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Abstract

We present a new semide�nite programming approach
to FIR �lter design with arbitrary upper and lower
bounds on the frequency response magnitude. It is
shown that the constraints can be expressed as linear
matrix inequalities (LMIs), and hence they can be eas-
ily handled by recent interior-point methods. Using
this LMI formulation, we can cast several interesting
�lter design problems as convex or quasi-convex opti-
mization problems, e.g., minimizing the length of the
FIR �lter and computing the Chebychev approxima-
tion of a desired power spectrum or a desired frequency
response magnitude on a logarithmic scale.

1 Introduction

We consider the problem of designing a �nite impulse

response (FIR) �lter with upper and lower bounds
on its frequency response magnitude: given �lter
length N , �nd �lter tap coe�cients x 2 R

N , x =
(x(0); : : : ; x(N�1)), such that the frequency response

X(!) =

N�1X
n=0

x(n)e�j!n

satis�es the magnitude bounds

L(!) � jX(!)j � U(!); ! 2 
 � [0; �] (1)

over the frequency range 
 of interest.

One conventional approach to FIR �lter design is
Chebychev approximation of a desired �lter response
D(!), i.e., one minimizes the maximum approxima-
tion error over 
. Di�erent approaches have been pro-
posed for FIR design via Chebychev approximation. To
name a few, Chen and Park [6] use linear programming;
Alkhairy et al. [1], Preuss [14] and Schulist [15] use
Remez algorithm and its variations; Potchinkov and
Reemtsen [13] use semi-in�nite programming. Even
though these methods work well in general, they cannot
handle constraints of the form (1), unless certain linear

phase constraints (e.g., xn symmetric around the mid-
dle index) are imposed; see [19],[7] and [5]. However,
this approach leads to longer FIR �lters than necessary
if linear phase is not required.

In this paper, we present a new way of solving the pro-
posed class of FIR �lter design problems, based on mag-
nitude design, i.e., instead of designing the frequency
response X(!) of the �lter directly, we design its power
spectrum, jX(!)j2 to satisfy the magnitude bounds (see
[8] and [12, ch4]) Let r(n) denote

r(n) =

1X
k=�1

x(k)x(k + n); (2)

where we take x(k) = 0 for k < 0 or k > N�1. The
sequence r(n) is symmetric around n = 0, zero for n �
�N or n � N , and r(0) � 0. Note that the Fourier
transform of r(n),

R(!) =

1X
n=�1

r(n)e�j!n = jX(!)j2;

is the power spectrum of x(n). If we use r as our design
variables, we can reformulate the FIR design problem
in R

N as

�nd r = (r(0); : : : ; r(N�1))

subject to L2(!) � R(!) � U2(!); ! 2 


R(!) � 0; ! 2 [0; �]: (3)

The non-negativity constraint R(!) � 0 is a neces-
sary and su�cient condition for the existence of x sat-
isfying (2) by the Fej�er-Riesz theorem (see x4). Once
a solution of (3) is found, an FIR �lter can be ob-
tained via spectral factorization. An e�cient method
of minimum-phase spectral factorization is given in Sec-
tion 4.

The reformulated FIR design problem (3) is a semi-
in�nite programming problem and many methods have
been developed to solve (3) directly (see [9]). In Sec-
tion 2 and 3, we present two relaxations of the prob-
lem that can be solved as a linear program (LP) or a



semide�nite program (SDP). In an SDP, we minimize
a linear objective subject to a linear matrix inequality

(LMI) constraint:

minimize cTx

subject to F (x) = F0 +
Pm

i=1 xiFi � 0;

where x 2 R
m is the optimization variable and the

symmetric matrices F0; : : : ; Fm are given. The prob-
lem of �nding an x that satis�es the LMI constraint,
or proving that no such x exists, is called an SDP fea-

sibility problem. SDP feasibility problems can be cast
as ordinary SDPs and solved [17].

The LP or SDP formulation of the �lter design prob-
lems has several advantages. First, LPs and SDPs
can be solved very e�ciently and conveniently using
recently-developed interior-point methods [10][17] and
related tools [16][18]. Secondly, these methods produce
a proof of infeasibility when the design specs are too
tight. Thirdly, a wide variety of convex constraints can
be expressed as LMIs, and hence easily included in the
SDP problem.

2 LP formulation

A common practice of relaxing the semi-in�nite pro-
gram (3) is to solve a discretized version of it, i.e.,
impose the constraints only on a �nite subset of the
[0; �] interval and the problem becomes

�nd r = (r(0); : : : ; r(N � 1))

subject to L2(!i) � R(!i) � U2(!i); !i 2 


R(!i) � 0; i = 1; : : : ;M; (4)

where 0 � !1 < !2 < � � � < !M � �. Since R(!i)
is a linear function in r for each i, (4) is in fact a lin-
ear program and can be e�ciently solved. When M is
su�ciently large, the LP formulation gives very good
approximations of (3) in practice. A rule of thumb of
choosing M , M � 15N , is recommended in [1].

