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To mitigate this problem, we can move both the poles and zeros from the unit
circle to a circle just inside the unit circle, say at radius » = 1 — €, where € is a very
small number. Thus the system function of the linear-phase FIR filter becomes

1= pMpMei2me {20 H(k+ o)

M 1— rej2wrr(k+oz)/MZ—1
k=0

H(z) =

(10.2.42)

The corresponding two-pole filter realization given in Section 9.2.3 can be modified
accordingly. The damping provided by selecting r < 1 ensures that roundoff noise
will be bounded and thus instability is avoided.

10.2.4 Design of Optimum Equiripple Linear-Phase FIR Filters

The window method and the frequency-sampling method are relatively simple tech-
niques for designing linear-phase FIR filters. However, they also possess some minor
disadvantages, described in Section 10.2.6, which may render them undesirable for
some applications. A major problem is the lack of precise control of the critical
frequencies such as @, and w;.

The filter design method described in this section is formulated as a Chebyshev
approximation problem. It is viewed as an optimum design criterion in the sense
that the weighted approximation error between the desired frequency response and
the actual frequency response is spread evenly across the passband and evenly across
the stopband of the filter minimizing the maximum error. The resulting filter designs
have ripples in both the passband and the stopband.

To describe the design procedure, let us consider the design of a lowpass filter
with passband edge frequency w, and stopband edge frequency w;. From the gen-
eral specifications given in Fig. 10.1.2, in the passband, the filter frequency response
satisfies the condition

1-8 < H(w) =1+, lw| < wp (10.2.43)

Similarly, in the stopband, the filter frequency response is specified to fall between
the limits £6;, that is,

—8 < Hy(w) <&, lof > ws (10.2.44)

Thus &, represents the ripple in the passband and &, represents the attenuation or
ripple in the stopband. The remaining filter parameter is M, the filter length or the
number of filter coefficients.

Let us focus on the four different cases that result in a linear-phase FIR filter.
These cases were treated in Section 10.2.2 and are summarized below.
Case 1: Symmetric unit sample response. 1(n) = (M —1 —n) and M odd. In this
case, the real-valued frequency response characteristic H, () is

(M~3)/2
H.(w)=h (M—z”l) +2 ) h(n)cosw (M -1 n) (10.2.45)
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If we let k = (M — 1)/2 — n and define a new set of filter parameters {a(k)} as

TCE)
a(k) = (10.2.46)

then (10.2.45) reduces to the compact form

(M-1)/2
Hi(w)= Y a(k)coswk (10.2.47)
k=0

Case 2: Symmetric unit sample response. h(n) = k(M — 1 —n) and M even. In this
case, H,(w) is expressed as

(M/2)-1 M1
Hi@)=2 Y h(n)cosw( 5 —n) (10.2.48)

n=0

Again, we change the summation index from n to k = M/2 — n and define a new set
of filter parameters {b(k)} as

b(k) = 2h (% - k) . k=1,2,...,M)2 (10.2.49)

With these substitutions (10.2.48) becomes

M/2 1
Hy(@) = Y _b(k)cos (k - E) (10.2.50)

k=1
In carrying out the optimization, it is convenient to rearrange (10.2.50) further into

the form
(M/2)-1

Hy@) =cos> Y. b(k)coswk (10.2.51)
2 k=0

where the coefficients {b(k)} are linearly related to the coefficients {b(k)}. In fact, it
can be shown that the relationship is

b(0) = 1b(1)

3 3 M
b(k) =2b(0 —btk =1, k=123, 5 -2 (102.52)

()= (4)
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Case 3: Antisymmetric unitsample response. i (n) = —h(M —1—n) and M odd. The
real-valued frequency response characteristic H,(w) for this case is

He(w)=2 Y h(@sinw ( - n) (10.2.53)
n==0 2

If we change the summation in (10.2.53) from » to k = (M — 1)/2 — n and define a
new set of filter parameters {c(k)} as

M1
c(k) = 2h (T - k> , k=1,2,...,(M -1)/2 (10.2.54)
then (10.2.53) becomes
(M-1)/2
Hy(w)= Y c(k)sinwk (10.2.55)
k=1

