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The recent development of a microscopic theory of the equilibrium properties of polymer solutions, 
melts and alloys based on off-lattice Polymer Reference Interaction Site Model (PRISM) integral 
equation methods is reviewed. Analytical and numerical predictions for the intermolecular structure 
and collective density scattering patterns of both coarse-grained and atomistic models of polymer 
melts are presented and found to be in good agreement with large scale computer simulations and 
diffraction measurements. The general issues and difficulties involved in the use of the structural 
information to compute thermodynamic properties are reviewed. Detailed application of a hybrid 
PRISM approach to calculate the equation-of-state of hydrocarbon fluids is presented and found to 
reproduce accurately experimental PVT data on polyethylene. The development of a first principles 
off-lattice theory of polymer crystallization based on a novel generalization of modern thermo- 
dynamic density functional methods is discussed. Numerical calculations for polyethylene and 
polytetrafluoroethylene are in good agreement with the experimental melting temperatures and 
liquid freezing densities. Generalization of the PRISM approach to treat phase separating polymer 
blends is also discussed in depth. The general role of compressibility effects in determining small 
angle scattering patterns, the effective chi-parameter, and spinodal instability curves are presented. 
New theoretical concepts and closure approximations have been developed in order to describe 
correctly long wavelength concentration fluctuations in macromolecular alloys. Detailed numerical 
and analytical applications of the PRISM theory to model athermal and symmetric blends are 
presented, and the role of nonmean field fluctuation processes are established. Good agreement 
between the theory and computer simulations of simple symmetric polymer blends has been 
demonstrated. Strong, nonadditive compressibility effects are found for structurally and/or interac- 
tion asymmetric blends which have significant implications for controlling miscibility in polymer 
alloys. Recent generalizations of PRISM theory to treat block copolymer melts, and nonideal 
conformationai perturbations, are briefly described. The paper concludes with a brief summary of 
ongoing work and fertile directions for future research. 
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Understanding the intermolecular packing, conformation, thermodynamics, 
and phase transitions of high polymer fluids and alloys is both a challenging 
problem in statistical mechanics and a subject of immense technological import- 
ance. Historically, theoretical progress has been possible only by introducing 
extreme approximations of both a chemical structural and statistical mechanical 
nature. Simple lattice models solved at the lowest mean field level represent the 
classical approach I-1]. Recently, Freed, Dudowicz and collaborators have 
pioneered the development of statistical thermodynamic theories of sophisti- 
cated lattice models which can deal approximately with monomer shape effects 
[2]. Fluctuation corrections to the simple random mixing approximation are 
perturbatively computed, and many interesting resuits have emerged. However, 
the lattice restriction is still, potentially, a major limitation, especially if local, 
chemically specific packing effects are important. Structural properties are also 
not explicitly addressed. Phenomenological field theoretical and/or Landau 
expansion approaches have been extensively developed I-3] and provide con- 
siderable qualitative insight into the general aspects of phase behavior and 
polymer conformation. However, such approaches heavily coarse-grain over 
chemical structure and often introduce a locally unrealistic incompressibility 
approximation. Thus, packing correlations on spatial scales of the order of and 
less than the statistical segment length are ignored. From a practical point of 
view, the presence of empirical parameters of uncertain relation to the micro- 
scopic intermolecular forces and chemical structure of specific materials limit 
the detailed predictive power of such theories. 

A distinctly different approach, which has witnessed much progress recently, 
is large scale Monte Carlo and molecular dynamics computer simulations 1,4]. 
These studies provide many insights regarding the physics of model polymer 
fluids, and also valuable benchmarks against which approximate theory can be 
tested. However, an atomistic, off-lattice treatment of high polymer fluids and 
alloys remains immensely expensive, if not impossible, from a computational 
point of view. 

Over the past several years we and our collaborators have pursued a con- 
tinuous space liquid state approach to developing a computationally convenient 
microscopic theory of the equilibrium properties of polymeric systems. Integral 
equations methods [5-71 now widely employed to understand structure, 
thermodynamics and phase transitions in atomic, colloidal, and small molecule 
fluids, have been generalized to treat macromolecular materials. The purpose of 
this paper is to provide the first comprehensive review of this work referred to 
collectively as "Polymer Reference Interaction Site Model" (PRISM) theory. 
A few new results on polymer alloys are also presented. Besides providing 
a unified description of the equilibrium properties of the polymer liquid phase, 
the integral equation approach can be combined with density functional and/or 
other methods to treat a variety of inhomogeneous fluid and solid problems. 
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The outline of the paper is as follows. In Sect. 2 we describe the basic RISM 
and PRISM formalisms, and the fundamental approximations invoked that 
render the polymer problem tractable. The predictions of PRISM theory for the 
structure of polymer melts are described in Sect. 3 for a variety of single chain 
models, including a comparison of atomistic calculations for polyethylene melt 
with diffraction experiments. The general problem of calculating thermodyn- 
amic properties, and particularly the equation-of-state, within the PRISM 
formalism is described in Sect. 4. A detailed application to polyethylene fluids is 
summarized and compared with experiment. The development of a density 
functional theory to treat polymer crystallization is briefly discussed in Sect. 5, 
and numerical predictions for polyethylene and polytetrafluoroethylene are 
summarized. 

The second general part of this paper describes the PRISM theory of phase- 
separating polymer mixtures. This aspect is less well developed than the one- 
component melt problem, especially with regards to its atomistic implementa- 
tion for real materials. However, construction of a microscopic theory of 
polymer alloys is presently of great interest both scientifically and due to the 
technological desire to "molecularly engineer" miscibility and phase structure. 
The general theoretical issues for polymer blends within the PRISM framework 
are discussed in Sect. 6. Specific applications to model athermal polymer 
mixtures are summarized in Sect. 7. Section 8 treats thermally-induced phase 
separating blends, and the subtle question of the appropriate closure approx- 
imation is discussed. New "molecular-based" closure approximations are de- 
scribed, and representative results for model symmetric polymer blends are 
presented and compared with recent Monte Carlo simulations. Analytical 
results are also presented for stiffness and interaction potential asymmetric 
blends where non-additive compressibility effects are found to be very impor- 
tant. PRISM theory of periodic block copolymers is briefly described in Sect. 9. 
Section 10 discusses the generalization of PRISM methodology to allow an ab 
initio assessment of "nonideal" conformational effects. The paper concludes 
with a brief overview of ongoing and future directions. 

2 PRISM Theory 

The theoretical approach we take to describe amorphous polymer liquids is 
based on integral equation theory which has its roots in the theory of mon- 
atomic liquids [5]. Consider for a moment a uniform system of n spherical 
particles of density p = n/V. A convenient measure of the degree of order in such 
a system is the radial distribution function g(r) defined as 

02g r, = (i j l t 
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Physically pg(r) is the density of particles at distance r from a given particle. 
Most thermodynamic properties of interest can be computed from a knowledge 
of g(r) and the interparticle pair potential v(r). The starting point in calculating 
the radial distribution function is the well known Ornstein-Zernike equation 
[5]: 

h(r) = C(r) + pjC(l~ - FI)h(r ' )dF (2.2) 

where h(r) = g(r) - 1 is frequently called the total correlation function and 
approaches zero at large r. Equation (2.2) serves as a definition for the direct 
correlation function C(r) which plays a central role in liquid state physics. 

Unfortunately C(r) does not have a readily apparent physical interpretation. 
However, some insight I-5, 6] can be gained by iterating Eq. (2.2) in explicit order 
of density 

h(r) = C(r) + oC*C(r) + p2C*C*C(r) + 93C*C*C*C(r) + ' - "  (2.3) 

where the * operator denotes the convolution integral following standard 
notation. We may interpret this equation as follows: two given particles at 
distance r apart are correlated "directly" from the first term on the RHS of Eq. 
(2.3); subsequent higher order terms in density represent "indirect" correlations 
between the two given particles mediated by the remaining particles in the 
system. At low density, high temperature, or large separation the direct correla- 
tion function is exactly related to the pair potential as C(r) = exp[  - 13v(r)] 

- 1 -~ - 13v(r) where 13 = 1/kBT and kB is Boltzmann's constant. At higher 
densities C(r) is strongly modified due to many-particle effects. However, it can 
be argued [5, 6] that C(r) still has roughly the same range as v(r) itself and is 
a simpler object to approximate than h(r). Since Eq. (2.3) shows that h(r) can be 
expressed as an expansion in C(r), one can view the direct correlation function, 
for qualitative purposes, as an effective or renomalized pair potential which 
accounts for the many body contribution to h(r). 

The expectation that C(r) is a short range, relatively "simple" function can be 
exploited to develop a second approximate relationship, or closure relation, 
between h(r) and C(r). Based on graph theoretical techniques [5] or functional 
expansions [5, 7], one can deduce the Percus-Yevick approximation: 

C(r) ~ {t - exp[13v(r)]}g(r) -= {exp[ - 13v(r)] - 1}y(r) (2.4a) 

where the "indirect" correlation function, y(r), is a continuous and finite function for 
all values of r. For hard spheres of diameter d, Eq. (2.4a) takes the simple form 

g(r) = 0 r < d 
C(r)-~O r > d  . (2.4b) 

The first condition on g(r) inside the hard core is an exact statement of the 
impenetrability of hard spheres. The second condition on C(r) outside the hard 
core is approximate and emphasizes that C(r) and v(r) have roughly the same 
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spatial range. Equations (2.4) plus the Ornstein-Zernike equation, Eq. (2.2), lead 
to the well-known Percus-Yevick integral equation theory that has been suc- 
cessful I-5] in describing the structure of monatomic liquids with strongly 
repulsive and weakly attractive interactions. 

These integral equation ideas of monatomic liquids were generalized and 
applied to molecular liquids by Chandler and Andersen [6, 8] to formulate the 
Reference Interaction Site Model or RISM theory of molecular fluids. In the 
RISM approach, each molecule is subdivided into spherically symmetric, inter- 
action sites. The intermolecular pair structure of a uniform molecular liquid of 
M molecules is now specified through a site-site radial distribution function 
matrix g~r(r): 

p2gar(r) = ~ 5 ( ~ ) g ( g -  ~ )  . (2.5) 
i C j = l  

In Eq. (2.5), p is the number density of molecules and ~'  is the position vector of 
site ~ on molecule i. It can be seen from Eq. (2.5) that gar(r) is the intermolecular 
radial distribution function for sites a and ~, on different molecules. Chandler 
and Andersen generalized the Ornstein-Zernike equation to reflect the fact that 
in molecular liquids, unlike monatomic liquids, there exist intramolecular cor- 
relations. This generalized Ornstein-Zernike-like, or RISM, equation has the 
form 1-6, 8] 

h_(r) = ~ . f d ? l d ~ 2 @ ( [ [  - r l  I)_-C(Irl - F 2 t ) [ ~ ( r 2 )  + ph__(r2)] (2.6) 

where h(r), C= (r), and @(r) are N × N matrices (for molecules consisting of N sites) 
with matrix elements hat(r)= gar ( r ) -  1, Car(r), and c0ar(r), respectively. The 
functions h=r(r) and Car(r) are intermolecular correlations functions between 
sites on different molecules. In contrast, oar(r) is the intramolecular probability 
density between a pair of sites on the same molecule. For molecules composed of 
hard sphere sites the closure for RISM theory is carried over by analogy with the 
Percus-Yevick closure of monatomic liquids. 

gar(r) = 0 r < dar (2.7) 
Car(r)-~0 r > d a r  • 

Equations (2.6) and (2.7) form a set of nonlinear integral equations which can be 
solved by standard numerical techniques 1-5, 9]. Thus, by solution of these 
integral equations, one can obtain a quantitative description of the short range, 
intermolecular packing in the liquid state which includes the effect of the 
intramolecular bonding constraints. Chandler and coworkers used this RISM 
formalism to study various small, rigid polyatomic liquids [9, 10] and found 
good agreement with computer simulation and scattering experiments for the 
intermolecular structure. 

We have generalized the RISM formalism to describe the structure of flexible 
polymer chain liquids [11-15]. The application of RISM theory to polymers is 
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referred to as polymer RISM, or PRISM, theory. (Note that there is no 
connection with the well known rotational isomeric state model commonly 
employed to calculate the intramolecular structure of isolated polymer chains 
[16].) In the case of rigid molecules, the intramolecular probability functions 
t~v(r) are simply delta functions which specify the positions of the atoms or sites 
on the molecule. When the PRISM theory is applied to flexible polymers, 
a difficulty arises because in general the intramolecular functions o)~,r(r) and the 
intermolecular radial distribution functions g~r(r) depend on each other [6]. 
A rigorous calculation would thus require that the intramolecular and inter- 
molecular structure be determined self consistently. This general problem is 
discussed in Sect. 10. For one-component polymer melts, we can avoid this 
difficult self-consistent calculation, at least nominally, by invoking the Flory 
ideality hypothesis [17]. The intramolecular excluded volume forces that tend to 
expand a polymer chain in dilute solution are nominally cancelled in the melt by 
intermolecular excluded volume interactions. The net result of these two oppos- 
ing effects is that the polymer melt acts as a theta solvent for itself and the 
average intramolecular structure of a chain is ideal. There is ample evidence that 
these ideas are substantially correct based on computer simulations [18] and 
neutron scattering experiments [19] on polymer melts. Within this approxima- 
tion the intramolecular structure can be calculated from an "ideal" single chain 
model without long range excluded volume interactions [16]. The result of this 
single chain calculation is then used as input to the PRISM theory to compute 
the intermolecular correlation functions g~r(r) and Car(r) in the polymer melt. 

Inspection of the generalized Ornstein-Zernike-like equations reveals that, 
for an ideal chain molecule fluid consisting of N(even) identical (but still 
symmetry nonequivalent) sites, the matrix equation, Eq. (2.6), consists of 
N(N + 2)/8 independent integral equations. The large number of coupled inte- 
gral equations results from the fact that the correlation functions gay(r) depend 
on the specific locations of site ct on one chain and site V on another chain. For 
a polymer the number of equations would obviously become unmanageably 
large. We can argue [13], however, that, for long polymer chains, end effects can 
be neglected, and thus all the sites on a homopolymer chain can be treated as 
equivalent. This simplification is exact for a ring homopolymer [12]. Such an 
equivalent-site approximation leads to a considerable mathematical simplifica- 
tion and renders the calculation of the structure of polymer melts a tractable 
problem. A computationally tractable scheme for computing "chain end" cor- 
rections has also been formulated [13]. Taking all the sites as equivalent on 
average allows us to write 

h ( r )  = g ( r )  - -  1 = h~ . t ( r  ) , 

C ( r )  = C ~ v ( r ) .  (2.8a) 

With this simplification, and subsequent preaveraging over the intramolecular 
structure, the generalized Ornstein-Zernike-like matrix equations reduce to 
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a single scalar equation of the form 

h(r) = SSdfldf2o~(lf - f l  I)C(t11 - fzl)[o~(rz) + pmh(r:)] (2.8b) 

where Pm is the site density Np, and co(r) is defined as the intramolecular 
distribution averaged over all pairs of sites on a single chain, and 

1 N 
= ~ 0~(r) . (2.9) e0(r) N~v=I  

, = 

Since it is the second relation in Eq. (2.8a) which is the fundamental approxima- 
tion, h(r) in Eq. (2.8b) can be rigorously interpreted as the "average" correlation 
function, i.e. h(r) N -z N = y~avhar(r). Recent work has demonstrated that the 
equivalent site approximation is remarkably accurate for h(r), even for very 
short alkanes such as propane [20] (N = 3) and butane [21] (N = 4). 

