
Chapter 11

Taylor Series

In Chapter 10 we explored series of constant terms
∑∞

n=1 an = a1 +a2 +a3 + · · · . In this chapter
we next analyze series with variable terms, i.e., terms which are functions of a variable such as
x. As we will see, perhaps the most naturally arising variable series are the power series:

Definition 11.0.1 A power series centered at x = a is a series of the form

P (x) =

∞∑

n=0

an(x − a)n = a0 + a1(x − a) + a2(x − a)2 + a3(x − a)3 + · · · , (11.1)

where a, a0, a1, a2, etc., are constants.

Many familiar functions are in fact equal to infinite series of the form (11.1), at least where
the series converge, and so such functions can be approximated to varying degrees by the partial
sums of these series. The existence of these polynomial partial sums explains, for instance, how
calculators and similar devices compute approximate values of these functions for a wide range
of inputs. (After all, computing a polynomial’s value at a given input requires only a finite
number of multiplications and additions, which could even be accomplished with just paper and
a pencil.) It also allows for reasonable approximations in applications where the exact equations
would be too difficult to solve with the actual functions, but may be simpler with approximations.
Moreover, and perhaps surprisingly, there are numerous settings where it is actually easier to
deal with such a function as represented by an infinite series than by its usual representation.

We will also see that there are functions which arise in applications and are easily given in
the form (11.1), but which are not equal to anything from our usual catalog of known functions.
Thus by including for consideration all functions which can be expressed by power series, whether
or not they have other conventional representations, we greatly expand our function catalog.

The following are general questions which arise in studying series, along with a preview of
the answers.

(1) If we are given a function f(x), how do we produce a power series (11.1) which also represents
the function f(x)?

—In answering this, we will first look at Taylor Polynomials,1 which coincide with the partial
sums of power series expansions when a function possesses such an expansion.

1Named for English mathematician Brook Taylor (1685–1731). As is often the case with early calculus discov-
eries, there is some controversy over whom to give credit, since hints of the results were often present earlier, and
better statements usually arise later. Nonetheless, apparently after a paper by in 1786 by Swiss mathematician
Simon Antoine Jean Lhuilier (1750–1840) referred to “Taylor series,” the series and polynomials bear Taylor’s
name. Lhuilier was also responsible for the “lim” notation in limits, as well as left- and right-hand limits, and
many other important aspects of our modern notation.
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(2) Can we always do that?

—No, and we will eventually look at cases where functions have pathologies which do not
allow us to represent them with power series, for example functions which must be defined
piece-wise or have discontinuities where we wish to approximate them. However, the func-
tions which do allow for power series representations is vast—too vast to ignore—and it
takes some effort to write a function which does not, at least on small intervals, allow for
series representations.

(3) How accurate are the partial sums of the power series as approximations of the function f(x)
it represents?

—This will be approached intuitively, visually and by way of a “Remainder Theorem,” which
can give bounds on the error, or “remainder,” when we use a partial sum to approximate
the actual function. (This is Theorem 11.2.1, page 770.)

(4) Given a power series (11.1), for which values of x does it converge?

—For this we will rely mostly, but not exclusively, upon a slightly clever application of the
Ratio Test. This is perhaps to be expected since power series have a strong resemblance to
geometric series.2

(5) Besides approximating given functions through their partial sums, what other computational
uses do power series possess?

—This will be explored in some detail later in the chapter. In short, power series give a new
context in which to explore relationships among functions, with some interesting derivative
and integration applications, as well as a few “real-world” applications, particularly from
physics.

11.1 Taylor Polynomials: Examples and Derivation

Taylor Polynomials are a very important theoretical and practical concept in calculus and higher
mathematics. As such, the general form given below should be committed to memory, as often
happens naturally as it is revisited repeatedly through examples and exercises. While we will
eventually derive these polynomials from reasonable first principles at the end of this section,
for now we simply define them.

Definition 11.1.1 The Nth order Taylor Polynomial for the function f(x) centered at the
point a, where f(a), f ′(a), · · · , f (N)(a) all exist, is given by 3

PN (x) =
N∑

n=0

f (n)(a)(x − a)n

n!
=f(a) + f ′(a)(x − a) +

f ′′(a)(x − a)2

2!
+

f ′′′(a)(x − a)3

3!

+ · · · + f (n)(a)(x − a)n

n!
︸ ︷︷ ︸

“nth-order term”

+ · · · + f (N)(a)(x − a)N

N !
. (11.2)

2This is meant in the sense that, if a0, a1, etc., in (11.1) were all the same number, the series would be
geometric, with ratio r = (x − a).

3We normally do not bother to write the factors 1
0!

and 1
1!

in the first two terms, since 0!, 1! = 1. We also use

the convention that f(0) = f , f(1) = f ′, f(2) = f ′′, etc.
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The zeroth, first, second and third order Taylor Polynomials for a function f(x) and centered
at x = a would be the following:

P0(x) = f(a),

P1(x) = f(a) + f ′(a)(x − a),

P2(x) = f(a) + f ′(a)(x − a) +
f ′′(a)(x − a)2

2!
,

P3(x) = f(a) + f ′(a)(x − a) +
f ′′(a)(x − a)2

2!
+

f ′′′(a)(x − a)3

3!
.

A few notes are appropriate here.

1. The Nth-order Taylor Polynomial with center x = a is the sum of the (N − 1)st-order
Taylor Polynomial with the same center, and the term 1

N !f
(N)(a)(x − a)N , so we just add

a single “term” to a Taylor Polynomial to arrive at the next-order Taylor Polynomial.

2. P1(x) is the same as the linear approximation of f(x) centered at x = a, so it is often
called “the first-order approximation of f(x) at (or near) x = a.” P2(x) is then called the
quadratic, or second-order approximation, P3(x) the cubic, or third-order approximation,
and so on.

Example 11.1.1 Find P0(x), P2(x), · · · , P5(x) at x = 0 for the function f(x) = ex.

Solution: First note that if we construct P5(x), the first term will be P0(x), the first two
will comprise P1(x), the first three terms will give P2(x), and so on.

Anytime we need to construct a Taylor Polynomial of a function f(x), We first construct the
chart of the function and its relevant derivatives at the center. For this example, we construct
the following chart with a = 0.

f(x) = ex =⇒ f(0) = 1

f ′(x) = ex =⇒ f ′(0) = 1

f ′′(x) = ex =⇒ f ′′(0) = 1

f ′′′(x) = ex =⇒ f ′′′(0) = 1

f (4)(x) = ex =⇒ f (4)(0) = 1

f (5)(x) = ex =⇒ f (5)(0) = 1

Now, according to our definition (11.2),

P5(x) = f(0)
︸︷︷︸

P0(x)

+f ′(0)(x − 0)

︸ ︷︷ ︸

P1(x)

+
f ′′(0)(x − 0)2

2!

︸ ︷︷ ︸

P2(x), etc.

+
f ′′′(0)(x − 0)3

3!
+

f (4)(0)(x − 0)4

4!
+

f (5)(0)(x − 0)5

5!

= 1 + 1x +
1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5!
x5.
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From the computation above we can also write

P0(x) = 1,

P1(x) = 1 + x,

P2(x) = 1 + x +
x2

2!
,

P3(x) = 1 + x +
x2

2!
+

x3

3!
,

P4(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
,

P5(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
.

The polynomials P0(x), · · · , P5(x) are graphed in Figure 11.1, page 752. A couple of obser-
vations from that figure are in order:� Clearly, as we add more terms to get higher-order Taylor Polynomials, the curves tend to

more closely follow the behavior of the function, at least near the center (x = 0 in the
above example). This will be explained as we proceed.� In all cases, the highest-order nonzero term eventually dominates the polynomial’s behavior
for large |x|. For instance, for large |x|, P5(x) more clearly behaves like the degree-5
polynomial it is, and thus very differently from the original function f(x) = ex:

1. |P5(x)| → ∞ as x → ±∞, and in particular x → −∞ =⇒ P5(x) → −∞, though
ex → 0+ as x → −∞.

2. As x → ∞, ex −P5(x) → ∞, i.e., the exponential will grow much faster than will any
polynomial, including a degree-5 polynomial such as this particular P5(x).

It is natural to ask why the Taylor Polynomials PN (x) seem to give us better and better
approximations of the function f(x) as we increase N . The following observation gives some
hint:

Theorem 11.1.1 If f(x) is N -times differentiable at x = a, then PN (x), as defined by (11.2),
satisfies:

PN (a) = f(a)

P ′
N (a) = f ′(a)

P ′′
N (a) = f ′′(a)

...

P
(N)
N (x) = f (N)(a) (i.e., P

(N)
N (x) is constant)

P
(m)
N (x) = 0 for all m ∈ {N + 1, N + 2, N + 3, · · · }
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Figure 11.1: Graphs of y = ex and the Taylor Polynomial approximations P0(x)–P5(x),
plotted with dashed lines.



11.1. TAYLOR POLYNOMIALS: EXAMPLES AND DERIVATION 753

The upshot of this is that PN is the simplest polynomial such that f, f ′, f ′′, · · · , f (N) respec-

tively match PN , P ′
N , P ′′

N , · · · , P
(N)
N at the center x = a:

P0 has the same height as f at x = a;
P1 has the same height and slope as f at x = a;
P2 has the same height, slope and second derivative as f at x = a;

and so on. While it becomes difficult to visualize how matching higher derivatives with f will
continue the trend of better approximation, it should have the ring of truth. For instance, we can
claim that the polynomial P3(x) matches the function f(x) in height, slope, second derivative
(concavity?), and the (instantaneous) rate of change in the second derivative at x = a. To go to
the fourth-order approximation we note that how fast f ′′′ is changing at the center x = a will
be “picked up” by f (4), at least in the instantaneous sense, and thus by P4(x) since it shares the
height and first four derivatives with f(x) at x = a. This type of reasoning will be addressed
again in our error estimates for our approximations PN (x) ≈ f(x), that is, estimates for the size
of the errors f(x) − PN (x) in these approximations. It will also be addressed at the end of this
section in our derivation of the Taylor Polynomials from some first principles.

So in our above Example 11.1.1, P5(x) matches the height and first five derivatives of ex at
x = 0, which helps it to “fit” the curve of y = ex (i.e., approximate the behavior of f(x)) better
than the lower-order approximations which do not match as many derivatives of f(x) = ex as does
P5(x). Indeed, P5(x) is the simplest polynomial which matches the height, slope, “concavity,”
third derivative, fourth derivative and fifth derivative of ex at x = 0. Higher-order Taylor
Polynomials P6(x), P7(x) and so on will match all that, and more.

A pattern clearly emerges for PN (x), centered at a = 0 for f(x) = ex. If we desired P6(x),
we would simply add 1

6!x
6, and if we desired P7(x) we would then further add 1

7!x
7, and so on.

It would be a simple exercise to generate P20(x) or higher, and to compute its values using any
rudimentary programming language.4

It should be pointed out that some textbooks use the result of the above Theorem 11.1.1,
page 751 as the definition of the Taylor Polynomials, meaning that they define the Taylor Poly-
nomial of f(x) centered at x = a as that Nth-degree (or less) polynomial which matches the
height and first N derivatives of f(x) at x = a. It can be shown that the only such Nth-degree
or lower polynomial which satisfies the matching of height and all derivatives up to degree N at
x = a must in fact be of the form of our definition of the Nth-order Taylor Polynomial (11.2),
page 749.

We will derive our formula from a different motivation at the end of this section, not wishing
for it to be a distraction here. However, for completeness we include a proof of Theorem 11.1.1
(page 751):

4The graphs here and throughout the book are generated with the Postscript language, which is more of a
publishing language and far from being a first choice for intense, scientific computations, but is quite adequate
here. One technique for making the computations more computer-friendly, and pencil and paper-friendly, is to
rewrite the polynomial

P5(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
= 1 + x

„

1 +
1

2
x

„

1 +
1

3
x

„

1 +
1

4
x

„

1 +
1

5
x

««««

.

With the second form, there are fewer multiplications (if we consider, say, x5 and 5! as each comprising four
multiplications), and we do not have to rely on the computer to compute powers of large numbers, divided by
large factorials, and sum these. It is akin to the process known as synthetic division for computing polynomial
values.
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Proof: First we note how derivative the of a general nth-order term in our polynomial
(11.2) simplifies, assuming n ≥ 1:

d

dx

[
f (n)(a)(x − a)n

n!

]

=
f (n)(a)

n!
· n(x − a)n−1 =

f (n)(a)

(n − 1)! · n · n(x − a)n−1

=
f (n)(a)

(n − 1)!
· (x − a)n−1.

We made use of the fact that a, f (n)(a) and n! are all constants in the computation
above. We will also use the fact that any additive constants, i.e., terms of form
“(x−a)0,” will have derivative zero. Finally note that any term with (x−a)n, where
n ≥ 1, will be zero at x = a.

From these observations it is routine (if not totally transparent) that we can demon-
strate the computations in Theorem 11.1.1. To make the pattern clear, we assume
here that N > 3. In each of what follows, we first take derivatives at each line, and
then evaluate at x = a.

PN (x) =

N∑

n=0

f (n)(a)

n!
(x − a)n =⇒ PN (a) =

f (0)(a)

0!
= f(a)

P ′
N (x) =

N∑

n=1

f (n)(a)

(n − 1)!
(x − a)n−1 =⇒ P ′

N (a) =
f (1)(a)

0!
= f ′(a)

P ′′
N (x) =

N∑

n=2

f (n)(a)

(n − 2)!
(x − a)n−2 =⇒ P ′′

N (a) =
f (2)(a)

0!
= f ′′(a)

P ′′′
N (x) =

N∑

n=3

f (n)(a)

(n − 3)!
(x − a)n−3 =⇒ P ′′′

N (a) =
f (3)(a)

0!
= f ′′′(a)

...
...

...
...

P
(N−1)
N (x) =

N∑

n=N−1

f (n)(a)

(n − (N − 1))!
(x − a)n−(N−1)

=
f (N−1)(a)

0!
+

f (N)(a)

1!
(x − a) =⇒ P

(N−a)
N (a) = f (N−1)(a)

P
(N)
N (x) = f (N)(a) =⇒ P

(N)
N (a) = f (N)(a)

P
(m)
N (x) = 0, m ∈ {N + 1, N + 2, N + 3, · · · }, q.e.d.

Example 11.1.2 There is a simple real-world motivation for this kind of approach. Suppose
a passenger on a train wishes to know approximately where the train is. At some time t0, he
passes the engineer’s compartment and sees the mile marker s0 out the front window. He also
sees the speedometer reading v0. If the train is not accelerating or decelerating noticeably, he
can follow his watch and expect the train to move approximately v0(t− t0) in the time [t0, t]. In
other words,

s ≈ s0 + v0(t − t0). (11.3)

On the other hand, perhaps he feels some acceleration, as the train leaves an urban area, for
instance. If the engineer has an acceleration indicator, and it reads a0 at time t0, then the



11.1. TAYLOR POLYNOMIALS: EXAMPLES AND DERIVATION 755

passenger could assume that the acceleration will be constant for a while (but not too long!),
and use

s ≈ s0 + v0(t − t0) +
1

2
a0(t − t0)

2. (11.4)

If our passenger can even compute how a = s′′ is changing, then assuming that change is at a
constant rate, i.e., that s′′′(t) ≈ s′′′(t0), we can go another order higher and claim5

s ≈ s0 + v0(t − t0) +
1

2
a0(t − t0)

2 +
1

3
s′′′(t0)(t − t0)

3. (11.5)

Indeed this will likely be the best estimate thus far when |t − t0| is small (and s′′′ is still
relatively constant). However, we have to be aware that this latest approximation is a degree-
three polynomial, and will therefore act like one as |t| (and therefore |t − t0|) gets large, so we
have to always be aware of the range of t for which the approximation is accurate.

Next we look at some more examples.

Example 11.1.3 Find P2(x) for f(x) =
√

1 + x2 centered at a = 0.
Solution: We compute the first two derivatives, and evaluate them at 0:

f(x) =
√

1 + x2 =⇒ f(0) = 1

f ′(x) =
1

2
√

1 + x2
· 2x = x(1 + x2)−1/2 =⇒ f ′(0) = 0

f ′′(x) = x · −1

2
(1 + x2)−3/2 + (1 + x2)−1/2 · 1 =⇒ f ′′(0) = 1.

Thus

P2(x) = f(0) + f ′(0)(x − 0) +
1

2
f ′′(0)(x − 0)2

= 1 +
1

2
x2.

See Figure 11.2, page 756 for the graphs of f(x) and P2(x).

In most applications, one chooses a center x = a so that a, f(a), f ′(a), f ′′(a) and so on are all
“nice” numbers, though theoretically we could have found P2(x) in Example 11.1.3 with a =

√
3.

On the other hand, if we can easily enough compute
√

3 (for our (x − a)n terms), we probably
could equally easily compute

√
x2 + 1.

In Section 11.5.3 we will see a pattern which will help us compute higher-order Taylor Series
for functions such as this. Clearly the derivative computations needed to find f ′′′(0), f (4)(0)
and so on quickly become unwieldy, and so a shortcut will be welcome. For many physics-type
problems, however, P2(x) is a very useful approximation, particularly for x ∈ [−1, 1].