As in the previous case, it is convenient to rearrange (10.2.55) into the form
(M—-3)/2
Hy(w) =sinw Y &k)coswk (10.2.56)

k=0

where the coefficients {¢(k)} are linearly related to the parameters {c(k)}. This
desired relationship can be derived from (10.2.55) and (10.2.56) and is simply given as

(7))
(7)== (%)

(10.2.57)
M-5
ctk—1) =tk + 1) =2c(k), 2<k< 5
80) + 32Q2) = c(1)

Case 4: Antisymmetric unit sample response. 2(n) = —h(M —1—n) and M even. In

this case, the real-valued frequency response characteristic H, (@) is

(M/2)—-1 M1

H(o)=2 ) h@sinw (T ~ n) (10.2.58)
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A change in the summation index from n to k = M /2 —n combined with a definition
of a new set of filter coefficients {d(k)}, related to {h(n)} according to

M
d(k) = 2h (% -k>, k=122 (102.59)
results in the expression
M2 1
(@)=Y df)sinw (k— = 2.60
H. (@) kz_l: ( )smw( 2) (10.2.60)

As in the previous two cases, we find it convenient to rearrange (10.2.60) into the

form
(M/2)-1

Hy) =sin2> Y d(k)coswk (102.61)
2 k=0

where the new filter parameters {d(k)} are related to {d(k)} as follows:

() -

dk —1) —d(k) =2dk), 2<k< (10.2.62)

d(0y — 1d(1) =d()

TABLE 10.5 Real-Valued Frequency Response Functions
for Linear-Phase FIR Filters

Filter type Q(w) P(w)
hn) =h(M —1—n) (M—1)/2
M odd 1 Z a(k) cos wk
(Case 1) k=0
hn)=h(M —1—-n) o (M[2)~1
M even cos ) Z b(k) cos wk
(Case 2) k=0
h(n) = -h(M —1—n) (M—3)/2
M odd sin @ > Ek)coswk
(Case 3) k=0
h(n) = —h(M —1—n) o (M/2)—1
M even sin 3 Z d (k) cos wk
(Case 4) k=0
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The expressions for H, (w) in these four cases are summarized in Table 10.5. We
note that the rearrangements that we made in Cases 2, 3, and 4 have allowed us to
express H,(w) as

Hy(w) = Q(w) P(w) (10.2.63)
where
1 © Case 1
cos 5 Case 2
Q@) =1 sinw Case 3 (10.2.64)
sin ; Case 4

and P(w) has the common form

L
P(w) =) a(k)coswk (10.2.65)
k=0

with {a(k)} representing the parameters of the filter, which are linearly related to
the unit sample response 4(n) of the FIR filter. The upper limit L in the sum is
L=(M-—1)/2forCasel, L = (M - 3)/2 for Case 3, and L = M/2 — 1 for Case 2
and Case 4.

In addition to the common framework given above for the representation of
H,(w), we also define the real-valued desired frequency response Hy (w) and the
weighting function W(w) on the approximation error. The real-valued desired fre-
quency response Hyr(w) is simply defined to be unity in the passband and zero in
the stopband. For example, Fig. 10.2.15 illustrates several different types of charac-

. .2 . . . i 10.2.
teristics for Hg(w). The weighting function on the approximation error allows us ;I[:)lge:i;ee d frec
to choose the relative size of the errors in the different frequency bands (i.e., in the characteristi

passband and in the stopband). In particular, it is convenient to normalize W (w) to

types of filte
unity in the stopband and set W(w) = §,/8; in the passband, that is,

For mather
| 82781, o in the passband a modified
Wiw) = { 1, o in the stopband (10.2.66)
Then we simply select W(w) in the passband to reflect our emphasis on the relative
size of the ripple in the stopband to the ripple in the passband.
With the specification of Hgr(w) and W(w), we can now define the weighted
approximation error as
Then the w

E(w) = W(w)[Hyr(w) — Hr(0)]
= W(o)[Har(®) — Q(w) P(w)]