However, no matter how large M is, if R(!) � 0 does
not hold for all ! 2 [0; �], no x 2 R

N satis�es (2)
and the spectral factorization fails. One way to resolve
this problem is to solve (4) with the non-negativity
constraint tightened to

R(!i) � �; i = 1; : : : ;M

for an appropriate � > 0, so that even between fre-
quency samples, R(!) � 0.

3 SDP formulation

In this section, we will show that the non-negativity of
R(!) for all ! 2 [0; �] can be cast as an LMI constraint

and imposed exactly at the cost ofN(N�1)=2 auxiliary
variables. We will use the following theorem.

Theorem 1 Given a discrete-time linear system

(A;B;C;D), A stable, (A;B;C) minimal and D +
DT � 0. The transfer function H(z) = C(zI �
A)�1B +D satis�es

H(ej!) +H�(ej!) � 0 for all ! 2 [0; 2�]

if and only if there exists real symmetric matrix P such

that the matrix inequality

�
P �ATPA CT �ATPB

C �BTPA D +DT �BTPB

�
� 0 (5)

is satis�ed.

Proof: By the positive-real lemma [2][3, ch2.7.2], the
existence of P that satis�es (5) implies that H(z) +
H�(z) � 0, for all jzj � 1. This provides the su�cient
condition.

Let C denote the region fz j jzj > 1g on the
complex plane. Since exp(�H(z)) is analytic in C,
j exp(�H(z))j assumes its maximum on the boundary
of C by the maximum modulus principle. From the fact
that

j exp(�H(z))j = exp(�<H(z));

<H(z) � 0 for all jzj = 1 and limjzj!1<H(z) = D +
DT � 0, we conclude that <H(z) � 0 everywhere in C.
Thus, by the positive-real lemma, there exists P that
satis�es (5) and the necessary condition is proved. �

Observe that R(!) has the form

R(!) = H(ej!) +H�(ej!);

where

H(ej!) =
1

2
r(0) + r(1)e�j! + � � � + r(N�1)e�j!(N�1):

In order to apply Theorem 1, we would like to de�ne
(A;B;C;D) in terms of r such that

C(zI �A)�1B +D

=
1

2
r(0) + r(1)z�1 + � � � + r(N�1)z�(N�1): (6)

An obvious choice is the controllability canonical form:

A =

2
666664

0 0 � � � 0
1 0 � � � 0

1
...

. . .
. . .

...
0 1 0

3
777775

B =

2
6664
1
0
...
0

3
7775

C =
�
r(1) r(2) � � � r(N�1)

�
D =

1

2
r(0):

(7)



Of course the realization is not unique, e.g.,
(T�1AT; T�1B;CT;D) realizes the same transfer func-
tion.

It can be easily checked that (A;B;C;D) given by
(7) satis�es (6) and all the hypotheses of Theorem 1.
Therefore the existence of r and symmetric P that sat-
isfy the matrix inequality (5) is the necessary and suf-
�cient condition for R(!) � 0, for all ! 2 [0; �], by
Theorem 1.

Note that (5) depends a�nely on r and P . Thus we
can formulate the SDP feasibility problem:

�nd r 2 R
N and P = P T 2 R

N�1�N�1

subject to L2(!i) � R(!i) � U2(!i); !i 2 
�
P�ATPA CT�ATPB

C�BTPA D+DT�BTPB

�
�0 (8)

with (A;B;C;D) given by (7). The SDP feasibility
problem (8) can be cast as an ordinary SDP and solved
e�ciently.

4 Spectral factorization

Given r 2 R
N be the solution of (3), (4) or (8), the

desired N -tap FIR �lter can be obtained via spectral
factorization by the Fej�er-Riesz theorem:

Theorem 2 (Fej�er-Riesz) If a complex function

W (z) : C! C satis�es

W (z) =

mX
n=�m

w(n)z�n and W (z) � 0 8 jzj = 1;

then there exists Y (z) : C! C and y(0); : : : ; y(m) 2 C

such that

Y (z) =

mX
n=0

y(n)z�n and W (z) = jY (z)j2 8 jzj = 1:

Y(z) is unique if we further impose the condition that

all its roots be in the unit circle jzj � 1.

An e�cient method for minimum-phase spectral fac-
torization is as follows [11]. We denote the unique
minimum-phase factor of R(z) by Xmp(z). Denote
logXmp(z) by

logXmp(z) = �(z) + j'(z);

we have �(z) = (1=2) logR(z) and is known. Since
Xmp(z) is minimum-phase, logXmp(z) is analytic in
the region fz j jzj � 1g and has the power series ex-
pansion

logXmp(z) =

1X
n=0

anz
�n; jzj � 1:

Thus, for z = ej! we have

�(!) =

1X
n=0

an cos!n and '(!) = �

1X
n=0

an sin!n;

which implies �(!) and '(!) are Hilbert transform
pairs. To determine Xmp(z), we �rst �nd '(!) from
�(!) via the Hilbert transform. In practice, this step
can be replaced by two Fourier transforms of order
~N , with ~N � N . Then we construct Xmp from
�(!) and '(!). A third Fourier transform of order
N yields the coe�cients of Xmp(z), which gives the
desired minimum-phase FIR �lter coe�cients.

