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1 Introduction

This paper investigates the growth of sX(L), the number of simple closed
geodesics of length ≤ L on a hyperbolic surface X. We prove that sX(L)
is asymptotic to nX · L6g−6+2n as L → ∞. We also study the frequencies
of different types of simple closed geodesics on a hyperbolic surface and
their relationship with Weil-Petersson volumes of moduli spaces of bordered
Riemann surfaces.
Simple closed geodesics. Let Mg,n be the moduli space of hyperbolic
Riemann surfaces of genus g with n cusps. For X ∈ Mg,n, let cX(L) be
the number of primitive closed geodesics on X of length ≤ L. By work of
Delsart, Huber, Selberg and Margulis, we have

cX(L) ∼ eL/L

as L → ∞. However, very few closed geodesics are simple [BS] and it is
hard to discern them in π1(Sg,n).
Counting problems. To understand the growth of sX(L), it proves fruitful
to fix a simple closed curve γ ∈ MLg,n(Z) and consider more generally the
counting function

sX(L, γ) = #{α ∈ Modg,n ·γ | �α(X) ≤ L}.

There are only finitely many isotopy classes of simple closed curves on Sg,n

up to the action of the mapping class group. The class of a simple closed
curve γ is determined by the topology of Sg,n − γ, the surface that we get
by cutting Sg,n along γ. Therefore, to compute sX(L) it suffices to compute
sX(L, γ) for each type of simple closed curve γ. In fact, we also get counting
results for multicurves. In §6 we show :

Theorem 1.1 For any γ ∈ MLg,n(Z), we have

lim
L→∞

sX(L, γ)
L6g−6+2n

= nγ(X),

where nγ(X) is a continuous proper function of X ∈ Mg,n.

In the case of M1,1, this result was previously obtained by McShane and
Rivin [MR]. Polynomial lower and upper bounds for sX(L) were found by
I. Rivin. Explicitly, in [Ri] it is proved that for any X ∈ Tg,n, there exists
cX > 0 such that

1
cX

L6g−6+n ≤ sX(L) ≤ cX · L6g−6+2n.
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Similar upper and lower bounds for the number of pants decompositions of
length ≤ L on a hyperbolic surface X were obtained by M. Rees in [Rs].

Let BX be the unit ball in the space of measured geodesic laminations
with respect to the length function at X:

BX = {λ |�λ(X) ≤ 1} ⊂ MLg,n.

In [Mirz1], we show that BX is convex with respect to the piecewise linear
structure of MLg,n. Let B(X) = Vol(BX) with respect to the natural
volume form in the Lebesgue measure class on MLg,n. We show that

bg,n =
∫

Mg,n

B(X) dX

is a finite number in π6g−6+2n · Q which can be calculated in terms of the
leading coefficients of the volume polynomials (§5). Next, we show that the
contributions of X and γ to nγ(X) separate as follows:

Theorem 1.2 For any γ ∈ MLg,n(Z), there exists a rational number cγ

such that we have:
nγ(X) =

cγ · B(X)
bg,n

.

Idea of the proof of Theorem 1.2. The crux of matter is to understand
the density of Modg,n ·γ in MLg,n(Z). This is similar to the problem of the
density of relatively prime pairs (p, q) in Z2. Our approach is to use the
moduli space Mg,n to understand the average of these densities. To prove
Theorem 1.2, we:

(I): Apply Theorem 4.2 to show that the integral of sX(L, γ) over the
moduli space

S(L, γ) =
∫

Mg,n

sX(L, γ) dX

is well-behaved; in fact it is a polynomial in L (§5). Here the integral on
Mg,n is taken with respect to the Weil-Petersson volume form. , and

(II): Use the ergodicity of the action of the mapping class group on the
space MLg,n of geodesic measured laminations on Sg,n [Mas] to prove that
these densities exist (§6) as follows.
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Let µγ be the discrete measure supported on the orbit γ, that is

µγ =
∑

g∈Modg,n

δg·γ .

Note that MLg,n has a natural action of R+ by dilation. For T ∈ R+,
Let T ∗(µγ) denote the rescaling of µγ by factor T . Although the action of
Modg,n on MLg,n is not linear, it is homogeneous. We define the measure
µT,γ by

µT,γ =
T ∗(µγ)

T 6g−6+2n.

The measure
µT,γ(U) =

µγ(T · U)
T 6g−6+2n

is also a Modg,n invariant measure. Also, we have

sX(L, γ) = µγ(L · BX) , µT,γ(BX) =
sX(T, γ)
T 6g−6+2n

. (1.1)

Therefore that understanding the asymptotic behavior of sX(L, γ) is closely
related to the asymptotic behavior of the sequence µ = {µT,γ}T .
Let vg,n denote the volume form on MLg,n. In §6, by using the ergodicity of
the action of the mapping class group on MLg,n ([Mas]), we prove that the
sequence µ weakly converges to a Modg,n invariant measure in the Lebesgue
measure class of MLg,n. In other words, as T → ∞

µT,γ → cg,n · vg,n.

Then Theorem 1.1 follows by an elementary lattice-counting argument §3.
Frequencies of different types of simple closed curves. From Theo-
rem 1.2, it follows that the relative frequencies of different types of simple
closed curves on X are universal rational numbers.

Corollary 1.3 For X ∈ Mg,n and γ1, γ2 ∈ MLg,n(Z), we have

lim
L→∞

sX(L, γ1)
sX(L, γ2)

=
cγ1

cγ2

∈ Q.

The limit is a positive rational number independent of X.

