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38.1 Examples of Laurent series

Example 38.1. Since
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for all z with |z| > 0. We shall see later that Laurent series expansions
are unique, and so this must be the Laurent series representation for ex. In
particular, we know that if C' is a simple closed contour about the origin,
with positive orientation, then the coefficient of i is
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Since b; = 1, we have



Example 38.2. Let

f(z) =
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From the theory of partial fractions, we know there exist constants A and B
such that

z A B A(z—=2)+B(z—1)

C_1)(=2) 2-1 222 (-D(-2)

Letting z = 1, we see that 1 = —A, and letting z = 2, we see that 2 = B.
Hence A = —1 and B = 2, so
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Let Dy ={2€C:|z] <1}, Dy={z€C:1< 2] <2},and D3 ={z € C:
|z| > 2}.

For z € Dy, we find a Maclaurin series for f(2):
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Note that these expansions are valid since, for z € Dy, |z| < 1 and |§‘ < 1.
For z € Dy, we find a Laurent series for f(z):
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Note that these expansions are valid since, for z € D, E} < 1 and ‘§| < 1.
For z € D3, we have
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Note that these expansions are valid since, for z € Ds,

<1land |2 <1



