Chapter 2

Oscillations in a Magnetized

Atmosphere !

In this chapter we will show that even in the presence of a weak vertical magnetic
field the acoustic modes, which are a main focus of the remainder of this dissertation,
still exist, though they are mildly altered by the magnetic field. This, in a sense,
justifies treating magnetic field as a small perturbation when discussing the helio-
seismology of the quiet Sun. The main effect of the weak magnetic field, we will see,
is to introduce new magnetic modes: Alfvén modes for small horizontal wavenumber
and slow modes modified by gravity at high wavenumber. The magnetic field also
introduces instabilities, in particular in the neighborhood of avoided crossings. This
is potentially important for dynamical phenomena such as spicules. The precise
role, however, of these instabilities is not yet clear as we are working with a simple
model. A full understanding of these instabilities will require numerical simulations

and is beyond the scope of this dissertation.

U This chapter is mostly from the Solar Physics article by Birch, Kosovichev, Spiegel, & Tao
(2001b). I wrote sections 2.3, 2.4, and 2.5. The remaining sections were written by E. Spiegel and
L. Tao and I have performed only minor editing on the original text. I carried out the analytical
and numerical work for the paper, with the exception of the work for the first figure, which was
done by L. Tao.
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Abstract

We perform linear stability analysis on stratified, plane-parallel atmospheres in uni-
form vertical magnetic fields. We assume infinite electrical conductivity and we
model non-adiabatic effects with Newton’s law of radiative cooling. Because of
these numerous simplifying assumptions we expect the results of this analysis to be
qualitative at best. Numerical computations of the dispersion diagrams in all cases
result in patterns of avoided crossings and mergers in the real part of the frequency.
We focus on the case of a polytrope with a prevalent, relatively weak, magnetic field
with overstable modes. The growth rates reveal prominent features near avoided
crossings in the diagnostic diagram, as has been seen in related problems (Banerjee
et al., 1997). These features arise in the presence of resonant oscillatory bifurcations
in non-self adjoint eigenvalue problems. The onset of such bifurcations is signaled
by the appearance of avoided crossings and mode mergers. We discuss the possible

role of the linear stability results in understanding solar spicules.

2.1 Introduction

There is no shortage of instabilities that may provoke solar activity, and more are
being discovered. The problem is rather to anticipate how the situation will change
as these instabilities develop. Surprisingly, a lot of the nonlinear development of an
instability can be foretold on the basis of its linear theory with the help of the normal
form theory (Guckenheimer & Holmes, 1983). This theory provides generic forms of
the nonlinear equations for the amplitudes of unstable modes for given instability
configurations. Though it is a rather formal theory, it is an informative one that
has provided some guidance in some circumstances, such as stellar pulsation theory
(Regev & Buchler, 1981; Spiegel, 1993). However, there are cases that are only
now being unraveled and these relate to situations called resonant Hopf bifurcations
where negative energy modes may occur. These modes can promote rapid growth
and vigorous activity and their presence is usually signaled by the avoided crossings

of modes.

Avoided crossings, or avoided level crossings, are known in quantum mechanics,
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where their behavior is related to the onset of chaos in the corresponding classi-
cal system, and are widely found in fluid instabilities, stellar instabilities being no
exception. Here we join the chorus of analysts of such interesting linear problems
with a brief discussion of avoided crossings in the context of nonadiabatic magnetoa-
coustic instability of a stratified atmosphere. But before presenting some dispersion
relations for this problem, we would like to make some elementary remarks to set

the stage for the discussion.

2.2 The Resonant Hopf Bifurcation

To review briefly the nature of level crossings, we consider small perturbations to a
plane-parallel equilibrium model. This generally gives rise to a dispersion relation
D(Q, k,n) = 0 where Q is the time constant of the mode — the real part of Q is the
frequency — k is its horizontal wavenumber and n is the vertical mode label.
Where two roots of the dispersion relation nearly coincide, the dispersion relation

can be approximated by an equation of the form (e.g. Lee & Saio, 1989):
[(w—wy) —u(k —ko)][(w—wo) —v(k —ko)] —e=0. (2.1)

Here u and v are the slopes of the asymptotes in the k£ — w diagram, so that the
dispersion relations are w = wy + u(k — ko) and w = wy + v(k — ko) away from
the crossing. The parameter € represents the coupling between the two modes at
resonance.