(10.2.67) for all four
_ Hyr(w) Given
- VoW |G - rw) caly o det
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Desired frequency response
characteristics for different I

types of filters. {d)

I

i
0 w w, wy wy T

For mathematical convenience, we define a modified weighting function W(w) and
a modified desired frequency response Hgr(w) as

W (w) = W()0(w)

i Ha () (10.2.68)
ar(w) = 0()
Then the weighted approximation error may be expressed as
E(w) = W(0)|[Har(@) — P(w)] (10.2.69)

for all four different types of linear-phase FIR filters.
Given the error function E(w), the Chebyshev approximation problem is basi-
cally to determine the filter parameters {«(k)} that minimize the maximum absolute
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value of E(w) over the frequency bands in which the approximation is to be per-
formed. In mathematical terms, we seek the solution to the problem

L
min [max]E (w)|] = min [max IW(w)[I:Idr(w) — Za(k) cos a)k]|jl

over {a(k)} | weS over {a(k)} | weS =0

(10.2.70)
where S represents the set (disjoint union) of frequency bands over which the op-
timization is to be performed. Basically, the set S consists of the passbands and
stopbands of the desired filter.

The solution to this problem is due to Parks and McClellan (1972a), who applied
a theorem in the theory of Chebyshev approximation. It is called the alternation
theorem, which we state without proof.

Alternation Theorem. Let S be acompactsubset of the interval [0, 7). A necessary
and sufficient condition for

L
P(w) =) _a(k)coswk
k=0

to be the unique, best weighted Chebyshev approximation to Hyr(w) in S, is that the
error function FE(w) exhibit at least L + 2 extremal frequencies in §. That is, there
must exist at least L + 2 frequencies {w;} in § such that w1 < w3 < -+ < w42,
E(w;) = —E(wi+1), and

| E(wi)| = max |E(w)|, i=12,...,L+2
weé

We note that the error function E(w) alternates in sign between two successive
extremal frequencies. Hence the theorem is called the alternation theorem.

To elaborate on the alternation theorem, let us consider the design of a lowpass
filter with passband 0 < w < w, and stopband w; < w < 7. Since the desired
frequency response Hy,(w) and the weighting function W (w) are piecewise constant,
we have

dE d
d(“)) = —{W(w)[Ha () — H(w)]}
w dw
_ _dH(w) _

0
dw

Consequently, the frequencies {w;} corresponding to the peaks of E(w) also corre-
spond to peaks at which H,(w) meets the error tolerance. Since H, () is a trigono-
metric polynomial of degree L, for Case 1, for example,
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L
H, (0) = Z a(k) cos wk

k
a(k) [Z Bic(€OS a))”i\ (10.2.71)

n=0

o (k) (cos w)*

M- I I

k

I
o

it follows that H,(w) can have at most L — 1 local maxima and minima in the open
interval 0 < w < 7. In addition, @ = 0 and w = 7 are usually extrema of H,(w)
and, also, of E(w). Therefore, H,(w) has at most L + 1 extremal frequencies.
Furthermore, the band-edge frequencies w, and wy are also extrema of E(w), since
|E(w)] is maximum at w = ®p and w = w,;. As a consequence, there are at most
L + 3 extremal frequencies in E(w) for the unique, best approximation of the ideal
lowpass filter. On the other hand, the alternation theorem states that there are at
least L -+ 2 extremal frequencies in E(w). Thus the error function for the lowpass
filter design has either L 43 or L +2 extrema. In general, filter designs that contain
more than L -+ 2 alternations or ripples are called exira ripple filters. When the filter
design contains the maximum number of alternations, it is called a maximal ripple
filter.