Example 11.1.4 Find P3(x) at a = 1 if f(x) = 2x3 − 9x2 + 5x + 11.

Solution: Again we construct a chart.

f(x) = 2x3 − 9x2 + 5x + 11 =⇒ f(1) = 9

f ′(x) = 6x2 − 18x + 5 =⇒ f ′(1) = −7

f ′′(x) = 12x− 18 =⇒ f ′′(1) = −6

f ′′′(x) = 12 =⇒ f ′′′(1) = 12

5Notice that if f ′′ were truly constant, then (11.4) would be exact and not an approximation. Similarly, if f ′′′

were truly constant, then (11.5) would be exact.
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1 2−1−2

1

2

3

Figure 11.2: Graph of f(x) =
√

1 + x2 (thicker line), along with its second-order Taylor
Polynomial P2(x) = 1 + 1

2
x2, which is much easier to compute (at least “by hand”), and

reasonably accurate if |x| = |x − 0| is small. See Example 11.1.3, page 755.

Now

P4(x) = f(1) + f ′(1)(x − 1) +
f ′′(1)(x − 1)2

2!
+

f ′′′(1)(x − 1)3

3!
+

f (4)(1)(x − 1)4

4!

= 9 − 7(x − 1) +
−6(x − 1)2

2!
+

12(x − 1)3

3!

= 9 − 7(x − 1) − 3(x − 1)2 + 2(x − 1)3.

This is a trivial, yet important kind of example, for if we expanded out the last line above in
powers of x we would get back the original polynomial, which shows that the simplest polynomial
matching this function and its first three derivatives at x = 1 is the polynomial itself. Further-
more, we can see from our chart, that f (4)(x) = 0, f (5)(x) = 0, etc., and so P3 = P4 = P5 = · · · .
We will enshrine this result in the following theorem:

Theorem 11.1.2 Suppose f(x) is an N th-degree polynomial, i.e.,

f(x) = ANxN + AN−1x
N−1 + · · · + A1x + A0. (11.6)

Then regardless of a ∈ R, we have (∀m ≥ N) [Pm(x) = f(x)].
In other words, a polynomial will be the same as its Taylor Polynomials of all orders which are

at least as high as the degree of the polynomial, regardless of the center of the Taylor Polynomial.

The proof is interesting to read through, though the result is more important than the proof.
We include the proof here for completeness.

Proof: We will prove this in stages.

(1) An important general observation we will use repeatedly is the following:

(∀x ∈ R)[g′(x) = h′(x)] ⇐⇒ (∃C)[g(x) − h(x) = C]. (11.7)

In other words, if two functions have the same derivative functions, then the
original two functions differ only by a constant. (This is also true if the functions
and derivatives are only considered on single intervals.)
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(2) Since f and PN are both Nth-degree polynomials, we have f (N)(x) and P (N)(x)
are constants.

(3) By Theorem 11.1.1, page 751, we have f (N)(a) = P (N)(a).

(4) From (2) and (3), we have

P (N)(x) = P (N)(a) = f (N)(a) = f (N)(x). (11.8)

Thus P (N)(x) = f (N)(x).

(5) By (1), we can thus conclude that P (N−1)(x) and f (N−1)(x) differ by a constant.

(6) Since P (N−1)(a) = f (N−1)(a), and (5), we must have P (N−1)(x) = f (N−1)(x).
In other words, since P (N−1)(x) and f (N−1)(x) differ by a constant, and since
P (N−1)(a) − f (N−1)(a) = 0, the constant referred to in (5) must be zero.

(7) The argument above can be repeated to get P (N−2)(x) = f (N−2)(x), and so on,
until finally we indeed get P ′(x) = f ′(x).

(8) The last step is the same. From (1), P and f differ by a constant, but since
P (a) = f(a), that constant must be zero, so P (x)− f(x) = 0, i.e., P (x) = f(x).

It is important that the original function f(x) above was a polynomial, or else the conclusion
is false.

The theorem is useful for both analytical and algebraic reasons. If we wish to expand an
Nth-degree polynomial (11.6) in powers of x − a (instead of the usual x = x − 0), then we
can just compute PN (x) centered at x = a. From the theorem, we can easily “re-center” any
polynomial, meaning we can write it as a sum of powers of (x − a) instead of x, the original
“center” of course being zero.

Example 11.1.5 Write the following polynomial in powers of x: f(x) = (x + 5)4.
Solution: We can use the binomial expansion (with Pascal’s Triangle, for instance) for this,

but we can also use the Taylor Polynomial centered at a = 0:

f(x) = (x + 5)4 =⇒ f(0) = 625

f ′(x) = 4(x + 5)3 =⇒ f ′(0) = 4 · 53

f ′′(x) = 4 · 3(x + 5)2 =⇒ f ′′(0) = 4 · 3 · 52

f ′′′(x) = 4 · 3 · 2(x + 5) =⇒ f ′′′(0) = 4 · 3 · 2 · 5
f (4)(x) = 4 · 3 · 2 · 1 =⇒ f (4)(0) = 4 · 3 · 2 · 1
f (m)(x) = 0 any m > 4

P4(x) = f(0) + f ′(0)x +
f ′′(0)x2

2!
+

f ′′′(0)x3

3!
+

f (4)(0)x4

4!

= 54 + 4 · 53x +
4 · 3 · 52x2

2!
+

4 · 3 · 2 · 5x3

3!
+

4 · 3 · 2 · 1x4

4!

= 625 + 500x + 150x2 + 20x3 + x4.

Because this is P4(x) for a fourth-degree polynomial function, it equals that polynomial function,
i.e.,

(x + 5)4 = 625 + 500x + 150x2 + 20x3 + x4.
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Of course arguably the more interesting Taylor Polynomials do not involve polynomial
approximations of polynomials. The relationship to ordinary polynomials explored above is
nonetheless interesting. For the remainder here, we will look at examples where f(x) is not itself
a polynomial.

Example 11.1.6 Consider the function f(x) = 3
√

x, with a = 27.

a. Calculate P1(x), P2(x), P3(x).

b. Use these to approximate 3
√

26.

c. Compare these to the actual value of 3
√

26, as determined by calculator.

Solution: We take these in turn.
a. First we will construct a chart.

f(x) = x1/3 f(27) = 3

f ′(x) =
1

3
x−2/3 f ′(27) =

1

3
· 1

9
=

1

27

f ′′(x) = − 2

9
x−5/3 f ′′(27) = − 2

9
· 1

243
= − 2

2187

f ′′′(x) =
10

27
x−8/3 f ′′′(27) =

10

27
· 1

6561
=

10

177, 147

Thus,

P1(x) = 3 +
1

27
(x − 27)

P2(x) = 3 +
1

27
(x − 27) +

− 2
2187

2
(x − 27)2

= 3 +
1

27
(x − 27) − 1

4374
(x − 27)2

P3(x) = 3 +
1

27
(x − 27) − 1

4374
(x − 27)2 +

(
10

177,147

)

3!
(x − 27)3

= 3 +
1

27
(x − 27) − 1

4374
(x − 27)2 +

10

1, 062, 882
(x − 27)3.

b. From these we get

P1(26) = 3 +
1

27
(26 − 27) = 3 +

1

27
(−1) = 3 − 1

27
=

80

27
≈ 2.9629630

P2(26) = 3 +
1

27
(−1) +

1

4374
(−1)2 =

12, 961

4374
≈ 2.9627343

P3(26) = P2(26) +
10

1, 062, 882
(−1)3 =

3149513

1062882
≈ 2.9627249.

c. The actual value (to 8 digits) is 3
√

26 ≈ 2.9624961. The errors R1(26), R2(26) and R3(26),
in each of the above approximations are respectively

R1(26) =
3
√

26 − P1(26) ≈ 2.9624961− 2.9629630 = −0.0004669

R2(26) =
3
√

26 − P2(26) ≈ 2.9624961− 2.9627343 = −0.0002382

R3(26) =
3
√

26 − P3(26) ≈ 2.9624961− 2.9627249 = −0.0002288.
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Thus we see some improvement in these estimates. For other functions it can be more or less
dramatic. In Section 11.2 we will state the form of the error, or remainder RN (x) = f(x)−PN(x),
and thus be able to explore the accuracy of PN (x).

Example 11.1.7 Find P5(x) at a = 0 for f(x) = sin x.

Solution: Again we construct the chart.

f(x) = sin x =⇒ f(0) = 0

f ′(x) = cosx =⇒ f ′(0) = 1

f ′′(x) = − sin x =⇒ f ′′(0) = 0

f ′′′(x) = − cosx =⇒ f ′′′(0) = −1

f (4)(x) = sin x =⇒ f (4)(0) = 0

f (5)(x) = cosx =⇒ f (5)(0) = 1,

from which we get

P5(x) = 0 + 1x +
0x2

2!
+

−1x3

3!
+

0x4

4!
+

1x5

5!

= x − x3

3!
+

x5

5!
.

From this chart we can see an obvious pattern where

P6(x) = P5(x) + 0 = P5(x),

P8(x) = x − x3

3!
+

x5

5!
− x7

7!
+ 0 = x − x3

3!
+

x5

5!
− x7

7!
= P7(x),

and so on.

This answers the question of how electronic calculators compute sinx: by means of just such
a Taylor Polynomial.6 It also hints at an answer for why physicists often simplify a problem
by replacing sinx with x: that is the simplest polynomial which matches the height, slope and
concavity of sinx at x = 0 is a very simple function indeed, namely P2(x) = x.

See Figures 11.3 and 11.4, page 760 to compare sinx to P1(x), P3(x), · · · , P13(x) = P14(x).
Clearly the polynomials are increasingly better at approximating sinx as we add more terms.
On the other hand, as |x| gets large these approximations eventually behave like the polynomials
they are in the sense that |Pn(x)| → ∞ as |x| → ∞. This is not alarming, since it is the local
behavior, in this case near x = 0 (more generally near x = a), that we exploit when we use
polynomials to approximate functions. It is worth remembering, however, so that we do not
attempt to use a Taylor Polynomial to approximate a function too far from the center, x = a,
of the Taylor Polynomial.

Example 11.1.8 (Application) As already mentioned, physicists often take advantage of the
second order approximation sin x ≈ P2(x) = 0 + x + 0x2, that is,

sin x ≈ x for |x| small. (11.9)

6Note that when using Taylor Polynomials to compute a trigonometric function such as sin x, the calculus is
greatly simplified when we assume x is in radians (which are dimensionless). Therefore a calculator giving its
approximation of, say, sin 57◦ will convert the angle into radians first.



760 CHAPTER 11. TAYLOR SERIES

1

2

3

4

−1

−2

−3

−4

−3π −2π −π π 2π

P3(x) and P4(x)

P 1
(x

)
an

d
P 2

(x
)

P5(x) and P6(x)

Figure 11.3: sin x, P1(x), P2(x) = x (gray), P3(x), P4(x) = x− x3

3!
(dots), and P5(x), P6(x) =

x − x3

3!
+ x5

5!
(dashed).

1
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3

4

−1

−2

−3

−4

−3π −2π −π π 2π

P3 P7 P11

P1 P5 P9 P13

Figure 11.4: sin x and P1(x) = P2(x), P3(x) = P4(x), · · · , P13(x) = P14(x).
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The classic example is the modeling of the simple pendulum. See the illustration below, which
we then model mathematically.

Suppose a pendulum of mass m is hanging from an always taut and straight string of negligible
weight. Let θ be the angle the string makes with the downward vertical direction. We will take
θ > 0 if θ represents a counterclockwise rotation, as is standard. Also g is the acceleration due
to gravity, approximately 32 ft/sec2 or 9.8 m/sec2.

The component of velocity which is in the
direction of motion of the pendulum is given

by ds
dt = d(lθ)

dt = l dθ
dt , and the acceleration

by its derivative, d2s
dt2 = d 2(lθ)

dt2 = l d2θ
dt2 . Now

the force in the direction of the motion has
magnitude mg sin θ, but is a restorative force,
and is thus in the opposite direction of the
angular displacement. It is not too difficult
to see that this force is given by −mg sin θ,
for θ ∈

[
−π

2 , π
2

]
. Thus, by equating the force

and the acceleration in the angular direction,
we get7

θ

m

⇀F
=

m
⇀g

⇀
F tan

⇀F
n
o
r
m

θ

l

s

ml
d 2θ

dt2
= −mg sin θ (11.10)

which simplifies to
d 2θ

dt2
= −g

l
sin θ. (11.11)

This is a relatively difficult differential equation8 to solve. However, if we assume |θ| is small,
we can use sin θ ≈ θ and instead solve the following equation which holds approximately true 9:

d 2θ

dt2
= −g

l
θ (11.12)

7For those familiar with moments of inertia, the analog of F = ma is

N = Iα,

where N is torque, I is the moment of inertia, and α is the angular acceleration, in rad/sec2. Using the fact that,
for this example, torque is also defined by N = Ftanl = −mgl sin θ, we get the equations

N = −mgl sin θ = ml2
d 2θ

dt2
,

giving equation (11.10) after dividing by l.
8A differential equation is an equation involving the derivatives of a function y (or θ here). The goal in

“solving” a differential equation is to find all functions y which satisfy the equation. Courses in differential
equations assume the student has learned calculus for two or three semesters, though it is common for simple
differential equations to be found in introductory calculus books.

9We should point out here that (11.12) is an example of a simple harmonic oscillator, which is any physical
system governed by an equation of the form

Q′′(t) = −κQ(t), κ > 0

(kappa, the lower-case Greek letter kappa being a constant) which has solution

Q(t) = A sin
√

κ t + B cos
√

κ t,

and period 2π/
√

κ. Examples include springs which are governed by Hooke’s Law F (s) = −ks, where k > 0 and

s = s(t). Recall F = md2s
dt2

, so Hooke’s Law becomes d2s
dt2

= − k
m

· s, giving a simple harmonic oscillator.
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The solution of (11.12) is

θ = A sin

(√
g

l
· t
)

+ B cos

(√
g

l
· t
)

. (11.13)

Here A and B are arbitrary constants depending on the initial (t = 0) position and velocity of
the pendulum. Notice that (11.13) is periodic, with a period τ where τ = 2π/

√

g/l, i.e.,

τ = 2π

√

l

g
. (11.14)

That is the formula found in most physics texts for the period of a pendulum. However, it is
based upon an approximation, albeit quite a good one for |θ| small. Still, the higher we allow
the pendulum to swing, the less we can rely on this approximation of the period.

To a novice, it might not be terribly satisfying to resort to approximations when attempting
to solve a problem, but “in the lab” and when designing practical applications, understanding
how to approximate, and the limitations of the practice, are quite valuable, and usually better
appreciated with more exposure to the possibilities.

Example 11.1.9 Let us find P6(x) where f(x) = cosx and a = 0.

Solution: We construct the table again:

f(x) = cosx =⇒ f(0) = 1

f ′(x) = − sin x =⇒ f ′(0) = 0

f ′′(x) = − cosx =⇒ f ′′(0) = −1

f ′′′(x) = sin x =⇒ f ′′′(0) = 0

f (4)(x) = cosx =⇒ f (4)(0) = 1

f (5)(x) = − sin x =⇒ f (5)(0) = 0

f (6)(x) = − cosx =⇒ f (6)(0) = −1

Since the odd derivatives are zero at x = 0, only the even-order terms appear, and we have

P6(x) = 1 +
−1(x − 0)2

2!
+

1(x − 0)4

4!
+

−1(x − 0)6

6!

= 1 − x2

2!
+

x4

4!
− x6

6!
.

From this a pattern clearly emerges, and we could easily calculate

P14(x) = 1 − x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!
+

x12

12!
− x14

14!
.

We might also point out that P15 would be the same, since the odd terms were all zero.
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Example 11.1.10 Find P5 for f(x) = lnx with center a = 1.

Solution: First, the table is constructed as usual by computing first f (n)(x) and then
f (n)(a) = f (n)(1).

f(x) = lnx =⇒ f(1) = 0

f ′(x) = x−1 =⇒ f ′(1) = 1

f ′′(x) = −1x−2 =⇒ f ′′(1) = −1

f ′′′(x) = 2x−3 =⇒ f ′′′(1) = 2

f (4)(x) = −3 · 2x−4 =⇒ f (4)(1) = −3 · 2
f (5)(x) = 4 · 3 · 2x−5 =⇒ f (5)(1) = 4 · 3 · 2

Now we construct P5 from (11.2).

P5(x) = 0 + 1(x − 1) +
−1(x − 1)2

2!
+

2(x − 1)3

3!
+

−3 · 2(x − 1)4

4!
+

4 · 3 · 2(x − 1)5

5!
.

Recalling the definition of factorials, in which 2! = 2 · 1, 3! = 3 · 2 · 1, 4! = 4 · 3 · 2 · 1, and
5! = 5 · 4 · 3 · 2 · 1, we see that the above simplifies to

P5(x) = 1(x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 − 1

4
(x − 1)4 +

1

5
(x − 1)5.

