRB were sim-
ply generated by drawing the entire molecules into MarvinSketch, using
its nucleoside templates feature, connecting them with charged phosphate
groups, deleting the 2′ hydroxys, etc., and saving the structures as SMILES
strings. The SMILES strings for these two DNA sequences are given in the
�les CFTRA.smiles and CFTRB.smiles, respectively, and are available for
download as discussed in Appendix B.

The omega algorithm is implemented in the Mathematica notebook �le
predict.nb, which is the subject of the next chapter. With it, it is possible
to drastically reduce the size of chemical space that must be experimentally
searched in order to �nd the cure for a heritable disease.

41

Figure 6.1: A general schematic of the CTT-peptide adducts listed in the input �le to the
markovian text generator used to generate candidate molecules.

The omega test can be made as stringent as one would like, making it more
di�cult to pass. This has advantages as low-stringency tests result in more
false positives, whereas high-stringency tests give a higher probability that
the molecule that passed the test is the actual cure sought after. However,
if a high-stringency test is used, far more molecules have to be omega-tested
to �nd an equivalent number of molecules that pass the test.

One might imagine that research towards a cure could be speeded up a
thousand-fold through the adoption of this one computational technique.
The omega test is in e�ect a necessary but not-necessarily-su�cient condi-
tion that is applied in order to determine if a substance warrants further
testing; it does not give de�nitive answers, so experimentation is still neces-
sary in order to determine if a compound does what it's wanted to do. It is
my hope that the readers of this book will improve upon the work I present
on this algorithm and further develop it into an even more powerful tool.

7

Omega Algorithm

The omega algorithm is a procedure for narrowing down the volume of
chemical space that must be experimentally searched in the hunt for a
substance that transforms an initial strand of DNA to a desired prod-
uct strand. Substances that are evaluated to potentially enact the de-
sired transformation are said to have passed the omega test. We apply the
omega algorithm in this chapter to �nd molecules that pass the omega
test for transformation of the ∆F508 twenty-base subsequence CFTRA
to the normal subsequence CFTRB. The two sides of the SMILES reac-
tion string CFTRA.candidate>>CFTRB are evaluated to see if they eval-
uate to the same number. We use the Mathematica function Predict
to form an abstract model of the chemical reactivity data from part of
bigrxns.smiles, and then use the model to make predictions regarding
the string CFTRA.candidate.

The 1st-order omega algorithm is implemented in the notebook predict.nb.
The �rst step is to set your current directory to the directory containing
the needed �les (change the directory in quotes to your own directory).

SetDirectory["/home/james/Desktop/notebooks/lists"]

/home/james/Desktop/notebooks/lists

Get a list of the �les in the current directory:

FileNames[]

43

44

{bigrxns.smiles, candidates.smiles, CFTRA.smiles,

CFTRB.smiles, CTTadducts.smiles, CTT.smiles, generated.smiles,

generate_markov_text.py, markov.txt, reactants.smiles, temp.smiles}

Next we import the list of reactions from which we will form our abstract
chemical reactivity model:

rxnlist = Import["bigrxns.smiles", "List"];

Length[rxnlist]

3674

We split each string into left and right sides, reactants and products, using
>> as the token. This results in a list of two-member lists. Remember that
bigrxns.smiles contained only reaction strings that have two reactants
and one product.

rxnlist = StringSplit[#, ">>"] & /@ rxnlist;

For example, the third member of rxnlist is now:

rxnlist[[3]]

{[H][C@@]1(O[C@@]2([H])[C@]([H])(O[C@@]3([H])CC[C@@]4(C)[C@@]([H])(CC[C@]5(C)[C@]4([H]

)C(=O)C=C4[C@]6([H])C[C@](C)(CC[C@]6(C)CC[C@@]54C)C(O)=O)C3(C)C)O[C@]([H])(C(O)=O)

[C@@]([H])(O)[C@]2([H])O)OC[C@](O)(CO)[C@@]1([H])O.C=[N+]=[N-],

[H][C@@]1(O[C@@]2([H])[C@]([H])(O[C@@]3([H])C4C[C@@]5(C)[C@@]([H])(CC[C@]6(C)[C@]5([H

])C(=O)C=C5[C@]([H])(C[C@](C)(CC4)C(=O)OC)[C@@]([H])(C)CC[C@@]65C)C3(C)C)O[C@]([H]

)(C(=O)OC)[C@@]([H])(O)[C@]2([H])O)OC[C@](O)(CO)[C@@]1([H])OC}

One can hardcode the SMILES strings for CFTRA and CFTRB as follows,
but one could Import the �les CFTRA.smiles and CFTRB.smiles.