In the presence of radiative cooling or other forms of damping, taking the simplest
case that the damping is independent of wavenumber at resonance, we may assume

that the dispersion relation takes the following form:
[(w—wp+ i) —u(k — ko)] [(w — wo + i) —v(k — ko) —e=0 (2.2)

where o and (8 are the damping rates, and the coupling ¢ may be complex. In
the simple situation we shall treat, we assume that locally the damping rate is
independent of the horizontal wavenumber £ so that the parameters o and 8 do not

depend on k. We shall see later that the resulting dispersion relations qualitatively
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describe our physical system.

In Figure 2.1 we plot three representative solutions. In the top panel, we see
that the frequencies exhibit an avoided crossing, but the imaginary parts do cross.
The size of the gap at avoided crossings is directly proportional to the coupling,
€. In the middle panel, the behavior of the real and imaginary parts is contrary to
that in the top panel: the avoidance is seen in the imaginary part, while the real
parts of the frequency cross. In the bottom panel, we see a merger of the real parts,
accompanied with a splitting of the imaginary parts. In this symmetric situation,
the roots are exactly complex conjugates when the branches merge. Under very
general conditions, two otherwise stable modes interact resonantly to produce one
unstable mode.

In the astrophysical context, avoided crossings of the kind illustrated here are
familiar in non-radial stellar oscillations (Aizenman et al., 1977; Lee & Saio, 1990)
and our particular interest here is in their effects on growth rates of magnetoacoustic

instabilities, to which we now turn.

2.3 Equations and Equilibria

Linearized perturbations about model equilibrium atmospheres and their dynamics
may be described by the ideal magnetohydrodynamics (MHD) equations. Here we
assume that the gas is governed by the ideal gas law and is nonadiabatic.

Let p, P, and v denote the density, pressure, and velocity of the gas and B
and J denote the magnetic field strength and the current. The speed of light is
c;. Then the set of ideal MHD equations consists of the continuity equation, the
momentum equation, the heat equation for the gas, the ideal gas equation of state,
the induction equation for the magnetic field, and Ampére’s law, neglecting the

displacement current:

dp
- . = 2.3
L4V () =0, (2)
dv .1
Py = —VP + pgz + c_lJ x B, (2.4)
T
Cpe £ PV v = Q(T, ), (2.5)

Pt
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Figure 2.1: Three sets of solutions of the (complex) quadratic:
[w—wo+ i —u(k — ko) [w—wo+Bi—v(k—ko)] —€e = 0. We fix u = 1.0
and v = 0.1 and vary «, # and €. We show each set as the real and imaginary parts
of w—wy = F(k — ko). Top panel: a = 0.1, § = 0.01 and € = exp(—mi/8); middle
panel: a = 0.01, 8 = 0.5 and € = exp(5mi/8); bottom panel: o = 0.1, # = 0.1 and
e=—1.
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P = RpT, (2.6)
%—?ZVX(VXB), (2.7)
Cl
= B 2.
J 47TV xB, (2.8)

and R and C, are the gas constant and heat capacity (at constant volume) of our
ideal gas. The gravitational acceleration is gz and z is the vertical spatial coordinate,
taken to be increasing downwards. The heat loss function () we take to be given by
Newton’s law of cooling (e.g. Spiegel, 1957).

In hydrostatic equilibrium there is no flow and the state variables depend only
on z. There is no current in the background state (V x By = 0) so the background
magnetic field does not alter the background pressure and density profiles.

For an isothermal slab, the pressure and density depend exponentially on depth
with a scale height H = RT,/g. The sound speed is constant and the Alfvén speed,
By/\/4mpy, decreases exponentially with depth. In the case of interest here, the
background temperature profile is assumed to increase linearly with depth, Ty = £z.
g

Then the density is of the form py = p.(Z)™ with m = %5 — 1 and the pressure has

the form Py = P*(i)m“, with p,, P,, and z, as the characteristic density, pressure,

and length scales. The pressure and density are related polytropically, Py o pomTH,

though for slightly different reasons than for conventional polytropes. To facilitate
computations, we have chosen to confine the layer under study between two positive

values of z.

2.4 Linear Theory

The linearized equations are separable in time and in the horizontal and vertical co-
ordinates. Therefore, we may seek linear solutions in the form f(z)exp [i(kx — Q)]
where z is the horizontal coordinate.