Remark. The same result holds when the surface X has variable negative
curvature, and the rational numbers are independent of the metric (§6).
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Example: For i = 1, 2, Let αi be a curve on S2 that cuts the surface into i
connected parts. Then as L → ∞

sX(L, α1)
sX(L, α2)

→ 6.

In other words, a very long simple closed geodesic on a surface of genus 2 is
6 times more likely to be non-separating. For more examples see §6.

The frequency cγ ∈ Q of a given simple closed curve can be described in
a purely topological way as follows ([Mirz1]):

Theorem 1.4 For any connected simple closed curve γ, we have

#({λ ∈ MLg,n(Z) | i(λ, γ) ≤ k}/Stab(γ))
k6g−6+2n

→ cγ

as k → ∞.

Note that cγ = cδ for all δ ∈ Modg,n ·γ. We can also calculate cγ recursively
using our recursive formula for Vg,n(�).
Connection with intersection numbers of tautological line bundles.
We can also calculate cγ recursively using our recursive formula for Vg,n(a).
In [Mirz3], we relate the coefficients of Vg,n(a) to the intersection numbers
of tautological line bundles over Mg,n. Therefore, we can write the number
cγ in terms of the intersection numbers of tautological line bundles over the
moduli space of Riemann surfaces of type Sg,n(γ), the surface that we get
by cutting Sg,n along γ.
An alternative proof. In a sequel we give a different proof of the growth
of the number of simple closed geodesics by using ergodic theory of the
earthquake flow on PMg,n the bundle of geodesic measured laminations of
unit length over moduli space.
Acknowledgments. I would like to thank Curt McMullen for his invaluable
help and many insightful discussions related to this work. I am also grateful
to Igor Rivin, Howard Masur, Alex Eskin, Benson Farb and Barak Weiss for
helpful comments.

2 Background material

In this section, We present some familiar concepts in a less familiar setting
about the symplectic structure of the moduli space of bordered Riemann
surfaces and the space of measured geodesic laminations. we also recall
some basic facts and results on hyperbolic geometry.
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Recall that a symplectic structure on a manifold M is a non-degenerate
closed 2-form ω ∈ Ω2(M). The n-fold wedge product

ω ∧ · · · ∧ ω

never vanishes and defines a volume form on M .
Teichmüller Space. Here we briefly summarize the background material
on Teichmüller theory of Reimann surfaces with geodesic boundary compo-
nents.
A point in the Teichmüller space T (S) is a complete hyperbolic surface X
equipped with a diffeomorphism f : S → X. The map f provides a marking
on X by S. Two marked surfaces f : S → X and g : S → Y define the
same point in T (S) if and only if f ◦ g−1 : Y → X is isotopic to a con-
formal map. When ∂S is nonempty, consider hyperbolic Riemann surfaces
homeomorphic to S with geodesic boundary components of fixed length.
Let A = ∂S and L = (Lα)α∈A ∈ R

|A|
+ . A point X ∈ T (S, L) is a marked

hyperbolic surface with geodesic boundary components such that for each
boundary component β ∈ ∂S, we have

�β(X) = Lβ.

Let Sg,n be an oriented connected surface of genus g with n boundary com-
ponents (β1, . . . , βn). Then

Tg,n(L1, . . . , Ln) = T (Sg,n, L1, . . . , Ln),

denote the Teichmüller space of hyperbolic structures on Sg,n with geodesic
boundary components of length L1, . . . , Ln. By convention, a geodesic of
length zero is a cusp and we have

Tg,n = Tg,n(0, . . . , 0).

Let Mod(S) denote the mapping class group of S, or the group of isotopy
classes of orientation preserving self homeomorphisms of S leaving each
boundary component point wise fixed. The mapping class group Modg,n =
Mod(Sg,n) acts on Tg,n(L) by changing the marking. The quotient space

Mg,n(L) = M(Sg,n, �βi
= Li) = Tg,n(L1, . . . , Ln)/Modg,n

is the moduli space of Riemann surfaces homeomorphic to Sg,n with n
boundary components of length �βi

= Li. Also, we have

Mg,n = Mg,n(0, . . . , 0).
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For a disconnected surface S =
k⋃

i=1
Si such that Ai = ∂Si ⊂ ∂S, we have

M(S, L) =
k∏

i=1

M(Si, LAi),

where LAi = (Ls)s∈Ai .
The Weil-Petersson symplectic form. By work of Goldman [Gol], the
space Tg,n(L1, . . . , Ln) carries a natural symplectic form invariant under the
action of the mapping class group. This symplectic form is called Weil-
Petersson symplectic form, and denoted by w or wwp. In this thesis, we
are interested in calculating the volume of the moduli space with respect to
the volume form induced by the Weil-Petersson symplectic form. Note that
when S is disconnected, we have

Vol(M(S, L)) =
k∏

i=1

Vol(M(Si, LAi)).

The Fenchel-Nielsen coordinates. A pants decomposition of S is a set of
disjoint simple closed curves which decompose the surface into pairs of pants.
Fix a system of pants decomposition of Sg,n, P = {αi}k

i=1, where k = 6g−6+
2n. For a marked hyperbolic surface X ∈ Tg,n(L), the Fenchel-Nielsen coor-
dinates associated with P, {�α1(X), . . . , �αk

(X), τα1(X), . . . , ταk
(X)}, con-

sists of the set of lengths of all geodesics used in the decomposition and
the set of the twisting parameters used to glue the pieces. We have an
isomorphism

Tg,n(L) ∼= RP
+ × RP

by the map
X → (�αi(X), ταi(X)).