45

CFTRA =

"CC1=CN([C@H]2CC(OP([O-])(=O)OC[C@H]3O[C@H](CC3OP([O-])(=O)OC[C@H]3O[C@H](CC3O)N3C=CC

(N)=NC3=O)N3C=CC(N)=NC3=O)[C@@H](COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)

OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H

]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)

OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H

]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)

OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H

]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)

OC3C[C@@H](O[C@@H]3CO)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(

N)ncnc34)N3C=C(C)C(=O)NC3=O)n3cnc4c(N)ncnc34)N3C=C(C)C(=O)NC3=O)N3C=CC(N)=NC3=O)

n3cnc4c(N)ncnc34)N3C=C(C)C(=O)NC3=O)N3C=C(C)C(=O)NC3=O)n3cnc4c3N=C(N)NC4=O)

n3cnc4c3N=C(N)NC4=O)N3C=C(C)C(=O)NC3=O)n3cnc4c3N=C(N)NC4=O)N3C=C(C)C(=O)NC3=O)N3C

=C(C)C(=O)NC3=O)O2)C(=O)NC1=O";

CFTRB =

"CC1=CN([C@H]2CC(OP([O-])(=O)OC[C@H]3O[C@H](CC3OP([O-])(=O)OC[C@H]3O[C@H](CC3O)N3C=CC

(N)=NC3=O)N3C=CC(N)=NC3=O)[C@@H](COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)

OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H

]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)

OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H

]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)

OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H

]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)

OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3COP([O-])(=O)OC3C[C@@H](O[C@@H

]3COP([O-])(=O)OC3C[C@@H](O[C@@H]3CO)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)

ncnc34)n3cnc4c(N)ncnc34)N3C=C(C)C(=O)NC3=O)n3cnc4c(N)ncnc34)N3C=C(C)C(=O)NC3=O)

N3C=CC(N)=NC3=O)n3cnc4c(N)ncnc34)N3C=C(C)C(=O)NC3=O)N3C=CC(N)=NC3=O)N3C=C(C)C(=O)

NC3=O)N3C=C(C)C(=O)NC3=O)N3C=C(C)C(=O)NC3=O)n3cnc4c3N=C(N)NC4=O)n3cnc4c3N=C(N)NC4

=O)N3C=C(C)C(=O)NC3=O)n3cnc4c3N=C(N)NC4=O)N3C=C(C)C(=O)NC3=O)N3C=C(C)C(=O)NC3=O)

O2)C(=O)NC1=O";

Later when we use the Markovian text generator, we will need the following
function to cull invalid SMILES strings the generator produces (a more
advanced pair of functions is used in the actual �le).

balancedBracketsAndParenthesesQ[str_String] :=

StringCount[str, "["] === StringCount[str, "]"] &&

StringCount[str, "("] === StringCount[str, ")"]

Now we form the abstract chemical reactivity model. We form a training set
to feed to the Predict function. For each reaction, the left and right sides
are trained to evaluate to the same unique number. The training set cannot
be too large, or too small. Here, we train on a data set of 100 reactions,
and also set CFTRA and CFTRB to arbitrary, but di�erent, numbers. This is
the initialization phase. Later, we reset the number CFTRB is set to in order
to overcome the �can't get there from here� phenomenon that can occur in
this computation.

46

(* initialization - train, predict, find rare occuring number,

then retrain with CFTRB set to that number *)

trainingset = Join[Table[rxnlist[[i, 1]] → i, {i, n = 100}],

Table[rxnlist[[i, 2]] → i, {i, n}], {CFTRA → 1}, {CFTRB → 100}];

Length[trainingset]

202

The next step is to compute our initial abstract model. We use the machine
learning function Predict to do this, and choose "NearestNeighbors" as
our Method.

p = Predict[trainingset, Method -> "NearestNeighbors"]

PredictorFunction Method: NearestNeighbors

Feature type: Text


The PredictorFunction thereby produced can then be mapped across the
left and right sides of each reaction in rxnlist to see how e�ective the
learning was.