For Newton’s law of cooling (Spiegel, 1957) we have

where ¢ is the inverse of the characteristic cooling time and © is the temperature
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perturbation. Newton’s law of cooling is correct to first order for perturbations
to homogeneous optically thin backgrounds (Osaki, 1966); this result can easily be
extended, in the case of constant opacity coefficient, to the optically thin strati-
fied case. In general though the cooling function ) depends on both the density
and temperature perturbations (e.g. Field, 1965). The application of Newton’s law
of cooling to generic stratified media is, however, standard in the literature (e.g.
Syrovat-skii & Zhugzhda, 1968; Souffrin, 1972; Mihalas & Toomre, 1982; Hasan,
1986; Umurhan et al., 1999). Christensen-Dalsgaard & Frandsen (1983) discuss the

radiative transfer problem for solar oscillations in some detail.

In this work we consider only the case of constant inverse cooling time g. In
the chromosphere, however, the cooling time ranges over a few orders of magnitude
(Gibson, 1973); a detailed modeling effort should certainly take this into account.
In this work we are only attempting to find qualitative patterns. We are not in any

way attempting to build a realistic model chromosphere.

With Newton’s law of cooling the linearized equations read:

p= qq—_iiy%Pl q —17lny(d](c)igzPO a fydl?lipo)WI’ (2.10)
i+ dl;’lipow’ kU + dgl =0, (2.11)

U’ = %CQP’ - %Q(d;g' _ Y, (2.12)

—iQW' = —c—;(ddil + dk:jgzpo P+ g/, (2.13)

a® = 4?;:020 , = ,Yp—]:O. (2.14)

Here P’ and p’' are the ratios of the pressure and density perturbations to their
background values; U’ and W' are the horizontal and vertical components of the
velocity; a and c are the Alfvén and sound speeds, which in general are functions
of depth; and +y is the ratio of specific heat at constant pressure to specific heat at

constant volume.

We take W' = 0 and ‘Z—ZI = 0 as our velocity boundary conditions on the top

and bottom of the layer. These boundary conditions were chosen to eliminate the
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flux of mechanical and magnetic energy through the boundaries (see Appendix A).
The resulting two-point boundary-value eigenvalue problem is then self-adjoint for
the isentropic (¢ = 0) case, which has been studied by Bogdan & Cally (1997) for a

semi-infinite atmosphere.

2.5 Numerical Results

Like previous workers, we find complicated patterns of avoided crossings and mode
mergers when we examine the & — () diagrams for various parameters. We focus,
however, only on the weak magnetic field case for the purposes of this discussion.
For all of the numerical results presented here, the ratio of Alfvén speed to sound
speed at the bottom of the layer is 0.1, v = 5/3, and the layer extends across 4.6
density scale heights.

We present the results as functions of the dimensionless horizontal wavenumber
kD, where k is the horizontal wavenumber and D is the layer thickness. The time
constant is {2 = w +in where the frequency w and the growth rate n are real and are
presented in dimensionless form as w7 and n7 where 7 = D/¢, and ¢, is the sound
speed at the bottom of the layer. Whenever comparison is made between polytropic
and isothermal atmospheres, it is always made between layers with the same v, the
same number of density scale heights, and the same ratio of Alfvén speed to sound

speed at the bottom of the layer.

2.6 Large Cooling Time

A typical k£ — w diagram for a weakly magnetized polytrope with small ¢ is shown
in Figure 2.2. Figure 2.3 exhibits the corresponding growth rates, in addition to
frequencies, for the first four branches of the polytropic and isothermal atmospheres.
The modes can be clearly identified at small and large k. In between, there is a
series of avoided crossings and mode classification becomes ambiguous.

For £ = 0 the modes can be identified as either incompressible transverse Alfvén
waves or longitudinal acoustic oscillations, unaffected by the magnetic field. No-

tice that the Alfvén mode with k£ = 0, vertical wavenumber zero, and frequency
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Figure 2.2: Frequency as a function of horizontal wavenumber £ for the first eight
modes of an m = 2 polytrope atmosphere with weak magnetic field and weak damp-
ing, g7 = 1073. The ratio of Alfvén speed to sound speed is 0.1 at the bottom of the
layer. The layer extends over 4.6 density scale heights. We note that every mode
shown along k = 0, except the sixth, is an Alfvén mode.
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Figure 2.3: The frequencies, in the upper two plots, and growth rates, in the lower
two plots, as functions of horizontal wavenumber k for the first four branches of
both an m = 2 polytrope, shown on the left, and isothermal, shown on the right,
atmosphere with weak magnetic field and weak damping, g7 = 10~3. The ratio of
Alfvén speed to sound speed is 0.1 at the bottom of both layers and both layers
extend over 4.6 density scale heights. The branches are labeled in the lower plots
in order of increasing frequency. For the polytrope, the first four branches are
overstable for small ranges in k. For the isothermal atmosphere, all of the modes
are damped. Note the scale on the n7 axis is not linear; this is done to make the
main features more visible.
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zero, is allowed by our boundary conditions. This corresponds to a global, volume-
preserving motion that would be excluded by physically motivated boundary con-

ditions.