By work of Wolpert, over Teichmüller space the Weil-Petersson symplectic
structure has a simple form in Fenchel-Nielsen coordinates [Wol].

Theorem 2.1 (Wolpert) The Weil-Petersson symplectic form is given by

ωwp =
k∑

i=1

d�αi ∧ dταi .

Geodesic measured laminations. A geodesic lamination on a hyperbolic
surface X is a closed subset of X which is disjoint union of simple geodesics.
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A measured geodesic lamination is a geodesic lamination that carries a trans-
verse invariant measure. Thurston showed that the positive real multiples
of simple closed geodesics are dense in the set of measured geodesic lamina-
tions. In fact, the notion of geodesic measure lamination is independent of
the geometry of X. Let MLg,n be the space of compactly supported mea-
sured laminations on Sg,n which is the closure of the set of weighted simple
closed curves . For any two isotopy classes of essential simple closed curves
on Sg,n the intersection number i(α, β) is the minimum number of points
in which transverse representatives of α and β must meet. The intersection
pairing extends to a continuous map i : MLg,n ×MLg,n → R.
Train track coordinates. A train track in Sg,n is an embedded 1-complex
τ such that:

(i): Each edge(branch) of τ is a smooth path with a well-defined tangent
vectors at the end points.That is, all edges at a given vertex(switch) are
tangent.

(ii): For each component R of S − τ the double of R along the interior of
edges of ∂R has negative Euler characteristic.

Any assignment of non negative numbers satisfying the switch conditions
determines a unique geodesic lamination with transverse measure.

The space MLg,n has a piecewise-linear structure and admits an at-
las whose charts are associated to maximal trivalent train tracks in S. A
geodesic lamination is carried on τ if there is a homotopy of S taking λ
to a set of train routes. A train track is recurrent if there is a transverse
measure which is positive on every branch. For a recurrent train track τ ,
let P (τ) denote the polyhedron of measures supported on τ satisfying the
switch conditions. We can also think of P (τ) as a subset of MLg,n, and
will occasionally blur the distinction between the two points of views. Let
U(τ) = Int(P (τ)) denote the set of weights on τ which are positive on every
branch. This is an open cone in R

6g−6
+ .

Thurston volume form on MLg,n. Recall that MLg,n has a natural
volume form induced by the Euclidean volume form on train-track neigh-
borhoods. Points of ML(Z)∩U(τ) are exactly integral points of P (τ). Thus
the transition functions preserve the Euclidean volume. Moreover, there is
a natural symplectic form on MLg,n preserved by the action of Modg,n. See
[HP] for more details.

Let v = v(S) denote the volume form that we get this way. We will
use the following result proved in [Mas] to study lengths of simple closed
geodesics:

Theorem 2.2 (Masur) The action of Modg,n on MLg,n is ergodic with

7



respect to the Lebesgue measure class.

Length functions. The hyperbolic length �γ(X) of a simple closed geodesic
γ on a hyperbolic surface X ∈ T (Sg,n, L) determines a real analytic function
on the space and admits a unique continuous extension to MLg,n. For more
details see [Th].

3 Counting multi-curves

In this section we study a simpler version of the counting problem and
investigate the growth of the number of unions of simple closed geodesics on
a hyperbolic Riemann surface. Each point X ∈ Tg,n(L) defines the length
function �(X) on ML(Sg,n, a) where �λ(X) denote the hyperbolic length of
the corresponding measured lamination on X. Define BX ⊂ ML(Sg,n, a) to
be the unit ball of the length function, that is

BX = {λ ∈ MLg,n | �X(λ) ≤ 1 }.

The function B(X) defined by

B(X) = Vol(BX)

plays an important role in this section. In fact, in [Mirz1] we show that BX

looks like a convex ball.
A multi-curve on Sg,n is a union of disjoint essential simple closed curves

on Sg,n so that no component of it is homotopic to a boundary component.
There is a one-to-one correspondence between the integral measured lami-
nations, MLg,n(Z), and the set of multi-curves, up to isotopy.
Counting Multi-curves. Define bX(L) by

bX(L) = #{γ ∈ MLg,n(Z) | �γ(X) ≤ L}.

It is easy to prove that the asymptotic behavior of bX(L) is governed by
B(X) = Volv(BX).

Theorem 3.1 For any X ∈ Tg,n(a), we have

bX(L)
L6g−6+2n

→ B(X)

as L → ∞.
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Proof of Theorem 3.1. For any train track τ , let

bτ (U, L) = #(ML(Z) ∩ L · U ∩ Uτ ).

Notice that Uτ has a Euclidean structure and the points in Uτ ∩ML(Z) are
exactly integral points. Therefore by usual lattice point estimate, we get

bτ (U, L)
L6g−6+2n

→ Vol(U ∩ Uτ )

as L → ∞. We can cover MLg,n by train-track charts, and the transition
functions are volume preserving, so we can use the inclusion-exclusion for-
mula to get the result. �

Note that the function B descends to a function over Mg,n(L). Next,
we prove some basic properties about the variation of the function B over
Mg,n(a). Since for any λ ∈ MLg,n, the length function

�λ : Tg,n → R+

is smooth [Ker], it is easy to verify that:

Theorem 3.2 The function B : Mg,n(a) → R+, defined as above, is con-
tinuous.