For hard core homopolymers, d = dar and the Percus-Yevick/RISM closure 
of Eq. (2.7) applies. Using the convolution theorem for Fourier transforms, 
Eq. (2.8b) can be conveniently written as 

h(k) = &2(k)C(k) + pm~(k)C(k)~(k) (2.10) 

where the caret denotes Fourier transformation with wave vector k. cS(k) is the 
Fourier transform of Eq. (2.9) and can be identified with the single chain 
structure factor: 

1 N 
= y, ~)~(k). (2.11) 

Equations (2.8) together with the closure in Eq. (2.7) make up a single 
nonlinear integral equation for g(r) = 1 + h(r). It can be seen that all pair 
correlation information about the chemical structure of the polymer enters the 
theory through cb(k). An important and unique feature of the PRISM theory 
that should be emphasized is that one has the ability to account for the effect of 
both local and global structural details, through ~b(k), on the intermolecular 
packing and thermodynamic properties of polymer liquids. 

3 lntermolecular Packing in Homopolymer Melts 

In PRISM theory the intramolecular architecture of the polymer is specified 
through &(k). The level of detail needed in the cb(k) calculation depends on the 
particular question that one is addressing. For example, if one is interested in 
long range, universal aspects, a Gaussian model, in which the monomers are 
heavily coarse grained, would suffice. The effect of structural features like chain 
stiffness, operating on intermediate length scales, could be accounted for by 
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a semiflexible chain model. If one is interested in making detailed comparisons 
with experiment, the local monomeric structure details presumably must be 
included. In this section we give examples of PRISM calculations covering this 
range of detail. 

3.1 Gaussian Chains 

For  chains consisting of sites connected by harmonic springs, the probability 
density between two intramolecular sites is a Gaussian distribution which can 
be written in Fourier transform space as 

&av(k) = exp[  - let - yIk2cr2/6] (3.1) 

where o is the statistical segment length. For  simplicity we will take the 
statistical segment length equal to the hard core diameter d. The summation in 
Eq. (2.11) can easily be performed to yield 

(1 - f2 _ 2f/N + 2fN+ l/N) 
cb(k) = (1 - f)2 (3.2) 

where f = e x p ( -  k2~2/6). Equation (3.2) reduces to the well known Debye 
function in the limit of large N and ko  ~< 1. Then cb(k) from Eq. (3.2) can be 
inserted into the generalized Ornstein-Zernike-like equation, Eq. (2.10) for the 
homopolymer, and the resulting equation can be solved numerically [11-15] 
subject to the Percus-Yevick hard sphere closure condition, Eq. (2.7). The 
numerical solutions were obtained using a variational method of Lowden and 
Chandler [9]. 

Results from this solution are shown for a melt of 2000 unit Gaussian chains 
in Fig. 1 as the points. Note that g(r) is a small number at contact (r = a = d) 
and increases monotonically to unity on a scale of the radius of gyration Rg of 
the Gaussian chains. Such behavior is an example of the correlation hole 
predicted by deGennes [22]. The correlation hole is a consequence of the 
shielding of intermolecular interactions due to chain connectivity when two 
polymers are brought within R~ of each other. The "negative" correlation hole 
behavior (i.e., g(r) < 1) is a universal aspect of polymer melts and is a necessary 
consequence of chain connectivity and repulsive interactions between inter- 
molecular segments. Note in Fig. 1 that the contact value of g(r) increases as the 
density increases at fixed chain length, reflecting the fact that the chain domains 
are pushed together as the density increases. 

An analytical approximation [23] can be found for the Gaussian chain melt 
by taking either the so-called thread or string limits. The "thread-like chain" 
model has been discussed in depth elsewhere [23]. Mathematically, it corres- 
ponds to the limit that all microscopic length scales approach zero but their 
ratios remain finite. In particular, the site hard core diameter d -o 0, but the site 
density Pm ~ oo such that the reduced density, prod 3, is non-zero and finite. In 
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Fig. 1. Site-site intermolecular pair correlation function g(r) for 2000 unit Gaussian chains plotted 
as a function of reduced separation r/d. The solid curves are analytical results from the string model 
[23]. The points refer to the predictions from numerical solution of the PRISM theory for two 
reduced densities prod 3 of 0.2 (open circles) and 1.0 (solid squares). The middle curve is the analytical 
result for a reduced density of 0.6 

the spirit of the Edwards' pseudopotential model 3a, the hard core direct correla- 
tion function is effectively replaced by a density-dependent delta-function. 
Hence the thread model does not represent the continuous d ~ 0 limiting case 
of a finite range hard core repulsion. The latter model would have trivial ideal 
gas properties. Gaussian statistics are assumed to describe the single chain 
structure factor &(k), which is thus characterized solely by the statistical segment 
length o, and the number of segments N. Moreover, in the thread limit the 
intramolecular structure factor can be accurately represented by the simple 
form3a: &(k) --- IN-1  + (ko)2/12]- x 

With the above simplifications the PRISM equation can be analytically 
solved and yields 1-23] a site-site radial distribution of the Yukawa, or screened 
Coulomb, form: 

3 [exp( - r/~p) - exp( - r/~c)] (3.3) 
g(r) = 1 + npm° ~ r /a  

Note the presence of two screening lengths ~p and ~ .  ~¢ is of macromolecular 

dimension and is simply related to the radius of gyration ~c = Rg/x/2. ~p, on 
the other hand, is short range at high density and is determined from the 
core condition. Note also that at high densities there is a wide "intermediate" 
region of intersite separation, ~p ~ r ~ ~c, where power law correlations occur, 
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i.e. - h(r) ~: (a/r). In the thread limit the hard core diameter is shrunk to 
a point and the core condition in Eq. (2.7) is approximated as g(r = 0) = 0, for 
which ~ becomes [23] 

/tpm a3 
~-1 = ~-1 + 3-----~- (thread limit). (3.4a) 

A related model, the string model, takes the hard core d as finite, but the core 
condition is only satisfied on average, that is 

d 
S r2g(r) dr = O. 
0 

This condition can be justified as an optimized perturbative treatment of the 
d ~ 0 polymer using the thread as a reference system [23]. In this case ~p is 
given by the transcendental equation 

~-2(~+ F-~)exp(-a/~°F)-(~) 9 ( ~ ) 2  

+ ~-~(~+a F-l) exp(-a/~cr) (string limit) (3.4b) 

where F = o/d is the aspect ratio of the chain. 
The analytical predictions from Eq. (3.3) in the string limit are shown as the 

solid curves in Fig. 1. It can be seen that the analytical approximation shows 
a remarkable agreement with the corresponding exact numerical PRISM calcu- 
lations for a finite hard core diameter. Implicit to the thread or string approach 
is a coarse-graining of molecular structure over the segmental length scale. 
Hence, local chemical information is lost (except in an average manner) and 
detailed structural features such as oscillatory g(r) functions indicative of local 
solvation shells due to the non-zero space-filling volume of real monomers are 
not captured. However, the thread idealization does yield analytical results 
which for many systems and properties are in excellent qualitative, or semi- 
quantitative, agreement with numerical PRISM predictions for more realistic 
non-thread polymer models. This achievement is the primary reason for con- 
structing and studying the thread and string models. 

3.2 Semiflexible Chains 

More realism can be introduced into the intramolecular calculation of &(k) by 
the freely jointed chain model in which the chains are made up of rigid bonds 
connected by freely rotating joints. In this model &(k) is given by Eq. (3.2) with 
f(k) = sin(ka)/ka where a represents both the bond length and hard core 
diameter for the model of present interest. Because of the rigid bond nature of 
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the model, an additional short range structure is superimposed on the long 
range correlation hole aspect of g(r) that is not generally evident in Gaussian 
chains at the same density [14, 15]. Although the freely jointed chain model 
includes the constant bond length constraint similar to the very stiff chemical 
bonds present in real polymers, it assumes the chain is completely flexible and 
thus neglects local stiffness and short range excluded volume which are impor- 
tant features of real polymers. 

The exact intramolecular distribution function for a semiflexible chain 
characterized by a local bond bending energy ~b(1 + COS 0) cannot be computed 
analytically. A convenient approximation, however, is given by the Koyama 
distribution [24, 25] 

where 

sin(Bark) , 
6%r(k ) = ~ expl , -  A2vk) 

A2y = (r~r)(1 - Car)/6 

B~ r = C ( r ~ )  

1[ (r4v) ] 5-3  

(3.5) 

Equation (3.5) can be shown to preserve the correct second ( r2 r )  and fourth 
( r~r )  moments of the intramolecular separation rat. Thus for a semiflexible 
chain of specified stiffness (through the second and fourth moments) the intra- 
molecular structure function cb(k) can be computed numerically from Eqs. (3.5) 
and (2.11). The second and fourth moments have been calculated by Honnell 
et al. [24] for the discrete version of the wormlike chain model of Porod from 
a knowledge of the chain stiffness parameters (cos 0) and (cos 2 0). The persist- 
ence length ~ of the chain is given by 

- (3.6) 
1 + ( c o s O )  

where g is the bond length and 0 is the bond angle. The semiflexible, wormlike 
chain is thus completely characterized by two parameters ~ (or equivalently the 
reduced bond bending energy 13eb) and N. Another, more realistic alternative, is 
to employ the standard rotational isomeric state model [16] for the required 
moments. From a knowledge of the bond length and angle, and the rotational 
states and potentials, the rotational isomeric state model can be used to 
compute the moments (r~Zr) and (r~v), although calculation of the fourth 
moment is tedious, 

An example [24] of the effect of chain stiffness on the radial distribution 
function can be seen in Fig. 2. In Fig. 2a, g(r) is plotted for a completely flexible, 
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Fig. 2. a Intermolecutar site-site radial distribution function g(r) for tangent hard core, freely 
jointed chains for a packing fraction r 1 = 0.5 at three different chain lengths: N = 20 (dashed), 
N = 200 (dotted), N = 2000 (solid). The persistence length, ~ = 1 = ¢L where 1 is the bond length and 
tr the hard core diameter, b Intermolecular site-site radial distribution function g(r) for tangent hard 
core, semiflexible chains [-24] for a packing fraction r I = 0.5 at two different chain lengths: N = 20 
(dashed), and N = 2000 (solid). The persistence length is ~ = 21, where 1 is the bond length which 
equals the hard core diameter (r 
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freely jointed chain (~ = t) for several chain lengths N. Figure 2b shows the same 
plot for semiflexible chains having a persistence length ~ = 2¢ and the "tangent" 
bead model is employed, i.e. ¢ = ~ = d. It can be seen that the contact value of 
g(r) increases significantly for the stiff chains. This increase in contact value and 
solvation shell structure results from the fact that the chains are expanded and 
thus pack more efficiently. Furthermore the chain length dependence of g(r) on 
local length scales is significantly reduced in the stiff chain case. The predicted 
results become virtually insensitive to increasing chain stiffness when ~/> 4¢. 

As an important caveat to the above results we note that PRISM theory 
does not deal accurately with longer range angular, or orientational correlations 
[26]. Thus, the description of strong, nematic-like local and/or global order is 
not generally possible. A generalization of the molecular integral equation 
approach to treat orientational correlations has been proposed by Chandler and 
co-workers [26] but the utility of this approach for chain molecules and 
polymers remains unexplored. 

In order to test the quantitative validity of the PRISM predictions for 
homopolymer melts, we made detailed comparisons [24, 27] with the recent 
molecular dynamics simulations of Grest and Kremer. The simulations were 
performed on chains of length ranging from N = 50 to 200 at a liquid-like 
packing fraction of 0.464. The latter number has been determined from the 
relation 11 = ~pmd3/6, where d is the effective hard core diameter discussed 
below. The repeat units interacted with a repulsive Lennard-Jones potential 
with 13e = 1.0. The simulation results are shown in Fig. 3 along with our PRISM 
predictions. The radial distribution functions of the Lennard-Jones soft core 
system were mapped onto an equivalent hard core problem using the standard 
Weeks, Chandler, Andersen (WCA) method [5, 27, 28]. If g(r) is computed using 
a freely jointed chain model it can be seen from Fig. 3 that the long correlation 
hole regime is accurately predicted, but the short range structure is under- 
estimated. 

Close examination of the radii of gyration from the molecular dynamics 
simulations reveals that the chains are not completely ideal. Overall the chains 
exhibit nearly ideal scaling behavior for which Rg oc N 1/2. Locally, however, the 
chains are found to be expanded relative to a freely jointed chain of the same 
length. This local expansion is a result of local intramolecular excluded volume 
which has not been completely screened out in the melt. Thus in order to predict 
accurately the intermolecular structure one needs to correct for local deviations 
from Flory's ideality hypothesis. We were able to make this correction by 
employing the 6~(k) directly computed from the molecular dynamics simulation. 
When the PRISM theory is then used to calculate g(r) from the actual, simulated 
63(k), excellent agreement is seen in Fig. 3 between the theory and the simulation 
[27]. This agreement suggests that the PRISM theory can predict intermolecu- 
lar structure with about the same accuracy as corresponding RISM calculations 
on small, rigid molecules. If only the radius of gyration, or mean square 
end-to-end distance, is available from simulation, an approximation can be 
made by using the semiflexible chain model in Eq. (3.5) where the persistence 
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Fig. 3. Site-averaged intermolecular radial distribution function g(r) for N = 200. The points are 
the MD simulation of Kremer and Grest [27] (some points omitted for clarity). The solid line is the 
predicted result from the PRISM theory [27] using the simulated intramolecular 6~(k). The dashed 
line is the corresponding PRISM prediction using t~(k) from a freely jointed chain model (with 
overlaps explicitly removed [14]). Rg is approximately 7.7 ~LJ for the simulated chains 

length is chosen to match the radius of gyration from simulation. Using this 
model intramolecular structure to compute g(r) also led to excellent agreement 
with the molecular dynamics simulations [24]. 

As the polymer fluid density decreases the agreement between PRISM and 
simulations becomes quantitatively poorer, even if the simulated &(k) is used in 
the PRISM calculation [29, 30]. Such a reduction of quantitative accuracy of 
the RISM approach also occurs for small, rigid molecule fluids and is a well- 
understood and documented trend [6]. 

3.3 Rotational Isomeric State Chains 

The coarse grained models we have considered thus far are valuable for examin- 
ing qualitative trends. However, in order to make comparisons directly with 
experimental data, more local structural details presumably need to be taken 
into account in the calculation of tb(k). A realistic way of incorporating mono- 
mer structure is through the rotational isomeric state approximation, success- 
fully employed 1-16] by Flory and others to describe isolated polymer chains in 
a theta solvent. In this description the continuous rotational potentials are 
replaced by discrete rotational states corresponding to the lowest vibrational 
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state in the potential wells. Short range excluded volume resulting from rota- 
tional correlations between adjacent bonds (pentane effect) is routinely incorp- 
orated into the calculations. Lower order moments of the end-to-end distance 
can be computed for this model but the complete distribution function necessary 
for determining &(k) cannot be explicitly obtained. An expansion of re(r) in 
terms of the moments of the distribution is possible, but unfortunately the 
convergence is very slow [16]. 

An alternative approach is to generate g0(k) through a single chain, Monte 
Carlo simulation by evaluating the average 

1 ( ~ s i n (k r~ ) ;  (3.7) 
g o ( k ) = , ,  ~,v=l kr~,¢ / "  

An example of such a simulation [31] for a polyethylene chain of 1001 repeat 
units is shown as a Kratky plot in Fig. 4. This result for a single chain could then 
be introduced into Eq. (3.10) to compute the interchain packing from the 
PRISM theory. 