It is not hard to see that f (n)(x) = (−1)n+1(n− 1)!x−n, and so f (n)(1) = (−1)n+1(n− 1)!. The
obvious pattern which appears in P5 should continue for P6, P7, etc. Thus we can calculate any
PN (x) for this example:

PN (x) =

N∑

n=1

(−1)n+1(x − 1)n

n
.

If we wished to have N → ∞, we get the full Taylor Series:

∞∑

n=1

(−1)n+1(x − 1)n

n
.

However this might not converge for all x. Indeed, from the ratio test we get

ρ = lim
n→∞

∣
∣
∣
∣

(−1)n+2(x − 1)n+1

n + 1

/
(−1)n+1(x − 1)n

n

∣
∣
∣
∣
= lim

n→∞

n|x − 1|
n + 1

= |x − 1|,

and so ρ < 1 when |x−1| < 1, i.e., x ∈ (0, 2), and ρ > 1 when |x−1| > 1, i.e., x ∈ (−∞, 0)∪(2,∞).
When x = 0 we have a negative harmonic series

∑∞
n=1

−1
n which diverges, and when x = 2 we

have the conditionally convergent alternating series
∑∞

n=1
(−1)n+1

n . Summarizing, thus the series
converges for x ∈ (0, 2], and diverges elsewhere.

This use of the Ratio Test is the most common method for computing where such a series—
namely one in which we have a formula for the nth-degree term—converges.

From many of the previous examples we see that the table many Taylor Polynomials have
patterns which emerge easily from the derivative computations. However, we will see that this is
not the case for many important series which we can nonetheless use other methods to derive the
pattern. In fact those methods are often easier than attempting what we will later characterize
as “brute force,” or “from scratch” method of construction here, which is deriving the nth term

by computing f (n)(x) to compute f (n)(a) to construct PN (x) =
∑N

n=0
f(n)(a)(x−a)n

n! .
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Motivation for and Derivation of Taylor Polynomials’ Forms from First Principles

We end this Section 11.1 with a derivation of the Taylor Polynomials from nearly “first prin-
ciples.” While arguably not crucial to a relative novice student of calculus, it is nonetheless
valuable and interesting in its own right because of the insights that can be gleaned from the
creative ideas it employs. That said, its placement here is mostly for completeness. It will likely
be much better motivated after the subsequent sections in this chapter are mastered, so the
reader should feel free to peruse casually here first, and revisit it after studying the rest of the
chapter and having a better understanding of the complete context.

One development of PN (x), left for the exercises, is a derivation based upon the assumption
that PN matches f in all derivatives (including the “zeroth”) up to order N at the center a, and
then the coefficients an of the (x − a)n terms are all found using methods similar to what we
used to find coefficients of partial fraction decompositions.

However, the derivation here uses a different motivation, and is based upon reasonable integral
approximations. We will continually refer to the special case where f(x) = ex and the center is
a = 0—for which P0(x) through P5(x) are graphed along with f(x) in Figure 11.1, page 752—to
illustrate the principles developed here.

In summary, PN (x) is the (necessarily polynomial) function we arrive at by deduction under
the assumptions that

1. we only have the following data for f : f(a), f ′(a), f ′′(a), · · · , f (N)(a), and

2. given no other data for f , we assume that its derivative f (N)(x) is approximately constant,
for x near x = a. That is,

f (N)(x) ≈ f (N)(a), for x near a.

If a function did have constant Nth derivative, it would be a polynomial of degree at most
N , which we could see by integrating that derivative N times.

The idea is to find simple polynomial approximations for a more complicated function given
certain data regarding its behavior. In particular, if we know f(a), f ′(a), f ′′(a), and so on, then
we should know something about how the function f(x) behaves near x = a, and be able to
produce a polynomial which mimics that behavior. In doing so we will make repeated use of the
following lemma, which is useful in many other contexts as well:

Lemma 11.1.1 Given any function g, with derivative g′ existing and continuous on the closed
interval with endpoints x and a (i.e., [a, x] or [x, a], depending upon whether x ≤ a or a ≤ x),
the following equation holds:

g(x) = g(a) +

∫ x

a

g′(t) dt. (11.15)

This is easy enough to verify. Since g is clearly an antiderivative of g′, the Fundamental Theorem
of Calculus gives

g(a) +

∫ x

a

g′(t) dt = g(a) + g(t)

∣
∣
∣
∣

x

a

= g(a) + g(x) − g(a) = g(x),

which is the equation (11.15) in reverse, q.e.d.
Two simple observations are worth making here.

1. It is interesting to verify this for the special case of (11.15) when x = a: g(a) = g(a) +
∫ a

a g′(t) dt = g(a)+0 = g(a). Recall that such an integral as appears here over any interval
of length zero is necessarily zero.
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2. This easily lends itself to a simple physics application. If we replace g(x) by s(t), where

s(t) is the position at time t and s0 = s (t0), we get s(t) = s0 +
∫ tf

t0
s′(t) dt. If s′(t) = v(t)

is constant, we get s(t) = s0 + v(tf − t0). If t0 = 0, we get s = s0 + vt. Other cases also
follow quickly from (11.15).

Derivation of P0(x)

For a function f(x), if we would like to approximate the value of the function for x near a, the
simplest assumption is that the function is approximately constant near x = a. The obvious
choice for that constant is f(a) itself. Hence we might assume f(x) ≈ f(a). (Note that f(a)
is itself a constant.) The approximation of f(x) which assumes the function approximately
constant is then P0(x):

P0(x) = f(a). (11.16)

This is also called the zeroth-order approximation of f(x) centered at x = a, and we can write
f(x) ≈ P0(x) for x near a, i.e., for |x−a| small. (See again Figure 11.1, page 752.) Summarizing,
for x near a,

f(x) ≈ f(a)
︸︷︷︸

P0(x)

. (11.17)

A natural question then arises: how good is the approximation (11.17)? Later we will have a
sophisticated estimate on the error in assuming f(x) ≈ P0(x) = f(a). For now we take the
opportunity to foreshadow that result by attacking the question intuitively. The answer will
depend upon the answers to two related questions, which can be paraphrased as the following.

(i) How good is the assumption that f is constant on the interval from a to x?

In other words, how fast is f changing on that interval?

(ii) How far is x from a?

These factors both contribute to the error. For instance if the interval from a to x is short,
then a relatively slow change in f means small error f(x) − P0(x) = f(x) − f(a) over such an
interval. Slow change can, however, accumulate to create a large error if the interval from a to
x is long. On the other hand, a small interval can still allow for large error if f changes quickly
on the interval. The key to estimating how fast the function changes is, as always, the size of
its derivative, assuming the derivative exists. Translating (i) and (ii) above into mathematical
quantities, we say the bounds of the error will depend upon the following:

(a) the size of |f ′(t)| as t ranges from a to x (assuming f ′(t) exists for all such t), and

(b) the distance |x − a|.

We will see similar factors accounting for error as we look at higher-order approximations
P1(x), P2(x) and so on in this subsection, and the actual form of the general estimate for the
error (also known as the remainder) in subsequent sections.

Derivation of P1(x)

It was remarked in the last subsection that P0 is not likely a good approximation for x very far
from a if f ′ is large. In computing P1(x), we will not assume f is approximately constant (as
we did with P0), but instead assume that f ′ is approximately constant. To be clear, here are
the assumptions from which P1 is computed:
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For this derivation we will use the lemma from the beginning of this section (that is Lemma 11.1.1,
page 764). Note that the following derivation uses the fact that f ′(a) is a constant, and our
assumption f ′(t) ≈ f ′(a).

f(x) = f(a) +

∫ x

a

f ′(t) dt

≈ f(a) +

∫ x

a

f ′(a) dt = f(a) + f ′(a)t

∣
∣
∣
∣

x

a

= f(a) + f ′(a)x − f ′(a)a = f(a) + f ′(a)(x − a)
︸ ︷︷ ︸

P1(x)

.

Thus we define P1(x), the first-order approximation of f(x) centered at x = a by

P1(x) = f(a) + f ′(a)(x − a). (11.18)

This was also called the linear approximation of f(x) at a in Chapter 5 ((5.13), page 496).
From the graphs in Figure 11.1, page 752 we can see how P0 and P1 can differ. Because

assuming constant derivative is often less risky, error-wise, than assuming constant height, P1(x)
is usually a better approximation for f(x) near x = a, and indeed one can usually stray farther
from x = a and have a reasonable approximation for f(x) if P1(x) is used instead of P0(x).10

Again we ask how good is this newer approximation P1(x), and again the intuitive response
is that it depends upon answers two questions:

(i) How close is f ′(t) to constant in the interval between a and x?

(ii) How far are we from x = a?

The first question can be translated into, “how fast is f ′ changing on the interval between a and
x?” This can be measured by the size of f ′′ in that interval, if it exists there. Again translating
(i) and (ii) into quantifiables, we get that the accuracy of P1(x) depends upon

(a) the size of |f ′′(t)| as t ranges from a to x (assuming f ′′(t) exists for all such t), and

(b) the distance |x − a|.

If f ′′ is relatively small, then f ′ is relatively constant, and then the computation we made giving
f(x) ≈ f(a)+ f ′(a)(x− a), i.e., f(x) ≈ P1(x), will be fairly accurate as long as |x− a| is not too
large. See again Figure 11.1, page 752.

Derivation of P2(x)

To better accommodate the change in f ′, we next replace the assumption that f ′ is constant
with the assumption that, rather than constant, it is changing at a constant rate. In other words,
we assume that f ′′ is constant. So our assumptions in deriving P2(x) are:

10Note that in an example of motion, this is like choosing between an assumption of constant position, and of
constant velocity. Intuitively the constant velocity assumption should yield a better approximation of position,
for a while, than would a constant position assumption. However there are functions with very fast oscillations
but low magnitude, for which the assumption of a constant height is less problematic than the assumption of a
constant derivative, which may be quite large. Indeed a function with a very large derivative may stay surprisingly
bounded, while a strictly bounded function can have large values for derivatives, so the value of these assumptions
of some kind of constancy must be considered in context. Further consideration of these points is left to the reader.
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Again we use the lemma at the beginning of the section, except this time we use it twice: first,
in approximating f ′; and then integrating that approximation to approximate f .

f ′(x) = f ′(a) + (f ′(x) − f ′(a))

= f ′(a) +

∫ x

a

f ′′(t) dt

≈ f ′(a) +

∫ x

a

f ′′(a) dt

= f ′(a) + f ′′(a)(x − a).

Note that the computation above was the same as from the previous section, except that the
part of f ′ there is played by f ′′ here, and the part of f there is played by f ′ here. We integrate
again to approximate f . The second line below uses the approximation for f ′ derived above.

f(x) = f(a) +

∫ x

a

f ′(t) dt (Lemma 11.1.1)

≈ f(a) +

∫ x

a

[f ′(a) + f ′′(a)(t − a)] dt (Approximation for f ′ above)

= f(a) + f ′(a)(x − a) +

[
f ′′(a)

2
(t − a)2

]∣
∣
∣
∣

x

a

= f(a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2 − 1

2
f ′′(a)(a − a)2

= f(a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2

︸ ︷︷ ︸

P2(x)

.

Thus we define the second-order (or quadratic) approximation of f(x) centered at x = a by

P2(x) = f(a) + f ′(a)(x − a) +
1

2
f ′′(a)(x − a)2. (11.19)

Again, the accuracy depends upon (i) how close f ′′(t) is to constant from t = a to t = x,
and (ii) how far we are from x = a. These can be quantified by the sizes of (a) |f ′′′(t)| on the
interval from t = a to t = x, and (b) how large is |x − a|.

It is reasonable to take into account how fast f ′ changes on the interval from a to x. For
P2 we assume, not that f ′ is approximately constant as we did with P1(x), but that the rate
of change of f ′ is constant on the interval, i.e., that f ′′ is constant (and equal to f ′′(a)) on the
interval. In fact this tends to make P2(x) “hug” the graph of f(x) better, since it accounts for the
concavity. Figure 11.1, page 752 shows how P0(x), P1(x) and P2(x) can give progressively better
approximations of f(x) near x = a (for the case f(x) = ex and a = 0). The extent to which
we err in that assumption is the extent to which f ′′ (related to concavity) is non-constant, but
at least near x = a, P2(x) accommodates concavity, as well as slope and height of the function
f(x).
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Conclusion

The proof of the final formula for

PN (x) =

N∑

n=0

f (n)(a)(x − a)n

n!

would use an induction method, where one proves that

(1) the formula holds true for the first, or first few cases, say N = 0, 1, 2 under their respective
assumptions (that they match the function and its first N derivatives at x = a, and that
their degrees are at most N), and

(2) that the formula’s truth for the Nth case (regardless of N ∈ N ∪ {0}) implies its truth for
the (N + 1)st case. That is,

PN (x) =

N∑

n=0

f (n)(a)(x − a)n

n!
=⇒ PN+1(x) =

N+1∑

n=0

f (n)(a)(x − a)n

n!
.

Thus the establishment of the formula for P0, P1 and particularly P2 implies it is also established
for P3, which in turn implies it is established for P4, and so on, so that for instance its truth for
P1000 is established because it is just a matter of following the implication in (2), also called the
induction step, 998 times.

While we already proved (1), the proof of (2) is somewhat long and distracting, so we omit it
here. However we will include in the exercises the case of computing P3(x) from scratch, where
one assumes knowledge of f(a), f ′(a), f ′′(a), f ′′′(a) and assumes that f ′′′(x) ≈ f ′′′(a), i.e., f ′′′ is
approximately constant, and integrating back to what that would imply for P3(x), the function
which is an at most degree-3 polynomial and conforms to those assumptions on its derivative,
and is thus an approximation of f(x), at least near x = a. By the time a student derives the
formula for P3(x) in that manner, it should seem quite reasonable that the pattern will continue
for P4(x), P5(x) and so on.

Exercises

1. Given f(x) =
1

1 − x
, and a = 0,

(a) show using (11.2), page 749 that

P5(x) = 1 + x+ x2 + x3 + x4 + x5.

(b) What do you suppose is the gen-
eral formula for PN (x)?

(c) Recalling facts about geometric
series, for |x| < 1 what is the sum
∑∞

n=0 xn?

2. Find P5(x) if f(x) = e2x and a = 0.

3. Find P5(x) if f(x) = e−3x and a = 0.

4. If ex = 1+x+ x2

2! + x3

3! + x4

4! + · · · repre-
sents a series for f(x) = ex, then how

would we expect to represent the fol-
lowing as series?

(a) e2x =

(b) e−3x =

(c) ex2

=

(d) x2ex =

5. Find P5(x) where f(x) = sinx and
a = π.

6. Find P3(x) if f(x) = tanx and a =
π

4
.

7. Find P2(x) if f(x) = tan−1 x and a =
0.

8. Find P2(x) if f(x) = tan−1 x, a = 1.
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9. Find P2(x) if f(x) =
√

1 + x2, a = 0.

10. Find P3(x) if f(x) = x3, a = 1.

11. Find a formula for PN (x) if f(x) = 1
x ,

a = 1.

12. Find a formula for PN (x) if f(x) = 1
x ,

a = −1.

13. Find P3(x) if f(x) = sin x, a = π
2 .

14. Find P3(x) if f(x) = sin x, a = −π
6 .

15. Show that (11.13) is indeed a solution
to (11.12) by taking two time deriva-
tives of each side of (11.12), remember-
ing to employ the chain rule where ap-
propriate.

16. If α ∈ R, find P5(x) for f(x) = (1+x)α

and a = 0.

17. Suppose at time t = 1 we know that
s = 2, v = 5 and a = −7. What is
likely to be our best approximation for
s(t) near time t = 1?

18. Assuming f ′′′(x) = 6 for all x, and
f ′′(2) = 8, f ′(2) = 7 and f(2) = 5,
what is f(x)?

19. If we know f ′′′(0) = 12, f ′′(2) = 22,
f ′(4) = 92, and f(1) = 2, assuming
f ′′′(x) is constant, what is f(x)?

For Exercises 20–22, use P4(x) centered at
a = 0 to approximate the given quantity.
Compare that to the actual value (given by
a calculator or similar device).

20. f(x) = sin x at x = π/4.

21. f(x) = cosx at x = π/4.

22. f(x) = ex at x = 0.5.

23. Consider f(x) = lnx, and its Taylor
Polynomials Pn(x) centered at a = 1.

(a) Compute P0(x), P1(x), · · · , P6(x).
(A pattern should become readily
apparent.)

(b) Using a calculator or similar de-
vice find P0(2), P1(2), · · · , P6(2)
as approximations of ln 2. Com-
pare these to ln 2, and comment
on the apparent efficiency of the
approach Pn(2) → ln 2 as n → ∞.

(c) Repeat the above but with
P0(1/2), P1(1/2), · · · , P6(1/2), as
approximations of ln(1/2).

(d) Note that ln(1/2) = − ln 2.
Does this suggest a more efficient
method of approximating ln 2 us-
ing Taylor Polynomials? (Note
the relative positions of 2, 1/2 and
the center of your polynomials.)

(e) Repeat (b)–(c) to compute
P0(1/4), P1(1/4), · · · , P6(1/4),
compared to ln(1/4) = −2 ln 2.

(f) Is there any reason why we might
not be interested in Pn(0)?

24. By applying d 2

dt2 to both sides of
(11.13), show that θ satisfies (11.12).