Map[p, rxnlist, {2}]

{{1., 1.}, {2., 2.}, {3., 3.}, {4., 4.}, {5., 5.}, {6., 6.}, {7., 7.},

{8., 8.}, {9., 9.}, {10., 10.}, {11., 11.}, {12., 12.}, {13., 13.}, {14., 14.},

{15., 15.}, {16., 16.}, {17., 17.}, {18., 18.}, {19., 19.}, {20., 20.},

{21., 21.}, {22., 22.}, ⋯ 3630⋯ , {12., 12.}, {12., 48.}, {32., 36.},

{17., 17.}, {28., 27.}, {87., 87.}, {52., 52.}, {62., 62.}, {21., 21.},

{86., 86.}, {93., 36.}, {1., 1.}, {1., 1.}, {12., 50.}, {5., 5.}, {95., 95.},

{12., 12.}, {65., 82.}, {35., 35.}, {95., 77.}, {12., 62.}, {62., 62.}}

large output show less show more show all set size limit...

Remember that we used only the �rst 100 reactions for training data. One
can see from above that the training data was learned perfectly, whereas
roughly 60% of the untrained reaction pairs have equivalent values for the
left and right SMILES strings. This indicates that the system learned some-
thing about how the strings transform, and this is therefore a type of string
transformation learning.

We can check the values that CFTRA and CFTRB evaluate to.

47

p[CFTRA]

1.

p[CFTRB]

100.

We need some novel molecules to omega-test. The �rst step is to generate a
Markov chain and save it to a �le, markov.txt. We can execute the Markov
generator generate_markov_text.py command-line statement from within
Mathematica itself. Mathematica returns 0 when the program �nishes.

(* run markov generator *)

Run["python generate_markov_text.py -s CTTadducts.smiles -l 20 -w markov.txt"]

0

Next we generate some random molecules, SMILES strings, some of which
will be invalid.

Run["python generate_markov_text.py -r markov.txt -n 10000000 -o generated.smiles"]

0

Now Import that list of strings and check its length.

listA = Import["generated.smiles", "List"];

Length[listA]

28862

Some of the generated molecules will be peptides, with no nucleotides, which
would not be reasonable candidates to e�ect our desired transformation.
Using the �nd function in a text editor revealed the presence of a common
sequence found in the SMILES strings of compounds containing the CTT
moeity. We select for those strings.

48

listA =

Select[listA,

StringMatchQ[#, Except["."] .. ~~

"OC1C[C@@H](O[C@@H]1COP([O-])(=O)OC1C[C@@H](O[C@@H]1COP([O-])(=O)OC1C[C@@H](O[C@@

H]1CO" ~~ Except["."] ..] &];

We can easily get rid of any duplicate strings as follows:

listA = DeleteDuplicates[listA];

Length[listA]

4821

Next we need to get rid of strings having mismatched brackets and/or paren-
theses. A simple way is as follows:

listB = Select[listA, balancedBracketsAndParenthesesQ[#] &];

Length[listB]

325

Now we are going to combine the SMILES string for CFTRA with that of each
candidate substance, and also react the substances by inserting a period
between the SMILES strings.

listC = StringJoin[CFTRA, ".", #] & /@ listB;

Now to see if the combined strings evaluate to the value of CFTRB (100).

listD = p[#] & /@ listC

{1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 5., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 5., 1., 1., 1., 1.,

1., 1.,

1., 1.,

1., 1.,

1., 1., 1., 1., 1., 1., 1., 62., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 1.,

1., 1., 1., 1., 1., 62., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 1.,

1., 1., 62., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 1., 12., 1., 1., 1., 1., 62., 1., 1., 1., 62., 1., 1.,

1., 1.,

62., 1.}

49

Length[listD]

325

One can see that many strings evaluated to 1 (=CFTRA indicating no reac-
tion). None of them evaluated to CFTRB=100. In fact, there is a �can't get
there from here� phenomenon that occurs in this computation which can
only be overcome be reseting the value of CFTRB to an obtainable number
and retraining. Here we shall opt for a low-stringency test and set the value
of CFTRB to 62. But a higher-stringency test could be used by resetting the
value of CFTRB to 5 or 12. The entire reactivity model is perturbed.