A convenient and quite accurate alternative to computer simulation has 
been developed by McCoy et al. [31]. Here &(k) is computed as an approxima- 
tion by including the structural detail only on short length scales. This is 
accomplished by rewriting go(k) in the form 

go(k)= [ ~ go~(k)+ ~ go~l~(k)]. (3.8) 
1~-131~<5 1~-131 >5 

The first term for I ~ -- 131 ~< 5 is evaluated by direct enumeration of rotational 
isomeric states, thereby including the pentane effect (longer range enumerations 

4 
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Fig. 4. A Kratky plot for a 1001 site 
rotational isomeric state polyethylene 
chain. The circles are from a Monte 
Carlo simulation [31] and the curve is 
the corresponding result using the ap- 
proximate procedure described in the 
text. L is the carbon-carbon bond length 
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are also feasibleL The long range contribution for lot - I ] l  > 5 is approximated 
by "splicing" on the Koyama distribution for a semiflexible chain [24, 25], 
where the second and fourth moments (r~v) and (ra*v) are adjusted for each 
10t - 71 to match the corresponding moments from a rotational isomeric state 
computation. This approximate calculation is also shown in Fig. 4. The stan- 
dard alkane rotational isomeric state parameters were used in both the Monte 
Carlo and the approximate calculation (bond length g = 1.54 A, bond angles 
0 = 112 °, gauche states at qb = + 120 °, with energy of 500 cal/mol relative to 
trans, and 2000 cal/mol for the g÷g- state) [16]. It is interesting to note that the 
approximate procedure yields a well defined intermediate scaling regime in- 
dicated by the plateau on the Kratky plot; no corresponding intermediate 
scaling regime is found for the Monte Carlo calculation. This issue and its 
experimental and theoretical implications are discussed in depth by McCoy and 
co-workers [31]. 

Honnell et al. computed [32, 33] the intermolecular packing correlations for 
a polyethylene melt (N = 6429) at 430 K from the PRISM theory using the 
above approximate procedure. The results for the structure factor are shown in 
Fig. 5. The static structure factor is defined as 

S(k) = fb(k) + pmh(k) (3.9) 

1.5 

0 . 5  

<~t3 

~0.5 
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Fig. 5. Structure factor S(k) for polyethylene melt (N = 6429) as a function of wavevector k at 
T = 430 K. The points are experimental results 1-32, 33] of Narten and Habenschuss from X-ray 
scattering (the k ~ 0 data is inaccurate due to sample preparation related scattering). The solid curve 
is the PRISM theory with the hard core diameter d = 3.90 .~. Use of a value of d = 3.7 A results in 
roughly a 10% underestimate of the intensity of the amorphous halo feature. Disagreement between 
experiment and theory at large k is eliminated if thermal broadening, due to vibrational and 
torsional oscillations, is taken into account [33, 34] 
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and represents the Fourier transform of the total density fluctuation correlation 
function. The methylene groups along the chain were represented by overlap- 
ping hard sphere sites of diameter d. Also shown in this figure is the structure 
factor from experimental X-ray scattering measurements 1-32, 33] on the same 
polyethylene melt by Narten and Habenschuss. The hard core diameter d, 
adjusted in the PRISM theory to match the hei.ght of the first peak in the 
experimental S(k) curve, yielded a value of 3.90 A. This is a very reasonable 
value [32] based on crystalline-packing-based geometrical estimates for the 
volume of a CH2 unit. It can be seen from Fig. 5 that the agreement between the 
PRISM theory and X-ray scattering experiment is quite satisfactory. Analysis of 
the intramolecular and intermolecular contributions to the structure factor in 
Eq. (3.9) indicates that for k > 6 ~.- 1, S(k) is almost entirely intramolecular in 
origin. The contributions to S(k) for k < 6 ~,-1 are due to both intra- and 
intermolecular correlations. It is important to mention that good agreement 
with experiment was found even though we used hard core interactions between 
sites, and did not include attractions. This is not surprising since it is well known 
[5, 6] that the intermolecular radial distribution function and wide angle diffrac- 
tion pattern are primarily controlled by repulsive interactions at high density. 
On the other hand, S(k = 0) is a thermodynamic property which is very sensitive 
to attractive interactions, and is generally not as accurately predicted by the 
RISM approach. Systematic PRISM calculations for the atkane series have also 
been carried out by Honnell et al. and compared with X-ray scattering measure- 
ments [34]. Agreement between theory and experiment is comparable to the 
polyethylene case. 
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Fig. 6. Intermolecular radial distribution function g(r) computed for polyethylene (d = 3.90 ~, 
T = 430 K, N = 6429) using PRISM theory, prod 3 = 2.2 (solid curve), 2.0 (short dashed), 1.8 (dash- 
dot). At one atmosphere-pressure the experimental value of p~,d 3 is ~ 2.0 
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Figure 6 shows our PRISM theory predictions for g(r) of polyethylene at 
430 K and three different densities using d = 3.90 ,A for the hard core diameter. 
Note that g(r) for polyethylene is somewhat more complex than in the tangent 
hard sphere calculations in Figs. 2 due to the multiplicity of length scales (i.e. 
d :~ ~ ~- ~). The first peak, which occurs at the hard core diameter for tangent 
hard spheres, is shifted out to d + ~. The cusps that occur in g(r) arise because of 
the hard sphere and constant bond length constraints [6]. The correlation hole 
regime is also clearly evident beyond roughly 15-20 ~, in which g(r) approaches 
unity on a scale of the radius of gyration (Rg ,-~ 130 ~,) in a power law manner. 

4 Equation-of-State 

Based on comparison with Monte Carlo simulations in Fig. 3 and X-ray 
scattering experiments in Fig. 5, it would seem that PRISM theory is accurate 
for the intermolecular structure in polymer melts. Given the site-site radial 
distribution function g(r) it should, in principle, be possible to deduce the 
equation-of-state and other thermodynamic properties. Unlike g(r), which is 
sensitive only to the repulsive branch of the potential, one expects that the 
equation-of-state will also be a function of the range and magnitude of the 
attractions. The fact that g(r) is primarily controlled by repulsions at high 
density suggests that the effect of attractions on the pressure can be treated by 
perturbation theory [5, 6, 28, 35] about a hard core reference system. Such an 
expansion should be particularly valid at high temperatures or small lie, where 
e is the attractive interaction energy scale of, for example, a Lennard-Jones 
potential, 

v(r) = 4e [ ( •L j / r )  12 _ ( t~Lj / r )6]  . (4.1) 

The effective hard core is optimally chosen such that a selected property of the 
continuous repulsive force fluid is accurately reproduced by the hard core 
reference system [5, 6, 28, 35]. 

In the Barker-Henderson [5, 35] perturbation theory the potential in Eq. 
(4.1) is divided into a repulsive branch vo(r) and an attractive branch va(r) 

vo(r) -- v(r); r ~< oL~ 

= 0; r > OLj (4.2) 
va(r) = 0; r ~ O'LJ 

=v(r)  r > o L j .  

The optimum hard core diameter is then given by 

d = ~ {1 - exp[ - 13vo(r)]}dr. (4.3) 
o 
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Similarly in the perturbation theory of Weeks, Chandler and Andersen I-5, 28] 
(WCA) the Lennard-Jones potential is decomposed according to 

v0(r) = v(r) + ~, r ~< 21/60"Lj 

-- 0, r > 2t/6GLj 
v.(r) = - ~;, r ~ 21/6(yLj  (4.4) 

= v ( r ) ,  r > 21 /6OLj  . 

Here the optimum hard core diameter d is chosen to satisfy 

d 

S r2 e x p [ -  [Svo(r)]Co(r; d)dr + ~ r2 {1 - e x p [ -  ~vo(r)] }go(r;d)dr = 0 (4.5) 
o d 

where Co and go are the direct correlation function and radial distribution 
function, respectively, for the hard core reference system subject to the PY 
closure in Eq. (2.7). 

Given a knowledge of go(r), the pressure of the optimized hard core polymer 
liquid can be computed in several ways. The simplest route is merely to integrate 
the isothermal compressibility [5, 6] 1¢T which is related to the zero wavelength 
structure factor pmkBT• r = S(0): 

~P 
_ 1 ~- ~_ 1 (0, pm)dp~,. (4.6) 

Pm Pm 0 

~(0) involves all length scales and presumably is relatively more sensitive to the 
long range part of go(r). Another route to the pressure is through the Helmholtz 
free energy A. The free energy of a hard core system can be computed according 
to a "charging formula" given by [6] 

A Ao 
- 2npZd3kaTi gO')(~.d+)~.Zd~. (4.7) 

V o 

where the hard core diameter is gradually "turned on" as ~, varies from 0 to 1. In 
Eq. (4.7), gt~)(kd +) is the contact value of g(r) for a liquid comprised of 
interaction sites of diameter Xd and Ao is the free energy of an ideal gas. The 
pressure is then obtained from Eq. (4.7) by numerical differentiation with respect 
to volume. In the case of a simple hard sphere fluid, Eq. (4.7) can be shown [6] to 
reduce to the well known virial formula. For molecular fluids, however, one 
must explicitly carry out the integration over ~.. Since the integrated quantity in 
Eq. (4.7) is the site-site radial distribution function at contact, the free energy 
route to the pressure is sensitive to the very short range character of the 
intermolecular packing. A third route to the pressure makes use of gw(r), the 
wall-fluid distribution function 

[3P = gw(0) • (4.8) 
Pm 
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The quantity Ping,(0) is the density of molecular sites in contact with a hard wall. 
This method was employed recently by Dickman and Hall [36] to determine 
pressure from Monte Carlo simulations. Yethiraj and Hall [37! demonstrated 
that g,(r)  can be approximately computed from PRISM theory by considering 
a mixture of polymer chains and spherical particles in the limit of zero concen- 
tration of particles with diameters approaching infinity. 

If go(r), g~Z)(r), and gw(r) are known exactly, then all three routes should yield 
the same pressure. Since liquid state integral equation theories are approximate 
descriptions of pair correlation functions, and not of the effective Hamiltonian 
or partition function, it is well known that they are thermodynamically incon- 
sistent [5]. This is understandable since each route is sensitive to different parts 
of the radial distribution function. In particular, g(r) in polymer fluids is 
controlled at large distance by the correlation hole which scales with the radius 

of gyration or x/-N. Thus it is perhaps surprising that the hard core equation- 
of-state computed from PRISM theory was recently found by Yethiraj et al. 
[38, 39] to become more thermodynamically inconsistent as N increases from 
the diatomic to polyethylene. The uncertainty in the pressure is manifested in 
Fig. 7 where the insert shows the equation-of-state of polyethylene computed 
1-38] from PRISM theory for hard core interactions between sites. In this 
calculation, the hard core diameter d was fixed at 3.90 A in order to maintain 
agreement with the experimental structure factor in Fig. 5. 
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Fig. 7. Equation-of-state for polyethylene (d = 3.90 ~,, T = 430 K, N = 6429). The solid curve was 
computed from the GFD hard sphere reference system [38] with the effect of attractions computed 
by Barker-Henderson perturbation theory [35] using g(r) obtained from PRISM theory. The points 
are experimental PVT data of Otabisi and Simha [41]. The inset shows the hard sphere equation- 
of-state computed by various routes: free energy (upper solid), compressibility (lower solid), wall 
(dashed) GFD (long-dash-dot)• 
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It is difficult to assess the accuracy of the pressure obtained from the three 
routes since computer simulations of polyethylene hard core chains have not yet 
been performed at high density. In Fig. 7 we have also plotted the pressure 
predicted from a continuous space mean field equation-of-state, the generalized 
Flory dimer model [40] (GFD), appropriately generalized by Yethiraj et al. [38] 
to treat the overlapping site rotational isomeric state model. Prior detailed 
comparisons between the GFD predictions and off-lattice computer simulations 
suggest this equation-of-state is accurate for long chains at high density. It can 
be seen from the inset in Fig. 7 that the GFD equation-of-state is bounded by 
the compressibility and free energy routes. The walt route is reasonably close to 
the GFD result, but the isothermal compressibility is predicted to be too high. 

The pressure of a realistic polymer liquid interacting with Lennard-Jones 
potential can now be approximated from the hard core reference system using 
thermodynamic perturbation theory: 

A _-__ Aus + ½ PZ~S go(r)va(r)dr. (4.9) 

In Eq. (4.9) Am is the Helmholtz free energy of the hard core reference system 
with the optimized hard core diameter. The pressure of the full system can be 
found from Eq. (4.9) by differentiation with respect to volume. This pressure will 
be a function of the two Lennard-Jones parameters Crej and e. 

In the case of polyethylene, we observed in the previous section that to be 
consistent with the ex, perimental structure factor the hard core diameter should 
be fixed at d = 3.90 A at 430 K. With this added constraint we therefore have 
only a single adjustable parameter since d is related to 6eJ and e through the 
Barker-Henderson relation, Eq. (4.3) or WCA equation, Eq. (4.5). 

The equation-of-state of polyethylene at 430 K has been calculated [38, 39] 
using the above procedure with the three routes to the hard core reference liquid 
in Eqs. (4.6)-(4.8). Of these three reference systems, the "wall route" in Eq. (4.7) 
gave the best agreement with experimental PVT data. Better agreement with 
experiment could be obtained, however, by using the appropriately modified 
G F D  approach [38] for the pressure of the hard core reference system. The 
pressure of the system with the full Lennard-Jones potential was then computed 
from Eq. (4.9) with the radial distribution function go(r) obtained from PRISM 
theory. The results of this hybrid calculation for polyethylene are shown in Fig. 
7 along with the experimental PVT data of Olabisi and Simha [41]. Using the 
Barker-Henderson relation in Eq. (4.3) to maintain the constraint ofd  = 3.90 b,, 
the values of CrLj = 4.36 ~, and e/kB = 38.7 K gave good agreement with the 
experimental PVT data as can be seen in Fig. 7. This particular set of Lennard- 
Jones parameters is consistent with the recent Monte Carlo study of Lopez- 
Rodriguez and coworkers [42] on the second virial coefficients of hydrocarbon 
fluids. 

The above considerations suggest that the hard core radial distribution 
function obtained for polyethylene was sufficiently accurate on short length 
scales to predict the perturbative contribution (Eq. (4.9)) to the attractive branch 
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of the potential. The difficulty lies in computing the pressure of the hard core 
reference system. It is clear from the inset in Fig. 7 that there is a large 
uncertainty in the hard core pressure due to the thermodynamic inconsistency 
among the different routes. It is likely that this problem can be improved by 
using methods developed [5] for obtaining thermodynamically consistent re- 
suits for atomic and small molecule fluids. Following these ideas, one adds 
a nonzero tail of some assumed functional form to the direct correlation 
function outside the hard core. The parameters in this function are then chosen 
in such a way as to force thermodynamic consistency constraints 1-43]. 

5 Polymer Crystallization 

A number of years ago Flory developed [44] a mean field incompressible lattice 
model to describe the equilibrium freezing of polymers. Although the model has 
the virtue of simplicity, it suffers from at least three well known deficiencies. (1) It 
is an incompressible model that does not account for the density change 
associated with the first order freezing transition. This density change is not 
negligible for many polymers, for example, polyethylene exhibits approximately 
a 30% densification on crystallization from the melt. (2) Attractive intermolecu- 
lar forces are ignored. (3) The Flory approach is a mean field theory that neglects 
intra- and intermolecular correlations. Nagle et al. [45] have argued that such 
approximations, plus the unrealistic nature of packing on a lattice, seriously 
affect the validity of the Flory crystallization theory. 

More recently, density functional theory has been successfully applied to the 
freezing of monatomic [46, 47] and polyatomic [48-51] liquids. In a common 
application of density functional theory to freezing, the excess free energy of the 
solid is expanded about the structure of the liquid at density PL. The free energy 
functional is customarily truncated at second order in the order parameter 
Ap(r) = p(r) - PL where p(r) is the nonuniform, single particle density of the 
solid phase. It has been found that the errors introduced from the higher order 
terms can be compensated for, to some degree, by expanding the free energy 
difference between the system of interest and some ideal system which can be 
solved exactly. In this manner the higher order terms in the expansion of the 
ideal and true system tend to cancel, thereby providing a more accurate density 
functional. 