25. Compute P3(x) in the general case by
(1) listing the hypotheses from which
P3(x) arises as an approximation of
f(x), and (2) performing the inte-
gration steps from those hypotheses.
(Read “Conclusion,” page 768.)
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11.2 Accuracy of PN(x)

All of this makes for lovely graphs, but one usually needs some certainty regarding just how
accurate we can expect PN (x) to be if it is to be used to approximate f(x). Fortunately, there is
a way to estimate—here meaning to find an upper bound on the size of—the error arising from
replacing f(x) with PN (x). This difference f(x) − PN (x) is also referred to as the remainder
RN (x):

RN (x) = f(x) − PN (x). (11.20)

Perhaps the name “remainder” makes more sense if we rewrite (11.20) in the form

f(x) = PN (x)
︸ ︷︷ ︸

approximation

+ RN (x)
︸ ︷︷ ︸

remainder

. (11.21)

Of course if we knew the exact value of RN (x), then by (11.21) we know f(x) since we can always
calculate PN (x) exactly, even with pencil and paper since, after all, it is just a polynomial. Often
the best we can expect is to possibly have some estimate on the size of RN (x). This can often
be accomplished by knowing the rough form of RN , as is given in the following theorem.

Theorem 11.2.1 (Remainder Theorem)11 Suppose that f , f ′, f ′′, · · · , f (N) and f (N+1) all
exist and are continuous on the closed interval with endpoints both x and a. Then

RN (x) =
f (N+1)(z)(x − a)N+1

(N + 1)!
(11.22)

where z is some (unknown) number between a and x.

With this (11.21) could be rewritten

f(x) = f(a) +
f ′(a)(x − a)

1!
+ · · · + f (N)(a)(x − a)N

N !
︸ ︷︷ ︸

PN (x)

+
f (N+1)(z)(x − a)N+1

(N + 1)!
︸ ︷︷ ︸

RN (x)

. (11.23)

Thus, the remainder looks just like the next term to be added to construct PN+1(x), except that
the term f (N+1)(a) is replaced by the unknown quantity f (N+1)(z).

A few examples of how the form (11.23) plays out are in order.

Example 11.2.1 Write f(x) = ex as the sum of P4(x) and the remainder R4(x), with center
a = 0.

Solution: Since all derivatives of ex are not only existing on all of R, but also simply ex, then
of course f (n)(0) = e0 = 1 for all n = 0, 1, 2, · · · , we can write

ex = P4(x) + R4(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

f (5)(z)(x − 0)5

5!

= 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

ezx5

5!
,

for some z between 0 and x.
11There are several remainder theorems addressing the size or form of the remainder RN (x), including one

offered by Taylor himself. This form (11.22) is due to Joseph-Louis Lagrange (1736–1813), an Italian-born math-
ematician and physicist whose importance to both fields—and to the understanding of their interconnectedness—
cannot be overstated. However his work tends to deal in advanced topics which are not easily explained without
the context of at least upper-division undergraduate mathematics and physics. The remainder theorem above is
one exception.
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Example 11.2.2 Write sin x as the sum of P3(x) and the remainder R3(x).
Solution: Note that all derivatives of sin x are of the form ± sin x or ± cosx, which exist and

are continuous on all of R. Now we constructed the chart for constructing up to P5(x) for this
function in Example 11.1.7, page 759, but we will do so again here but in a more summary form:

n 0 1 2 3 4 5

f (n)(x) sin x cosx − sinx − cosx sin x cosx

From this we can write

sin x = P3(x) + R3(x) = x − x3

3!
+

f (4)(z)x4

4!
= x − x3

3!
− (cos z)x4

4!
,

for some z between 0 and x.

In fact we can write sin x in any of the following ways:

sin x = x +
(cos z)x2

2!
, for some z between 0 and x,

sin x = x +
(− sin z)x3

3!
, for some z between 0 and x,

sin x = x − x3

3!
+

(− cos z)x4

4!
, for some z between 0 and x,

sin x = x − x3

3!
+

(sin z)x5

5!
, for some z between 0 and x,

sin x = x − x3

3!
+

x5

5!
+

(cos z)x6

6!
, for some z between 0 and x,

and so on. The fact that the Taylor Polynomials for sinx, centered at a = 0 contain many “zero”
terms means that we have a couple of choices for the remainder terms, for instance depending
upon whether we wish to consider x − 1

3!x
3 to be P3(x) or P4(x), which are the same for this

particular function sinx with a = 0. Note that in each of the cases given above, the z will be
between 0 and x, but we should not expect to have the same value for z in each of the above,
even if we choose the same value for x.

A general proof of the Remainder Theorem is beyond the scope of this textbook. However,
in the exercises the reader is invited to explore how the first case is simply the Mean Value
Theorem (Theorem 5.3.1, page 488).

There are several cases where it is useful to find upper bounds (also called estimates) on the
size of the remainders, which are after all the errors we incur by replacing functions with their
Taylor Polynomial approximations.

Example 11.2.3 Suppose that |x| < 0.75. In other words, −0.75 < x < 0.75. Then what is the

possible error if we use the approximation sin x ≈ x − x3

3!
+

x5

5!
?

Solution: Notice that we are asking what is the remainder for the Taylor Polynomial P6(x)
(see Figures 11.3 and 11.4, page 760) where f(x) = sinx and a = 0, if |x| < .75. (Recall that,
for sin x, we have P5 = P6 when a = 0.) We will use the fact that | sin z| ≤ 1 and | cos z| ≤ 1 no
matter what is the value of z. Thus

|R6(x)| =

∣
∣
∣
∣

f (7)(z)(x − 0)7

7!

∣
∣
∣
∣
=

∣
∣
∣
∣

− cos z · x7

7!

∣
∣
∣
∣
=

1

7!
| cos z| · |x|7 ≤ 1

7!
· 1 · .757 = 0.00002648489.
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This should be encouraging, since we have nearly five digits of accuracy from a polynomial with
only three terms, when our angle is in the range ±0.75 ≈ ±43◦.

A quick check shows that, to sin 0.75 ≈ 0.681638760, P6(0.75) ≈ 0.6816650391, and so the
difference is sin 0.75−P6(0.75) ≈ −0.000026279, which is slightly less in absolute value than our
error estimate of 0.00002648489.

Example 11.2.4 Suppose we want to use the approximation ex ≈ 1 + x +
x2

2!
+

x3

3!
+

x4

4!
.

a. How accurate is this if |x| < 5?

b. How accurate is this if |x| < 2?

c. What if |x| < 1?

Solution: Since the approximating polynomial is P4(x) with a = 0, we are looking for a bound
for

|R4(x)| =

∣
∣
∣
∣

f (5)(z)x5

5!

∣
∣
∣
∣
=

∣
∣
∣
∣

ezx5

5!

∣
∣
∣
∣
=

1

120
ez|x|5.

a. |x| < 5: Now z is between 0 and x, and since the exponential function is increasing, the
worst possible case scenario is to have the greatest possible value for z (which will be x or 0,
which ever is greater). Since the greatest x can be is 5, it is safe to use ez < e5. Thus,

|R4(x)| =
1

120
ez|x|5 <

1

120
e5 · 55 ≈ 3865.

Thus we see the exponential is not so well approximated by P4(x) for the whole range |x| < 5.
b. |x| < 2: Now we have z between 0 and x, and x between −2 and 2, so the the it is only

safe to assume z < 2. Similar to the above, this gives

|R4(x)| =
1

120
ez|x|5 <

1

120
e2 · 25 ≈ 1.97.

We see we have a much better approximation if |x| < 2.
c. |x| < 1 : Here we can only assume z < 1 :

|R4(x)| =
1

120
ez|x|5 <

1

120
e1 · 15 ≈ 0.02265.

There are several remarks which should be made about this example.

1. Notice that we “begged the question,” since we used calculations of e5, e2 and e1 to
approximate the error. This is all correct, but perhaps a strange thing to do since such
quantities are exactly what we are trying to approximate with the Taylor Polynomial. But
even with this problem, the polynomial is useful because it can be quickly calculated for
the whole range |x| < 5, 2 or 1 for some application, and the accuracy estimated using
only e5, e2 or e1, which are finitely many values.

One way to avoid this philosophical problem entirely is to use x > 0 =⇒ ex < 3x, since 3x

is easier to calculate for the integers we used. For example, e5 < 35. However, we need to
be somewhat careful, since x < 0 =⇒ 3x < ex. Here it would be fine to use 3x, since we
were interested in a larger range of x which included positive numbers. If only interested
in x ∈ (−5, 0), for example, we might use ex < 2x there.
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2. Note that the error shrinks in a–c, that is as we restrain x so that |x| < 5, 2, 1 respectively
for two reasons:

(a)
∣
∣f (5)(z)

∣
∣ = ez shrinks, since z is more constrained.

(b) |x|5 shrinks, since the maximum possible value of |x| is smaller.

We benefit from both these factors when we shrink |x|.

3. If we truly needed more accuracy for |x| < 5, we could take a higher-order Taylor Polyno-
mial, such as P15(x), giving

|R15(x)| =
1

15!
ez|x|15 <

1

15!
e5515 ≈ 3.5

This might still seem like a large error, but it is relatively small considering e5 ≈ 148. If
the error is still too large, consider P20(x), with

|R20(x)| =
1

21!
ez|x|21 <

1

20!
e5520 ≈ 0.000277.

When we increase the order of the Taylor Polynomial, we always have the benefit of a
growing factorial term N ! in the remainder’s denominator. As long as the term

∣
∣fN+1(z)

∣
∣

does not grow significantly, the factorial will dominate the exponential |x − a|N+1.

4. Finally, the exponential will always increase faster as x → ∞ than any polynomial (be
it PN (x) for a fixed N or any other polynomial), and “flatten out” like no polynomial
can (excepting the zero polynomial) as x → −∞, so it is really not a good candidate for
approximation very far from zero.

A reasonable question to ask next is how large do we need to have N so that PN (x) is within
a tolerable size. The next examples consider that question.

Example 11.2.5 Suppose we wish to find a Taylor Polynomial PN (x) for f(x) = cosx centered
at x = 0 so that PN (x) is within 10−7 of f(x) for |x| < π. What is the range of N which assures
this?

Solution: Here we will use the guaranteed, if seemingly crude, estimate for the size of the
error |RN (x)|, in which we again note that f (n)(z) will be of the form ± sin z or ± cos z regardless
of n, and thus

∣
∣f (N)(z)

∣
∣ ≤ 1 regardless of z. From this we get

|RN (x)| =

∣
∣
∣
∣

xN+1f (N+1)(z)

(N + 1)!

∣
∣
∣
∣
≤ |x|N+1 · 1

(N + 1)!
<

πN+1

(N + 1)!
.

It is enough that this last term is at most 10−7, but solving such an inequality does not involve
elementary algebraic manipulations. Instead we will need experiment with some numerical
values, comparing N to 1

(N+1)!π
N+1, the latter listed rounded upwards to assure correctness.

N = · · · 15 16 17 18 19 20 · · ·
|RN | ≤ · · · 5 × 10−6 8 × 10−7 2 × 10−7 3 × 10−8 4 × 10−9 6 × 10−10 · · ·

From the chart we see that N ≥ 18 guarantees that PN (x) is within 10−7 of cosx, for −π < x < π.

We know that the size of the estimate will continue to decrease because with each increment
we multiply it by a factor π/(N + 1), which is less than 1 once N > 3.

It is common to use a “worst-case” estimate in computations such as the one above, in that
case using | ± sin z|, | ± cos z| ≤ 1 and |x| < π. It would be very difficult to find more precise
bounds for that range of x.
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Example 11.2.6 Find N so that PN (x) as an approximation for f(x) = ex is accurate to within
10−5 when |x| < 2.

Solution: Here we have f (n)(z) = ez regardless of n, and so for some z between 0 and x (and
thus z ∈ (−2, 2)) we have

|RN (x)| =
ez|x|N+1

(N + 1)!
≤ e2 · 2N+1

(N + 1)!
.

It is enough that this last quantity be smaller than 10−5. As in the example above, algebraic
techniques will not yield an answer directly, and so we will need to perform some numerical
experiments. Below we list some values of N and e2 ·2N+1/(N +1)!, the latter rounded upwards
and accurate to one significant digit, except for one crucial value, namely N = 12.

N = · · · 9 10 11 12 13 14 · · ·
|RN | ≤ · · · 3 × 10−3 4 × 10−4 7 × 10−5 9.8 × 10−6 2 × 10−6 2 × 10−7 · · ·

We see from the chart, and the clear fact that these estimates will continue to decrease, that
N ≥ 12 suffices. Thus P12(x) and higher ordered Taylor Polynomials centered at a = 0 will
approximate f(x) = ex within 10−5 for |x| < 2.

That the estimates on the error in the above example will continue to decrease is again seen
by the fact that we can derive the N = m estimate by multiplying the previous estimate and
2/(m + 1), which is less than 1 once m > 1, and so that next estimate will be smaller.

In the next example we can more directly compute N to give the error bound we desire.

Example 11.2.7 For f(x) = lnx, assuming |x− 1| < 0.5, find N which guarantees that PN (x)
centered at a = 1 is within 10−5 of lnx.

Solution: In Example 11.1.10, page 763 we saw that f (n)(x) = (−1)n+1(n − 1)!x−n, for
n = 1, 2, 3, · · · . (It is a simple enough computation but for space reasons we refer the reader
to that example.) We also derived PN (x) in that example, and can say that for x > 0—that
is, where all derivatives exist and are continuous (on an interval containing 1), the remainder
theorem (Theorem 11.2.1, page 770) gives us

lnx =
N∑

n=1

(−1)n+1(n − 1)!(x − 1)n

n!
︸ ︷︷ ︸

PN (x)

+
f (N+1)(z)(x − 1)N+1

(N + 1)!
︸ ︷︷ ︸

RN (x)

=

N∑

n=1

(−1)n+1(x − 1)n

n
+

((N + 1) − 1)!(−1)N+1+1z−(N+1)(x − 1)N+1

(N + 1)!

=

N∑

n=1

(−1)n+1(x − 1)n

n
+

(−1)N (x − 1)N+1

(N + 1)zN+1
.

So we desire N such that |x − 1| < 0.5 =⇒ |RN (x)| < 10−5. Note that |x − 1| < 0.5 ⇐⇒ x ∈
(0.5, 1.5), and since z is between 1 and x we also have z ∈ (0.5, 1.5) =⇒ 1

z ∈ (2/3, 2). Thus

|RN (x)| =

∣
∣
∣
∣
∣

(−1)N (x − 1)N+1

(N + 1)
·
(

1

z

)N+1
∣
∣
∣
∣
∣
<

1

N + 1
· (1/2)N+1 · 2N+1 =

1

N + 1
.

A sufficient condition that |RN (x)| < 10−5 is then 1
N+1 ≤ 10−5, which we can solve easily:

1

N + 1
≤ 1

105
⇐⇒ 105 ≤ N + 1 ⇐⇒ 99, 999 ≤ N.

Thus we can guarantee an error of less than 10−5 if N ≥ 99, 999, assuming |x − 1| < 0.5.
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In the example above we were somewhat lucky that some factors in the remainder estimate
canceled. Suppose instead we assume |x − 1| < 3

4 . This expands slightly our range of x, so that
−3/4 < x − 1 < 3/4 and so 1/4 < x < 7/4, and this has implications regarding our estimate.

If we were to assume x ∈ [1, 7/4), then we have z in the same range (between 1 and x, and
therefore in z ∈ [1, 7/4) as well). In such a case x − 1 ∈ [0, 3/4) and 1

z ∈ (4/7, 1), giving our
error estimate as

|RN (x)| =

∣
∣
∣
∣
∣

(−1)N (x − 1)N+1

(N + 1)
·
(

1

z

)N+1
∣
∣
∣
∣
∣
≤
(

3
4

)N+1

N + 1
· 1N+1 =

1

(N + 1)
·
(

3

4

)N+1

.

From that estimate we can see clearly that |RN (x)| → 0 as N → ∞.
Unfortunately, if we have x ∈ (1/4, 1], with z in the same range, we get x−1 ∈ (−3/4, 0] and

1
z ∈ [1, 4). In this case our most obvious estimate becomes

|RN (x)| =

∣
∣
∣
∣
∣

(−1)N(x − 1)N+1

(N + 1)
·
(

1

z

)N+1
∣
∣
∣
∣
∣
≤
(

3
4

)N+1

N + 1
· 4N+1 =

3N+1

N + 1
,

which will grow larger as N grows, and a quick numerical experiment can show this estimate
never achieves anything nearly as small as 10−5.

What went wrong in this second case was that our estimate was too crude: we looked at a
worst case scenario with x and z separately, when clearly they are coupled. Using completely
different techniques, we will see later that, for x ∈ (0, 2], we will have

lnx =

∞∑

n=1

(−1)n+1(x − 1)n

n + 1
= (x − 1) − (x − 1)2

2
+

(x − 1)3

3
− (x − 1)4

4
+ · · · ,

and so the remainder terms will shrink for a given x, just not “uniformly;” they will tend to
shrink faster for x closer to 1, and not in quite the same way for x ∈ (0, 1) as for x ∈ (1, 2].