The alternation theorem guarantees a unique solution for the Chebyshev opti-
mization problem in (10.2.70). At the desired extremal frequencies {,}, we have

the set of equations
W Har(@n) — Pl@)] = (<1"8,  n=01.. L+1 (10.2.72)

where 8 represents the maximum value of the error function E(w). In fact, if we
select W (w) as indicated by (10.2.66), it follows that § = 82.
The set of linear equations in (10.2.72) can be rearranged as

—1\ns .
P(wn) + (A ) = Har(wn), n=01,...,L+1
Wy

or, equivalently, in the form

S (=18
> k) cos ok + = By (wy), n=01...,L+1 (10.2.73)
k=0 W(w,)
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If we treat the {a(k)} and 8 as the parameters to be determined, (10.2.73) can be
expressed in matrix form as

— 1 5

1 coswp cos2wy --- cosLawyg — _a(O)j ] ﬁdr(wo) i
W (wo)
-1 A
1  cosw cos2wy -+ cosLwy = a(l) Hy (1)
W (w1)
a(L)
(_1)L+1 R
1 coSwpy1 cos2wpyy -+ COSLwppg —— b LHdr(le)
L W(wr+1) 4 L .
(10.2.74)

Initially, we know neither the set of extremal frequencies {w,} nor the parameters
{a(k)} and 8. To solve for the parameters, we use an iterative algorithm, called the
Remez exchange algorithm [see Rabiner et al. (1975)], in which we begin by guessing
at the set of extremal frequencies, determine P (w) and §, and then compute the error
function E(w). From E(w) we determine another set of L + 2 extremal frequencies
and repeat the process iteratively until it converges to the optimal set of extremal
frequencies. Although the matrix equation in (10.2.74) can be used in the iterative
procedure, matrix inversion is time consuming and inefficient.

A more efficient procedure, suggested in the paper by Rabiner et al. (1975), is
to compute § analytically, according to the formula

. yoHar (o) + 1 Ha (@) + - + yo1 Har(w1.41)

8 (10.2.75)
-1 L+1
n _A)/l JrW+(A) Vil
Wi(wy) W(wr) Wwr11)
where
L+1 1
=] ——— (10.2.76)

_o COS @y — cOs @,
ntk
The expression for § in (10.2.75) follows immediately from the matrix equation in
(10.2.74). Thus with an initial guess at the L +2 extremal frequencies, we compute .
Now since P(w) is a trigonometric polynomial of the form

L
P(w) :Za(k)xk, X =COosw
k=0

and since we know that the polynomial at the points x, = cosw,,n =0,1,..., L +1,
has the corresponding values

(_1);13

< , n=0,1,...,L+1 (10.2.77)
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we can use the Lagrange interpolation formula for P (w). Thus P(w) can be expressed
as [see Hamming (1962)]

L
> P@)[Be/(x = xi)]
P(w) == (10.2.78)

L
> 1B/ (6 = x)]

k=0

where P(w,) is given by (10.2.77), x = cosw, x; = COS Wk, and

Be=1] F— (10.2.79)

Having the solution for P(w), we can now compute the error function E(w) from
E(w) = W(w)[Har(@) — P()] (10.2.80)

on a dense set of frequency points. Usually, a number of points equal to 16M , where
M is the length of the filter, suffices. If |E(w)| = & for some frequencies on the
dense set, then a new set of frequencies corresponding to the L + 2 largest peaks
of |E(w)| are selected and the computational procedure beginning with (10.2.75) is
repeated. Since the new set of L +2 extremal frequencies is selected to correspond
to the peaks of the error function |E (w)], the algorithm forces § to increase in each
iteration until it converges to the upper bound and hence to the optimum solution
for the Chebyshev approximation problem. In other words, when |E(w)| < § for all
frequencies on the dense set, the optimal solution has been found in terms of the
polynomial H(w). A flowchart of the algorithm is shown in Fig. 10.2.16 and is due
to Remez (1957).

Once the optimal solution has been obtained in terms of P(w), the unit sample
response A(n) can be computed directly, without having to compute the parameters
{a(k)}. In effect, we have determined

Hy(0) = Q(w) P(®)

which can be evaluated at @ = 27k/M, k =0, 1,..., (M — 1)/2, for M odd, or
M /2 for M even. Then, depending on the type of filter being designed, A (n) can be
determined from the formulas given in Table 10.3.