As k increases from zero, the acoustic modes increase in frequency, just as with
p-modes in the absence of magnetic field. The magnetic modes (m-modes) remain
approximately transverse as k increases from zero; as a result, the modes remain
essentially pure transverse Alfvén modes with frequencies dependent only on their
vertical wavenumbers. For small k, the displacement of such a mode is mainly
horizontal and thus the frequency is unaffected, to lowest order in k£, by the buoyancy
force. The Alfvén mode with zero frequency becomes the magnetically-modified

Lamb mode with increasing k.

For large k, the modes are either the fast or slow MHD modes. The fast mode
that propagates across the background magnetic field is the magnetosonic mode,
which is longitudinal and has the gas and magnetic pressures as restoring forces.
For large k, its frequency is proportional to k. The slow mode propagating almost
across the background field has mainly magnetic tension and buoyancy as restoring
forces and, as k increases, the frequency goes to a constant set by the vertical

wavenumber, the Alfvén speed, and the buoyancy frequency.

For intermediate values of k the character of the modes is mixed and classification
is difficult. The generic pattern is of avoided crossings and mode mergers. As k
increases the frequencies of the p-modes and the frequency of the Lamb mode both
increase while the frequencies of the m-modes are approximately constant. Thus,

crossings of different modes are inevitable and mode interaction is clearly present.

The growth rates in Figure 2.3 show many sharp features. The first four branches
in the polytropic atmosphere are unstable in some ranges of horizontal wavenumber.
The instability appears when the branch approaches an avoided crossing from below.

Near avoided crossings the character of the modes becomes mixed.

A comparison of growth rates with those for the isothermal atmosphere, in Fig-
ure 2.3, reveals that the basic pattern is the same for both cases. The growth rate

is maximum as the branch approaches an avoided crossing from below.
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Figure 2.4: The frequency as a function of horizontal wavenumber for the first eight
branches in the polytropic atmosphere with m = 2. The ratio of Alfvén speed to
sound speed is 0.1 at the bottom of the layer and the layer covers 4.6 density scale
heights. The dimensionless inverse cooling time g7 is 103. Notice that instead of
avoided crossings, as are present in the low ¢ case, there are now mergers of the
frequencies for the low order modes. The mode mergers are seen only for small w.
For large w, avoided crossings are seen as in the small ¢ case.
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2.7 Small Cooling Time

New behavior is seen for large q. A typical diagnostic diagram is shown in Figure 2.4.
Instead of the avoided crossings seen at small ¢ we now see mergers in the k£ — w
diagram. The left panels of Figure 2.5 show growth rates, as well as frequencies,
for the case shown in Figure 2.4. The right panels of Figure 2.5 show the first two
branches of the corresponding isothermal atmosphere, for purposes of comparison.

For the polytropic case the growth rates, for low order modes, show large fea-
tures where two branches merge in frequency. In the limit of infinite ¢, where the
temperature perturbation is asymptotically zero, these features remain. Then we
can show that the two (complex) frequencies are complex conjugates at the merger
so that the presence of one damped mode implies the presence of a growing mode.

As seen in Figure 2.5, the growth rates in the isothermal and polytropic cases are
not unrelated. Where the first growing/decaying pair appears in the polytrope, we
see a corresponding peak and valley in the growth rates along the first and second

branches of the isothermal case.

2.8 A Resonant Hopf Bifurcation

We have performed a systematic stability analysis of oscillations in non-adiabatic,
stratified magnetized atmospheres. Rather than reporting further details, we sim-
ply indicate the presence of resonant Hopf bifurcations, which should simplify the
continuation of this work into the nonlinear regime.

To illustrate, let us consider the avoided crossings in a sequence of model at-
mospheres. In Figure 2.6, we show the crossing of the first and second modes in
atmospheres with increasing values of q. At low ¢, the usual avoided crossing is seen
(top panel). As g is increased, the distance between branches at the avoided crossing
becomes smaller until the frequencies cross and the avoidance appears instead in the
growth rates (middle panel). As ¢ is increased even more, at a critical value, the
frequencies merge and features appear in the growth rates where the real parts of
the frequencies are equal (bottom panel).