(* retrain *)

trainingset = Join[Table[rxnlist[[i, 1]] → i, {i, n = 100}],

Table[rxnlist[[i, 2]] → i, {i, n}], {CFTRA → 1}, {CFTRB → 62}];

Length[trainingset]

202

p = Predict[trainingset, Method -> "NearestNeighbors"]

PredictorFunction Method: NearestNeighbors

Feature type: Text


(* end of initialization *)

Again checking how well the map was learned:

Map[p, rxnlist, {2}]

{{1., 1.}, {2., 2.}, {3., 3.}, {4., 4.}, {5., 5.}, {6., 6.}, {7., 7.},

{8., 8.}, {9., 9.}, {10., 10.}, {11., 11.}, {12., 12.}, {13., 13.}, {14., 14.},

{15., 15.}, {16., 16.}, {17., 17.}, {18., 18.}, {19., 19.}, ⋯ 3636⋯ ,

{50., 50.}, {28., 36.}, {87., 87.}, {52., 52.}, {62., 62.}, {21., 21.},

{86., 86.}, {93., 36.}, {1., 1.}, {1., 1.}, {12., 50.}, {5., 5.}, {95., 95.},

{12., 12.}, {65., 82.}, {35., 35.}, {95., 77.}, {12., 62.}, {62., 62.}}

large output show less show more show all set size limit...

p[CFTRA]

50

1.

p[CFTRB]

62.

PCFTRA = p[CFTRA];

PCFTRB = p[CFTRB];

(* run markov generator *)

Run["python generate_markov_text.py -s CTTadducts.smiles -l 20 -w markov.txt"]

0

Run["python generate_markov_text.py -r markov.txt -n 10000000 -o generated.smiles"]

0

listA = Import["generated.smiles", "List"];

Length[listA]

28 860

listA =

Select[listA,

StringMatchQ[#, Except["."] .. ~~

"OC1C[C@@H](O[C@@H]1COP([O-])(=O)OC1C[C@@H](O[C@@H]1COP([O-])(=O)OC1C[C@@H](O[C@@

H]1CO" ~~ Except["."] ..] &];

listA = DeleteDuplicates[listA];

Length[listA]

4857

listB = Select[listA, balancedBracketsAndParenthesesQ[#] &];

Length[listB]

349

51

listC = StringJoin[CFTRA, ".", #] & /@ listB;

We now apply our new PredictorFunction to the reactant strings:

listD = p[#] & /@ listC

{1., 1.,

1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 62., 1., 1., 1., 1., 1., 1., 1.,

1., 1.,

1., 1.,

1., 1.,

1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 5., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 62., 1., 62., 1., 1., 1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 12., 1.,

1., 1.,

1., 1.,

1., 1.,

1., 1.,

1., 1.,

1., 1.}

We can see that our necessary but not-necessarily su�cient condition, the
omega test, was passed three times in this example.

Length[listD]

349

The positions in the list of the molecules that passed the omega test can be
found as such:

pos = Position[listD, PCFTRB] // Flatten

{59, 191, 193}

candidates = {};

And we select the SMILES strings for the omega-test passers this way:

candidates = Select[Append[candidates, listB[[pos]]],

UnsameQ[#, {}] &] // Flatten;

Length[candidates]

3

52

We can export the list to a �le, then view those molecules with MarvinView.

Export["candidates.smiles", candidates, "List"];

The process of candidate molecule selection can be put in a loop:

(********************** LOOP *************************)

candidates = {};

totalevaluated = 0;

cycles = 0;

While[Length[candidates] < 10,

cycles = cycles + 1;

Run["python generate_markov_text.py -r markov.txt -n 10000000 -o generated.smiles"];

listA = Import["generated.smiles", "List"];

listA =

Select[listA,

StringMatchQ[#, Except["."] .. ~~

"OC1C[C@@H](O[C@@H]1COP([O-])(=O)OC1C[C@@H](O[C@@H]1COP([O-])(=O)OC1C[C@@H](O[C@@

H]1CO" ~~ Except["."] ..] &];

listA = DeleteDuplicates[listA];

listB = Select[listA, balancedBracketsAndParenthesesQ[#] &];

listC = StringJoin[CFTRA, ".", #] & /@ listB;

listD = p[#] & /@ listC;

pos = Position[listD, PCFTRB] // Flatten;

candidates = Select[Append[candidates, listB[[pos]]], UnsameQ[#, {}] &] // Flatten;

totalevaluated = totalevaluated + Length[listB];

If[Mod[cycles, 1] ⩵ 0 || Length[candidates] > 0 ,

Print["cycles = ", cycles];

Print["total molecules evaluated = ", totalevaluated];

Print["candidate molecules found = ", Length[candidates]];];

]

Length[candidates]

13

Export["candidates.smiles", candidates, "List"];

We show an interesting molecule that passed the omega test at low-stringency
for correction of the ∆F508 gene to the normal variant in �gure 7.1. Note
the presence of a CTT oligomeric sequence and two peptide scissor-hands.

53

Figure 7.1: An interesting molecule that passed the omega test at low stringency for correction
of the ∆F508 gene. Notice the presence of a CTT sequence and two peptide scissor-hands.