A computer program written by Parks and McClellan (1972b) is available for
designing linear-phase FIR filters based on the Chebyshev approximation criterion
and implemented with the Remez exchange algorithm. This program can be used
to design lowpass, highpass, or bandpass filters, differentiators, and Hilbert trans-
formers. The latter two types of filters are described in the following sections. A
number of software packages for designing equiripple linear-phase FIR filte.
now available.
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Figure 10.2.16 Flowchart of Remez algorithm.

The Parks-McClellan program requires a number of input parameters which ; ~0.1
determine-thie filter characteristics. In particular, the following parameters must be

specified:

NFILT:
JTYPE:

NBANDS:
LGRID:

EDGE:

The filter length, denoted above as M.
Type of filter:

JTYPE = 1 results in a multiple passband/stopband filter.

JTYPE = 2 results in a differentiator.
JTYPE = 3 results in a Hilbert transformer.

The number of frequency bands from 2 (for a lowpass filter) to a maxi-

mum of 10 (for a multiple-band filter).

The grid density for interpolating the error function E(w). The default

value is 16 if left unspecified.

The frequency bands specified by lower and upper cutoff frequencies,

up |
frec
cor1
FX: An
spo:
WTX: An
ban
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Example 10.2.3.
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up to a maximum of 10 bands (an array of size 20, maximum). The
frequencies are given in terms of the variable f = w/2m, where f=05
corresponds to the folding frequency. :

FX: An array of maximum size 10 that specifies the desired frequency re-
sponse Hg,(w) in each band.

WTX: An array of maximum size 10 that specifies the weight function in each
band.

The following examples demonstrate the use of this program to design a lowpass and
a bandpass filter.

EXAMPLE 10.2.3

Design a lowpass filter of length M = 61 with a passband edge frequency fp =01anda
stopband edge frequency f; = 0.15.

Solution.  The lowpass filter is a two-band filter with passband edge frequencies (0, 0.1) gnd
stopband edge frequencies (0.15, 0.5). The desired response is (1, 0) and the weight function
is arbitrarily selected as (1, 1).
‘ 61,1,2

0.0,0.1,0.15,0.5

1.0,0.0

1.0,1.0

The impulse response and frequency response are shown in Fig. 10.2.17. The resulting filter
has a stopband attenuation of —56 dB and a passband ripple of 0.0135 dB.

Magpnitude (dB)

: i ;
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
f

Figure 10.2.17 Impulse response and frequency response of M = 61 FIR filter in
Example 10.2.3.

-100
0.5



690 Chapter 10 Design of Digital Filters

If we increase the length of the filter to M = 101 while maintaining all the
other parameters given above the same, the resulting filter has the impulse response
and frequency response characteristics shown in Fig. 10.2.18. Now, the stopband
attenuation is —85 dB and the passband ripple is reduced to 0.00046 dB.

We should indicate that it is possible to increase the attenuation in the stopband
by keeping the filter length fixed, say at M = 61, and decreasing the weighting
function W(w) = 8,/8; in the passband. With M = 61 and a weighting function
(0.1, 1), we obtain a filter that has a stopband attenuation of —65 dB and a passband
ripple of 0.049 dB.

EXAMPLE10.2.4

Design a bandpass filter of length M = 32 with passband edge frequencies Jfpt = 0.2 and
Sp2 = 0.35 and stopband edge frequencies of f;; = 0.1 and fio = 0.425.

Solution.  This passband filter is a three-band filter with a stopband range of (0, 0.1), a
passband range of (0.2,0.35), and a second stopband range of (0.425,0.5). The weighting
function is selected as (10.0, 1.0, 10.0), or as (1.0,0.1, 1.0, and the desired response in the
three bands is (0.0, 1.0, 0.0). Thus the input parameters to the program are

32,1,3
0.0,0.1,0.2,0.35,0.425,0.5
0.0,1.0,0.0
10.0, 1.0, 10.0
0.3 T T T T T H T H T
02+ |
s OIf 1
0 st Cugerttts,
—0.1 I I L L i | f L 1
0 10 20 30 40 50 60 70 80 90 100
n
0 T T L L L I LR L o

Magnitude (dB)
|
N
S
T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 10.2.18 Impulse response and frequency response of M = 101 FIR filter in
Example 10.2.3.
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