Quite a few tell-tale characteristics of the avoided crossings are reproduced by

simple dispersion relations of the form (eq. [2.2]) with damping independent of &
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Figure 2.5: The frequencies, in the top panels, and growth rates, in the lower panels,
are shown for polytrope, on the left, and isothermal, on the right, layers. The
polytrope layer is the same as in Figure 2.4. Both the isothermal and polytropic
layers have g7 = 103, cover 4.6 density scale heights, and have a ratio of Alfvén speed
to sound speed of 0.1 at the bottom. For clarity, only the first two branches are shown
for the isothermal atmosphere. Where mergers in frequency occur there are large
features in the growth rates, many orders of magnitude larger than for the low ¢ case.
For the polytrope, when the real parts of the frequencies merge, the two branches
at the merger become complex conjugate pairs; one mode is growing and the other
decaying. Notice that where the polytrope atmosphere shows a merger, there is
an avoided crossing in the diagram for the isothermal atmosphere, accompanied by
features in the growth rate.
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Figure 2.6: Frequency, on the left, and growth rate, on the right, are shown as
functions of kD for the first two branches of the m = 2 polytrope with 4.6 density
scale heights and magnetic Mach number (a/c) of 0.1 at the bottom of the layer.
Only the vicinity of the crossing is shown. The three pairs of plots are for three
different values of the cooling time, g7 = 10™*,0.7, and 10%. The plots proceed from
small ¢ on the top to large ¢ on the bottom. The first branch is shown in the solid
line and the second branch in the dashed line. As ¢ increases the transition from
avoided crossing to merger is seen. Notice that the vertical scales on the plots of the
growth rates are different; this is done to show detail. Note the similarity between
this figure and Figure 2.1.
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at resonance. In the weak ¢ case, the crossing of the damping rates occurs for a k
smaller than the horizontal wavenumber at resonance, while the maximum growth
and damping rates occur at a larger k. For intermediate ¢, the distinctive bumps at
the crossing of the frequencies are also captured by our simple model (compare the
middle panels of Figure 2.1 and 2.6).

This sequence is generic to our numerical results and, if we may judge from the
astrophysical literature, to stellar atmospheres in general. This range of behavior
can be explained by the onset of resonant oscillatory bifurcations, as in Figure 2.1,
and it forecasts the occurrence of overstability and strong damping near avoided
crossings, as reported by previous workers (Banerjee et al., 1997; Gore, 1997). In
each of the three cases, the imaginary part of the frequency increases or decreases
away from the crossing, leading to strong mode quenching or amplification near the
crossing. Therefore, the primary role of non-adiabaticity is to set the reference level
for the growth or decay rates at crossings.

For the Sun the cooling rate, ¢, depends on radius. In the chromosphere the
cooling time is very roughly of order 300 s, it varies by about two orders of magnitude
over the height of the chromosphere (Gibson, 1973) . The sound speed crossing time,
T, is also roughly 300 s, so that the dimensionless cooling rate ¢7 is approximately
of order unity. Thus the chromosphere is intermediate between the large and small

q7 cases that we have presented in detail here.

2.9 Islands of Reality: the Onset of Complex Eigen-

values

So far, we have discussed only local properties of resonant Hopf bifurcations. We
have seen that the simplest model of two resonant, damped modes in equation (2.2)
adequately describes the range of behavior seen near avoided crossings where oscilla-
tions may become linearly unstable. This indicates that the instability is intimately
linked with the complexity of the coupling €, but what is responsible for the insta-
bilities?

If we study the acoustic oscillations of an atmosphere in terms of a two-point

boundary-value eigenvalue problem, we find that, in the adiabatic case, with suitable
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boundary conditions, the relevant linear operators are self-adjoint. This ensures that
the eigenvalues (here the squares of the frequencies) are real. The appearance of
overstable modes, or complex eigenvalues, is associated with the loss of the self-
adjoint property that we normally attribute to non-adiabatic effects — thermal
conduction or viscous effects — and this appears to be generic (Umurhan, 1999).
Thermal and viscous losses lead to complex coupling between resonant modes. Even
in the presence of ideal conditions, however, with certain boundary conditions the
relevant operators, as in equations (2.10)-(2.13), can become non-self adjoint, as

many examples have revealed.