If we take for granted that the above series expansion is correct for x ∈ (0, 2], then we can
use alternating series methods to find the bounds on errors when x ∈ [1, 2). For x ∈ (1/4, 1]
we can use a direct comparison test to a geometric series. For instance, if x = 1/4, the series
becomes

(−3/4)− (−3/4)2

2
+

(−3/4)3

3
− (−3/4)4

4
+ · · · = −

∞∑

n=1

1

n

(
3

4

)n

.

If we call this series
∑

an, then |an| ≤ (3/4)n, from which we can have a geometric series, and
from which we have

|RN (1/4)| =

n∑

n=N+1

1

n
(3/4)n <

n∑

n=N+1

(3/4)n =
(3/4)N+1

1 − 3
4

=
1

4

(
3

4

)N+1

.

If we would like to ensure |RN (1/4)| < 10−5, we would solve (noting that ln(3/4) < 0):

1

4
(3/4)N+1 < 10−5 =⇒ (3/4)N+1 < 4 × 10−5

=⇒ (N + 1) ln(3/4) < ln
(
4 × 10−5

)

=⇒ N >
ln
(
4 × 10−5

)

ln(3/4)
− 1

=⇒ N > 34.2,

and so we would take N ≥ 35 to ensure our error is within 10−5, in using PN (1/4) to approximate
ln 1

4 .
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Exercises

For Exercises 1–6, write the function in the
form f(x) = PN (x) + RN (x), where PN (x)
and RN (x) are written out explicitly (see Ex-
amples 11.2.1–11.2.2).

1. f(x) = sin x, a = π, N = 5

2. f(x) =
√

x, a = 1, N = 3

3. f(x) = 1
x , a = 10, N = 4

4. f(x) = ex, a = 0, N = 9.

5. f(x) = sec x, a = π, N = 2.

6. f(x) = lnx, a = e, N = 3.

7. Explain why the series below converges,
and to the limit claimed below. (Hint:
apply a hierarchy of functions reason-
ing to RN (x).)

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · = ex.

8. Many physics problems take advantage
of the approximation tanx ≈ x for |x|
small.

(a) Conjecture on where this approxi-
mation comes from, from a purely
mathematical standpoint.

(b) Estimate the error for each of the
three cases |x| < 1, 0.1 and 0.01.
(Feel free to use a calculator to
find upper bounds for the error.)

9. Suppose we wanted to find a Taylor
Polynomial for f(x) = sin x, centered
at a = 0, with accuracy |RN (x)| ≤
10−10 valid for −2π ≤ x ≤ 2π. Find
N for the lowest-order Taylor Polyno-
mial PN (x) which guarantees that ac-
curacy for that interval, based upon the
remainder formula. (This may require
some numerical experimentation with
the estimates.)

10. Repeat the previous problem, but for
f(x) = ex and the interval |x| ≤ 10.

11. Show that the Remainder Theorem for
P0(x) is really just the Mean Value
Theorem, Theorem 5.3.1, page 488.
(Hint: z = ξ.)
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11.3 Taylor/Maclaurin Series

Now we come to the heart of the matter. Basically, the Taylor Series of a function f which has
all derivatives f ′, f ′′, · · · existing at a, is the series we get when we let N → ∞ in the expression
for PN (x). The Taylor Series equals the function if and only if the remainder terms shrink to
zero as N → ∞:

11.3.1 Checking Validity of Taylor Series

Theorem 11.3.1 Recalling the definition of the remainder RN (x) = f(x)−PN (x), where PN (x)
is an N th-order Taylor Polynomial for f(x) centered at some number a ∈ R, we have

lim
N→∞

RN (x) = 0 ⇐⇒ f(x) = lim
N→∞

PN (x) =
∞∑

n=0

f (n)(a)(x − a)n

n!
,

that is,

f(x) =
∞∑

n=0

f (n)(a)(x − a)n

n!
⇐⇒ lim

N→∞
RN (x) = 0. (11.24)

Proof: First we prove (⇐=). Assume f(x) =

∞∑

n=0

f (n)(a)(x − a)n

n!
. Then

RN (x) = f(x) − PN (x) =

∞∑

n=N+1

f (n)(a)(x − a)n

n!
−→ 0 as N → ∞.12

Next we prove (=⇒). Assume RN (x) −→ 0 as N → ∞. Then

N → ∞ =⇒ f(x) − RN (x)

︸ ︷︷ ︸

↓

f(x)

=

N∑

n=0

f (n)(a)(x − a)n

n!
︸ ︷︷ ︸

↓
∞∑

n=0

f (n)(a)(x − a)n

n!
,

which shows f(x) =

∞∑

n=0

f (n)(a)(x − a)n

n!
, q.e.d.

The series we get from Theorem 11.3.1 above has the following name:

Definition 11.3.1 Supposing that all derivatives of f(x) exist at x = a, the series given by

∞∑

n=0

f (n)(a)(x − a)n

n!
(11.25)

is called the Taylor Series of f(x) centered at x = a.

12Recall that the “tail end”
∞

X

n=N+1

bn of a convergent series
∞

X

n=0

bn shrinks to zero as N → ∞. This “tail end”

is represented by S−SN , where S is the full series and SN the Nth partial sum. Recall SN → S =⇒ S−SN → 0.
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Thus, Theorem 11.3.1 can be restated that the Taylor Series will equal the function if and only
if the remainders RN from the Taylor Polynomials shrink to zero as N → ∞.

A special case of the Taylor Series is the case a = 0. This occurs often enough it is given its
own name:

Definition 11.3.2 If a Taylor Series is centered at a = 0, it is called a Maclaurin Se-
ries.13 In other words, if all derivatives of f(x) exist at x = 0, the function’s Maclaurin Series
is given by

∞∑

n=0

f (n)(0)xn

n!
. (11.26)

The partial sums are sometimes called Maclaurin Polynomials. Note that both Taylor Series, and
the special case of the Maclaurin Series, are in fact power series, introduced in (11.1), page 748.

In the following propositions, we will consider several Taylor and Maclaurin Series, and
show where they converge based on Theorem 11.3.1 (which we restated in (11.24)) and other
observations. Showing that RN → 0 in some cases will require creativity, but once we establish
this fact for a series we will assume it from then on, as with those below:

Proposition 11.3.1

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑

n=0

xn

n!
for all x ∈ R. (11.27)

Proof: Recall that (∀x ∈ R)(∀n ∈ {0, 1, 2, 3, · · · )
[
f (n)(x) = ex

]
. Thus, for any fixed x ∈ R,

we have

RN (x) =
f (N+1)(z)xN+1

(N + 1)!
= ez xN+1

(N + 1)!
.

Now z, while depending upon N and x, is nonetheless between x and 0, and so by the increasing
nature of the exponential function we have ez < max{e0, ex}, and is thus bounded by M =
max{e0, ex} (which depends only upon x, and not upon N or z). Thus

|RN (x)| = ez |x|N+1

(N + 1)!
≤ M · |x|N+1

(N + 1)!
−→ M · 0 = 0 as N → ∞,

since the numerator grows geometrically (or shrinks geometrically) as N increases, while the de-
nominator grows as a factorial. Recall that the factorial will dominate the exponential regardless
of the base (in this case |x|) as N → ∞. Since we showed RN (x) → 0 (be showing the equivalent
statement |RN (x)| → 0) for any x, by Theorem 11.3.1, page 777, (11.27) follows, q.e.d.14

It was important to notice that ez was bounded once x was chosen, and that the bound is
going to change with each x. The upshot is that for a given x, RN (x) → 0 but for two different
x-values, this convergence of the remainder to zero—and thus the convergence of the Taylor
series to the value f(x)—can occur at very different rates.

13Named for Colin Maclaurin, 1698–1746, a Scottish mathematician. He was apparently aware of Taylor Series,
citing them in his work, but made much creative use of those centered at a = 0 and so eventually was honored
to have the special case named for him.

14A clever way to prove more directly that M · |x|N+1

(N+1)!
−→ 0 as N → ∞ would be to show that the series

∞
X

n=1

M · |x|n+1

(n + 1)!
converges, which can be proved using a fairly straight-forward Ratio Test. This would show

that the “nth term” approaches zero in the limit, since
P

an converges =⇒ an → 0, which is the contrapositive
of the nth-term test for divergence (NTTFD, Section 10.2).
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Also, absolute values were not needed around the ez-term, since it will always be positive.
Finally, to accommodate the case x = 0, we substituted the weaker “≤” for the “<” in our
inequality above. For the case x = 0, a careful look at the PN show RN (0) ≡ 0. This is because
0 is where the series is centered. (Recall PN (a) = f(a).)

Proposition 11.3.2

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑

n=0

(−1)nxn+1

(2n + 1)!
for all x ∈ R. (11.28)

Proof: Now f (n)(x) is of the form ± sinx or ± cosx, which means it is bounded absolutely

by 1, i.e.,
∣
∣
∣f (n)

∣
∣
∣ ≤ 1. Thus for any given x ∈ R we have

|RN (x)| =

∣
∣
∣
∣

f (N+1)(z)xN+1

(N + 1)!

∣
∣
∣
∣
≤ 1 · |x|N+1

(N + 1)!
→ 1 · 0 = 0 as N → ∞.

Again this is because the geometric term |x|N+1 is a lower order of growth (and may even decay
if x ∈ (−1, 1)) than the factorial (N + 1)!. Thus, according to Theorem 11.3.1, (11.28) follows,
q.e.d.

A nearly identical argument shows that

Proposition 11.3.3

cosx = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · =

∞∑

n=0

(−1)nx2n

(2n)!
for all x ∈ R. (11.29)

Not all Taylor series converge to the function for all of x ∈ R. Furthermore, it is often difficult
to prove RN (x) → 0 when other techniques can give us that the Taylor Series in fact converges.
For example, consider the following:

Proposition 11.3.4

1

1 − x
= 1 + x + x2 + x3 + x4 + · · · =

∞∑

n=0

xn. for all x ∈ (−1, 1). (11.30)

Though we can calculate the series directly (see Exercise 6, page 768), Equation (11.30) is obvious
if we read it backwards, realizing that the series is geometric with first term α = 0 and ratio
x (as in Theorem 10.1.1, page 707). Moreover, the series converges when |x| < 1 and diverges
otherwise, from what we know of geometric series. From these observations, Proposition 11.3.4
is proved. We will see in Section 11.5 that many of the connections and manipulations we would
like to make with Taylor/Maclaurin Series are legitimate. In fact, these methods are often much
easier than computations from the Taylor Series definition. Consider Proposition 11.30. The
actual remainder is of the form

RN (x) =
(N + 1)! (1 − z)−(N+2) xN+1

(N + 1)!
=

xN+1

(1 − z)N+2
. (11.31)

We know z is between 0 and x, but without knowing more about where, it is not obvious that the
numerator in our simplified RN will decrease in absolute size faster than the denominator. We
will not belabor the point here, but just conclude that resorting to using facts about geometric
series is a much simpler approach than attempting to prove RN (x) → 0 when |x| < 1. (See also
the discussion after Example 11.2.7, page 774.)

Another interesting Taylor Series is the following:
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Proposition 11.3.5 The following is the Taylor Series for lnx centered at x = 1:

lnx = 1(x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 − 1

4
(x − 1)4 + · · · (11.32)

=

∞∑

n=1

(−1)n+1(x − 1)n

n
for |x − 1| < 1, i.e., x ∈ (0, 2).

We found PN in Example 11.1.10, page 763. A proof that (11.32) is valid for (1/2, 2) in which
one shows RN (x) → 0 in that interval is left as Exercise ??. The proof that the series is valid for
all of (0, 2) is left as an exercise in Section 11.4, and again in Section 11.5 after other methods
are available. Finally, it is not difficult to show that the series also converges at x = 2 (by the
Alternating Series Test) and so the series in fact converges for all of (0, 2], so that by Abel’s
Theorem, introduced later as Theorem 11.4.1, page 783, the series converges to ln x in all of
(0, 2].

11.3.2 Techniques for Writing Series using Σ-Notation

There are some standard tricks for writing formulas to achieve the correct terms in the sum-
mation. For instance, inserting a factor (−1)n or (−1)n+1 to achieve the alternation of sign,
depending upon whether the first term carries a “+” or “−.” We also pick up only the odd
terms in the sin x expansion by using the 2n + 1 factors, and get the evens in the cosx using
the 2n. Perhaps the best way to get comfortable with these manipulations is to write out a
few terms of the summations on the right of (11.28), (11.29) and (11.32). For example, we can
check the summation notation is consistent in (11.28) as follows (note we define (−1)0 = 1 for
simplicity):

∞∑

n=0

(−1)nx2n+1

(2n + 1)!
=

(−1)0x

1!
︸ ︷︷ ︸
n=0 term

+
(−1)1x3

3!
︸ ︷︷ ︸
n=1 term

+
(−1)2x5

5!
︸ ︷︷ ︸
n=2 term

+
(−1)3x7

7!
︸ ︷︷ ︸
n=3 term

+ · · ·

= x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

However it would also be perfectly legitimate to instead write the above series as

∞∑

n=1

(−1)n+1x2n−1

(2n − 1)!
= x
︸︷︷︸
n=1

−x3

3!
︸︷︷︸
n=2

+
x5

5!
︸︷︷︸
n=3

+ · · · .

We see that we get the correct alternation of sign and the correct powers and factorials from our
Σ-notation in both cases. Also note that 2n+ 1 and 2n− 1 both give odd numbers regardless of
n ∈ {0, 1, 2, 3, · · · } (since 2n is even and 1 is odd), and so it becomes simply a matter of whether
the series produces the correct terms to be summed.
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Example 11.3.1 Write the following in a compact Σ-notation.

a.
x

2
+

x2

4
+

x3

6
+

x4

8
+ · · ·

b. x − x3

2
+

x5

4
− x7

8
+ · · ·

c. − x2

1
+

x4

1 · 3 − x6

1 · 3 · 5 +
x8

1 · 3 · 5 · 7 + · · ·

Solution:

a. We see the powers of x are increasing by 1, while the denominators are increasing by 2 with
each new term added. The summations will appear different depending upon where the
indices begin. Here are two possibilities, though the first is more obvious:

x

2
+

x2

4
+

x3

6
+

x4

8
+ · · · =

∞∑

n=1

xn

2n
,

x

2
+

x2

4
+

x3

6
+

x4

8
+ · · · =

∞∑

n=0

xn+1

2(n + 1)
.

b. Here we have only odd powers of x. It is worth noting that therefore the powers of x are
increasing by 2. We have alternating factors of ±1. In the denominator we have powers of
2. This can be written in the following ways (among others):

x − x3

2
+

x5

4
− x7

8
+ · · · =

∞∑

n=1

(−1)n+1 x2n−1

2n−1
,

x − x3

2
+

x5

4
− x7

8
+ · · · =

∞∑

n=0

(−1)n x2n+1

2n
.

c. The powers of x here are all even, hence increasing by 2 with each step. There is also
alternation of signs. Finally the denominators are products of odd numbers, similar to a
factorial but skipping the even factors. In a case like this, we allow for a more expanded
writing of the pattern in the Σ-notation. We write the following:

− x2

1
+

x4

1 · 3 − x6

1 · 3 · 5 +
x8

1 · 3 · 5 · 7 + · · · =

∞∑

n=1

(−1)n x2n

1 · 3 · 5 · · · (2n − 1)
,

− x2

1
+

x4

1 · 3 − x6

1 · 3 · 5 +
x8

1 · 3 · 5 · 7 + · · · =
∞∑

n=0

(−1)n+1 x2n+2

1 · 3 · 5 · · · (2n + 1)
.

If we had some compelling reason, we might even begin at n = 3, for instance:

− x2

1
+

x4

1 · 3 − x6

1 · 3 · 5 +
x8

1 · 3 · 5 · 7 + · · · =

∞∑

n=3

(−1)n x2n−4

1 · 3 · 5 · (2n − 5)
.

It is understood that the denominator contains all the odd factors up to (2n− 1), (2n+ 1)
or (2n− 5), depending on the form chosen. Though the first two terms do not contain all
of 1 · 3 · 5, we put in those three numbers into the Σ-form to establish the pattern, which is
understood to terminate at (2n− 1) or (2n + 1) even if that means stopping before 3 or 5.
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Whenever there is alternation, expect (−1)n or (−1)n+1 or similar factors to be present. An
increase by 2 at each step is achieved by (2n+k), where k is chosen to get the first term correct.
An increase by 3 would require a (3n + k). With some practice it is not difficult to translate a
series written longhand, but with a clear pattern, into Σ-notation. (For series of constants, we
also used (−1)n = cos(nπ).)

Exercises

For Exercises 1–4, show that the Σ-notation
for the series below (namely those in (11.27),
(11.29), (11.30), and (11.32)) expands to the
respective series pattern given on the left.

1. 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑

n=0

xn

n!
.

2. 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · =

∞∑

n=0

(−1)nx2n

(2n)!
.

3. 1 + x + x2 + x3 + · · · =

∞∑

n=0

xn.

4. (x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 − · · ·

=

∞∑

n=1

(−1)n+1(x − 1)n

n
.