McCoy and coworkers [52] have generalized this density functional scheme 
to describe the crystallization of polymers. In this approach the structure of the 
liquid is provided by PRISM theory. Three conditions are necessary in order to 
ensure equilibrium between the solid and liquid phases. (1) temperature equality, 
(2) equality of the chemical potentials I~, and (3) pressure equality. Because of 
these conditions it is more convenient to work with the Grand potential 
W rather than the more conventional Helmholtz free energy A. W is related to 
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A through a Legendre transform 

W = A - ~ S d~',~(~)p~(~) (5.1) 
i 

where pi(r) is the density of sites of type i. In density functional theory it is 
envisaged that an external field ~ ( f )  acts on sites of type i to give the non- 
uniform density profile Piff). The Grand potential difference AW between the 
solid and liquid phase is defined as 

AW = W[T, V, g, p~(?)] - W[T, V, g, PL] (5.2) 

where ~t is the chemical potential. Introducing an ideal system denoted by 
superscripts "o" and using PRISM theory for the structure of the liquid phase, 
the Grand potential functional AW can be written as [52] 

AW = ~ # d~'[~L,i -- ~dr) ]  piff) + ~ ~d~[~°(r) - ~ L i ]  p~(r~ 
i i 

1 ~ S d~Ap,(r) - 1 Z N . 2 i,j S~ dr~dFCiJ(~ - F)Ap~(~)Apj(F) 

+ " "  (5.3) 

where ~i(r) and ~°(r) refer to the position dependent external fields for the real 
and ideal solid, and OL,~ and q/Li are the constant external fields for the uniform 
real and ideal liquid phases. Cij(r  ) is the direct correlation function between sites 
i and j and is to be determined from PRISM theory. 

A convenient ideal system for the liquid phase is a collection of chains each 
of which is described by the rotational isomeric state model [16]. For such 
a system we can write the external field O[,i as 

( 1 ) ~  i (N--  I) In;~ (5.4a) ~ [ , i  = r~l In ~ PL, i N 

where ~, is determined 1-16] from the rotational isomeric state theory as 

~, = ½ {1 + s(1 + w) + ~f[1 - s(1 + w)] 2 + 8s} (5.4b) 

and s and w are simply related to the gauche energy Eg and gauche+gauche - 
energy Eg + g_: 

s = exp( - Eg/RT); w = exp( - Eg+g_/RT). (5.4c) 

For simplicity, torsional and other vibrations of the ideal crystalline solid are 
ignored, and it is assumed that the chains are in the all-trans configuration. In 
this case the ideal external field of the solid has the form 
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For this ideal system, Eq. (5.3) can be simplified for the homopolymer case of  
identical sites to give [52] 

AW 
= J" d~ In k p(r-') -- ½ ~'~ d~d~'C(l~ - ~'I)Ap(~)Ap(~') • (5.6) 

pLV 

One proceeds numerically to minimize AW with respect to the liquid density 
PL and a parametrized solid phase density profile p(~). PRISM theory is used to 
compute the site-site direct correlation function C(r). This procedure is repeated 
with different assumed solid profiles until one finds the profile such that 
AWmi. = 0. It can be demonstrated that this profile corresponds to the coexist- 
ence curve where the three conditions for equilibrium between liquid and solid 
are satisfied. Such a program has been carried out to describe the freezing of 
polyethylene (PE) and polytetrafluoroethylene (PTFE) melts [52] and the 
results are depicted in Fig. 8. In this work the orthorhombic crystal was assumed 
to be the most stable ordered phase. 

In Fig. 8 the predicted temperature-density behavior of coexisting liquid and 
solid phases are shown along with experimental data for PE [53] and PTFE 
[54], Based on the experimental equation-of-state [41] the melting temperature 
Tm for PE is predicted to be 427 K, in good agreement with experiment 
(415-420 K). Excellent agreement is also found for the liquid density at the 
coexistence point and some of the lattice parameters [52]. For  PTFE, 
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Tm= 608 K is predicted whereas the experimental values are given by 
607_ 10 K. Heuristic arguments suggest that PTFE should have a larger 
freezing temperature than PE because of the increased chain stiffness in PTFE. 
Following the Flory theory [44] of melting would imply that Tm/Eg should be 
approximately constant. Such reasoning would lead to the conclusion [52] that 
for PTFE, T m ~ 1000 K, assuming that PE has a melting temperature of 420 K. 
Thus it appears that freezing of polymers is more subtle than a simple chain 
stiffness argument and presumably involves other factors such as chain packing 
and local chemical structure. It can also be observed from Fig. 8 that the 
predicted volume changes on crystallization from density functional theory are 
larger than observed experimentally. This trend is to be expected since it was 
assumed for calculation purposes that torsional oscillations, which would re- 
duce the solid density, were not present. The removal of this simplification is 
certainly feasible and represents an important direction for future research. 

From a more general perspective, the polymer density functional theory 
predicts that the location, or even existence, of a melting line is very sensitive to 
the Angstrom level chemical structure, volume change and attractive forces 
[52]. Neglect of any of these features can destroy the stability of the orthorhom- 
bic crystalline phase. For example, Gaussian and freely rotating chain models 
were found never to crystallize due to their excessive conformational entropy 
content in the disordered phase. Such behavior is consistent with the arguments 
of Nagle et al. [45], and the general understanding of a strongly first order phase 
transition as a highly nonuniversal process sensitive to many competing factors. 

6 Polymer Blends: General Aspects 

The structure and properties of phase-separating polymer alloys is a subject of 
considerable scientific and technological interest 1-55]. With the advent of the 
small angle neutron scattering (SANS) technique much information concerning 
concentration fluctuations in polymer alloys has been accumulated, and is 
commonly expressed in terms of an empirical "apparent chi-parameter", ;~s, 
which contains all non-ideal mixing information [56]. According to classical 
mean field Flory-Huggins ideas [1], the chi-parameter is a purely energetic 
quantity which is inversely proportional to temperature and completely deter- 
mined by the local chemical interactions between monomers embedded in 
a structureless fluid. In practice, chi-parameters and phase diagrams of real 
polymer alloy materials are far more complex and exhibit a host of"non-mean 
field" features of both enthalpic and entropic origins. For example, Xs often 
depends strongly on composition, local chain stiffness, pressure, global chain 
architecture, molecular weight, chain branching, and possibly wavevector of 
observation [57, 58]. The ability to understand the phase behavior of existing 
polymer mixtures, and ultimately to predict and control the miscibility of novel 
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alloys, requires new theoretical methods that can account for the multitude of 
correlation effects. 

The PRISM integral equation theory has been generalized for multicompo- 
nent polymer mixtures by Curro and Schweizer [23, 59-63]. Much formally 
exact analysis can be carried out based simply on the structure of the PRISM 
matrix integral equations without specifying a particular closure approximation 
[61]. In this section these aspects are summarized. 

6.1 P R I S M  Formalism 

A standard interaction site model of homopolymers is adopted where the 
pairwise decomposable site-site intermolecular potentials consist of a hard core 
repulsion plus a more slowly spatially varying tail. 

UMU.(r) = u ~ , ( r )  = oo, r < dMM' 

= VMM,(r), r >~ dMM, . (6.1) 

Continuous repulsive potentials can easily be treated using the WCA per- 
turbation approach [5, 6, 28] (see Eq. (4.5)) to map the problem of interest onto 
an effective hard core model. Generalization to the case of heteropolymers 
composed of more than one type of site is also straightforward. The PRISM 
matrix equations for the homopolymer mixture is given in Fourier-transform 
space by [59] 

~IMM'(k) = ~M(k) ICMM'(k)6~M'(k) d- M"E (~MM"(k)pM"~IM"M'(k) 1 (6.2) 

where chain-end effects have been averaged over in the usual manner [13]. Here, 
PM is the site number density of species M, hMM'(r) = gMM'(r) -- 1, where gMM'(r) is 
the chain-averaged intermolecular pair correlation (or radial distribution) func- 
tion between interaction sites of species M and M', CMM.(r) is the corresponding 
intermolecular site-site direct correlation function, and OhM(k) is the intramolecu- 
lar structure factor of species M. 

The partial density-density collective structure factors are given by 

SMM,(k) = pM(~M(k)SM, M • -t- pMPM,~IMM,(k ) (6.3) 

We concentrate here on a binary homopolymer blend under constant 
volume conditions; generalizations to ternary or more complex mixtures is 
straightforward. Substituting the PRISM Eq. (6.2) in Eq. (6.3) yields 

~AA(k) = Pn&A(k)[1 -- pBt~B(k)(~BB(k)]/A(k) (6.4a) 

~Ba(k) = pBtba(k)[1 -- pAt~A(k)~AA(k)]/A(k) (6.4b) 

~An(k) = pApa&A(k)&B(k)(~AB(k)/A(k) (6.4C) 
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A(k) = I - pAd~A(k)CAA(k)- patbB(k)(~RB(k)+ pApa6~A(k)d~8(k) 

x [¢AA(k)¢..(k) -- (~.(k)]. (6.5) 

The direct correlation functions contain the fundamental microscopic in- 
formation regarding interactions and correlations in blends. In general there are 
three independent functions for a binary homopolymer mixture, which enter the 
scattering functions in a nonlinear fashion. On the relatively long length scales 
relevant to small angle scattering measurements the approximation t~MM'(k) 
(2MM'(0) = CMM' is appropriate. The spinodal condition is given by the simultan- 
eous divergence at k = 0 of all the partial structure factors 

0 = 1 - p A N A C A A  - -  pBNBCBB + O A P B N A N B [ C A A C B B  - -  C 2 B ]  • (6.6) 

The total density fluctuations are characterized by the isothermal compress- 
ibility, ~:x, which is given by [63, 64]: 

K£ 1 = kBT ~ pMPM'gfifi'(0) 
M,M' 

where NM is the number of interaction sites comprising a molecule of species M. 
The inverse isothermal compressibility generally remains nonzero at the 
spinodal defined by Eq. (6.6), but will vanish at a liquid-gas-like transition. As 
recently emphasized in the simple liquid integral equation context [65], liquid- 
liquid phase separation is a coupled density and concentration fluctuation 
process and thus compressibility effects generally play an important role. 

6.2 Connections with IRPA and S A N S  Chi-Parameter 

The incompressible random phase approximation (IRPA) is routinely used by 
experimentalists to analyze small angle scattering data from polymer alloys. 
A common approach to empirically defining an apparent SANS chi-parameter, 
;~s, is based on the total scattering intensity extrapolated to k = 0 as [56, 57]: 

bA bB ~2 
k N  VAA ~ ]  1 1 

+ 2 V~" (6.8) 
SE(0)- ~, bMbM'~MM'(0) (1)ANAVA ~aNBVa 

M,M' 

Here, d~M = PM VM/rl is the volume fraction of sites of type M, VM is the volume 
of a site of type M, V0 is a "reference volume", and bM is the total neutron 
scattering length of a site of species M. Note that this chi-parameter will 
generally diverge as d~M ~ 0 due to the unrealistic incompressibility assumption. 
The SANS chi is, by construction, equivalent to the incompressible Flory value 
at the spinodal. 
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Substitution of Eq. (6.4) into Eq. (6.8) yields a general expression for the 
SANS chi-parameter which can be employed in PRISM studies to make direct 
contact with experiments on specific blends. Such an approach to comparing 
theory and experiment has been emphasized by Dudowicz, Freed, and co- 
workers [2] as the most appropriate procedure. The resultant empirical chi- 
parameter contains not only microscopic information concerning intermolecu- 
lar interactions in blends (i.e. some combination of the independent CMM,), but 
also reflects all the errors made by the neglect of compressibility effects which 
depend on NM, T, d~, etc. [2]. 

The general, wavevector-dependent IRPA scattering function for pure con- 
centration fluctuation scattering is given by [57, 61] 

S~- *(k) = r-  1/2 [dpAf~A(k) ] - 1 + rl/2 [d~R6~B(k)]- * - 2~s(k) (6.9) 

where r = VA/Va and r I = pAVA "31- pBVB is the total site packing fraction. The 
corresponding IRPA spinodal condition is 

2Xs -- r -  1/2(NAdPA)- 1 + rl/2(NB(1 _ dpA) )- 1 . (6.10) 

Note that in the hypothetical incompressible limit the form of both the 
scattering functions and spinodal condition are much simpler than the rigorous 
expressions of Eqs. (6.4)-(6.6). Although the IRPA can usually be fitted to low 
wavevector experimental scattering data, and an "apparent chi-parameter" 
thereby extracted, the literal use of the IRPA for the calculation of thermodyn- 
amic properties and phase stability is generally expected to represent a 
poor approximation due to the importance of density-fluctuation-induced 
"compressibility" or "equation-of-state" effects [2, 65, 66]. The latter are non- 
universal, and are expected to increase in importance as the structural 
and/or intermolecular potential asymmetries characteristic of the blend 
molecules increase. 

The conditions required for accuracy of an incompressibility assumption at 
the level of the scattering functions and spinodal condition are easily derived 
within the PRISM formalism [67]. From Eq. (6.7) a small isothermal compress- 
ibility implies that - pt~MM,(0) >> l, which is generally true for any dense fluid. If 
the related wavevector-dependent condition 

- pM&u(k)~uu(k) >> 1 (6.11) 

applies then considerable simplification of Eqs. (6.4) occurs [67]: 

A(k) 
A~ (k) 

- -  PAPB~A(k) ~B(k)(~BB(k ) 

~_ (PAPA(k))- 1 + (0B~B(k))- 1 (~AA(k) 
- 

- ( ~  (k) {¢AA(k)~BB(k) -- C~.~(k)) 

C~,,~(k) C ~ ( k )  
Sffa~(k) -~ ~ SAA~(k) SA~(k) ~ LAB(k) SAA~(k) " (6.12) 
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Equation (6.11) can be viewed as an "effective incompressibility condition", 
which is expected to be accurate on long length scales for dense, high polymer 
blends. However, the interrelationship between the three partial structure fac- 
tors is not precisely given by the literal incompressibility relations: 
SAA(k) = SBB(k) = -gAB(k), and the form of SAA(k) is not the same as the 
IRPA-like expression of Eqs. (6.9). Most significantly, the analog of the effective 
chi-parameter is not of the simple linear arithmetic difference form (see 
Eqs. (6.16) below), but is fundamentally nonlinear in the direct correlation 
functions. These differences between the "effective" and "literal" incompressible 
approximations are generally very important [67]. Similar general conclusions 
have been drawn by Freed and co-workers [2]. 

An alternative approach to extracting an apparent chi-parameter from 
SANS data is to fit the scattering curves to an IRPA form over the entire 
measured wavevector range. Using Eqs. (6.12) one obtains for the scattering 
profile in the "effectively incompressible" approximation: 

So(k)  - p -1 ~, bMbM,~MM,(k) = F A S t ( k )  (6.13a) 
M,M' 

where the "amplitude" factor, FA, and dimensionless concentration fluctuation 
scattering function, ~c(k), are given by 

FA =" bA ~/~--~ + bg ~/ CBB 2bAbB 
CAB 

(6.13b) 

- -  CAACBB -- C2AB ~£-1(k ) _  P //C.B + P ~ p (6.13C) 
PAPA(k) ~ CAA PBrhB(k) "k/ C . .  