5 Extensions

We have shown that FIR design with magnitude
bounds can be cast as SDP feasibility problems. In
fact, many extensions of the problem can be handled by
simply adding a cost function and/or LMI constraints
to our SDP formulation. We will give a few examples
in this section.

5.1 Minimum-length FIR design

The length of an FIR-�lter is a quasi-convex function
of its coe�cients [4]. Hence, the problem of �nding the
minimum-length FIR �lter given magnitude upper and
lower bounds

minimize N

subject to L(!i) � jXN (!i)j � U(!i); i = 1; : : : ;M

is quasi-convex and can be solved using bisection on N .
Each iteration of the bisection involves solving an SDP
feasibility problem (8).

5.2 Chebychev approximation on power spec-

trum

Another interesting extension is the Chebychev approx-
imation of a desired power spectrum

minimize max
i=1;:::;M

��jX(!i)j
2 � jD(!i)j

2
�� ; (9)

which is not convex in the �lter coe�cients x. Using
the technique developed in Section 3, problem (9) can
be reformulated as a convex problem in r and P :

minimize max
i=1;:::;M

��R(!i)� jD(!i)j
2
��

subject to

�
P �ATPA CT �ATPB

C �BTPA D +DT �BTPB

�
� 0;

with (A;B;C;D) given in (7). This problem can be
further cast as an SDP:

minimize t

subject to

jD(!i)j
2 � t � R(!i) � t+ jD(!i)j

2; i = 1; : : : ;M�
P �ATPA CT �ATPB

C �BTPA D +DT �BTPB

�
� 0;



where t is an auxiliary variable. Upper and lower
bounds on the magnitude can also be added to the
above SDP.

5.3 Log-Chebychev approximation on magni-

tude

Since the magnitude of the desired frequency response
is usually represented in decibels, it is sometimes more
natural to perform the Chebychev approximation on a
logarithmic scale:

minimize max
i=1;:::;M

�� log jX(!i)j � log jD(!i)j
�� :

Again, the problem can be cast as a convex problem in
r, P and t:

minimize t

subject to 1=t � R(!i)=jD(!i)j
2
� t; i = 1; : : : ;M�

P �ATPA CT �ATPB

C �BTPA D +DT �BTPB

�
� 0;

which can be further reduced to an SDP using Schur
complements:

minimize t

subject to R(!i)=jD(!i)j
2 � t; i = 1; : : : ;M�

R(!i)=jD(!i)j
2 1

1 t

�
� 0; i = 1; : : : ;M

�
P �ATPA CT �ATPB

C �BTPA D +DT �BTPB

�
� 0:

6 Examples

Example 1

We design a low-pass �lter of minimum length, with
passband [0; 0:06] and stopband [0:12; 0:5] in normal-
ized frequency (Nyquist rate is equal to 1), that sat-
is�es the magnitude bounds shown in Figure 1. The
minimum �lter length is 20. One of the solutions is
shown in the �gure. Note that the �lter has roughly
linear phase in the passband.

Example 2

Consider the same passband and stopband speci�ca-
tions as in the previous example, we apply Chebychev
approximation to the ideal lowpass power spectrum us-
ing a 25-tap �lter. The magnitude response of the opti-
mal �lter is shown in Figure 2. Comparing to Example
1, this design has 
atter passband response but higher
stopband attenuation.

Example 3

We consider the same Chebychev approximation prob-
lem as in the previous example, but with the magni-
tude bounds from Example 1. The frequency response
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Figure 1: Magnitude bounds and �lter response (magni-

tude and group-delay) of Example 1. The dot-

ted line indicates the magnitude bounds and

the solid line indicates the response.
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Figure 2: Filter response (magnitude) of Example 2
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Figure 3: Filter response (magnitude) of Example 3

of the optimal 25-tap �lter is shown in Figure 3. With
the help of magnitude bounds, this design achieves the
same stopband attenuation in Example 1.

Example 4

We design the minimum-length �lter that satis�es the
bandpass magnitude bounds shown in Figure 4. The re-
sult is a 24-tap �lter with the frequency response mag-
nitude shown in the same �gure.

7 Concluding remarks

We have presented an SDP formulation of several FIR
�lter design problems:

� The feasibility problem: �nd an FIR �lter that
satis�es given upper and lower bounds on the fre-
quency response magnitude, or show that no such
�lter exists.

� The problem of �nding the minimum length �lter
that satis�es the upper and lower bounds.

� Chebychev-approximation of a desired power
spectrum.

� Chebychev-approximation of a desired frequency
response magnitude on a logarithmic scale.

� Chebychev-approximation with guaranteed mag-
nitude upper/lower bounds.

Many other extensions that have not been discussed
in the paper can be handled in the same framework,
such as, maximum stopband attenuation or minimum
transition-band width FIR design given magnitude
bounds, or even linear array beam-forming. Recent
interior-point methods for semide�nite programming
can solve each of these problems very e�ciently.
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Figure 4: Filter speci�cation and response (magnitude)

of Example 3
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