5. Rewrite the power series for sin x cen-
tered at a = 0, but in such a way that
it starts with n = 1.

6. Do the same for cosx.

For Exercises 7–11 write each series using Σ-
notation: first starting with n = 1, and then
starting with n = 0.

7. 1 − x2

2
+

x4

3
− x6

4
+ · · ·

8. x2 +
x4

4
+

x6

9
+

x8

16
+

x10

25
+ · · ·

9.
x

2
− x2

2 · 4 +
x3

2 · 4 · 6 − x4

2 · 4 · 6 · 8 + · · ·

10.
x

1 · 1 +
x3

3 · 1 · 2 +
x5

5 · 1 · 2 · 3

+
x7

7 · 1 · 2 · 3 · 4 + · · ·

11.
2

4
− 4x

7
+

6x2

10
− 8x3

13
+ · · ·

12. Prove Proposition 11.29, page 779.

13. Prove that the remainder

RN (x) =
xN+1

(1 − z)N+2

from (11.31) does approach zero as
N → ∞ for the case x ∈ (−1, 0). Note
that it is enough to show |RN (x)| → 0.
(Hint: In what interval is 1 − z in this
case?)
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11.4 General Power Series and Interval of Convergence

11.4.1 Definition of General Power Series

While most of our familiar functions can be written as power series, meaning form (11.1),
page 748 repeated here as

f(x) =

∞∑

n=0

an(x − a)n, (11.33)

there are many functions which must be written as series (for instance,
∫

ex2

dx). In some sense,
there are more power series than “nice” functions (usual combinations of powers, trigonometric,
logarithmic and exponential functions) which also have power series representations. It is there-
fore interesting to study power series without reference to functions they may or may not have
been derived from.

When we are given such a function represented by a power series (11.33), it is clear that
a0 = f(a), but less clear that a1 = f ′(a), or a2 = 1

2!f
′′(a), etc., which is what happens with

Taylor Series where we know the function f and how to compute its derivatives. Even finding
f ′(a) is somewhat difficult because, as we know from the definition of the derivative,

f ′(a) = lim
∆x→0

f(a + ∆x) − f(a)

∆x
,

and it is perhaps an understatement to note that it is not immediately clear how to compute
that limit from (11.33). Note how f(x) must be defined—and continuous—in an open interval
containing a or this limit which defines the derivative cannot exist. Fortunately, given any
function defined by a power series (11.33), we are guaranteed to have only certain cases for its
domain. We rely on the following very useful, and eventually intuitive, result.

11.4.2 Abel’s Theorem

Theorem 11.4.1 (Abel’s Theorem15): A power series of form (11.33) will converge at x = a
only and diverge elsewhere, or converge absolutely in an open interval x ∈ (a − R, a + R) and
diverge outside the closed interval [a, b] with the same endpoints, i.e., diverge for x ∈ (−∞, a −
R) ∪ (a + R,∞). If the power series also converges at an endpoint a − R or a + R, it will be
continuous to the endpoint from the side interior to the interval.

Definition 11.4.1 The number R above is called the radius of convergence of (11.33). We
say R = 0 if the power series converges at a only. It is quite possible that R = ∞. in which
case the power series converges on all of R. Otherwise, R ∈ (0,∞) is nonzero and finite and the
power series

a. converges for |x − a| < R, and

b. diverges for |x − a| > R.

15Named for Niels Henrik Abel, 1802–1829, a Norwegian mathematician most notable for founding Group
Theory, on the way to proving the impossibility of solving the general fifth-degree polynomial equations by a
formula with radicals, unlike second-degree (quadratic), third-degree (cubic) or fourth-degree (quartic) equations,
which do have formulas for their solutions. While solving the general quadratic equation (using the “quadratic
formula”) is basic enough, the third-degree and fourth-degree “formulas” are much more involved, and Abel
dispelled any hope that such formulas exist for higher-degree polynomial equations. Here we are interested in his
(very different) theorem on the convergence of power series.
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Because of this result above it makes sense to talk of the interval of convergence of a power
series. Its form will be one of the following, depending upon the specific series:

{a}, (−∞,∞), (a− R, a + R), [a − R, a + R], [a − R, a + R), (a − R, a + R].

For the Taylor Series for ex, sinx and cosx, we know this interval of convergence is simply
(−∞,∞) = R, and so we say R = ∞ in those cases. In contrast, the Taylor Series for lnx
centered at x = 1 converges at least in |x − 1| < 1, as shown in Proposition 11.3.5, page 780.

lnx = 1(x − 1) − 1

2
(x − 1)2 +

1

3
(x − 1)3 − 1

4
(x − 1)4 + · · ·

=

∞∑

n=1

(−1)n+1(x − 1)n

n
for (at least) |x − 1| < 1, i.e., x ∈ (0, 2).

While Abel’s Theorem does not state whether or not a series converges at the endpoints, it is not
difficult to see that the series above converges for x ∈ (0, 2], i.e., converges at the right endpoint
x = 2 (by the Alternating Series test), and diverges at the left endpoint x = 0 (since there it is
the harmonic series). Abel’s theorem then does say that the series will then be left-continuous
at x = 2, and since so is lnx, they must agree at that point. Thus the series equals lnx on all of
x ∈ (0, 2].

11.4.3 Finding the Interval and Radius of Convergence

In most cases, the Ratio and Root Tests are the tools used to find the interval of convergence
for a given power series. From there we usually observe the actual radius, as it is basically half
the length of the interval, or equivalently, the distance from the center a to one of the endpoints
a ± R. For most cases we will use the Ratio Test.

Example 11.4.1 Find the interval of convergence for the series

∞∑

n=0

xn

n!
.

Solution: Actually we know this series, and that it converges to ex for all x ∈ R, so the
interval is (−∞,∞) = R, and thus R = ∞. We deduced this from the form of the remainder
RN = 1

(N+1)!e
zxN+1.

But how would we determine where it converges without knowing the form of the remainder?
The key here is to use the Ratio Test for an arbitrary x. First we write

f(x) =

∞∑

n=0

an(x − a)n =

∞∑

n=0

xn

n!
≡

∞∑

n=0

un.

Most textbooks introduce un above for convenience in applying the Ratio Test. (The reader
should feel free to skip that step where relevant.) Next we calculate

ρ = lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣
∣
∣

xn+1

(n + 1)!
xn

n!

∣
∣
∣
∣
∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

xn+1

xn

∣
∣
∣
∣
· n!

(n + 1)!

= lim
n→∞

|x| · n!

n!(n + 1)
= lim

n→∞
|x| · 1

n + 1
= 0 for every x ∈ R.

Recall that the series will converge absolutely if ρ < 1, and we in fact for this case have ρ = 0
for every real x. Since ρ = 0 < 1 regardless of x ∈ R, the series converges absolutely on all of
R = (−∞,∞), which gives the interval of convergence. (Here we take the radius to be R = ∞.)
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It is arguably easier to find that the series for ex converges (absolutely) for all x by using the
Ratio Test as above, than using the form of the remainder RN (x) and showing RN (x) → 0 as
N → ∞. Indeed, the Ratio Test is usually the preferred method for finding where a given power
series converges.

Example 11.4.2 Find the interval and radius of convergence for the series

∞∑

n=0

2n(x − 5)n

2n − 1
.

Solution: Just as above,

ρ = lim
n→∞

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣
∣
∣

(
2n+1(x − 5)n+1

2(n + 1) − 1

)

(
2n(x − 5)n

2n − 1

)

∣
∣
∣
∣
∣
∣
∣
∣

= lim
n→∞

2n+1

2n
· 2n− 1

2(n + 1) − 1
·
∣
∣
∣
∣

(x − 5)n+1

(x − 5)n

∣
∣
∣
∣

= lim
n→∞

2 · 2n − 1

2n + 1
· |x − 5| = 2 · 1 · |x − 5|.

Remember that the x in the line above is a constant as far as the limit goes (since the limit is
in n). To find the region where ρ < 1 we simply solve

2|x − 5|
︸ ︷︷ ︸

ρ

< 1 ⇐⇒ |x − 5| <
1

2
⇐⇒ −1/2 < x − 5 < 1/2

⇐⇒ 9/2 < x < 11/2.

Thus we know for a fact that the series converges absolutely for x ∈ (9/2, 11/2). A similar
calculation gives us divergence in (−∞, 9/2)∪(11/2,∞), and we usually do not bother repeating
the calculations to see this. The only question left is what happens at the two boundary points.

x = 9/2:
∞∑

n=0

2n(9/2 − 5)n

2n − 1
=

∞∑

n=0

2n(−1/2)n

2n − 1
=

∞∑

n=0

2n
(

1
2

)n
(−1)n

2n − 1
=

∞∑

n=0

(−1)n

2n − 1
.

The resultant series converges by the Alternating Series Test (alternates, terms shrink in
absolute size monotonically to zero). Thus the series does converge at the left endpoint
x = 9/2.

x = 11/2:
∞∑

n=0

2n(11/2− 5)n

2n− 1
=

∞∑

n=0

2n(1/2)n

2n − 1
=

∞∑

n=0

2n
(

1
2

)n

2n − 1
=

∞∑

n=0

1

2n − 1
.

This series diverges (limit-comparable to the harmonic series
∑ 1

n ). Thus the power series
diverges at this endpoint.

The conclusion is that the interval of convergence is x ∈ [9/2, 11/2).
Note that the center of the interval is

(
9
2 + 11

2

)
/2 = 10/2 = 5, and so the “center” being at

a = 5 (which we can also read from the original summation notation), we see that the interval
extends by 1/2 to both right and left of the center, so R = 1/2. We could also find this by
computing half of the length of the interval, i.e.,

(
11
2 − 9

2

)
/2 = (2/2)/2 = 1/2.
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Example 11.4.3 Find the radius and interval of convergence for

∞∑

n=1

(nx)n.

Solution: This would be a difficult series to analyze with the Ratio Test (as the reader is
invited to attempt), and the Root Test seems more appropriate. Here we use ρ = ρroot, and get

ρ = lim
n→∞

n
√

|(nx)n| = lim
n→∞

[|nx|n]
1/n

= lim
n→∞

|nx| =

{
0 if x = 0,
∞ if x 6= 0.

Thus the series diverges for x 6= 0, and the “interval” of convergence is simply [0, 0] = {0}, and
the radius is simply R = 0.

In the example above, except at x = 0 the terms all increased in size rather than shrinking to
zero. In effect, (nx)n = nnxn is the product of a very rapidly growing nn with an exponentially
(or “ geometrically”) growing xn if |x| > 1, and exponentially shrinking xn if |x| < 1. However,
even the case of the exponential shrinkage cannot overcome the rapid growth of nn, which then
dominates the behavior of nnxn = (nx)n. Cases where R = 0 are not the most commonly
studied, but they do occur and anyone dealing with series has to be aware of them.

Also notable from this latest example is that there are cases where the Root Test is preferable
to the Ratio Test. In fact, as we noted when these two tests were first introduced in Section 10.5,
there is even some overlap. Recall that both tests were modeled on comparisons to the Geometric
Series

∑
a0r

n.
It should therefore, upon reflection, be no surprise that the Ratio and Root Tests are called

upon in many cases to determine where a power series converges. After all, such series
∑

anxn

can be interpreted to be variations of geometric series.

11.4.4 Taylor/Power Series Connection

There is a nice connection between Taylor and Power Series centered at a given point a. In
short, they are the same, assuming there is an interval (of “wiggle room”), around the center of
the series, on which the power series converges to the function. We introduce this connection
here initially for the reader to note for future reference, and then greatly expand its scope and
application in Section 11.5.

To see this connection we first need the following theorem, which we state without proof:

Theorem 11.4.2 Manipulations with Power Series: Suppose we are given a function defined
by a power series

f(x) =

∞∑

n=0

an(x − a)n (11.34)

which converges in some open interval |x − a| < R, where R > 0.

f (n)(a) = n! an. (11.35)

Note that (11.35) is equivalent to an = f(n)(a)
n! , so the coefficients of the power series will be

exactly the same as those of the Taylor Series, assuming the power series is valid in some open
interval |x − a| < R, some R > 0.

In advanced calculus, functions which can be represented in |x − a| < R by a convergent
power series are given a special name:

Definition 11.4.2 A function f(x) which has a power series representation (11.34) converging
in some open interval |x − a| < R (for some R > 0) is called real-analytic in that interval.
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Equivalently, a function is real-analytic on an open interval |x − a| < R if and only if its Taylor
Series converges to the function in the same interval.

There is a very rich and beautiful theory of real-analytic functions which is beyond the scope
of this text. It is a theory which has a remarkably simple extension to functions of a complex
variable

z ∈ C = {x + iy : x, y ∈ R}, i =
√
−1.

This may seem a complication, but the theory is often simplified by this generality, after which
the real-analytic results follow from the complex theory. In fact the term radius of convergence
comes from the complex-analytic theory, where the complex values z for which

∑
an(z − a)n

converges lie in a disk of radius R inside the complex plane C. Such are topics for advanced
calculus or complex analysis courses, usually at the senior or graduate levels. However, we will
explore some aspects of the theory suitable for this level of textbook in Section 11.6.

Exercises

For Exercises 1–13, find

(a) the interval of convergence, including
endpoints where applicable, and

(b) the radius of convergence.

1. f(x) =

∞∑

n=1

xn

2n
√

n
.

2. f(x) = x − x3

3
+

x5

5
− x7

7
+ · · ·. See

Example 11.5.5, page 792.

3. lnx =

∞∑

n=1

(−1)n+1(x − 1)n

n
. See

Proposition 11.3.5, page 780.

4. f(x) =

∞∑

n=0

nxn.

5. f(x) =

∞∑

n=0

n! xn.

6. ex2

=
∞∑

n=0

x2n

n!
. See Proposition 11.27,

page 778.

7. f(x) =

∞∑

n=2

(x + 1)n

(lnn)n
.

8. f(x) =

∞∑

n=0

xn

nn
.

9. f(x) =

∞∑

n=0

(n!)2(x − 5)n

(2n)!
.

10. f(x) =
∞∑

n=0

x2n

n2 · 10n
.

11. sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
.

12. f(x) =
∞∑

n=1

(−1)nn! (x − 3)n

nn
.

13. f(x) =
∞∑

n=2

3n(x + 2)n

lnn
.

14. Assume for a moment that all our work
with Taylor Series can be generalized to
the complex plane C. Note that i = i,
i2 = −1, i3 = −i, i4 = 1, i5 = i, etc.
Use all this and known Maclaurin Se-
ries to prove Euler’s Identity:

eiθ = cos θ + i sin θ. (11.36)

Note that this implies that eiπ = −1,
or more interestingly eiπ + 1 = 0 an
often-cited, beautifully compact equa-
tion relating four of the most important
numbers in mathematics.
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15. Use (11.36) and the facts that
sin(−θ) = − sin θ and cos(−θ) = cos θ,
to show the following relationship be-
tween trigonometric and hyperbolic
functions (see Exercise 6, page 797):

(a) cosx = cosh(ix);

(b) sinx =
1

i
sinh(ix).

16. Use Exercises 14 and 15 to prove the
following trigonometric identities:

(a) sin2 x + cos2 x = 1;

(b) sin 2x = 2 sinx cos x;

(c) cos 2x = cos2 x − sin2 x;

(d) sin(x + y) = sinx cos y + cosx sin y.
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11.5 Valid Manipulations with Taylor/Power Series

Taylor Series are very robust in the sense that most algebra and calculus-based methods for
constructing functions from other functions translate to series. Some care must be taken to
ensure a proper interval of convergence results, but even that consideration follows fairly easily
from the process.

Here we will look at both algebraic and calculus-based manipulations of Taylor Series. In so
doing, it should become clear that such methods are often preferable to brute-force computa-
tions from the definition of Taylor Series. Furthermore, some functions require us to use series
representations rather than previous types of formulas, and such manipulations are sometimes
quite helpful in finding representations from known functions.

11.5.1 Algebraic Manipulations

We begin this subsection with a bit of theory which is mostly straightforward, and somewhat
interesting, but we will be somewhat brief with it here so it will not become a distraction. The
main theorem is the following:

Theorem 11.5.1 If there are two power series representations of a function f(x) which are
valid within an open interval surrounding the center a, i.e., if there exists δ > 0 such that
x ∈ (a − δ, a + δ) implies

f(x) =

∞∑

k=0

ak(x − a)k =

∞∑

k=0

bk(x − a)k,

then a0 = b0, a1 = b1, a2 = b2, and so on.

The theorem is stating that any two power series representations (including a Taylor Series)
of the same function with the same center must really be the same series. In other words, any
power series representation for a function is unique at each point where it is valid. From (11.35)
of Theorem 11.4.2, page 786 we then also get that any valid power series representation of a
function within an open interval is also its Taylor Series with the same center.

Example 11.5.1 Use the Maclaurin Series for ex to calculate the Maclaurin Series for ex2

.

Solution: We simply replace x with x2 in the series for ex.

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑

k=0

xk

k!

=⇒ ex2

= 1 + (x2) +
(x2)2

2!
+

(x2)3

3!
+

(x2)4

4!
=

∞∑

k=0

(x2)k

k!