Here, p is the total site number density, and the small angle scattering approx- 
imation (~MM'(k) ~ (~MM'(0) = CMM' has been employed. The wavevector depend- 
ence is contained in Sc(k) which is of the same general mathematical form as the 
empirical IRPA expression. To make direct contact with the experimental data 
analysis Sc(k) can be equated to the IRPA form of Eq. (6.9). The result of this 
procedure is an explicit expression for the apparent SANS chi-parameter. For 
the simpler case of equal A and B site volumes (generalizations are straightfor- 
ward) one obtains [67]: 

P 2s(k) = , - - - - - - - -  (CAACBB - -  C2B)  
2 N/CAACBB 

1 -  CB~B/CAA 1 - C,,/-C~AA/C,B 
-t + (6.14) 

2(~A&A(k) 2(1 -- qbA)t~B(k) " 

Note that the apparent SANS chi-parameter can acquire a k-dependence even in 
the small angle regime via a "cross-term" between the intramolecular and 
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intermolecular correlation contributions. Thus, the wavevector dependence may 
be viewed as an "artifact" of the incompressibility approximation. It may 
be particularly important for SANS experiments on strongly structurally 
asymmetric mixtures for which the quantity I1 - CBB/CAAI is expected to be 
non-negligible. Such an "anomalous" k-dependent chi-parameter has been ex- 
perimentally observed recently by Brereton et al. [57] in a binary blend of 
polymers with significantly different aspect ratios (polystyrene and poly- 
tetramethyl carbonate). For most amorphous blends composed of relatively 
flexible chains, experimental SANS data can apparently be adequately fitted 
using the IRPA and a single, wavevector-independent chi-parameter [56-58]. 
The latter can be identified with the k = 0 limit of Eq. (6.14): 

~s(k) = ~ (CAACaa -- C2a) 
2~/CAACB~ 

l -  
+ + (6.15) 

~ANA (1 - (~A)NB 

The results of PRISM theory can be substituted in this relation to make 
contact with SANS experiments which extract an apparent chi-parameter via 
the k-dependent fitting procedure. Note, however, that in general the predictions 
of an apparent SANS chi-parameter using Eq. (6.15) will not be the same as the 
extrapolated zero angle intensity approach of Eq. (6.8). This point re-emphasizes 
the phenomenological nature of the single, effective chi-parameter approach. 

In our initial PRISM studies of polymer blends a literal connection with the 
IRPA was derived [59, 61] and utilized in model calculations of the effective 
chi-parameter [59-63]. The incompressibility assumption is fundamentally 
incompatible with the PRISM approach which naturally includes pure density, 
pure concentration, and coupled density-concentration fluctuations on all 
length scales. However, a "literal incompressibility constraint", i.e. pA(r) + pA(r) 
= p, can be enforced on the PRISM theory in a post facto manner by employ- 

ing a functional Taylor expansion of the free energy [59, 61]. This procedure 
results in a single scattering function of precisely the IRPA form of Eq. (6.9), but 
the apparent chi-parameter is a wavevector dependent correlation function 
which we denote here as ~Nc(k). In the long wavelength limit, ~lNc(k) -- ZINC and 
is given by [61] 

2ZINC = P[qbA r-1/2 + ¢Brl/2] - t  

x Jr- X(~AA(0) + rCB,(0) -- 2(~AB(0)} - (6.16) 

If the blend possesses segmental volume and degree of polymerization symmet- 
ries, i.e., r = 1 and NA = NB = N, then Eqs. (6.16) and (6.10) become particularly 
simple: 

2~INC = p[CAA + CBB -- 2CAa] (6.17) 

2XINC~(1 -- dp)N = 1 (6.18) 
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where Eq. (6.18) applies at the spinodal. Note the analogy here with Flory- 
Huggins theory. ZINC is a generalization of the incompressible mean field 
chi-parameter where the k = 0 component of the direct correlation functions 
replace the "bare" attractive tail potentials. These direct correlation functions 
contain the many body correlation information neglected by the simple mean 
field approximation. 

Most prior PRISM predictions [23, 59-63] for the effective SANS chi- 
parameter were based on the literal incompressible form of Eq. (6.16), and not 
the more experimentally appropriate relation of Eq. (6.8) or (6.15). Thus, it is 
instructive to inquire whether there are any special cases and/or well-defined 
additional approximation for which Eqs. (6.6) and (6.12) reduce to the literal 
IRPA forms. As discussed in Sect. 8 and elsewhere [61, 67, 68], the one special 
case corresponds to the theoretically much studied, but experimentally unrealiz- 
able, "symmetric polymer blend". More generally, the additional approximation 
required to recover the IRPA forms corresponds in integral equation language 
to the k = 0 statement [67]: 

CMM, ------- C o - -  ~VMM, , with - Co + oo . (6.19) 

The motivation for this approximation is that the integrated strength of the 
direct correlation functions (often viewed as "excluded volume parameters") 
consists of a purely repulsive part plus a weak attractive contribution. If the 
former is viewed as the bare singular hard core potential (i.e., a literal p ~ oo 
incompressibility approximation for the direct correlation function), then Eq. 
(6.19) is obtained. Substitution of Eq. (6.19) in Eqs. (6.12) yields the literal IRPA 
results, with an effective enthalpic chi-parameter given by the simple arithmetic 
difference Flory form of Eq. (6.17) expressed solely in terms of the "weak 
attractive" contributions [~VMM,. The new molecular closures [68-70] discussed 
in Sect. 8 do possess a mathematical structure very similar to Eq. (6.19), but with 
two crucial differences. First, the large repulsive force contributions are not 
infinite since real liquids are compressible, and second, in general they depend 
on the two interacting sites (i.e. M and M' labels) since the local interchain 
correlations are sensitive to molecular structure. Even in the hypothetical 
p ~ oo limit, the repulsive interaction contribution to CMM" is generally species- 
dependent which destroys the reduction of Eqs. (6.6) and (6.12) to the literal 
IRPA forms. 

6.3 Other General Aspects 

In this paper we focus solely on the spinodal as a measure of the phase behavior. 
The corresponding binodal can be derived by (numerically) integrating the 
compressibility relations. Alternatively, the phase behavior could be deduced 
directly via the so-called "free-energy", or charging parameter route discussed in 
Sect. 4. Implementation of the "free energy" route is generally much more 
demanding computationally and has only very recently [70b] been numerically 
studied within the blend PRISM formalism. Constant volume, not constant 
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pressure, conditions are assumed. The latter requires a theory for the equation- 
of-state of blends which has not yet been fully developed. This restriction 
motivates consideration primarily of upper critical solution temperature 
(UCST) phase transitions, although some PRISM work on the lower critical 
solution temperature (LCST) phenomenon has recently been done [67, 71]. 

Specific results require two additional pieces of information. First, the single 
chain polymer structure as contained in the species-dependent structure factors 
must be known. In principle, these correlation functions should be self-consis- 
tently computed along with the intermolecular pair correlations. This most 
rigorous approach is now feasible and is briefly discussed in Sect. 10. However, 
all published PRISM work on blends has employed the "Flory ideality ansatz" 
discussed in Sect. 2, i.e., the required 6~(k) functions are presumed given and 
effectively independent of blend composition and proximity to the spinodal. To 
date, published analytical and numerical work for alloys has employed coarse- 
grained models such as the Gaussian, freely-jointed, and semi-flexible chain. 
Second, a closure approximation is required which relates the intermolecutar 
pair and direct site-site correlation functions outside the hard core diameter. 
Both traditional "atomic" and novel "molecular" closures have been studied. 

7 Athermal Blends 

The model "athermal blend" is defined [59, 62] as the hypothetical limit of 
vanishing interchain attractive potentials relative to the thermal energy, i.e., 
~VMM,(r) = 0. For this situation the atomic site-site Percus-Yevick closure ap- 
proximation of Eq. (2.7) is employed where the subscripts now refer to the 
species type. The constant volume athermal blend is of theoretical interest since 
it isolates the purely entropic packing effects. However, as emphasized by 
several workers [2, 62, 63, 67], the athermal reference blend is not an adequate 
model of any real phase separating system. Its primary importance is as 
a "reference" system for the theories of thermally-induced phase separation 
discussed in Sect. 8. 

A number of numerical PRISM studies [59, 61, 62] of model athermal 
blends have performed at various levels of single chain description. These 
mixtures are characterized by structural asymmetries between the two compo- 
nents of either a local nature (size and/or stiffness differences) or global nature 
(chain length difference, blend of rings and chains). When Gaussian models are 
employed, numerical studies to date show that these blends are completely 
miscible in the sense that no spinodal instability is found. However, for dense 
mixtures of rods and coils [7I] and semiflexible chains [72] very recent work 
has found entropy-driven phase separation. For very stiff polymers, the constant 
volume assumption, and the neglect by RISM of significant orientational 
correlations and nematic phase formation [26], may make constant volume 
PRISM less appropriate. 
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Typica l  results [62] for the in te rmolecular  concent ra t ion  corre la t ions  of  
a m o r p h o u s  Gauss i an  chain a thermal  blends are shown in Fig. 9. The  ampl i tude  
of  the s t ructura l  f luctuat ions is relatively small. The stiffness/size asymmetr ic  
mixture  exhibi ts  p r imar i ly  local devia t ions  from r a n d o m  mixing which decay to 
zero  mono ton i ca l l y  with increasing spat ia l  separat ion.  On  the o ther  hand,  the 
b i m o d a l  cha in  length blend d isp lays  n o n m o n o t o n i c  f luctuat ions which change  
sign and  peak  on a length scale character is t ic  of  macromolecule  size. The  
ampl i tude  of the s t ructura l  f luctuat ions in a thermal  semiflexible po lymer  mix- 
tures increases significantly as the magni tude  of the aspect  ra t io  and /o r  the 
difference in persistence lengths of  the componen t s  increase I-71, 72], and phase 
separa t ion  can eventual ly  occur.  

The  incompress ib le  ch i -pa ramete r  defined in Eq. (6.16) has also been exten- 
sively studied. M a n y  of the numer ica l  results for site volume and /o r  stat ist ical  
segment  length asymmetr ic  a thermal  Gauss i an  chain blends are adequate ly  
r ep roduced  at  a qual i ta t ive  level by the analyt ic  th read  model  discussed in Sect. 
2. F o r  an a the rma l  stiffness blend of  very long Gauss i an  threads  the k = 0 direct  
cor re la t ion  funct ions are  [23, 62]: 
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Fig. 9. Intermolecular fluctuation correlation function, Ag(r) = gAA(r) + gBB(r) -- 2gAB(r), as a func- 
tion of interchain site separation normalized by the statistical segment length of the A-chain 
pA(which equals the site hard core diameter). This function is one measure of the length-scale- 
dependent non-random packing in the mixture. A Gaussian chain model is employed and the 
volume fraction of A and B chain segments are equal [62]. For completely random mixing Ag(r) = 0. 
The dashed  curve is for a stiffness/size asymmetric case of~/= ~a/6A = 1.2 with N = 2000 and total 
packing fraction of 0.45. The solid curve is for the bimodat chain length blend with N A = 2000, 
NB = 200 and a total packing fraction of 0.5. The arrow denotes the radius-of-gyration of a 2000 unit 
ideal Gaussian chain 
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~2 
(7i-3/"~(0) __ pO3l-(l)A + y2(1 - qbA) ] 

A "~AA 108 

= -- ]-~ qF3EffA + "/2(1 -- *a)] (7.2) 

where ~, = O ' B / a  A is the stiffness (or statistical segment length) asymmetry ratio, 
F = aA/d is an aspect ratio, and the superscript "0" emphasizes the results are 
for athermal blend. Substituting these expressions in Eq. (6.16) yields a negative 
incompressible chi-parameter: 

y12F6 (0) Z,NC = (y2 1) 2 [(~)A + "[2( 1 - -  (])A)] • (7.3) 
6 

This result implies that stiffness asymmetry stabilizes the constant volume 
athermal blend in the sense that pure concentration fluctuations are reduced 
relative to the Y = 1 melt. Moreover, within a literal incompressible description 
it is tempting to conclude from Eq. (7.3) that statistical segment length asym- 
metry will always decrease the effective chi-parameter and stabilize the miscible 
phase of real blends. Such a conclusion is generally incorrect with regards to real 
phase-separating mixtures since it ignores compressibility effects which destroy 
a rigorous separation of enthalpic and entropic contributions to the thermo- 
dynamics of mixing. The irrelevance of a negative chi-parameter for the model 
athermal blend to the question of miscibility in real polymer mixtures is not 
a failing of the PRISM theory, but rather only the RPA-like definition of an 
incompressible chi-parameter in Eq. (6.16). Although perhaps not emphasized 
enough in early papers, we have explicitly demonstrated that an incompressible 
idealization, and hence a single chi-parameter, is a poor approximation for 
a thermal blends [62, 63, 67, 72]. 

8 Thermally Phase-Separating Blends 

A natural foundation for developing an integral equation theory for phase- 
separating polymer alloys would be an understanding of atomic and small 
molecule fluid mixtures. Unfortunately, very little work has been done on such 
systems, and only recently have atomic mixture calculations based on various 
closure approximations begun to be systematically done and compared with 
computer simulations [65]. Even less work has been performed for small 
molecule mixtures using the RISM formalism. From a fundamental theoretical 
perspective, an accurate treatment of fluctuations induced by the attractive 
branch of the intermolecular potential is difficult even for simple atomic fluids 
[5, 6]. These considerations suggest that integral equation theories of polymer 
alloys should initially focus on the simplest possible mixture in order to test the 
unavoidable closure approximation. 
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8.1 Symmetric Blends and Predictions of Atomic Closures 

A "symmetric" binary blend is defined as consisting of two types of homo- 
polymer chains, A and B, which are structurally identical in every respect. 
Hence, the corresponding single chain structure factors obey the identity 
toA(r) = toa(r) -- to(r). The pair potentials between sites are: 

UAA(r) = usa(r) = uo(r) + VAA(r) 

UAs(r) = uo(r) + vAs(r) (8.1) 

where uo(r) is a hard core potential with diameter d, and the VMM,(r ) potentials 
are defined for r > d. For the "fully symmetric" case of equal concentration of 
A and B chains there is complete symmetry between A and B, and long 
wavelength concentration fluctuations are expected to be accurately described 
by the IRPA-like formula [61, 67]: 

where 

g~- X(k). = [6)(k)[4(1 - ~b) ] ] - ' - 22,Nc(k) (8.2) 

~,Nc(k) = pA(~(k)- P[(~AA(k)- GAs(k)] (8.3) 

and ~ = 1/2 for the fully symmetric blend. The "incompressible chi-parameter" is 
given by the zero wavevector limit of Eq. (8.3), i.e. XINC = ~lNc(k = 0). The 
corresponding "mean field" or "bare" chi-parameter, denoted ~o, is a purely 
energetic quantity given by: 

Xo = 9P S d~{VAs(r) -- VAA(r)} = ~p {~AB(0) -- "~AA(0)} (8.4) 

which is the "classical" Flory-Huggins result for the off-lattice situation. Phys- 
ically, Eq. (8.4) assumes that the intermolecular interactions and chain connect- 
ivity induce neither density nor concentration fluctuations in the blends, i.e. 
a literal random mixing assumption. The quantity XtNC/)~O will be referred to as 
the "renormalization ratio" which serves as a simple scalar measure of the 
influence of intra- and intermolecular correlations. 

Curro and Schweizer have carried out numerical [60, 61] and analytical [23] 
studies of the symmetric blend using the Mean Spherical Approximation (MSA) 
closure successfully employed for atomic, colloidal, and small molecule fluids 
[5, 6]. This closure corresponds to the approximation: 

CMM,(r) ~ -- 13VMM,(r), r > d . (8.5) 

It is important to emphasize that the PRISM theory with "atomic site-site 
closures" assumes that all the consequences of chemical bonding are adequately 
accounted for via the structure of the integral equations alone. As depicted in 
Fig. 10, even at the two molecule level there are "indirect" pathways by which 
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/ 

Fig. 10. Schematic representation of two-polymer molecule correlation pathways. The wiggly bonds 
denote long range chemical bonding pair correlations due to chain connectivity, while the short solid 
line denotes the spatially local direct correlation function. There are of order a + bN 0 pair 
"contacts" between two interpenetrating polymer chains of degree of polymerization N which are 
embedded in a correlation volume of linear dimension Rg oc N lt~F. Here dr is the mass fractal 
dimension of the polymer, 0 = 2 - (D/dr,), D is the spatial dimension, and a and b are numerical 
constants of order unity 

two particular sites ~ and ~, on different molecules may interact. As a conse- 
quence, RISM is never exact even in the "weak coupling" regime where the "tail" 
potential obeys the inequality [IVMM.(r) <~ 1. 