54

The molecule shown in �gure 7.1, of course, is probably not the cure for
cystic �brosis, but �nding it did demonstrate the omega algorithm in short
order. What we've done so far is perform a 1st-order omega test.

How might the omega algorithm be made more de�nitive in its answers? It
would be desirable to experimentally search as little of chemical space as
possible in the hunt for the cure. More de�nitive answers are the subject
of higher-order omega tests. They are the subject of the next chapter.

8

Extended Omega Algorithm

The omega algorithm can be made more de�nitive through the considera-
tion of nth-order omega tests. These are similar to �rst-order omega tests,
but involve rather the input of previously outputted candidate molecule
SMILES strings as the source for the Markov chain formation, output of
new candidates based on that model, in a repetitive loop. We refer to the
algorithm involving higher-order omega tests as the extended omega algo-
rithm. An nth-order omega test involves n loops. This algorithm causes the
accumulation of structural properties favorable to the transformation.

The extended omega algorithm is implemented in the �le predict2.nb and
the SMILES strings produced after 9 more iterations (10th-order omega
test) are located in the �le candidates2.SMILES.

Figure 8.1 shows a molecule, dubbed F508-001, that passed a 10th-order
omega test at high stringency for correction of the (+)-strand of the ∆F508
gene. Notice the presence of a 3′-CTT-5′ sequence and the many nitroge-
nous bases, nucleotides and riboses intermingled with the peptide sequences.
Note that our initial strand CFTRA lacks the subsequences AAG and GAA.
This molecule warrants further experimental investigation, which shall be
left to the scienti�c community.

A precise mechanism for how F508-001 might work is unknown, but some
initial guesswork as to the spatial layout of the reaction is shown in �gure
8.2. The peptide sequences are assumed to play both a catalytic role and a
role in DNA sequence recognition.

55

56

Figure 8.1: The compound F508-001 passed a 10th-order omega test at high stringency for
correction of the (+)-strand of the ∆F508 gene. Notice the presence of a 3′-CTT-5′ sequence and
the many nitrogenous bases, nucleotides and riboses intermingled with the peptide sequences.
Note that our initial strand CFTRA lacks the subsequences AAG and GAA.

57

Figure 8.2: A precise mechanism for how F508-001 might work is unknown, but some initial
guesswork as to the spatial layout of the reaction is shown here. The peptide sequences are
assumed to play both a catalytic role and a role in DNA sequence recognition.

A

generate_markov_text.py

Copyright (c) 2013 Gratian Lup . A l l r i g h t s r e s e rved .
Red i s t r i b u t i on and use in source and b inary forms , wi th or

wi thou t
modi f i ca t ion , are permi t t ed prov ided t ha t the f o l l ow i n g

cond i t i on s are
met :
#
∗ Red i s t r i b u t i o n s o f source code must r e t a i n the above

copy r i g h t
not ice , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a imer .
#
∗ Red i s t r i b u t i o n s in b inary form must reproduce the above
copy r i g h t not ice , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g
d i s c l a imer in the documentation and/or o ther ma t e r i a l s

prov ided
with the d i s t r i b u t i o n .
#
∗ The name "MarkovTextGenerator" must not be used to endorse

or promote
products de r i v ed from t h i s so f tware wi thout p r i o r wr i t t en

permiss ion .
#
∗ Products de r i v ed from t h i s so f tware may not be c a l l e d "

MarkovTextGenerator" nor
may "MarkovTextGenerator" appear in t h e i r names wi thout p r i o r

wr i t t en
permiss ion o f the author .
#

59

60

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY

THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY ,
OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This s c r i p t genera t e s pseudo−random t e x t us ing a Markov chain
model .

The Markov chain encodes the s t a t i s t i c a l p r o p e r t i e s o f a
source t e x t

with a user−s p e c i f i e d n−gram l en g t h .
More d e t a i l s on the a l gor i thm can be found on the f o l l ow i n g

page :
h t t p ://www. cs . pr ince ton . edu/ courses / arch i v e / spr05 /cos126/

ass ignments /markov . html
#
The s c r i p t can be used wi th two kind o f sources :
1. A t e x t f i l e from which the Markov chain i s b u i l t .
2 . A t e x t f i l e wi th a pre−generated Markov chain from a

prev ious run .
#
The generated t e x t can be output on the conso l e or wr i t t en to

a f i l e ,
wh i l e the Markov chain can be expor ted to a f i l e and used

l a t e r .
#
Usage examples :