Dehn’s coordinates for multi-curves. Let

P = {α1, . . . , α3g−3+2n}

be a maximal system of simple closed curves on Sg,n. In order to prove that
function B is a proper, integrable function over Mg,n(a), we use Dehn’s
coordinates for multi-curves to estimate the hyperbolic length in terms of
the combinatorial length with respect to P. For any pants decomposition P
of Sg,n, define mi and ti as follows:

• Let mj = i(γ, αj) ∈ Z≥0 be the intersection number of γ and αj , and

• Let tj ∈ Z to be the twisting number of γ around αj .

Also, let Z(P) be the set of {m1, t1, . . . , mk, tk} ∈ Z2k such that

1. mi ≥ 0 and if mi = 0, then ti ≥ 0.

2. If αi1 , αi2 ,αi3 bound an embedded pairs of pants in S, then mi1 +
mi2 + mi3 ∈ 2Z.
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Dehn’s theorem asserts that these parameters uniquely determine a multi-
curve:

Theorem 3.3 (Dehn) For any pants decomposition of Sg,n, the map

DT : MLg,n(Z) → Z(P)

is a bijection.

See [HP] for more details.
For γ ∈ MLg,n(Z) and X ∈ Tg,n, let L(X, γ) be the combinatorial length

of γ on X with respect to a pants decomposition P defined by

L(X, γ) =
k∑

i=1

(mi · S(�αi(X)) + |ti| · �αi(X)) ,

where

S(x) = arcsinh
(

1
sinh(x/2)

)
.

In fact, S(�α(X)) is the width of the collar neighborhood around α on X
[Bus]. We show that

Theorem 3.4 Let P be a pants decomposition of Sg,n. Given L > 0, there
exists a constant c(L) so that if �αi(X) ≤ L for any αi ∈ P then we have

1
c(L)

L(X, γ) ≤ �γ(X) ≤ c(L) L(X, γ), (3.1)

where c > 0 is a constant independent of X.

Broken arcs. A broken arc in H2 is a sequence of oriented geodesic arcs,

V1, H1, . . . , Vr, Hr, Vr+1,

such that consecutive segments meet orthogonally and Hi and Hi+1 are
contained in opposite sides of Vi+1(See Figure 1). Let si and di denote the
geodesic lengths of Vi and Hi respectively. Fixing the pants decomposition
P, we construct a broken arc associated to a closed geodesic γ as follows.
Let p be a lift of one of the intersection points of γ with an element of P
and γ̃ be the lift of γ through p. Let C̃1, . . . , C̃r be the lifts of the geodesics
in P which are intersected in order by γ such that C̃1 ∩ γ̃ = p and ˜Cr+1 is
the image of C̃1 under the covering translation corresponding to γ. Then C̃i

and ˜Ci+1 project to two boundary components of a unique pair of pants.
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V2

H1

p

Q−
i Q+

i

Hi

Hr

q

ai
ai+1

Figure 1.

Consider the common perpendicular segment to C̃i, ˜Ci+1, with end points
denoted by Q−

i ,Q+
i . Then we define BAγ(X) to be the broken arc with

vertical arcs Q+
i , Q−

i+1, and horizontal arcs the segments Q+
i Q−

i . Then we
have:

• r = i(P, γ), where i(P, γ) =
k∑

j=1
i(αj , γ);

• dj ≥ S(�αi1
) + S(�αi2

), where C̃j and C̃j+1 are preimages of αi1 and
αi2 , and finally

• The shift sj is given by sj = |ti �αi + ταi + ej|, where ej < �j .

Note that ej and tj are independent of the geometry of X and depend only
on the topology of γ relative to the pants decomposition P. See [DS] for
more details.

Also, for any L > 0, there exists C = C(L) > 0 such that if �α ≤ L for
α ∈ P then

1
C

k∑
i=1

(Hi + Vi) ≤ L(X, γ) ≤ C
k∑

i=1

(Hi + Vi). (3.2)

Sketch of the proof of Theorem 3.4. Without loss of generality, we can
assume that

0 ≤ τi(X) ≤ �αi(X).

Note that if there exists L > 0 that �αi(X) ≤ L, then there exists a constant
DL > 0 such that di ≥ DL. Consider the broken arc corresponding to γ.
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Let di, xi,yi and zi be the hyperbolic length of aiai+1, aiQ
−
i , Q−

i Q+
i and

Q+
i ai+1 respectively. Then we have

di ≥ yi,

and there exists D(L) > 0 such that

yi ≥ D(L).

Next, we will use the following basic properties of hyperbolic triangles
[Bus]:

1. There exists K(θ) so that for any hyperbolic triangle with side lengths
a, b, c and angle θ opposite to c, we have: c > a + b − K(θ).

2. For D > 0, there exists θ(D) so that any hyperbolic triangle with one
side of length d ≥ D and angles π/2, θ we have θ ≤ θ(D).

Hence there exists K = K(L) such that we have

di ≥ xi + yi + zi − K(L).

By a simple compactness argument,

d

x + y + z

is bounded below when K(L) ≥ y ≥ D(L), otherwise we have

d ≥ x + y + z

2
.

Therefore, there exits C(L) > 0 such that we have

di ≥ C(L) (xi + yi + zi).

Now by adding these inequalities for i = 1, . . . , r, we get
r∑

i=1

(Hi + Vi) ≥ �γ(X) ≥ C(L)
r∑

i=1

(Hi + Vi).