In the field of non-radial adiabatic oscillations in rotating stars, Lee & Saio (1990)
found overstability in their dispersion relation. In a study of magnetic oscillations
of isothermal atmospheres, Banerjee et al. (1995) pointed out the disappearance of
purely real frequencies when they applied certain sets of boundary conditions for
the boundary-value eigenvalue problem. They reported localized islands in the fre-
quency versus horizontal wavenumber plots. That is to say, for particular branches of
magnetoacoustic oscillations, there are ranges in the horizontal wavenumber where
the frequency is complex, signalling either evanescence or instability. Banerjee et al.
(1995) regarded the solutions with complex frequency as unrealistic and plotted only
the real frequencies. This raises the question, however, of what non-self adjointness
and complex frequencies imply for the waves within particular ranges of horizontal
wavenumbers. This issue arises in other fluid flow problems and notably in plasma

physics, where it becomes a question of absolute versus drift instability.

In our atmospheric model, an oscillatory disturbance can evolve in two different
ways. The wave can grow or decay in place; this is the usual picture for unstable
or stable oscillations. In certain cases, the wave can grow and propagate away from
the origin of the disturbance. For an infinite medium in this latter regime, at a
fixed point in space, the disturbance decays with time, though the wave may be
growing away from the point of disturbance. This is the situation with vertically

propagating acoustic waves in an isothermal atmosphere.

These two distinct physical situations, corresponding to absolute and drift (or
convective) instabilities, are understood in a infinite medium. In a finite atmosphere

such as in our model, the evolution of a wave suffering from drift instability depends
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on the boundary conditions and their influence on the self-adjointness of the linear

operator. We defer this technical issue to Appendix A.

2.10 Discussion

Nonadiabatic acoustic perturbations to atmospheres with temperature stratification
are subject to instabilities for a variety of reasons, not all of which have been clarified
physically. Nevertheless several investigations have shown that these instabilities are
common in thin layers of stars, such as the solar chromosphere. For such layers, much
wider than they are deep, the spectrum of the frequencies of the unstable modes, as
functions of horizontal wavenumber, will be dense and may be treated as continuous.
This is a situation in which the evolution of the envelope of the modal amplitudes
may be expected to satisfy the complex Ginzburg-Landau equation (e.g. Manneville,
1990), a partial differential equation in horizontal coordinates and time. Under
suitable conditions, this equation produces spatially localized oscillatory structures
(Umurhan et al., 1999) like the oscillons seen in shaken granular media (Umbanhowar
et al., 1996).

The generation of localized structures from the nonlinear development of a con-
tinuous band of overstable modes is of interest in the present context because it
is often thought that some special mechanism, perhaps related to magnetic fields,
is needed to produce sharply defined structures like solar spicules. This is not the
case, as we see from the example just described. Nevertheless, the recent discovery
of the magnetic carpet (Title & Schrijver, 1998) at a suitable height in the solar at-
mosphere makes it clear that the involvement of magnetic fields in the formation of
spicules can hardly be doubted. It is known that overstabilities of stratified nona-
diabatic media are also present when magnetic fields are introduced (Syrovatskii
& Zhugzhda, 1968; Christensen-Dalsgaard, 1981; Babaev et al., 1995; Gore, 1997).
But while we believe that solar magnetic fields are significant in shaping spicules,
we do not regard it as necessary to assume that the fields play a causative role in
spicule formation. Rather our interest in the magnetic fields is motivated by their
promotion of resonant oscillatory instabilities as signaled by the avoided crossings

recalled here.
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The nonlinear amplitude equations for the resonant Hopf bifurcation are readily
written down using techniques that have been discussed in many places for the case
of discrete modes (Guckenheimer & Holmes, 1983; Elphick et al., 1987) and some
preliminary studies have been described (Buchler et al., 1997). In the case of a
situation like the chromosphere, we need the generalization to the case of pattern
equations (equations describing the development of the amplitudes of a continuum of
modes). As far as we are aware, the relevant equations for this case have not been
exhibited, let alone studied. Yet the present work suggests, if rather abstractly,
that such equations would have much to teach us. The Ginzburg-Landau equation
is the relevant pattern equation for a single overstable mode. With a resonant pair
of such modes we would anticipate a coupled set of Ginzburg-Landau equations.
These would be capable of producing negative energy solutions, which lead to a
phenomenon known as explosive behavior. The results reported here indicate that
this could be of interest for studies of chromospheric fluid dynamics.

This work began when three of us (ACB, EAS, and LT) were participants in the
Geophysical Fluid Dynamics Summer Program at the Woods Hole Oceanographic
Institution in 1998. J. Biello was particularly helpful during that period. During the
preparation of the manuscript we benefited from discussions with J. Christensen-
Dalsgaard, P. Cvitanovi¢, P. Pechukas, and O. M. Umurhan.