61

generate_markov_text −s inpu t_tex t . t x t − l 7 −n 1000 −o
ou t pu t_ f i l e . t x t −w markov . t x t

genera t e s 1000 l e t t e r s us ing a 7 l e t t e r n−gram
and wr i t e s the Markov chain to "markov . t x t "
generate_markov_text −r markov . t x t −n 1000 −c
reads the Markov chain from a f i l e and p r i n t s 1000

l e t t e r s on the conso l e
#
For usage in format ion execu te the s c r i p t wi th the −−he lp f l a g

.
from random import ∗
from optparse import ∗
import s t r i n g

class MarkovChainNode :
def __init__(s e l f , ngram) :

s e l f . ngram = ngram
s e l f . next_states = []

def add_next_state (s e l f , node , p r obab i l i t y) :
s e l f . next_states . append ((node , p r obab i l i t y))
s e l f . next_states . s o r t (key = lambda pa i r : pa i r [1] ,

r e v e r s e = True)

def get_next_state (s e l f) :
Randomly s e l e c t a next node from the chain , g i v i n g

h i ghe r
p r i o r i t y to the l e t t e r s t h a t f o l l ow t h i s n−gram more

o f t en .
p r obab i l i t y = random ()

for s t a t e in s e l f . next_states :
i f p r obab i l i t y < s t a t e [1] :

return s t a t e [0]
else :

p r obab i l i t y −= s ta t e [1]

The input t e x t i s t r e a t e d l i k e a c i r c u l a r bu f f e r ,
so a l l chain nodes shou ld have a next s t a t e .
raise Exception ("No next s t a t e found f o r '{0} " , s e l f .

ngram)

def compute_ngram_counts (text , k) :
ngrams = {}

62

text_length = len (t ex t)

i f text_length < k :
Text i s too shor t to e x t r a c t anyth ing u s e f u l .
raise Exception ("Text i s too shor t . Provide more than

{0} cha ra c t e r s " . format (k))

for i in range (0 , text_length) :
Extrac t the n−gram from po s i t i o n s [i , i + k) .
I f i t ex tends beyond the t e x t , l e t t e r s from the

beg inn ing are taken .
i f i + k < text_length :

ngram = text [i : i + k]
else :

ngram = text [i : text_length] + \
text [0 : (k − (text_length − i))]

Look at the l e t t e r f o l l ow i n g the n−gram and increa se
the count

as so c i a t e d wi th i t . I f i t i s the f i r s t time i t i s
seen , the count i s 1 .

next_le t t e r = text [i + k] i f i + k < text_length else \
text [k − (text_length − i)]

The l e t t e r s f o l l ow i n g a n−gram are s t o r ed as a
d i c t i ona r y o f

(l e t t e r : occurrence_count) pa i r s .
i f not ngram in ngrams :

ngrams [ngram] = {}

next_ngram_letters = ngrams [ngram]

i f next_le t t e r in next_ngram_letters :
next_ngram_letters [next_le t t e r] += 1

else :
next_ngram_letters [next_le t t e r] = 1

return ngrams

def print_ngram_counts (ngrams) :
for ngram , nex t_ l e t t e r s in ngrams . i tems () :

print ("n−gram '{0} ' : " . format (ngram))

for l e t t e r , count in nex t_ l e t t e r s . i tems () :

63

print (" {0} : {1}" . format (l e t t e r , count))

def read_source_f i l e (f i l e_path) :
with open(f i l e_path , " r ") as f i l e :

return f i l e . read ()

def str ing_to_decimal (t ex t) :
return " " . j o i n ([str (ord (l e t t e r)) for l e t t e r in t ex t])

def string_from_decimal (decimal) :
return "" . j o i n ([chr (int (number)) for number in decimal .

s p l i t ()])

def write_ngram_counts_to_file (ngrams , ngram_length , f i l e_path)
:
with open(f i l e_path , "w") as f i l e :

On the f i r s t l i n e wr i t e the l e n g t h and number o f n−
grams ,

then each n−gram on a separa t e l i n e .
f i l e . wr i t e ("{0} {1}\n" . format (ngram_length , len (ngrams)

))

for ngram , nex t_ l e t t e r s in ngrams . i tems () :
Write the n−gram , the l e t t e r number and the

l e t t e r −count pa i r s .
f i l e . wr i t e ("{0} {1} " . format (str ing_to_decimal (

ngram) , len (nex t_ l e t t e r s)))

for l e t t e r , count in nex t_ l e t t e r s . i tems () :
f i l e . wr i t e ("{0} {1} " . format (str ing_to_decimal (

l e t t e r) , count))

f i l e . wr i t e ("\n")

def read_ngram_counts_from_file (f i l e_path) :
ngrams = {}
ngram_length = 0

with open(f i l e_path , " r ") as f i l e :
Read the l en g t h and the number o f n−grams .