Now the result is immediate from 3.2. �

Finding upper and lower bounds for B(X). Next we find upper and
lower bounds for the function B(X) in terms of the lengths of small geodesics
on X. Define R : R+ → R+ by

R(x) =
1

x | log(x)| .
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Theorem 3.5 For any X ∈ Tg,n(a), sufficiently small ε > 0 and 1 ≤ L,
there are constants C1, C2 > 0 such that

C1 ·
∏

γ: �γ(X)≤ε

R(�γ(X)) ≤ B(X), (3.3)

and
bX(L)

L6g−6+2n
≤ C2 ·

∏
γ: �γ(X)≤ε

(
R(�γ(X)) +

1
�γ(X)

)
, (3.4)

where C1, C2 depends only on g, n and ε.

Sketch of the proof. We prove this theorem for L = 0. The proof for
L �= 0 is similar. Take ε small enough such that no two closed geodesic of
length≤ ε on a hyperbolic surface meet. For X ∈ Tg,n, let α1, . . . , αs be the
set of all simple closed geodesics of length ≤ ε on X and

PX = {α1, . . . , αs, . . . , αk}

be a maximal set of disjoint simple closed geodesics such that �αi(X) ≤ Lg,n,
where Lg,n is the Bers’ constant for Sg,n (See [Bus]).

Consider the set Ax,y(L) defined by

Ax,y(L) = {(m, n) ∈ (Z+)2| mx + ny ≤ L}.

By basic lattice counting estimates, one can easily check that we have

1
k

(
L2

x · y − L

min{x, y}

)
≤ |Ax,y(L)| ≤ k

(
L2

x · y +
L

min{x, y}

)
,

where k > 0 is a constant independent of X and L. This implies that there
are constants k1, k2 > 0 such that

k1 ·
(

L2

x · y

)
≤ |Ax,y(L)| (3.5)

for big enough L, and

|Ax,y(L)| ≤ k2

(
L2

x · y +
L

min{x, y}

)
, (3.6)

where k2 is a constant independent of L.
As bX(L) = #(multi-curves of length ≤ L), we can apply (3.1) to use

the combinatorial length of multi-curve geodesics instead of their geodesic
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length and estimate bX(L). Note that conditions (i) and (ii) do not effect
the growth type of the number of {(mi, ti)}k

1 such that �γ(mi,ti) ≤ L.
By setting xi = S(�αi(X)), yi = �αi(X) we have

1
c1

k∏
i=1

Axi,yi(
L

k
) ≤ bX(L) ≤ c1

k∏
i=1

Axi,yi(L), (3.7)

where c1 > 0 is a constant independent of X and L.
On the other hand, it can be easily checked that

S(x) ∼ log(x)

as x → 0 and there exists a constant c such that 1/c ≤ x · S(x) ≤ c, for
ε ≤ x ≤ Lg,n. So the result follows by applying (3.6) and (3.5) in (3.7). �

Properness and integrability of the function B. In this part we show
that the upper bound in (3.4) is actually an integrable proper function.

Theorem 3.6 The function B is proper and integrable over Mg,n(a), namely

bg,n(a) =
∫

Mg,n(a)

B(X) · dX < ∞.

Proof. Note that inf{�γ}γ → 0 as X → ∞ in Mg,n and

R(ε) → ∞

as ε → 0. So (3.3) implies the function B is proper.
Also, when �γ is small R(�γ) � 1/�γ . Therefore, it suffices to prove that

the function F : Mg,n(a) → R defined by

F (X) =
∏

γ: �γ≤ε

1
�γ(X)

,

is integrable over Mg,n(a). Let Mk,ε
g,n ⊂ Mg,n be the subset consisting

of elements with k simple closed geodesic of length ≤ ε. So the result is
immediate by using (3.4) since the the set Mk,ε

g,n can covered by finitely
many open sets of the form

Vε,k = {(xi, yi)
3g−3+n
1 | 0 ≤ x1, . . . xk ≤ ε, xi ≤ Lg,n, 0 ≤ yi ≤ xi}.

�
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Later, we will calculate the bg,n(a)’s in terms of the coefficients of the
Vi,j(a)’s.

Define fL : Mg,n(L) → R+ by

fL(X) =
bX(L)

L6g−g+2n
.

The following is an immediate consequence of Theorem 3.5:

Corollary 3.7 The sequence {fL}L, satisfies the hypothesis of the Lebesgue
Dominated Convergence Theorem. That is {fL}L is uniformly bounded by
an integrable function.

4 Integration over the moduli space of curves

In this section we recall the results obtained in [Mirz2] and [Mirz3] for inte-
grating certain geometric functions over the moduli space of curves.
Simple closed geodesics on hyperbolic surfaces. Here we recall basic
properties of simple closed geodesics and measured geodesic laminations on
hyperbolic surfaces.
Symmetry group of a simple closed curve. For any set A of homotopy
classes of simple closed curves on Sg,n, define Stab(A) by

Stab(A) = {g ∈ Modg,n |g · A = A} ⊂ Modg,n .

For γ =
k∑

i=1
ciγi, define the symmetry group of γ, Sym(γ), by

Sym(γ) = Stab(γ)/ ∩k
i=1 Stab(γi).

In fact, when γ has extra symmetry

k⋂
i=1

Stab(γi) �= Stab(γ).

For any connected simple closed curve α, | Sym(α)| = 1. Also, if α1 and α2

bound a pair of pants with a boundary component of Sg,n , then | Sym(α1 +
α2)| = 1.
Splitting along a simple closed curve. Let γ

γ =
k∑

i=1

ciγi,
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Figure 2. Cutting the surface

where γ1, . . . and γk are distinct, disjoint simple closed curves, be the isotopy
class of a multi curve on Sg,n.