The most provocative prediction of the PRISM-MSA theory was a non- 
classical relation between the critical temperature for phase separation, T~, 
and degree of polymerization, N, of the form T¢ oz N ~/e. This unexpected 
result corresponds to a massive stabilization of the mixed phase (via a long 
range concentration fluctuation process) relative to Flory-Huggins mean field 
theory which predicts T¢ oc N. Moreover, in the high temperature limit, 
X~NC/~O ~ N-x/2, thereby implying that the Flory-Huggins form is not re- 
covered even in the perturbative or weak coupling limit of Zo ~ 0. This fact 
establishes the important conclusion that the origin of the massive renormaliz- 
ation effect is a two-molecule correlation process which depends on both spatial 
and polymer fractal dimensionalities [23]. Although there are a number of 
experiments [58] on more chemically complex alloys which display significant 
deviations from Flory-Huggins scaling and exhibit N-dependent apparent chi- 
parameters in the direction predicted by PRISM-MSA, definitive work on 
simple systems has been lacking. 

Very recently, Deutsch and Binder [73] carried out a large scale lattice 
Monte Carlo simulation on a model symmetric polymer mixture, and Gehlsen 
et al. [74] performed a SANS study on a family of specially-designed high 
molecular weight isotopic blends. The classical Flory-Huggins scaling law was 
found to a high degree of accuracy. This strongly suggests that the PRISM 
theory with the atomic-like MSA closure is in qualitative error, and our prior 
PRISM calculations [60, 61, 63] on thermally phase-separating model blends 
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are not generally reliable. This difficulty motivated Yethiraj and Schweizer to 
numerically investigate alternative atomic-like site-site closures such as the 
Percus-Yevick (PY) and Hypernetted Chain (HNC) approximations [70]. From 
the compressibility route to the thermodynamics nonclassical scaling of Tc with 
N was again found which disagreed with mean field theory even more strongly 
than the MSA prediction. Since essentially all liquid state closure approxima- 
tions are based on the PY, MSA and/or HNC ideas, Yethiraj and Schweizer 
[68, 70] were forced to the disconcerting conclusion that, based on the com- 
pressibility route to the thermodynamics, no known atomic-like closure to the 
PRISM equations for random coil polymer blends agrees with the classified 
Flory-Huggins scaling of Tc with N. It appears that quantitative deficiencies 
associated with atomic site-site closures for the description of attractive interac- 
tions in small molecule fluids become grossly amplified into qualitative errors 
for phase-separating macromolecular systems. 

One possible alternative theoretical approach is to calculate the blend 
thermodynamics and phase diagram not from the compressibility and spinodal 
divergence, but from the so-called free energy route [5, 6]. As emphasized very 
recently by Chandler [75], only the spatially local consequences of the attractive 
potentials on the interchain correlations enter the free energy approach. Thus, 
long wavelength difficulties of integral equation theories will be "cut off" and 
a classical Tc oc N scaling law is obtained [75]. However, there remain severe 
conceptual difficulties since PRISM-MSA theory is characterized by a massive 
(N-dependent) thermodynamic inconsistency problem. Moreover, the descrip- 
tion of concentration fluctuations on the macromolecular and longer length 
scales in the one-phase region, which are of prime importance in SANS measure- 
ments on blends and microphase separation of diblock copolymers, will still be 
treated in a qualitatively incorrect fashion at all temperatures [68--70]. 

8.2 Molecular Closures and Predictions for Symmetric Blends 

The theoretical difficulties described in the preceding section have lead Yethiraj 
and Schweizer to reconsider the question of the closure approximation for 
interaction-site molecular and polymer fluids [68-70]. Their approach to for- 
mulating new "molecular" closures is strongly motivated by the observation 
that the fundamental error incurred by the atomic-like closures for long 
wavelength correlations appears in the weak coupling limit [the p ~ 0 two- 
molecule level for one-component fluids, and the T -~ ~ high temperature 
regime in blends], and is associated with the influence on the site-site direct 
correlation functions of the number of contacts between a pair of interacting 
macromolecules. The construction of the new molecular closures is not based on 
the individual site-site correlation functions, but rather on their full two- 
molecule counterpart. 

Technical development of the new closures has been guided by three general 
considerations. (1) Separate approximations are employed to treat the conse- 
quences of the hard core and (generally attractive) tail parts of the potential. 
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This strategy is common in atomic fluid theory at low to moderate densities, and 
for Coulombic systems, and corresponds to the "reference" idea ubiquitous in 
liquid state theory [5]. The purely hard core problem is treated using the 
accurate [27] PY closure. (2) The construction of a closure approximation for 
the tail part of the potential is subject to the constraint of exactly describing the 
weak coupling limit. In physical terms, for fractal-like interpenetrating molecu- 
les these indirect processes may strongly couple the direct correlation functions 
associated with those pairs of sites which are in simultaneous contact. The 
number of such two-molecule pair contacts, No, scales with N as [23]: 

N¢ oc 1 + cN2/Rg ° oc 1 + c'N 2-(~,) (8.6) 

where c and c' are numerical constants of the order of unity, Rg is the radius- 
of-gyration, and D and df are the spatial and mass fractal dimensionalities, 
respectively. For ideal coils the number of contacts grows as x//N and this 
geometrical factor is the source of the massive "renormalization" predicted by 
the PRISM-MSA theory. (3) The relation between the intermolecular attractive 
potentials and the "direct" part of the interchain correlation processes is estim- 
ated based on our present understanding of the analogous problem for simple 
atomic fluids [5, 63. 

The simplest molecular closure based on the above ideas is one that builds in 
the hard core reference behavior and correctly treats the longer ranged attract- 
ive potentials in the weak coupling limit. It is called the "Reference Molecular 
Mean Spherical Approximation" (RMMSA) and is given in real space for 
a homopolymer blend by [68-70] 

(o) • 
tOM*CMM,*C0M,(r) ----- CoM*CMM' OM'(r) COM*[3VMw*C0w(r), r > dMM' • (8.7) 

The "reference" direct correlation functions associated with the athermal 
blend are denoted by "Jura',c'(°) and are computed separately using the Percus- 
Yevick approximation. There are two distinguishing features of this closure. 
(1) Even outside the hard core, the direct correlation functions between different 
pairs of sites on two molecules are explicitly coupled. (2) The site-site direct 
correlations inside the hard core are intimately coupled to their behavior 
outside the core. These two features are in strong contrast to the atomic 
closures, and represent the influence of the indirect, chemical-bonding-mediated 
processes between two molecules. 

A more general formulation consistent with the three considerations enu- 
merated above is given for a homopolymer blend by [68]: 

(o) 
Oh~I*CMM,*O)M,(r) _--__ OJM*CMM,*tOM,(r) + C0M*ACMM,*0~M,(r), r > dMM'- (8.8) 

where ACMM,(r) is an approximate atomic site-site closure relation for the 
attractive branch of the potential. For relatively short ranged attractions, the 
Percus-Yevick closure is quite accurate [5, 6]. This suggests the approximation 
[683: 

ACMM,(r) ~ [1 -- exp(flVMw(r))]gMM,(r), r > dMM" (8.9) 
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which is non-perturbative in the strength of the tail potentials. The combination 
of Eqs. (8.8) and (8.9) is called the "Reference-Molecular Percus-Yevick 
(R-MPY)" closure. The qualitative physical content of this approximation is 
that the "MSA part" of the closure is corrected by the multiplicative factor of the 
species-dependent radial distribution function in a manner analogous to the 
calculation of an internal energy or enthalpy. The influence of local fluctuations 
on the site-site direct correlation functions are then self-consistently determined 
via solution of the coupled PRISM equations and closure. A useful simplifica- 
tion of the R-MPY closure corresponds to introducing a high temperature 
approximation (HTA) into Eq. (8.9): 

AC~,(r)  ,~ - 13vMM,(r)g~,(r), r > dMM, (8.10) 

where the superscript "0" refers to the hard core reference blend. This closure 
approximation is called the R-MPY/HTA and is conceptually of the R-MMSA 
form but is expected to be more accurate since the influence of reference system 
correlations on the attractive force component of the direct correlation func- 
tions is included. 

Extensive studies of the predictions of the new molecular closure to the blend 
PRISM theory for the symmetric binary blend have been carried out by Yethiraj 
and Schweizer [68-70]. Here, a few of their major results are summarized, 
beginning with the numerical studies. The PRISM equations with the molecular 
closures can be solved using standard Picard iteration methods and the fast 
Fourier transform [5, 70]. 

The reduced critical temperature, T* = kBTc/t~l where ~ is the energy para- 
meter of the repulsive Lennard-Jones tail potential between A and B sites, is 
plotted vs N in Fig. 11 for the R-MMSA and R-MPY closures and two values of 
total packing fraction [69, 70]. The latter is defined for the tangent semiflexible 
chain [24] as r I = xpd3/6. A linear scaling law is found with a nonuniversal 
prefactor that decreases with density. As seen in Fig. 11 and Table 1, the R-MPY 
predicts a significant reduction of the critical temperature relative to both 
R-MMSA and Flory-Huggins mean field theory which becomes increasingly 
significant as the polymer density is lowered [70]. This prediction is easily 
understood as a consequence of the local correlation hole (at lower densities) on 
the length scale of the tail potential which drives phase separation. Representat- 
ive results [70] for the composition dependence of the effective incompressible 
chi-parameter defined in Eq. (6.17) are shown in Fig. 12. The R-MMSA predicts 
(not shown) virtually no composition dependence, while the R-MPY exhibits 
[70a] a parabolic-like, concave-upwards behavior the amplitude of which is 
a strong function of polymer density and stiffness, but weakly dependent on 
degree of polymerization over the range of N ~< 200. However, in the large 
N limit this composition dependence disappears [70b], consistent with thermo- 
dynamic perturbation theory arguments [75]. Note that the R-RMSA closure 
appears to be nearly the integral equation realization of Flory-Huggins theory 
for the symmetric blend, while the R-MPY exhibits a host of fluctuation correc- 
tions associated with local correlations in the blend which are in excellent 
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Fig. 11. Variation of the reduced critical temperature, T* = T~/c, with degree of polymerization 
of symmetric binary blends composed of semiflexible chains with zero bending energy [70]. ~ is 
the repulsive AB Lennard-Jones interaction parameter, VAA(r ) = VBB(r ) = 0, and (~ = 0.5. Results for 
the R-MMSA (solid circles) and R-MPY (open circles) are shown for two values of packing fraction. 
The straight lines are linear fits to the theoretical results for the four highest chain lengths 

Table 1. Variation of the ratio of the reduced 
critical temperature, T¢, predicted by PRISM the- 
ory with the R-MPY closure relative to its corres- 
ponding mean field Flory-Huggins value, To, with 
packing fraction, 11, for a N = 32 unit tangent 
semiflexible chain model [24] (zero bending 
energy). The interchain tail potentials obey the 
symmetric restriction with the AA and BB poten- 
tials set equal to zero [70] 

rl TjTo 

0.20 0.126 
0.30 0.339 
0.45 0.712 
0.55 0.930 

agreement 1-70] with recent simulations 1-73] (with the exception that the critical 
divergence aspect is not Ising-like). 

The density and composition dependent correlation effects present in the 
R-MPY theory arise from non-random mixing intermolecular packing and 
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Fig. 12. Numerical predictions of PRISM/R-MPY for the variation with composition of the 
symmetric blend incompressible chi-parameter (normalized by its values for ~ = 0.5) [70] 
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Fig. 13. Intermolecular structure of the ~ = 0.5 symmetric blend close to the crh:ical temperature 
[70]. The curve labeled g°(r) is the corresponding homopolymer melt (infinite temperature) result. 
The inset depicts a measure of the non-random packing expressed as Ag(r) = gAA(r) -- gAs(r). The 
behavior of the latter function is qualitatively different when using the atomic MSA closure of the 
PRISM equations [23, 61, 68]. The radius-of-gyration is 2.91 for N = 32 
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Fig. 14. Selected predictions of PRISM/R-MPY theory for the dependence of the symmetric blend 
gAB(r) on composition and total packing fraction at fixed temperature [70] 

typical results [70] are shown in Figs. 13 and 14. As expected from the 
discussion of Sect. 8.1, the post facto IRPA simplification is found to be an 
excellent approximation for the small k scattering functions, effective chi- 
parameter, and spinodal boundary of the idealized symmetric blend model. The 
relationship of these calculations for symmetric model blends to experiments on 
simple isotopic polymer mixtures is discussed elsewhere [67, 68, 70]. 

Extensive analytic results for the symmetric thread blend have also been 
derived [68, 70b]. In the thread-polymer limit the hard core condition becomes 
"irrelevant" for the molecular closure relations. In particular, for the R-MMSA 
and R-MPY/HTA approximations the (~uw(k) functions are fully specified by 
the closure relations, and their k = 0 values are given in general by 

Crow = ~mm'~O) _ 13~imw ' draw --* 0 

HmM" =- VMW, R-MMSA 

-- ~dfvmw(r)g~,(r), R-MPY/HTA. (8.11) 

For the symmetric blend the reference system is the homopolymer melt and 
hence the reference correlation functions are independent of species label 
(M, M'). It is important to emphasize that Eq. (8.11) is not valid for polymers of 
nonzero hard core thickness. Thus, the "thread" idealization is a very special 
limit characterized by a unique simplification of the integral equation theory. 
These equations have the analytical structure of a "high temperature and/or 
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mean field" approximation about the hard core blend system at the level of the 
"effective potentials", i.e., site-site direct correlation functions. 

For the symmetric thread blend model, the R-MMSA theory predicts 
~NC = )~0 for all compositions, densities, etc., and thus represents the integral 
equation realization of the Flory-Huggins theory with regard to the effective chi- 
parameter and critical temperature. Such simplicities are a consequence of the 
"weak coupling" or "asymptotic" nature of a MSA-like closure, i.e., the r ~ 
limit of gMM'(r) = 1 is assumed to hold for all r with regards to determining the 
effects of the attractive potential on the direct correlation functions. MSA and 
R-MMSA analytical results for the related problems of the liquid-vapor phase 
transition and polymer-solvent phase separation have also been worked out 
[68]. Stark differences between the predictions of these two closures of the 
PRISM equations are again found, with the R-MMSA theory in qualitative 
agreement with mean field ideas. 

The R-MPY/HTA predictions for the symmetric thread blend contain local 
fluctuation corrections associated with the reference blend correlations. For 
example, the renormalization ratio in the N ~ ~ limit is 1-68]: 

;~IN____C_c = _ .  a (8.12) 
Z0 a + G0 

where a is the spatial range of the (screened Coulomb) tail potential and ~p is the 
collective density fluctuation length scale of the reference homopolymer melt. 
The latter length scale decreases monotonically with increasing polymer volume 
fraction (see, for example, Eq. (3.4a)). Thus the renormalization ratio is predicted 
to decrease strongly as the polymer density (or spatial range parameter) de- 
creases. However, the renormalization effect vanishes, i.e., )~Nc = 2o, in the 
hypothetical p ~ ~ incompressible limit. The R-MPY/HTA approximation 
predicts a composition-independent chi-parameter, in disagreement with the full 
R-MPY numerical results [70] and simulations for the finite N mixtures studied 
[73]. Thus, the origin of the composition dependence is finite temperature local 
concentration fluctuations which become monotonically stronger as the 
spinodal boundary is approached. Perturbation arguments and explicit calcu- 
lations suggest the HTA should be exact for symmetric mixtures as N ~ 
[5, 70b, 75]. Thus, the "intrinsic" composition-dependence of the effective chi- 
parameter as computed from the incompressible definition of Eq. (6.17) would 
vanish for very large N, although compressibility effects could still introduce an 
apparent composition-dependence in the experimentally relevant SANS chi- 
parameter as defined in Eqs. (6.8) or (6.15). From a general perspective, the 
influence of temperature-dependent structural changes on phase behavior is 
expected to be of considerable importance for polymers of moderate molecular 
weight, and may be the genesis of the poorly understood lower critical solution 
temperature (LCST) phenomena commonly observed in polymer blends. 