64

ngram_length , ngram_count = [int (number) for number in
f i l e . r e ad l i n e () . s p l i t ()]

for i in range (0 , ngram_count) :
The l i n e beg in s wi th the n−gram having each

l e t t e r in decimal ,
f o l l owed by the number o f l e t t e r −count pa i r s .
ngram_info = f i l e . r e ad l i n e () . s p l i t ()
ngram_value = string_from_decimal (" " . j o i n (

ngram_info [0 : ngram_length]))
next_letter_count = int (ngram_info [ngram_length])

Read the l e t t e r −count pa i r s .
nex t_ l e t t e r s = {}

for j in range (0 , next_letter_count) :
l e t t e r = string_from_decimal (ngram_info [1 +

ngram_length + (j ∗ 2)])
count = int (ngram_info [1 + ngram_length + (j ∗

2 + 1)])
nex t_ l e t t e r s [l e t t e r] = count

ngrams [ngram_value] = nex t_ l e t t e r s

return (ngrams , ngram_length)

def build_markov_chain (ngrams) :
Fi r s t b u i l d the Markov nodes f o r a l l n−grams ,
then connect the nodes us ing the next− l e t t e r in format ion .
chain_nodes = {}

for ngram in ngrams :
chain_nodes [ngram] = MarkovChainNode (ngram)

for ngram , nex t_ l e t t e r s in ngrams . i tems () :
For each l e t t e r compute the p r o b a b i l i t y t ha t i t

f o l l o w s a f t e r the n−gram .
weight = f loat (sum((count for l e t t e r , count in

nex t_ l e t t e r s . i tems ())))
node = chain_nodes [ngram]

for l e t t e r , count in nex t_ l e t t e r s . i tems () :
The next n−gram con s i s t s o f the f i r s t K−1 l e t t e r s

65

from the curren t node and the l a s t l e t t e r from
the next node .

next_state_ngram = ngram [1 :] + l e t t e r
next_state_node = chain_nodes [next_state_ngram]
node . add_next_state (next_state_node , count / weight

)

return chain_nodes

def generate_text (chain , l ength) :
Randomly s e l e c t one o f the chain nodes as the s t a r t node .
For the s t a r t node the en t i r e n−gram i s used , wh i l e f o r

the next
s t a t e s on ly the l a s t character , u n t i l the r e qu i r ed l en g t h

i s reached .
ngrams = [key for key in chain . keys ()]
node = chain [cho i c e (ngrams)]

t ex t = []
text_length = len (node . ngram)

for l e t t e r in node . ngram :
text . append (l e t t e r)

while text_length < length :
node = node . get_next_state ()
t ex t . append (node . ngram [−1])
text_length += 1

return "" . j o i n (t ex t)

def wri te_text_to_f i l e (text , f i l e_path , words_per_line = 12) :
with open(f i l e_path , "w") as f i l e :

words = 0

for l e t t e r in t ex t :
i f l e t t e r in s t r i n g . whitespace :

words += 1
f i l e . wr i t e ("\n" i f (words % words_per_line ==

0) else l e t t e r)
else :

f i l e . wr i t e (l e t t e r)

66

def main () :
pa r s e r = OptionParser ()
par s e r . add_option ("−s " , "−−source " , des t = " source " ,

help = "The f i l e conta in ing the text to
be analyzed . ")

par s e r . add_option ("− l " , "−−l ength " , des t = " length " ,
help = "The length o f the used n−gram (in

l e t t e r s) . ")
par s e r . add_option ("−n" , "−−number" , des t = "number" ,

help = "The number o f l e t t e r s the output
text should conta in . ")

par s e r . add_option ("−c" , "−−conso l e " , des t = " conso l e " ,
a c t i on = " store_true " ,

help = "Print the output text on the
conso l e . ")

par s e r . add_option ("−o" , "−−output " , des t = "output" ,
help = "The f i l e where the output text

should be wr i t t en . ")
par s e r . add_option ("−r " , "−−read_markov" , des t = "

read_markov" ,
help = "The f i l e from where to read the

Markov cha ins . ")
par s e r . add_option ("−w" , "−−write_markov" , des t = "

write_markov" ,
help = "The f i l e where to wr i t e the

Markov cha ins . ")
opt ions , args = par s e r . parse_args ()