Consider the surface Sg,n − Uγ , where Uγ is an open set homeomorphic
to

⋃k
1(0, 1) × γi around γ. We denote this surface by Sg,n(γ), which is

a (possibly disconnected) surface with n + 2k boundary components and
s = s(γ) connected components. Each connected component γi of γ, gives
rise to 2 boundary components, γ1

i and γ2
i on Sg,n(γ). Namely,

∂(Sg,n(γ)) = {β1, . . . , βn} ∪ {γ1
1 , γ2

1 , . . . , γ1
k , γ2

k}.

Now for Γ = (γ1, . . . , γk), L = (L1, . . . , Ln) and x = (x1, . . . , xk) ∈ Rk
+, let

M(Sg,n(γ), �Γ = x, �β = L)

be the moduli space of hyperbolic Riemann surfaces homeomorphic to Sg,n(γ)
such that �γi = xi and �βi

= Li.
Simple closed curves on X ∈ Mg,n. Let [γ] denotes the homotopy class
of a simple closed curve γ on Sg,n. Although there is no canonical simple
closed geodesic on X ∈ Mg,n corresponding to [γ], the set

Oγ = {[α]| α ∈ Mod ·γ},

of homotopy classes of simple closed curves in the Modg,n-orbit of γ on X, is
determined by γ. In other words, Oγ is the set of [φ(γ)] where φ : Sg,n → X
is a marking of X. Let �α(X) denote the hyperbolic length of α on X. Here,
we study functions of the form

fγ : Mg,n → R+

X →
∑

α∈Oγ

f(�α(X)),
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where f : R → R+.
Integration over the moduli space. In [Mirz2], we show that

Theorem 4.1 For any γ =
k∑

i=1
ciγi, the integral of fγ over Mg,n(L) with

respect to the Weil-Petersson volume form is given by∫
Mg,n(L)

fγ(X) dX =
1

| Sym(γ)|

∫∫
(x,t)∈V

f(|x|) Vg,n(Γ,x, β, L) x · dx dt,

where V = {(x, t)| 0 < t,
k∑

i=1
ci · xi = t}, and |x| =

k∑
i=1

ci xi.

Here x · dx = x1 · · ·xn · dx1 ∧ · · · ∧ dxn. Also, for any x = (x1, . . . , xk) ∈ Rk
+,

Vg,n(Γ,x, β, L) is defined by

Vol(M(Sg,n(γ), �Γ = x, �β = L)).

Sketch the proof of Theorem 4.1. Here we sketch the main idea of
calculating the integral of fγ over Mg,n with respect to the Weil-Petersson
volume form when γ is a connected simple closed curve.

First, consider the covering space of Mg,n

πγ : Mγ
g,n = {(X, α) | X ∈ Mg,n, and α ∈ Oγ is a geodesic on X } → Mg,n,

where πγ(X, α) = X. The hyperbolic length function descends to the func-
tion,

� : Mγ
g,n → R

defined by �(X, η) = �η(X). Therefore, we have

∫
Mg,n

fγ =
∫

Mγ
g,n

f ◦ � =

∞∫
0

f(t) Vol(�−1(t)) dt,

where the volume is taken with respect to the volume form −∗d� on �−1(t).
The main idea for integrating over Mγ

g,n is that the decomposition of the
surface along γ gives rise to a description of Mγ

g,n in terms of moduli spaces
corresponding to simpler surfaces. This leads to formulas for the integral

17



of fγ in terms of the Weil-Petersson volumes of moduli spaces of bordered
Riemann surfaces and the function f . We have a natural circle bundle

S1 −−−−→ �−1(t) ⊂ Mγ
g,n


M(Sg,n(γ), �γ = t)

We will study the S1-action on the level set �−1(t) ⊂ Mγ
g,n induced by

twisting the surface along γ. The quotient space �−1(t)/S1 inherits a sym-
plectic form from the Weil-Petersson symplectic form. On the other hand,
M(Sg,n(γ), �γ = t) is equipped with the Weil-Petersson symplectic form.
By investigating these S1-actions in more detail, we can prove that

�−1(t)/S1 ∼= M(Sg,n(γ), �γ = t)

as symplectic manifolds. Therefore, we have

Vol(�−1(t)) = t Vol(M(Sg,n(γ), �γ = t)).

Hence for any connected simple closed curve γ on Sg,n, we have

∫
Mg,n

fγ(X) dX =

∞∫
0

f(t) t Vol(M(Sg,n(γ), �γ = t)) dt.

The Weil-Petersson volume of the moduli space. In [Mirz2], by using
an identity for the lengths of simple closed geodesics on hyperbolic surfaces
and using Theorem 4.1, we obtain a recursive method for calculating volume
polynomials.

Theorem 4.2 The volume Vg,n(a1, . . . , an) = Volwp(M(Sg,n, a1, . . . , an)) is
a polynomial in a1, . . . , an, namely we have:

Vg,n(a) =
∑

α
|α|≤3g−3+n

Cα · a 2α,

where

Cα =
2|α|

α!

∫
Mg,n

ψα1
1 · · ·ψαn

n · ω3g−3−|α|,

where ψi is the first Chern class of the ith tautological line bundle, ω is the
Weil-Petersson symplectic form, α! =

∏
αi! and |α| =

∑
αi.
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Here a = (a1, . . . , an), and the exponent α = (α1, . . . , αn) ranges over
elements in (Z≥0)n , aα = aα1

1 · · · aαn
n , and |α| =

∑
αi.