⇐⇒ ex2

= 1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ · · · =

∞∑

k=0

x2k

k!
.

valid for all x ∈ R, since the original series was valid everywhere (and x ∈ R =⇒ x2 ∈ R, and
can therefore be inputted to the original series for ex).

A few comments are in order regarding how the theory implies the validity of the series
representation for ex2

above. Because the series ex =
∑

xn

n! is true for any x ∈ R, we could also
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use our abstract function notation to write

e( ) =
∞∑

n=0

( )n

n!
= 1 + ( ) +

( )2

2!
+

( )3

3!
+

( )4

4!
+ · · · ,

and any input ( ) ∈ R on the left can be equivalently input on the right, and the values of the
outputs will be the same. That should also be true of the value of the output if the input is x2:

e(x2) =

∞∑

n=0

(
x2
)n

n!
= 1 +

(
x2
)

+

(
x2
)2

2!
+

(
x2
)3

3!
+

(
x2
)4

4!
+ · · · ,

but then we can simplify each of the terms within the summation on the right-hand side, as we
did in Example 11.5.1 above. Asking if a series representation makes sense at actual values, and
observing the affirmative answer, helps us to see the validity of the new series. (We will argue
similarly in subsequent examples.)

Furthermore, we can also dispel any doubt that this is superior to calculating such a Taylor
Series from the original definition of Taylor Series. Recall that we would need formulas for
f (n)(x) to compute f (n)(0) to compute the Taylor Coefficients. The first two are easy enough:

f(x) = ex2

; f ′(x) = 2xex2

. For f ′′, we need a product rule and another chain rule: f ′′(x) =

2x
(

2xex2
)

+2ex2

= 2ex2

(4x+1). Next we would need another product rule and a chain rule to

find f ′′′, for which simplifying would be even more difficult. By then, we would likely conclude
the algebraic method above is superior. Similarly it is not difficult to compute the following:

Example 11.5.2 Find the Maclaurin Series for f(x) = x3 sin 2x.

Solution: We will construct this series in stages, beginning with the series for sin x.

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑

n=0

(−1)nx2n+1

(2n + 1)!
,

=⇒ sin 2x = (2x) − (2x)3

3!
+

(2x)5

5!
− (2x)7

7!
+ · · · =

∞∑

n=0

(−1)n(2x)2n+1

(2n + 1)!

= 2x − 8x3

3!
+

32x5

5!
− 128x7

7!
+ · · · =

∞∑

n=0

(−1)n22n+1x2n+1

(2n + 1)!
,

=⇒ x3 sin 2x = x3

(

2x − 8x3

3!
+

32x5

5!
− 128x7

7!
+ · · ·

)

= x3

(
∞∑

n=0

(−1)n22n+1x2n+1

(2n + 1)!

)

= 2x4 − 8x6

3!
+

32x8

5!
− 128x10

7!
+ · · · =

∞∑

n=0

(−1)n22n+1x2n+4

(2n + 1)!
.

valid for all x ∈ R.

Again it is not difficult to see that the series should be valid at any given value for x ∈ R,
since we can place any value into the series for sin( ), including the value 2x (which is defined
regardless of our choice of x ∈ R), simplify each term, multiply the series by another “constant”
such as x3 (only n has a range of values within given sum), and get the correct value for x3 sin 2x.
Since the correct power series centered at zero should be unique, it must be the one computed
above.

This example also shows how Σ-notation can make shorter work of some series constructions.
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11.5.2 Derivatives and Integrals

As has already been mentioned, many of the manipulations we would hope we can do with Taylor
Series are in fact possible. For instance, we can take derivatives and integrals as expected:

Theorem 11.5.2 Suppose that f(x) is given by some Taylor Series

f(x) = a0 + a1(x − a) + a2(x − a)2 + a3(x − a)3 + · · · =

∞∑

n=0

an(x − a)n. (11.37)

1. (Also a theorem of Abel.) If the series converges in an open interval containing x, then
inside that interval, we can differentiate “term by term” to get

f ′(x) = a1 + 2a2(x − a) + 3a3(x − a)2 + · · · =
∞∑

n=1

nan(x − a)n−1. (11.38)

2. Furthermore, integrating (11.37) term by term we get

∫

f(x) dx = a0(x − a) + a1
(x − a)2

2 · 1!
+ a3

(x − a)3

3 · 2!
+ · · · + C

=

∞∑

n=0

an
(x − a)n+1

(n + 1)!
+ C, (11.39)

with the special case that, if the series converges on the closed interval with endpoints a
and x, we have

∫ x

a

f(t) dt =

∞∑

n=0

an
(t − a)n+1

(n + 1)!

∣
∣
∣
∣
∣

x

a

=

∞∑

n=0

an
(x − a)n+1

(n + 1)!
. (11.40)

A very simple demonstration of the derivative part of this theorem is the following:

Example 11.5.3 We do the following calculation d
dxex = ex, but using series to show the

reasonableness of the theorem above.

dex

dx
=

d

dx

(

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

)

= 0 + 1 +
2x

2 · 1 +
3x2

3 · 2 · 1 +
4x3

4 · 3 · 2 · 1 + · · ·

= 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

= ex,

as expected. Using Σ-notation, keeping in mind that the first (n = 0) term differentiates to zero,
we get

d

dx

(
∞∑

n=0

1

n!
xn

)

=
∞∑

n=0

1

n!
· nxn−1 =

∞∑

n=1

1

(n − 1)!
xn−1 =

∞∑

n=0

1

n!
xn = ex.

The step where we rewrite the new series to begin at n = 0 is clear if a few terms are written
out in the expansions of each series.
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The series for
1

1 − x
was given in (11.30), page 779, but was shown easily remembered due

to its relationship with a simple geometric series (see also (10.9), page 706):

∞∑

n=0

xn = 1 + x + x2 + x3 + x4 + x5 + · · · =
1

1 − x
,

valid for |x| < 1. We will use this in some examples below.

Example 11.5.4 Compute the series for
1

(1 − x)2
=

d

dx

[
1

1 − x

]

centered at a = 0.

Solution: This is a straightforward computation, either with the term-by-term expansion or
with the Σ-notation, and an optional rewriting of the final summation. (Note how the first term
vanishes in the derivative.)

1

(1 − x)2
=

d

dx

[
1 + x + x2 + x3 + x4 + x5 + · · ·

]
= 1 + 2x + 3x2 + 4x3 + 5x4 + · · · ,

1

(1 − x)2
=

d

dx

[
∞∑

n=0

xn

]

=

∞∑

n=1

(
nxn−1

)
=

∞∑

n=0

(n + 1)xn.

Since the original series was valid for |x| < 1, so will be the new series. (The reader is
welcome to perform a ratio test to confirm this.)

Example 11.5.5 Use the series for
1

1 − x
to derive a series for

1

1 + x2
. Then use that series to

find a series for tan−1 x.

Solution: We first replace x with −x2 in that series, since
1

1 + x2
=

1

1 − (−x2)
:

1

1 − x
= 1 + x + x2 + x3 + x4 + · · · =

∞∑

n=0

xn (valid for |x| < 1)

=⇒ 1

1 + x2
=

1

1 − (−x2)
= 1 + (−x2) + (−x2)2 + (−x2)3 + (−x2)4 + · · · =

∞∑

n=0

(−x2)n

= 1 − x2 + x4 − x6 + x8 + · · · =

∞∑

n=0

(−1)nx2n.

This is valid wherever |x2| < 1, which it is not too difficult to see is again wherever |x| < 1.16

Next we use the fact that tan−1 0 = 0, so that

tan−1 x = tan−1 x − tan−1 0 =

∫ x

0

1

1 + t2
dt

=

∫ x

0

∞∑

n=0

(−1)nt2n dt =

∞∑

n=0

(−1)n t2n+1

2n + 1

∣
∣
∣
∣
∣

x

0

=

∞∑

n=0

(−1)n x2n+1

2n + 1
− 0.

16Recall that |x2| = |x|2. Also recall that the square root function is increasing on [0,∞), and so (by definition)
preserves inequalities. Thus

|x|2 < 1 ⇐⇒
q

|x2| <
√

1 ⇐⇒ |x| < 1.
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Thus

tan−1 x =

∞∑

n=0

(−1)n x2n+1

2n + 1
= x − x3

3
+

x5

5
− x7

7
+ · · · . (11.41)

Alternatively, the final form in (11.41) can be had by the more expanded form:

tan−1 x =

∫ x

0

1

1 + t2
dt =

∫ x

0

[
1 − t2 + t4 − t6 + t8 − · · ·

]
dt

=

[

t − 1

3
t3 +

1

5
t5 − 1

7
t7 +

1

9
t9 − · · ·

]∣
∣
∣
∣

x

0

= x − 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9 − · · · .

Once again, this is valid where |x2| < 1, i.e., where |x| < 1. However, we see that the series
converges by the Alternating Series Test at x = 1, and so the interval of convergence is in fact
x ∈ (−1, 1]. We know that the series equals tan−1 x even at x = 1 because both tan−1 x and the
series are left-continuous as x → 1−, the former due to the fact tan−1 x is continuous for x ∈ R,
and the series is continuous where it converges by Abel’s Theorem.

In fact one valid, if not terribly efficient, method of computing π is from using

π = 4 · π

4
= 4 tan−1(1) = 4

∞∑

n=0

(−1)n

2n + 1
= 4

(

1 − 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)

. (11.42)

Example 11.5.6 Find

∫ x

0

et2 dt.

Solution: It is an interesting but futile exercise to try to find the antiderivatives of ex2

using the usual tricks: substitution, integration by parts, etc. It is well-known that there is no
“closed form” for this antiderivative, i.e., using the usual functions in the usual manners. It is
also true that, since ex2

is continuous on R, there must exist continuous antiderivatives.17 Our
discussion here presents a strategy for calculating this integral: writing the integrand as a series,
and integrating term by term. As before, we will write the steps and the solution in two ways:
one method is to write out several terms of the series and declare a pattern; the other, done
simultaneously, is to use the Σ-notation. Hopefully by now they are equally simple to deal with.

et = 1 +
t

1!
+

t2

2!
+

t3

3!
+ · · · =

∞∑

n=0

tn

n!

=⇒ et2 = 1 +
t2

1!
+

(t2)2

2!
+

(t2)3

3!
+ · · · =

∞∑

n=0

(t2)n

n!

=⇒ et2 = 1 +
t2

1!
+

t4

2!
+

t6

3!
+ · · · =

∞∑

n=0

t2n

n!

=⇒
∫ x

0

et2 dt =

∫ x

0

(

1 +
t2

1!
+

t4

2!
+

t6

3!
+ · · ·

)

dt =

∫ x

0

(
∞∑

n=0

t2n

n!

)

dt

=

(

t +
t3

3 · 1!
+

t5

5 · 2!
+

t7

7 · 3!
+ · · ·

)∣
∣
∣
∣

x

0

=

∞∑

n=0

t2n+1

(2n + 1)n!

∣
∣
∣
∣
∣

x

0

=

(

x +
x3

3 · 1!
+

x5

5 · 2!
+

x7

7 · 3!
+ · · ·

)

=

∞∑

n=0

x2n+1

(2n + 1)n!
.

17This comes from one of the statements of the Fundamental Theorem of Calculus.
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Thus
∫ x

0

et2 dt =

∞∑

n=0

x2n+1

(2n + 1)n!
.

We could also write the general antiderivative

∫

ex2

dx =

∞∑

n=0

x2n+1

(2n + 1)n!
+ C.

Other antiderivatives which must be found this way are
∫

sin x2 dx,
∫

cosx2 dx.

11.5.3 The Binomial Series and an Application

The following series comes up in enough applications that it is worth some focus. It is the
following:

(1 + x)α = 1 + αx +
α(α − 1)x2

2!
+

α(α − 1)(α − 2)x3

3!
+ · · · (11.43)

This series (11.43) is known as the Binomial Series. It can also be written

(1 + x)α =
∞∑

n=0

α(α − 1) · · · (α − n + 1)xn

n!
.

This series is valid for |x| < 1, and sometimes also valid at one or both endpoints x = ±1. It is
not difficult to prove, and is a worthwhile exercise. In fact, for α ∈ {0, 1, 2, 3, · · · }, the function
is a polynomial and the series terminates (in the sense that all but finitely many terms are zero),
simply giving an expansion of the polynomial, valid for all x.

The derivation of (11.43) is straightforward. See Exercise 23. Here are some quick examples:

1√
1 + x

= 1 − 1
2x +

(− 1
2 )(−

3
2 )x2

2! +
(− 1

2 )(−
3
2 )(−

5
2 )x3

3! + · · ·
(
α = − 1

2

)

1

1 + x2
= 1 − (x2) + (−1)(−2)(x2)2

2! + (−1)(−2)(−3)(x2)3

3! + · · · (α = −1)

= 1 − x2 + x4 − x6 + · · · (“x” = x2)

(1 + x)3 = 1 + 3x + 3·2x2

2! + 3·2·1x3

3! + 3·2·1·0x4

4! + 3·2·1·0·(−1)x5

5! + · · ·
= 1 + 3x + 3x2 + x3 (α = 3)

Actually, the last one is valid for all x, and the one above it was found as a step in Example 11.5.5,
page 792. Other algebraic manipulations can also sometimes put a function into a form suitable
for applying the Binomial Series. Consider the following, with α = 1/3, we complete the square
under the radical, and the natural center of the resulting series is a = −1. (Note also that
3
√
−A = 3

√
−1 3

√
A = − 3

√
A, since 3 is odd.)

3
√

x2 + 2x =
3
√

x2 + 2x + 1 − 1 = 3
√

(x + 1)2 − 1 = − 3
√

1 − (x + 1)2

= −
[

1 +
1
3 (x + 1)2

1!
+

1
3 · −2

3 (x + 1)4

2!
+

1
3 · −2

3 · −5
3 (x + 1)6

3!
+ · · ·

]
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Similarly, each of the following manipulations are valid though they yield different intervals
of convergence:

(3 − 8x)1/4 = (1 − (8x − 2))1/4 = 1 +
1
4 [−8(x − 1

4 )]

1!
+

1
4 · −3

4 [−8(x − 1
4 )]2

2!

+
1
4 · −3

4 · −7
4 [−8(x − 1

4 )]3

3!
+ · · · ,

(3 − 8x)1/4 = 31/4

(

1 − 8

3
x

)1/4

= 31/4

[

1 +
1
4

(
−8x
3

)

1!
+

1
4 · −3

4

(
−8x

3

)2

2!

+
1
4 · −3

4 · −7
4

(
−8x

3

)3

3!
+ · · ·

]

.

The first representation is centered at x = 1/4, and definitely valid where |8x−2| ≤ 1, i.e., where
x ∈ (1/8, 3/8), while the second is centered at x = 0 and definitely valid where |8x/3| < 1, i.e.,
where x ∈ (−3/8, 3/8).

While binomial series tend to be complicated to write, there are elegant applications. One
particularly beautiful application relates Albert Einstein’s Special Relativity to Newtonian Me-
chanics. This application is given in the following example.

Example 11.5.7 (Application) According to Einstein, kinetic energy is that energy which is
due to the motion of an object, and can be defined as Ek = Etotal − Erest, this being a function
of velocity for a given mass m:

Ek(v) =
mc2

√

1 − v2

c2

− mc2 = mc2

(

1 − v2

c2

)−1/2

− mc2.

Contained in the above is the very famous equation Erest = mc2. Also notice that the total
energy Etotal blows up as v → c− or v → −c+, i.e., as velocity approaches the speed of light. At
v = ±c, we are dividing by zero in the total energy, and thus the theory that ordinary objects
cannot achieve the speed of light (for it would take infinite energy to achieve it).

Now let us expand this expression of Ek(v) by applying the Binomial Series to

(

1 − v2

c2

)−1/2

,

with α = −1/2 and replacing x with −v2/c2. Thus Ek = mc2
[
(1 − v2/c2)−1/2 − 1

]
becomes

Ek(v) = mc2




1 − 1

2

(

−v2

c2

)

+

(
− 1

2

) (
− 3

2

) (

− v2

c2

)2

2!
+ · · ·




− mc2 (11.44)

≈ mc2

(

1 +
1

2

v2

c2

)

− mc2 when
v2

c2
is small. (11.45)

Multiplying this out, we see that

Ek ≈ mc2 + mc2 · 1

2

v2

c2
− mc2 =

1

2
mv2. (11.46)

Summarizing,

Ek(v) ≈ 1

2
mv2 when |v| << c. (11.47)
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Here the notation |v| << c means that |v| is much smaller than c, giving us that v2/c2 is very
small. So we see that Newton’s kinetic energy formula Ek = 1

2mv2 is just an approximation
of Einstein’s, which is to be expected since Newton was not considering objects at such high
speeds. In effect, Newton could not see the whole kinetic energy curve, where Einstein’s theories
could detect more phenomena which governed the behavior of the curve of Ek versus v through
a larger range of velocities v.

Exercises

The following are very useful exercises for students to attempt themselves. One should first
attempt these using the written out expansion

a0 + a1x + a2x
2 + a3x

3 + · · · ,

and then using the Σ-notation if possible, comparing the results.