Summarizing, to recover the classic Flory mean field scaling law for the 
critical temperature within the original compressibility-route PRISM frame- 
work requires a reformulation of the closure approximations. The fundamental 
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quantity susceptible to "simple" approximation appears not to be the site-site 
direct correlation functions, but its collective two-molecule counterpart, 
co, C,t0(r). Despite the detailed differences between the R-MMSA, R-MPY and 
R-MPY/HTA closures, it is important to stress that they are conceptually 
similar in the sense that globally mean field predictions are obtained in the long 
chain limit (To oc N). The new molecular closures proposed by Yethiraj and 
Schweizer [68-70] are certainly not unique, and the search for the "most 
accurate and computationally convenient" closure remains an important prob- 
lem. The ability to obtain analytical results in the thread limit is a major 
advantage of the molecular closures described above. We believe the re-for- 
mulated PRISM theory of alloys can now be employed to investigate reliably 
the multitude of physical effects which are beyond mean field and/or lattice 
approaches. 

An alternative approach to circumventing the atomic closure difficulties has 
very recently been developed by Melenkevitz and Curro [76]. They generalized 
the "optimized cluster" theory of Chandler and Andersen [77] and Lupkowski 
and Monson [78] to polymer melts and blends using the diagramatically well- 
founded RISM formalism [26, 79]. Numerical results for the symmetric blend 
give the correct mean field scaling of Tc with N, and the effective chi-parameter 
is found to be weakly composition-dependent. 

8.3 Structural and Interaction Asymmetry Effects 

"Symmetric polymer blends do not exist in reality. A host of "asymmetries" 
are present in real chemical alloys of interest. These include attractive potential 
asymmetries (present even for isotopic blends) and specific interactions, molecular 
weight asymmetries and polydispersity, and single chain structural differences 
between the blend components (e.g., monomer shape and volume, backbone 
stiffness, and tacticity). Realistic accounting for most of these effects would seem 
to require an off-lattice description which includes local interchain density and 
concentration correlations, and "compressibility" effects [1, 2, 63, 66, 67, 80]. 

Detailed analytical and numerical studies of the above questions are in 
progress, and a very rich and nonadditive dependence of the phase behavior on 
the precise nature of the attractive potentials, single chain architecture, and 
thermodynamic state is found [67, 72]. A full understanding of these issues 
would provide a scientific basis for the rational "molecular design" of polymeric 
alloys. The influence of asymmetries on the spinodal phase boundary of simple 
model polymer alloys using analytic PRISM theory with molecular closures has 
been derived by Schweizer [67]. In this section a few of these results are briefly 
discussed. 

For a binary blend of thread homopolymers the structure of each chain is 
specified by its statistical segment length, CM, segmental hard core diameter, 
dM= d, degree of polymerization, N~, and the attractive "tail" potentials, 
vMM'(r). The structural asymmetry on an equal volume basis is given by the ratio 
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of statistical segment lengths: y = O'B/O'A,  which, in general, is temperature 
dependent. The attractive intermolecular potentials between nonpolar molecu- 
les are of the van der Waals or London dispersion form. As a first approxima- 
tion the corresponding Lennard-Jones energy parameters obey "Berthelot 
scaling relations": 

eBn = ~,2~AA, CAB = ~'gAA (8.13) 

where ~, is a positive constant proportional to molecular polarizability and 
ionization potential ratios [5, 81]. Such scaling relations are also often em- 
ployed for the integrated strength of the entire attractive potential, ~¢MM' (0), or 
for the internal or cohesive energies in a multicomponent fluid, Sd? VMM, (r) 
gMM' (r). The latter is the basis of the empirical "solubility" or "Hildebrand" 
parameter of regular solution theory [82]. These two interpretations corres- 
pond to a Berthelot scaling in the analytic thread closures of Eq. (8.11) of the 
form 

I~IBB = ~2I~AA, IqAB = ~.I'~AA. (8.14) 

The rigorous spinodal boundary is given by Eq. (6.6) and generally strongly 
differs from that predicted by the literal incompressible RPA approximation of 
Eqs. (6.10) or (6.18). Analytical results for the spinodal temperature can be 
derived based on Eqs. (6.6), (7.1), (7.2), (8.t I), and (8.14). Other properties such as 
the critical composition, SANS chi-parameter, free energy of mixing, etc. can 
also be obtained as discussed in depth elsewhere [67]. 

For simplicity let NA = NB = N. The predicted spinodal is [67]: 

PIITIAAI IN(~. - -  y2 )2  dp(1 - -  dp) + dO + ~,2(1 - -  ~b)~ 
kBTs = qb +" y-~-i -- dO) _ - o C ~  j .  (8.15) 

Here the "attractive energy scale" variable is 

tfiAAI = lCCAA(0)I, R-MMSA 

a 
= IfAA(0)[ a + ~EFF R-MPY/HTA (8.16) 

where ~ is the volume fraction of A segments, and ~EFF is a temperature- 
independent, but density, composition and aspect ratio dependent, effective 
density-density screening length in the reference athermal thread blend [67]. 
The location of the critical composition, and shape of the predicted spinodal 
envelope, are generally not of classical form due to both stiffness asymmetry and 
explicit compressibility corrections. For example, the R-MMSA closure predicts 
the critical composition in the long chain limit is ~¢ = 1/(1 + y-z).  The depend- 
ence of phase separation temperature on statistical segment length asymmetry 
given by Eq. (8.15) is in excellent agreement [67] with recent experiments by 
Bates et al. [83] on polyolefin blends and diblock copolymers. The fundamental 
driving force for phase separation is predicted by compressible PRISM theory 
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to be enthalpic in nature but with multiple correlation corrections. This aspect is 
in strong contrast with the recent phenomenological field theory tor stiffness 
asymmetric blends [84] based on a "nematic correlation" process and incom- 
pressibility. 

The second, "explicit compressibility correction" term in the braces of 
Eq. (8.15) is essentially N-independent. Since it is positive definite, explicit 
compressibility effects always destabilize the blend. Its dependence on polymer 
density is in general very different than the leading "concentration fluctuation" 
contribution. The latter monotonically increases with polymer density, while the 
former strongly decreases with density. 

The "explicit compressibility contribution" is unimportant if the inequality 
- NpC~A) (~ -- 72)2~b(1 - d~) >> 1 is obeyed. Adopting the latter condition can 

be viewed as enforcing an "effective incompressibility" constraint in a thermo- 
dynamically post facto manner It differs enormously from the spinodal 
predicted based on the literal IRPA approach of Eqs. (6.17) and (6.18) which 
is given by [67] 

kBTs, INC = pIIqAAI(X - -  1) 2 Nqb(1 - qb){1 + (r12F6/6)(72 - 1) 2 

x N~b(1 - qb)[dp + 72(1 - ~b)]} -~ (8.17) 

Equation (8.17) incorrectly predicts that increasing stiffness asymmetry mono- 
tonically stabilizes the mixture. The basic error incurred by the literal IRPA is 
the implicit assumption that "enthalpic" and (packing) "entropic" contributions 
to the non-ideal free energy of mixing are independent and additive. 

For the large N and high densities of primary interest in polymer alloy 
materials, the inequality - NpC~A) (~. - 72)2d~(1 - qb) ~> 1 wilt be violated only 
for the special case of ~ ~ ~,2. However, if such "cancellation" or "compensation" 
of the attractive potential and stiffness asymmetry factors occurs, then strong 
stabilization of the blend is predicted since the spinodal temperature obeys the 
law Ts oc N °. This suggests an interesting and novel "strategy" for molecular 
engineering miscible polymer blends or increasing the interfacial region in 
phase-separated alloys. Equation (8.15) is also consistent with the physical 
expectation that blends of chains of greatly disparate aspect ratios (e.g., "rods 
and coils") will phase separate at high temperatures, low N, and/or low total 
polymer densities, due to packing-induced "frustration". Moreover, if the ener- 
getic and structural asymmetries are comparable, then their consequences are 
never separable since the "cross terms" are always significant and can either 
stabilize or destabilize the blend depending on the sign of the factor 
( ~ / 2  _ _  1)(1 - k). A dramatic example is when 7 = 1, and hence 2o = 0, corres- 
ponding to an "effectively" athermal case in the mean field sense, but not the 
literal [3VMM.(r)= 0 athermal situation considered in Sect. 7. Equation (8.15) 
obviously still predicts phase separation at a temperature which grows strongly 
with stiffness asymmetry, while the IRPA analysis based on Eqs. (6.17) and (6.18) 
incorrectly predicts the effective, chi-parameter is negative and the blend is 
completely miscible! 
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For most of the )~, y parameter space, correlation effects result in a critical 
temperature higher than predicted by Flory-Huggins theory [67]. However, 
there are "windows" of parameter space where stiffness asymmetry stabilizes the 
blend. Whether the theory predicts relative stabilization or destabilization due 
to an increase of the stiffness depends crucially on the sign of the quantity 
y - ~/~. 

The apparent SANS chi-parameter is also easily determined analytically for 
stiffness asymmetric Berthelot thread model with the R-MMSA or R-MPY/ 
HTA closure approximations. For algebraic simplicity we consider the neutron 
data analysis approach which leads to Eq. (6.15). In the "effectively incompress- 

~(o) ible" regime, defined here as tsuw >> II]HMwl in Eq. (8.1t), one easily obtains 
the result [67] 

1 - y2  1 - y2  
2Zs = PY-2~IfiAAI(7 2 -- ~,)2 + ~ - -  + N(1 -- d~) (8.18) 

This prediction is of the general form found in many SANS experiments, 
i.e., Xs = A + (B/T) where "A" and "B" are often empirically interpretated as 
"entropic" and "enthalpic" contributions, respectively. Note that for the present 
idealized thread model, "B" is always positive, but the molecular weight depend- 
ent A-factor can in general be positive or negative depending on the precise 
values of the stiffness asymmetry ratio and blend composition. 

In summary, the predictions of analytic PRISM theory [67] for the phase 
behavior of asymmetric thread polymer blends display a very rich dependence 
on the single chain structural asymmetry variables, the interchain attractive 
potential asymmetries, the ratio of attractive and repulsive interaction potential 
length scales, a/d, and the thermodynamic state variables q and d~. Moreover, 
these dependences are intimately coupled, which mathematically arises within 
the compressible PRISM theory from "cross terms" between the repulsive 
(athermal) and attractive potential contributions to the k = 0 direct correlations 
in the spinodal condition of Eq. (6.6). The nonuniversality and nonadditivity of 
the consequences of molecular structural and interaction potential asymmetries 
on phase stability can be viewed as a virtue in the sense that a great variety 
of phase behaviors are possible by rational chemical structure modification. 
Finally, the relationship between the analytic thread model predictions and 
numerical PRISM calculations for more realistic nonzero hard core diameter 
models remains to be fully established, but preliminary results suggest the 
thread model predictions are qualitatively reliable for thermal demixing 
[72, 853. 

9 Block Copolymers and Other Polymer Alloy Problems 

PRISM theory based on the new molecular closures has recently been generaliz- 
ed by David and Schweizer 1-86] to treat periodic block copolymers. For 
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simplicity, consider "2M-block copolymers", (AxBy)M, which consist of alternat- 
ing sequences of A and B segments of length x and y, respectively. The following 
variables are defined: concentration of A-site f = x/(x + y), the total degree of 
polymerization N = M(x + y), NA = xN, NB = yN, and p~p = number density 
of copolymer molecules. As for the homopolymer case, a tractable theory 
requires ignoring explicit chain end effects at the level of the direct correlation 
functions. In addition, an extra zeroth order approximation enters correspond- 
ing to neglecting "junction effects". That is, the direct correlation functions 
associated with a pair of sites of type M and M' are assumed not to depend on 
the precise location of the segments within their respective blocks. The resulting 
matrix PRISM equations in Fourier space are given by [86]: 

l-~I(k) = ~(k)~(k)[~(k) + 0(k)] (9.1) 

where the intermolecular site-site pair correlation function matrix is defined as 
I2IMM,(k) = PM PM' hMM'(k), CMM'(k) is the site-site direct correlation function, and 
the intramolecular partial structure factor matrix is 

NM NM, 

~MM'(k) --= p~p ~ ~ ¢b~,MvM'(k) (9.2) 
Ct=l  T = l  

where ~Mm,(r) is the normalized probability distribution function where a site 
a of type M is a distance r from site ? of type M'. It is convenient to introduce 
a related set of intramolecular correlation functions defined as 

Nu 

d~Mu(k) - N~ 1 ~, 6~M)'M(k), 
0t.)' = 1 

NA NB 

~)AB(k) ~- (NA + Ns) -1 E E ~A)'B(k) • (9.3) 
c t = l  ) '=1  

The collective partial structure factors, S~tM' (k), are easily written down, and 
in an approximate theory finite length scale spinodal instabilites may be present 
corresponding to ~MM'(k = k*) = c~ which is equivalent to [86]: 

0 = I - fpSCbAA(k*)CAA(k*) - (1 - f)ps&BB(k*)CBB(k*) 

- 2pStbAB(k*)CAB(k *) + f(1 -- f)ps 2 ~cb(k*)8~(k*) (9.4) 

6&(k) = &AA(k).tSBB(k) -- f-1(1 -- f)-l&~,B(k), 

~C(k) = CAA(k)CBB(k) -- C~s(k) 

where k* is the most unstable wavevector and Ps = Np~p. Since microphase 
separation is a finite length scale ordering phenomena akin to crystallization, 
a critical point is not generally expected to exist in physical reality. 

The mean field (Landau) theory of block copolymers developed by Leibler 
[87] is based on an IRPA treatment of the liquid correlations. Enforcing the 
latter constraint on PRISM theory in a post facto manner yields for an AB block 
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copolymer for which the A and B site volumes are equal [86] 

gffV~A(k ) = fCbAA(k) + (1 -- f)6)aB(k) + 2~AB(k) 
f(1 -- f)d)AA(k)d)Ba(k) -- 6)~B(k) -- 2~,Nc(k) • (9.5) 

The effective chi-parameter is given by the k-dependent generalization of 
Eq. (6.17). If a small angle approximation where 2~Nc(k) is constant is invoked, 
then Eq. (9.5) is identical in form with Leibler's RPA result [87] and the spinodal 
condition is far simpler than Eq. (9.4). However, since the true "chi-parameter" is 
a wavevector-dependent correlation function, not a phenomenological number, 
it is functionally related to all the other intramolecular and intermotecular pair 
correlations in the system. This non-mean-field feature has many important 
consequences such as the fact that k* is influenced by many chain correlations 
[86, 88]. It must be emphasized that although Eq. (9.5) should be accurate for 
the hypothetical symmetric block copolymer model, since it does not properly 
treat compressibility effects it is expected to be inadequate for most real 
copolymer systems. 

The same molecular closures proposed for homopolymer blends [68-70] 
apply to copolymers but the intramolecular structure factor matrix is now 
non-diagonal. Equation (8.8) becomes [86] 

[ 9 "  C_ * Q(r)]MM' -~ [fl* C (°) * •(r)]MM' 

+ [~*AC*Q(r)]MM,, r > dMM'- (9.6) 

For the analytically tractable thread polymer model, and the R-MMSA or 
R-MPY/HTA closure approximations, k = 0 values of the direct correlation 
functions are precisely the same in the long chain limit as found for polymer 
blends in Sect. 8. In particular, for the symmetric block copolymer, the 
R-MMSA closure yields [67, 86] the mean field result ZINC = ~0. Thus, within 
the symmetric thread idealization and the incompressible approximation of 
Eq. (9.5), PRISM/R-MMSA theory reduces to Leibler theory for all composi- 
tions and block architectures [67, 86]. 