Also, Cα > 0 lies in π6g−6+2n−|2α| · Q.
See [Mirz2] and [Mirz3].

5 Counting curves and Weil-Petersson volumes

In this section we establish a relationship between sX(L, γ) and the Weil-
Petersson volume of moduli spaces of bordered Riemann surfaces. We use
this relationship to calculate bg,n in terms of the leading coefficients of the
Vg,n(a)’s.

Let P (L, γ, a) be the integral of sX(L, γ) over Mg,n(a), given by

P (L, γ, a) =
∫

Mg,n(a)

sX(L, γ) dX.

Now by using Theorem 4.1 for F = χ(∆k
L) where

∆k
L = {(x1, . . . , xk)|

∑
ci xi ≤ L},

we obtain the following result:

Theorem 5.1 For any γ =
k∑

i=1
ci γi ∈ MLg,n(Z), the integral of sX(L, γ)

is given by

P (L, γ, a) =
1

| Sym(γ)|

L∫
0

∫
γ·x=T

Volwp(M(Sg,n(γ), �Γ = x, �β = a)) x dx dT,

Here γ · x =
k∑

i=1
ci · xi.

Corollary 5.2 For any γ ∈ MLg,n(Z), P (L, γ, a) is a polynomial of degree
6g − 6 + 2n in L and a. The coefficient of L6g−6+2n is a positive rational
coefficient which will be denoted by cγ. In other words,

cγ = lim
L→∞

P (L, γ, a)
L6g−6+2n

is a positive rational number independent of a.
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For calculating cγ , we have to find the leading coefficients of the volume
polynomials of moduli spaces of bordered Reimann surfaces of type Sg,n(γ),
possibly disconnected surface that we get from Sg,n by splitting along γ.
Calculation of bg,n(a). Now we can explicitly calculate the value of the
integral of the function B over Mg,n in terms of the coefficients of the
Vi,j(a)’s and symmetry groups of different types of simple closed curves on
Sg,n.
For η = η1 ∪ . . . ∪ ηk, where γi are disjoint connected simple closed curves
on Sg,n and X ∈ Tg,n(a), let

s̃X(L, η) =
∑
m

sX(L,m · η),

where m ranges over Nk and m · η =
k∑

i=1
mi · ηi ∈ ML(N). Then

• As a result of Corollary 3.7 and Theorem 3.1, we have

bg,n(a) =
∫

Mg,n(a)

B(X) = lim
L→∞

∫
Mg,n(a)

bX(L)
L6g−6+2n

.

• For any X ∈ Tg,n(a), we have

bX(L) =
∑

η

s̃X(L, η),

and therefore, ∫
Mg,n(a)

bX(L) =
∑

η

∫
Mg,n(a)

s̃X(L, η),

where the sums are over all (finitely many) different types of (possibly
disconnected) simple closed curves on Sg,n.

• Because sX(L, η) ≤ bX(L), Corollary 3.7 allows us to use the Lebesgue
Dominated Convergence Theorem and change the order of integration
and summation and get

∫
Mg,n(a)

s̃X(L, η) dX =
∑

m∈Nk

∫
Mg,n(a)

sX(L,m · η) .
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• Finally, using Theorem 5.1, we can calculate the integral of sX(L,m·η)
and hence bX(L) over Mg,n(a) in terms of the volume polynomials.

See [Mirz1] for more details. Using Theorem 4.2, we get:

Corollary 5.3 For any g, n, the integral bg,n(a) is a number in π6g−6+2n ·
Q>0 independent of a.

6 Counting different types of simple closed curves

In this section we exploit the relation between sX(L, γ) and Weil-Petersson
volumes of moduli space, and ergodicity of the action of the mapping class
group on the space of measured laminations to establish the following results:

Theorem 6.1 For any multi curve γ ∈ MLg,n(Z) and X ∈ Tg,n(a) we have

sX(L, γ) ∼ B(X)
bg,n

cγ L6g−6+2n,

as L → ∞.

Note that bg,n and cγ are independent of X and L and only depend on the
topological type of γ on Sg,n. Therefore, we get:

Corollary 6.2 For any X ∈ Tg,n(a), as L → ∞

sX(L, γ1)
sX(L, γ2)

→ c(γ1)
c(γ2)

.

Since there are only finitely many isotopy classes of simple closed curves
on Sg,n up to the action of the mapping class group, the following result is
immediate:

Corollary 6.3 The number of simple closed geodesics of length ≤ L on
X ∈ Mg,n(a) has the asymptotic behavior

sX(L) ∼ n(X)L6g−6+2n

as L → ∞, where n : Mg,n(a) → R+ is proper and continuous.
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Discrete measures on MLg,n. Any γ ∈ MLg,n(Z), defines a sequence of
discrete measure on MLg,n, {µT,γ}, as follows. For any U ⊂ MLg,n define
µT,γ(U) by

µT,γ(U) =
#(T · U ∩ Modg,n ·γ)

T 6g−6+2n
.

There is a close relation between the asymptotic behavior of this sequence
of measures and counting different types of simple closed geodesics.

Theorem 6.4 For any multi curve γ ∈ MLg,n(Z), as T → ∞

µT,γ
w∗
−→ cγ

bg,n
· vg,n,

where vg,n is the Thurston volume form on MLg,n.

Lemma 6.5 The sequence {µT,γ} is weakly-normal, that is any subsequence
contains a weakly-convergent subsequence.

Proof. Using basic properties of weak convergence of measures, it suffices
to prove that for any compact subset K ⊂ MLg,n

sup
T

{µT,γ} < ∞.