There are two suppor ted work modes :
1. Input t e x t read from a f i l e , f o l l owed by b u i l d i n g the

Markov chain .
2. Pre−generated Markov chain read from a f i l e .
ngrams = None
ngram_length = None
output_text = None

i f opt ions . number i s None :
print ("Length o f output text not s p e c i f i e d ! ")
return −1

e l i f opt ions . con so l e i s None and opt ions . output i s None :
print ("No type o f output s p e c i f i e d ! ")
return −1

i f opt ions . source i s not None :

67

i f opt ions . read_markov i s not None :
print (" Source f i l e and Markov chain f i l e cannot be

used at the same time ! ")
return −1

e l i f opt ions . l ength i s None :
print ("Length o f used n−gram not s p e c i f i e d ! ")
return −1

print ("Generating {0} l e t t e r s from source f i l e {1}" . \
format (opt ions . number , opt ions . source))

ngram_length = int (opt ions . l ength)
t ext = read_source_f i l e (opt ions . source)
ngrams = compute_ngram_counts (text , ngram_length)

else :
i f opt ions . read_markov i s None :

print ("A data source must be s p e c i f i e d ! ")
return −1

print ("Generating {0} l e t t e r s from Markov chain f i l e
{1}" . \

format (opt ions . number , opt ions . read_markov))
ngrams , ngram_length = read_ngram_counts_from_file (

opt ions . read_markov)

Now bu i l d the Markov chain and crea t e the t e x t .
chain = build_markov_chain (ngrams)
output_text = generate_text (chain , int (opt ions . number))

i f opt ions . con so l e i s not None :
print ("Output text : {0}" . format (output_text))

i f opt ions . output i s not None :
wr i te_text_to_f i l e (output_text , opt i ons . output)

i f opt ions . write_markov i s not None :
write_ngram_counts_to_file (ngrams , ngram_length ,

opt ions . write_markov)

return 0

i f __name__ == '__main__ ' :
main ()

B

Resources

All of the �les and notebooks discussed in this book can be downloaded
from the following Google Drive address:

https://drive.google.com/open?id=0B3MJ3uU7mhJUUWtIR1hDeDRXU0k

Let's brie�y discuss each of the �les. bigrxns.smiles is the �le contain-
ing SMILES reaction strings we use by Mathematica's Predict function
to build an abstract model of chemical reactivity. candidates.smiles is
a list of molecules produced by predict.nb that passed the omega test.
CFTRA.smiles and CFTRB.smiles are SMILES strings for the ∆F508 sub-
sequence and normal variant, respectively.

CTT.smiles is the SMILES string for CTT DNA oligomer. CTTadducts.smiles
is a list of CTT-peptide adducts that is used by the Markovian text genera-
tor to produce novel compounds according to a theme. generate_markov_text.py
is our Markovian text generator, written in python. generated.smiles is
a list of compounds generated by the Markovian text generator.

matchcheck.nb is the notebook in which we execute generate_markov_text.py
from within Mathematica, cull the generated list from strings that contain
mismatched parentheses and brackets, and so on. predict.nb is the note-
book in which we implement and apply the omega algorithm.

rxnlist01.smiles through rxnlist06.smiles is the SMILES Chemical
Reaction Database. rxnsfilemaker.nb is the notebook in which the �le
bigrxns.smiles is produced and exported.

69

https://drive.google.com/open?id=0B3MJ3uU7mhJUUWtIR1hDeDRXU0k

	Preface
	A New Light
	History and Epistemology
	Software You'll Need
	Mathematica
	Marvin Suite

	SMILES Strings
	Canonicalization
	SMILES Specification Rules
	Atoms
	Bonds
	Branches
	Cyclic Structures
	Disconnected Structures

	Isomeric SMILES
	Isotopic Specification
	Configuration Around Double Bonds
	Configuration Around Tetrahedral Centers

	SMILES Conventions
	Hydrogens
	Aromaticity

	Extensions for Reactions
	SMILES Chemical Reaction Database

	Markovian Text Generator
	SMILES String Generation

	Cystic Fibrosis
	Protein Structure
	Common Disease Causing Mutation
	Factors That Affect the Disease Phenotype
	Towards a Cure for Cystic Fibrosis

	Omega Algorithm
	Extended Omega Algorithm
	generate_markov_text.py
	Resources