For the more interesting thread model case with statistical segment asym- 
metry and a Berthelot attractive potential model, Schweizer has derived the 
following expression for the spinodal temperature [67] 

kaTs = f(1 - f)N(72 - k)2F'(k*, f, 7) 
Dst I~AAI 

+ [ - PSt~AA_I~(O) 1-1 Ca(k*, f, 7, ~') (9.7) 

where the block architecture-dependent (x and y variables) functions F and 
G are given by 

F" =- N -  1 6)AA(k*)6)BB(k*) -- [f(1 -- f ) ] -  16)2AB(k* ) 
f~AA(k*) + 74(1 -- f)6~aa(k*) + 272~AB(k *) 

~ fd)AA(k*) + ~.2(1 -- f)d)Ba(k*) + 2~.d)Aa(k*) (9.8) 
f(bAA(k*) + y4(1 -- f)6)aa(k* ) + 272t~AB(k*) " 
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The functions F and G are both independent of N in the long chain limit. For 
a stiffness symmetric f = 1/2 diblock copolymer in the N >> 1 limit, the quantity 
F = 2/10.495. The ordering wavevector, k*, is (numerically) determined by 
maximizing the right hand side of Eq. (9.7), and is a function of all the variables 
in the problem. Note that the mathematical structure of Eq. (9.7) is qualitatively 
similiar to the blend case of Eq. (8.15). 

As discussed in Sect. 8.3 and elsewhere [67, 68, 86], for the R-MMSA and 
R-MPY/HTA closures, taking the thread limit results in a theory where the hard 
core exclusion condition is not relevant (except for determining the reference 
fluid C~,) .  This great simplification does not occur for any non-zero hard core 
diameter. Calculations by David and Schweizer [86] for symmetric dibtocks 
have shown that PRISM with the R-MMSA closure for non-thread symmetric 
diblocks does not exhibit a critical point or spinodal instabilities if either the 
temperature or inverse degree of polymerization are nonzero. The destruction of 
the critical point appears to be a "finite size" fluctuation effect, as in the 
Brazovski-Fredrickson-Helfand phenomenological field theory [89], but the 
physical origin of the nonlinear feedback mechanism is very different. 

An example of the intermolecular concentration correlations and scattering 
intensity for a symmetric diblock melt [86] composed of ideal freely-jointed 
chains are shown in Fig. 15. Note that as the melt is cooled, strong local and 
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Fig. 15. Temperature dependence of Ag(r) = gAA(r) -- gAB(r) for the f = 0.5 symmetric diblock 
copolymer using the R-MMSA closure [86]. An ideal freely-jointed single chain model is employed 
and the choice of tail potentials is identical to the symmetric blend discussed in Sects. 6 and 8. Note 
that upon cooling strong local correlations emerge. Eventually a weaker, long range oscillatory 
feature appears associated with correlations on the domain size length scale 0~* ~ 2:~/k*). The inset 
shows the corresponding points (A-E) in the ~ inverse scattering peak intensity N/oAA as a function of 
dimensionless, scaled inverse temperature 13Ne. Note the linear "mean field" behavior at high 
temperatures but the nonlinear stabilization at the low temperatures where the long range oscilla- 
tion in Ag(r) emerges 
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long wavelength correlations emerge, the detailed nature of which depend on 
copolymer composition, N, single chain structure, density, etc. Such local 
fluctuations may be very important for understanding thermodynamic proper- 
ties and experimental measurements of short and intermediate length scale 
structure in the diblock melt (e.g., NMR, dielectric spectroscopy, wide angle 
scattering). 

There remains the controversial question of whether "fluctuation phe- 
nomena" in diblock copolymers are a finite size effect [89], or an intrinsic 
process which survives in the N ~ ~ limit as recently suggested based on both 
simulations [88] and non-perturbative theoretical arguments [90]. Numerical 
PRISM calculations based on the most sophisticated R-MPY closure favor an 
approximately intrinsic process for symmetric dibtocks of N ~< 500; however, 
the true asymptotic behavior appears to be a finite size effect [86]. 

Several other polymer alloy problems have just begun to the investigated 
using the PRISM approach. These include (a) LCST phase behavior in binary 
blends where "specific interactions" are present [67, 71]; (b) segregation of 
blends near a surface and in confined spaces [91a] using the wall-PRISM theory 
of Yethiraj and Hall [37]; (c) mixtures of statistically random copolymers [67]; 
and (d) polymer-colloid mixtures [91b]. The application of existing PRISM 
theory to treat more complex mixtures such as a binary blend plus solvent, or 
a block copolymer/homopolymer mixture, are straightforward. All these prob- 
lems will be even richer and more complex with regards to their sensitivity to 
system-specific structural and interaction potential asymmetries. 

10 Self-Consistent PRISM Theory 

All the theory described so far has assumed the intramolecular pair correlations 
are known, and in practice a Flory ideality ansatz is employed. However, even in 
dense melts and concentrated solutions where the chains are random walks on 
large length scales, the effective local persistence length may be sensitive to 
chemical structure and thermodynamic state. For semi-dilute solutions the 
excluded volume screening length strongly increases and large deviations from 
ideality occur [3a, 22]. For branched polymers ideality will not be preserved 
near the branch point(s) even in the melt state. In blends and copolymers 
concentration fluctuations may be an extra source of conformational perturba- 
tions and are poorly understood. The generalization of the PRISM approach to 
self-consistently calculate intramolecular and intermolecular pair correlations 
functions has been initiated [92] but is still in its early stages. Here, we 
sketch the basic ideas, briefly describe one application, and discuss ongoing 
research. 

For simplicity, consider a solution of homopolymers where the "solvent" is 
treated as "free volume" and thus an effectively one-component description 
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applies. The single polymer effective potential energy in the condensed phase, 
W(R), contains three distinct terms [14, 92] 

W(8) = Uo + UE + Ala (10.1) 

where R denotes a complete set of coordinates which specifies a particular 
polymer configuration. The "ideal" contribution, U0, contains all the short 
range interactions such as bond length and angle constraints, torsional poten- 
tials, etc. The "long range" intramolecular potential, UE, is taken to be pairwise 
decomposable, and in specific applications to date has been chosen to be a hard 
core or soft repulsion. The "medium-induced" contribution, A~t, is the excess 
chemical potential for the polymer constrained to a particular conformation 
R due to its interactions with the surrounding molecules. This object is 
extremely complex since it involves many body correlations. 

Chandler and co-workers constructed a tractable medium-induced potential 
in the context of the solvated electron problem [93, 94]. Their "self-consisten~ 
pair" approximation also applies to real polymeric fluids, and for homo- 
polymers with neglect of explicit chain end effects approximation one has 
[92-94] 

Ala -- ~ w(l?a -- ~vt), w(r) = -- 13-1C*pS*C(r). (10.2) 
ct, y 

This result can be deduced from a number of perspectives such as renormalized 
perturbation theory [93], polymer density functional theory [95, 96], and Per- 
cus functional expansion methods [97]. The medium-induced pair potential is 
determined by the direct correlation function and collective density fluctuations 
which are both functionally related to the intramolecular pair correlations via 
the PRISM equation. Hence, a coupled intramolecular/intermolecular theory is 
obtained. 

Implementation of this "self-consistent" PRISM theory is non-trivial and 
there are two general classes of approach. First, approximate theories can be 
constructed based on a tractable reference system description of single chain 
correlations and an approximate free energy. The initial work along this line by 
Schweizer, Honnell and Curro [92] used an optimized perturbation scheme for 
dense melts which predicted chain dimensions and intermolecular pair correla- 
tions in very good agreement with molecular dynamics simulations [27]. How- 
ever, this approach is rather limited in the choice of reference system, and does 
not correctly describe stiff polymers nor long chain semi-dilute solutions [30]. 
More general variational approaches have been recently developed by several 
workers [97, 98] which remove these limitations. They have been extensively 
applied to predict (both analytically and numerically) chain dimensions as 
a function of polymer concentration, molecular weight, aspect ratio, and global 
architecture. The best approximation probably depends on the particular sys- 
tem and thermodynamic conditions of interest, and theory development remains 
an active area of present research. 
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The second approach is to use Monte Carlo simulation to solve exactly the 
nonlocal single chain problem (defined by Eqs. (10.1 ) and (10.2)) self-consistently 
with the PRISM theory of many chain correlations. Although more computa- 
tionally demanding, the introduction of an approximate free energy expression 
and reference system are avoided. The first implementation of this 
"PRISM/Monte Carlo" (PMC) scheme has been performed by Melenkevitz 
et at. [96] for the c a s e  of homopolymer solutions composed of semiflexible 
chains [24] (with zero local bending energy). A more extensive PMC study of 
the same model over the entire range of density from dilute solution to the dense 
melt using a more sophisticated Monte Carlo algorithm has also been per- 
formed [99]. The latter results are summarized in Table 2. The PMC theory 
with the solvent-induced potential of Eq. (10.2) accurately predicts both the 
magnitude and density dependence of chain dimensions in semi-dilute and 
weakly concentrated solutions [96, 99]. However, for concentrated solutions 
and melts the chains tend to "collapse" locally (not in the (R 2) oc N 2/3 global 
sense), and the physically expected ideal random coil behavior is not recovered 
[96, 99]. This subtle high density problem is still under active study, but the 
work of Grayce and co-workers [97, 99] suggests the difficulty lies with the 
approximate medium-induced potential of Eq. (10.2) which predicts too strong 
a compressive force at high densities. Both a new solvent-induced pair potential, 
and a criterion for a priori accessing the accuracy of approximate solvation 
potentials, have been formulated [97]. Preliminary results are encouraging since 
PMC with the new solvation potential correctly predicts the qualitative confor- 
mational behavior of flexible polymers over the entire density range [-99]. 

Table 2. Mean-square end-to-end distance, (RZ), in units of the hard core 
diameter, as a function of packing fraction and N. (RZ)PMC refers to the results 
of [99] using self-consistent PRISM/Monte Carlo based on Eq. (10.2) for 
a hard core tangent semiflexibte chain model [24]. (R2)Mc are the results of 
many chain "exact" Monte Carlo simulations of Yethiraj and Hall [29]. The 
corresponding density-independent self-avoiding walk (ideal walk) values of 
(R  2 ) are: 50.78 (30.79), t52.03 (80.8), and 348.51 (164.12) for N = 20, 50, and 
i00, respectively 

N q (R2)~,Mc (RZ)Mc 

20 0A0 45.24 _+ 0.41 43.01 _+ 1.79 
20 0.20 4t.92 ± 0.09 37,37 +_ t.32 
20 0.30 38.43 ± 0.48 34.95 ± 2.81 
20 0.35 35.69 ± 0,49 32.23 ___ 4.30 
20 0.40 32.39 ± 0.35 
20 0.45 26.56 ± 0.30 
20 0.50 17.76 ± 0.64 

50 0.20 131.57 _+ 1,90 118.70 ± 4.83 
50 0.30 119.40 ± 1,19 106.84 ± 6.05 

100 0.20 299,57 ± 2,55 242.51 ± 6.53 
100 0.30 276.67 ± 5,54 220.09 ± 5.08 
100 0.40 224.03 ± 5.67 
100 0.45 149.83 ± 15.4 
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Formally, the self-consistent PRISM theory is easily generalized to treat 
polymer blends and copolymers [92] where signifcant non-ideal conforma- 
tional effects may occur which intensify as phase separation is approached. 

11 Future Directions 

The full development and application of many aspects of the PRISM theory 
discussed in this paper remain to be done. In both melts and alloys, the 
construction of a "thermodynamically self-consistent" theory is an important 
task in order to compute accurately the equation-of-state and thereby allow 
constant pressure calculations to be carried out. This direction may also be 
important for understanding at a molecular-level LCST phase transitions. 
Construction of the binodal curve is also an important technical direction, as are 
careful studies of the free energy-based route to the phase diagram [70b]. 
Further fundamental research concerning the closure ditticulties encountered in 
phase-separating polymer alloys is an ongoing topic, as is continual testing of 
the accuracy of PRISM theory against carefully designed off-lattice computer 
simulations and experimental measurements on model systems. 

From the point of view of atomistic modeling, the application of PRISM 
theory with chemically realistic single chain models, such as the RIS description, 
is a major thrust of present and planned research particularly in the area of 
multiphase alloys. The influence of microstructural features such as chain 
branching (e.g., olefins) [108], monomer shape, and tacticity [71] on packing 
and phase stability can thus be unambiguously investigated. A priori, one might 
expect that thermodynamic properties and phase diagrams are extremely sensi- 
tive to local chemical structure and packing. However, many theoretical ap- 
proaches and/or models rely on the hope that for flexible macromolecules 
a significant amount of "self-averaging" of the Angstrom-level chemical details 
occurs, and thus intermediate-level models of chain structure are useful. System- 
atic PRISM studies of polymer models of increasing chemical complexity will 
allow this subtle and very important question to be addressed. 

The combination of polymeric density functional methods and PRISM 
theory for the liquid correlations allow a wide range of closure and in- 
homogeneous material problems to be studied [-109]. Present research involves 
using this approach to treat at an atomistic level the crystallization of the entire 
alkane series, and the structure of hydrocarbon fluids near surfaces and inter- 
faces [109]. An alternative, purely integral equation approach to the latter 
problem is to employ the wall-PRISM theory of Yethiraj and Hall [37]. 

The further development of the self-consistent version of PRISM theory will 
be particularly important in two areas: (i) liquids of flexible conjugated polymers 
where the electron delocalization length and interchain dispersion forces are 
strongly coupled to chain conformation [100], and (ii) polymer alloys where 
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nonuniversal conformational perturbations due to both density and concentra- 
tion fluctuations are intimately coupled and may significantly influence the 
location, and perhaps the nature, of the phase boundaries. 

The PRISM theory has recently been generalized and applied by Grayce and 
Schweizer [ t01] to treat star-branched polymer solutions and melts. For such 
systems the equivalent site approximation must be abandoned, and non-ideal 
conformational effects become particularly important near the crowded central 
branch point. Generalization of their new methods to treat complex fluids 
composed polymer-coated colloidal particles is also feasible and presently under 
study. 

Other important unsolved general problems within the PRISM formalism 
include the following. (a) The treatment of quenched randomness, e.g., sequence 
disorder in random copolymers. (b) The description of first order microphase 
separation transitions in block copolymers. Polymeric density functional 
methods, such as recently employed by Melenkevitz and Muthukumar [102], 
present an attractive strategy. (c) Macromolecular liquids with strong and/or 
directional attractive forces, such as ionomers and polyelectrolytes. Nonideal 
conformational perturbations are likely to be particularly important in these 
systems, and the appropriate closure approximation for Coulombic interactions 
in macromolecular fluids remains an open question. (d) Polymer liquid crystals, 
and molecular "composites" composed of rod-like and flexible species. The 
proper description of strong orientational correlations and/or the nematic phase 
represent major challenges for site-site integral equation approaches. All the 
equilibrium structural information calculable from PRISM theory will also find 
additional applications in microscopic theories of macromolecular dynamics 
such as the polymeric mode-coupling approach [103]. 

Finally, we mention that very recently three other integral equation ap- 
proaches to treating polymer systems have been proposed. Chiew [104] has 
used the "particle-particle" perspective to develop theories of the intermolecular 
structure and thermodynamics of short chain fluids and mixtures. Lipson [105] 
has employed the Born-Green-Yvon (BGY) integral equation approach with the 
Kirkwood superposition approximation to treat compressible fluids and blends. 
Initial work with the BGY-based theory has considered lattice models and only 
thermodynamics, but in principle this approach can be applied to compute 
structural properties and treat continuum fluid models. Most recently, Gan and 
Eu employed a Kirkwood hierarchy approximation to construct a self-consis- 
tent integral equation theory of intramolecular and intermolecular correlations 
[106]. There are many differences between these integral equation approaches 
and PRISM theory which will be discussed in a future review [107]. 
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