Fix X0 ∈ Tg,n, without loss of generality we can assume that K = L · BX0 .
Then using Theorem 3.5, we have:

µT,γ(L · BX0) =
sX0(L · T )

T k
≤ C(X0, L),

where C(X0, L) is a constant depending only on X0 and L, and in particular
is independent of T . �

Lemma 6.6 Any weak limit of the sequence {µT,γ} is absolutely continuous
with respect to the Lebesgue measure on MLg,n and is invariant under the
action of the mapping class group.

Proof. Assume that
µTi,γ → v

as i → ∞. Using ergodicity of the action of the mapping class group,
it suffices to prove that if R ⊂ MLg,n has Lebesgue measure zero, then
v(R) = 0. Using basic properties of weak-convergence and Theorem 3.1, we
have:

v(U) ≤ lim inf
i→∞

µti,γ(U) ≤ lim
i→∞

b(ti, U)
tki

= Vol(U)
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for any U open subset of MLg,n. The result is immediate since we can
approximate R with open subsets of MLg,n. �

Proof of Theorem 6.4. By Lemma 6.5, it suffices to prove that if a
subsequence {µTi}i∈J satisfies

µTi,γ → vJ

as i ∈ J → ∞, then vJ = kJ ·vg,n and kJ is independent of the subsequence.
Note that by using Lemma 6.6 and ergodicity of the action of the mapping
class group we can write the limit as vJ = kJ · vg,n.

On the other hand, it is easy to verify that for any X ∈ Tg,n(a) the
set ∂BX has Lebesgue measure zero. This combined with the fact that
sX(T, γ) = µT,γ(BX) implies that for any X ∈ Tg,n, we have:

sX(Ti, γ)
T k

i

→ kJ · B(X)

as i → ∞. Now by Corollary 3.7 and the Lebesgue Dominated convergence
Theorem the order of integration and limitation can be interchanged. As a
result we get :

kJ · bg,n = kJ ·
∫

Mg,n(a)

B(X) dX =
∫

Mg,n(a)

lim
i→∞

sX(Ti, γ)
T k

i

· dX =

lim
i→∞

∫
Mg,n(a)

sX(Ti, γ)
T k

i

· dX = lim
i→∞

P (Ti, γ, a)
T k

i

= cγ .

Also, by Theorem 3.6, bg,n < ∞ which implies that kJ is independent of J
and a. Therefore we have

kJ =
cγ

bg,n
,

and
µT,γ → cγ

bg,n
· vg,n. (6.1)

�

Proof of Theorem 6.1. Since ∂BX has measure zero, we can use (6.1) to
show that

µT,γ(BX) → cγ

bg,n
· vg,n(BX).

On the other hand, we have
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sX(L, γ) = #(L · BX ∩ Modg,n ·γ).

Now the result is immediate since we have

µT,γ(BX) =
sX(L, γ)
L6g−6+2n

.

�

Examples. We calculate the frequencies of different types of simple closed
curves for some cases using the results in §5.

1. The simplest case is when γ is a maximal set of disjoint simple closed
curves on Sg,n. That is when Sg,n(γ) is a union of pairs of pants. Then
since ∫

kP

i=1
cixi=1

x1 · · ·xndx1 · · · dxn =
1

(2n − 1)!
,

we have:
cγ =

1
| Sym(γ)| (6g − 6 + 2n)!

.

Let α and β be two types of pants decomposition then as L → ∞,

sX(L, β)
sX(L, α)

→ | Sym(β)|
| Sym(α)| .

2. Let γn1 be a connected simple closed curve on S0,n such that we have

S0,n(γn1) ∼= S0,n1+1 ∪ S0,n−n1+1.

By results obtained in [Mirz2], and Theorem 4.2 the coefficient of
L2n−4

1 in V0,n+1(L1, . . . , Ln) equals

2n−2

(n − 2)!
.

Since | Sym(γn1)| = 1, we have

c(γn1) =
2n−4

(n1 − 2)! (n − n1 − 2)! (2n − 7)
.

Then given X ∈ T0,n(a), We have

sX(L, αi)
sX(L, αj)

→
(
n−4
i−2

)
(n−4

j−2

)
as L → ∞.
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3. Let γi be a connected simple closed curve on a surface of genus g that
cuts the surface into two parts of genus i and g − i. Since∫

Mg,1

ψ3g−2
1 =

1
24gg!

,

(see [Pand]) by Theorem 4.2, the leading term of Vg,1(L) is equal to

2g

(3g − 2)! g! 24g
L6g−4.

Now since | Sym(γg1 | = 1, we can use the results obtained in §5 and
show that

c(γg1) =
1

24g g1!(g − g1)! (3g1 − 2)!(3(g − g1) − 2)!
.

Hence we have
sX(L, γ1)
sX(L, γ2)

→
(
3g−4
3i−2

)(
g
i

)
(
3g−4
3j−2

)(
g
j

)
as L → ∞.

Remark. Let Y be a closed orientable surface of genus g with bounded neg-
ative curvature. Then each homotopy class of closed curves contains a unique
geodesic. Consider the space ML(Y ) of measured geodesic laminationson
Y and let �γ(Y ) be the geodesic length of γ on Y . Then ML(Y ) ∼= MLg,n

and the length function extends to a continuous function on MLg,n. Since
Theorem 6.4 is independent of the Riemannian mertic on the surface, the
results of Theorem 6.1 and Corollary 6.2 hold for any Riemann surface with
bounded negative curvature.
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