1. Use the series for ex to find a series ex-
pansion for the general antiderivative

of ex2

. (You can try to find the an-
tiderivative using non-series methods,
but it cannot be written using the usual
functions. It is interesting to attempt
to use the old methods, to see why they
fail.)

2. Use the Maclaurin series for sinx to do
the following:

(a) Write a series for sin 2x.

(b) Use the series above to prove that
d
dx sin 2x = 2 cos 2x. (It may help
to also write the series for 2 cos 2x
separately.)

(c) Write a series for cosx2.

(d) Use the series above, and the se-
ries for −2x sin x2, to prove that
d
dx cosx2 = −2x sinx2.

3. Use the Maclaurin Series for sinx and
cosx to show that

sin(−x) = − sinx,

cos(−x) = cosx.

In each of the following, unless other-
wise stated, leave your final answers in
Σ-notation.

4. Find the Maclaurin series for f(x) =
ln(x + 1) using (11.32). Where is this
series valid?

5. Approximate

∫ √
π

0

cosx2 dx by com-

puting the first five nonzero terms of
the Maclaurin series for

∫
cosx2 dx.

6. The Hyperbolic Functions: The three
most important hyperbolic functions
are

sinhx =
ex − e−x

2
(11.48)

coshx =
ex + e−x

2
(11.49)

tanhx =
ex − e−x

ex + e−x
. (11.50)

Though not immediately obvious, it is
true that tanhx is invertible, and that
its inverse has the property that

d

dx
tanh−1 x =

1

1 − x2
. (11.51)

Find the Maclaurin series for f(x) =
tanh−1 x given that

tanh−1 x =

∫ x

0

1

1 − t2
dt. (11.52)

(See Example 11.5.5, page 792.) Where
is this series valid? (Actually the inte-
gral in (11.52) can also be computed
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with partial fractions, and the final an-
swer written without resorting to se-
ries.)

7. (Proof of Proposition 11.3.5) Derive the
Taylor Series for lnx with a = 1 using
the fact that

lnx =

∫ x

1

1

t
dt

for x > 0, and

1

t
=

1

1 − (1 − t)
.

Where is this series guaranteed valid?

8. Evaluate lim
x→0

sinx

x
using a Taylor Se-

ries centered at a = 0.

9. Evaluate lim
x→0

1 − cosx

x
using a Taylor

Series centered at a = 0.

10. Do the same for lim
x→0

1 − cosx

x2
.

11. Evaluate the integral

∫ 0.4

0

cosx2 dx by

using the Taylor Polynomial P3(x) for
cosx centered at a = 0 (and therefore
P6(x) for cosx2). This is called a Fres-
nel integral, which appears in studies of
optics.

12. In (11.42), page 793 we see that

π = 4

[

1 − 1

3
+

1

5
− 1

7
+ · · ·

]

.

How many terms should we add in the
series above to be assured that our sum
is

(a) within 0.01 of π?

(b) within 0.00001 of π?

13. Use Maclaurin series for sinx and cosx
to demonstrate the following:

(a) d
dx sinx = cosx.

(b) d
dx cosx = − sinx.

14. Use the fact that 1+x+x2 +x3 + · · · =
1

1−x , and that d
dx

(
1

1−x

)

= 1
(1−x)2 to

find the Maclaurin Series expansion for

f(x) =
1

(1 − x)2
.

15. Use the facts that tan−1 x =
∫ x

0
1

1+t2 dt, and that 1
1+t2 = 1

1−[−t2]

to compute the Maclaurin Series for
tan−1 x.

16. Show that 1
e = 1−1+ 1

2! − 1
3! +

1
4! by us-

ing the series for ex centered at x = 0.

17. Starting from the series for ex, compute
the Taylor Series for

(a) sinhx =
ex − e−x

2

(b) coshx =
ex + e−x

2

For Exercises 18–22, approximate the defi-

nite integrals
∫ b

a f(x) dx by replacing f(x)
with an appropriate Taylor Polynomial
P4(x), centered at a = 0 if possible, and
centered elsewhere if necessary. Also, com-
pare your approximation to the exact value
for each integral.

18.

∫ π/4

0

sin xdx

19.

∫ 2

1

ex dx

20.

∫ 3

1

lnxdx

21.

∫ 3

1

√
1 + x dx

22.

∫ π/2

0

cosxdx

23. Derive the series (11.43) using the
formula for Taylor/Maclaurin Series
where f(x) = (1 + x)α and a = 0.
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24. Find a series representation for the fol-
lowing functions using the binomial se-
ries (11.43). Do not attempt to use Σ-
notation, but rather write out the first
five terms of the series to establish the
pattern.

(a) f(x) = (1 + x)3/2

(b) f(x) = (1 − x)3/2

(c) f(x) =
1

3
√

1 + x

(d) f(x) =
1

3
√

1 + x3

(e) f(x) =
x3

√
1 + x

(f) f(x) =
1√

1 − x2
.

25. find the series expansion for
f(x) = ln

(
1 + x2

)
by using the fact

that ln
(
x2 + 1

)
=

∫ x

0

2t

1 + t2
dt.

26. Find a more general form of the bino-
mial series by using (11.43) to derive a
series for

f(x) = (b + x)α (11.53)

and determine for what values of x is it
valid. (Hint: Use (11.43) after factor-
ing out bα from f .)

27. Complete the square and use the bino-
mial series to write a series expansion
for the following. Also determine an
interval |x − a| < R where the series is
guaranteed to be valid.

(a) f(x) =
1√

x2 − 6x + 10

(b) f(x) =
√

4x2 + 12x + 13

(c) f(x) = (−2x2 + 3x + 5)−2/3

28. Using (11.44), page 795 to show that

Ek(v) ≥ 1

2
mv2 for |v| < c, with equal-

ity only occurring when v = 0. Thus
(11.47) is always an underestimation
unless v = 0. (Hint: Look at the signs
of all the terms we ignore in the ap-
proximation.)

29. Approximate

∫ 1

0

√

1 + x3 dx by using

the the Binomial Series expansion for

√
1 + x3 =

(
1 + x3

) 1
2 , and using the

first three nonzero terms of this expan-
sion in your integral.

30. Consider f(x) = ex2

.

(a) Write the Maclaurin series for
f(x).

(b) Find f (9)(0).

(c) Find f (10)(0).

31. It can be shown that

π

4
= tan−1

(
1

3

)

+ tan−1

(
1

2

)

.

Use this fact to approximate π by using
the Taylor Series for tan−1 x centered
at a = 0 and the approximation P5(x).

32. Use the fact that

tan(α + β) =
tanα + tanβ

1 − tan α tan β

to prove the assertion at the beginning
of the previous exercise.

33. As in Exercise 31, estimate π by using
the fact that

π

4
= 4 tan−1

(
1

5

)

− tan−1

(
1

239

)

.

34. As in Exercise 31, estimate π by using
the fact that

π

4
= tan−1

(
1

2

)

+tan−1

(
1

5

)

+tan−1

(
1

8

)

.

35. Write the Maclaurin series for

f(x) =
1

2
sin 2x by

(a) using the series for sinx.

(b) using instead the series for sinx
and cosx and the fact (from the
double angle formula) that

f(x) = sin x cosx.

(Just write out the first several
terms of the product, being care-
ful to distribute correctly, to ver-
ify the answer is the same as in
part (a).)
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11.6 Complications and the Role of Complex Numbers

A common engineering and science research technique is to assume there is a function which
describes some relationship between two variables, and that the function has a Taylor Series
representation. Then the researcher might look at data and attempt to find the best fitting
polynomial of some specified degree that fits the data. Some limit on the degree has to be
specified, since anytime we have N data of the form {(x1, y1), (x2, y2), · · · , (xN , yN )}, where none
of the xi are repeated with different yi, we can fit an (N − 1)-degree polynomial to that data
perfectly, but its predictive abilities may be little or nonexistent, since high-degree polynomials
tend to have rather violent behavior, particularly as |x| → ∞ or even between the data points.

Moreover, Taylor Series not only assume that all derivatives exist at the center, but by Abel’s
Theorem and our ability to differentiate series, we expect the function in question to have all of
its derivatives inside the interval of convergence. The contrapositive of that fact gives us that
once we run into a problem with the function or one of its derivatives as we move from the
center of the series, we cannot move any farther from the center and expect the series to be valid
for the function. The upshot is that the researcher who assumes a Taylor Series expansion of a
function must be careful to only use that assumption within intervals where the function and
its derivatives should all be defined. Attempting to “fit” data to polynomials beyond that will
likely have little or no predictive value.

We will first look at some cases where we can expect problems with our Taylor Series, in the
sense that we cannot expect the given function to be equal to a Taylor Series. Most of those
cases will upon reflection become pretty obvious, but some are more subtle.

As we have seen already, a Ratio Test can often give us the open part of an interval of
convergence (with the endpoints usually checked separately), though we were able to avoid the
Ratio Test for some of our series derived from, say, the geometric series. From the discussion
above (further developed below) we can also see problems with assuming a valid Taylor Series
when functions run into other difficulties, which a Ratio Test will not necessarily detect (the
series may converge but not to the function). We will explore this in Subsection 11.6.1.

It turns out that the most natural place for series to “live” and be observed is not so much
the real line R and its intervals, but the complex plane

C =
{

x + iy
∣
∣
∣ x, y ∈ R, i =

√
−1
}

(11.54)

and its open discs, an open disc meaning the interior of a circle (not including the circle itself).
This allows “wiggle room” in all directions from the center, which allows for things such as
derivatives, where in R we only require “wiggle room” to the left and right. In fact it is from
this complex context that the term radius of convergence comes to us. We will look into this
further in Subsection 11.6.3. That discussion usually waits until students finish a 2–3 semester
calculus sequence and proceed to a Differential Equations course, but it is included here to give
some more context to Taylor Series.

11.6.1 Troubles stemming from continuity problems

Most of our familiar functions are analytic where they are defined, and so can be represented
by Taylor Series for usefully large intervals. These functions include all polynomials, rational
functions, exponentials, roots, logarithms and trigonometric functions, as well as combinations
of these through addition, subtraction, multiplication, division and composition. We already
mentioned that there are power series which are perfectly respectable functions, but which
cannot be written as combinations of familiar functions. This may leave the student with the
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incorrect impression that we can always find and manipulate Taylor Series for all functions with
impunity.

However, there are many functions we encountered in Chapter 3 which had more pathological
behaviors and will not always be analytic where defined. Therefore Taylor Series are often useless
and inappropriate in dealing with such functions, at least if we wish to center a series at a
problematic point of the function, or assume a series will be valid as we allow the input variable,
say x, have its value move “through” a problematic value.

The purpose of this section is to alert the student to situations in which Taylor Series—or
even Taylor Polynomials—are not appropriate for approximation except possibly with careful
modifications.

Example 11.6.1 Consider f(x) = |x|, which we graph below:

1−1

1

The following problems arise with attempting to use a Taylor Series representation for f(x) =
|x|:� If we attempt to construct Taylor Polynomials at a = 0, we would have to stop at P0(x) = 0

because there are no derivatives to compute at a = 0. Furthermore, P0(x) is clearly a
terrible approximation of f(x) as we stray from its center x = 0.� If we were to construct a Taylor Series for f(x) at, say, a = 1 we would find that the series
would terminate after the first-order term, because except at x = 0, locally this function
is a line. Consider for instance the Taylor Series centered at a = 1, where we have, for
N ≥ 2,

PN (x) = f(1) + f ′(1)(x − 1) +
1

2!
f ′′(1)(x − 1)2 +

1

3!
f ′′′(1)(x − 1)3 + · · · + 1

N !
(x − 1)N

= 1 + 1(x − 1) + 0 + 0 + 0 + · · · + 0

= x.

We would get the same series (letting N → ∞) for any other center a > 0, which a
direct computation would show. Furthermore, such a series would not be the same as the
function for x < 0, since f(x) 6= x when x < 0.� Similarly for a = −1 we would have N ≥ 2 =⇒

PN (x) = f(−1) + f ′(−1)(x + 1) +
1

2!
f ′′(−1)(x + 1)2 +

1

3!
f ′′′(1)(x + 1)3 + · · · + 1

N !
(x + 1)N

= −1 − 1(x + 1) + 0 + 0 + 0 + · · · + 0

= −x.

This is equal to f(x) for x ≤ 0 but is incorrect for x > 0.



11.6. COMPLICATIONS AND THE ROLE OF COMPLEX NUMBERS 801

What ruins the above series’ chances of being the same as the function on all of R is the fact
that the absolute value function is not differentiable at x = 0. Anywhere else we can have a
Taylor Series equal to the function locally, but not globally.

The coefficients of the Taylor Series follow from the local behavior of the function, not its
global behavior. On x ∈ (0,∞) we have f(x) = x, with its obvious Taylor Series (which simplifies
to just x), while on x ∈ (−∞, 0) with its obvious Taylor Series (which simplifies to just −x).
However, neither of these Taylor Series can equal the function on the other side of x = 0: a
Taylor Series centered at a > 0 will be incorrect for x < 0, and a Taylor Series centered at a < 0
will be incorrect for x > 0.

While we can see the “kink” at x = 0 in the graph for f(x) = |x|, which causes a major
discontinuity in the derivatives there, sometimes the problem is more subtle, from the graphical
perspective. It might not be so subtle from the functional definition perspective: piece-wise
defined functions are often suspect. Recall that |x| is defined to be x on [0,∞) and −x on
(−∞, 0).

Example 11.6.2 Consider the function f(x) =

{
x2, if x ≥ 0

−x2 if x < 0
with graph and deriva-

tives

1−1

1

−1

f ′(x) =

{
2x, if x ≥ 0

−2x if x < 0

f ′′(x) =

{
2, if x > 0

−2 if x < 0.

This function has similar complications as the previous, except they emerge in the next-higher-
order Taylor Polynomials:� At a = 0 we can construct P1(x) = 0 (zero height and slope) but we cannot construct

P2(x) or higher because f ′′(0) does not exist.� For a (positive) center a > 0 we can construct even the full Taylor Series, which will
simplify to x2, but not be equal to the function for x < 0.� For a (negative) center a < 0 we can construct the full Taylor Series, which will simplify
to −x2, but will not equal the function for x > 0.

Example 11.6.3 Consider the function

f(x) =

{

e−1/x2

, for x 6= 0
0 for x = 0.

(11.55)

Clearly, as x → 0 we have form e−∞ and so x → 0 =⇒ f(x) → 0, and since f(0) = 0 we have
continuity at x = 0. The function is also symmetric with respect to the y-axis. It is notable
that f(x) → 0 somewhat quickly as x → 0 because of the growth in 1/x2, and thus negative
growth in −1/x2. Indeed the function is graphed below. Though it appears “flat” it is only zero
at x = 0, which would take a much higher resolution graphic to verify.
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1 2−1−2

1

It is an interesting exercise to show that all derivatives of f(x) exist everywhere, including at
x = 0. Furthermore, after computing a few derivatives and some of the ensuing limits one can
show that (∀n ∈ {0, 1, 2, 3, · · · })f (n)(0) = 0. Thus the Maclaurin Series for f(x) would be itself
zero, as in

∞∑

n=0

f (n)(0) · xn

n!
=

∞∑

n=0

0xn

n!
= 0,

and so while this series would be equal to f(x) at x = 0, it would not be elsewhere, as f(x) =
0 ⇐⇒ x = 0. So even though all derivatives exist for f at x = 0, and the function and its
derivatives are all continuous on x ∈ R, the Taylor Series centered at a = 0 does not converge
to the function except at the center of the series.

Such a function as in Example 11.6.3 above is certainly smooth at x = 0 and indeed all of R, as
are all of its derivatives, but it is not real-analytic at x = 0 because it cannot be represented as
a power series in an open interval containing x = 0. (Neither were the functions in the previous
Examples 11.6.1, 11.6.2; see Definition 11.4.2, page 786.)

In fact the Taylor Series centered at any a ∈ R would only be guaranteed to converge to the
function at on |x−a| < |a|, because it could not extend to “the other side of zero,” and we know
that it must converge within a certain “radius” of the center, and diverge once past that radius
from the center. In the next subsection we will see that what is crucial is what happens inside
the complex plane, where the term “radius of convergence” makes more sense.

11.6.2 The Complex Plane

Here we will look very briefly at the complex plane, which is the geometric interpretation of
complex numbers z = x + iy, where x, y ∈ R, and i =

√
−1. We would call x the real part of z,

and iy to be the imaginary part of z.
At first this seems preposterous because clearly

√
−1 /∈ R, since the square of any real number

will not be negative. While it may seem easy to dismiss any number with an “imaginary” part
iy as being a figment of the imagination and of no actual consequence, there nonetheless are
many important physical phenomena best described using complex numbers, as their geometric
properties (which we develop below) have many real-world analogs. Furthermore, complicated
“real-number” phenomena are often most easily analyzed by lifting them into the complex plane,
making observations there, and bringing these observations back into the real line.18

So if we take as given that there is a number system which includes all the real numbers, but
also a quantity i =

√
−1, we get the following multiplication facts:

i = i i5 = i
i2 = −1 i6 = −1
i3 = −i i7 = −i
i4 = 1 i8 = 1







(∀n ∈ N ∪ {0})







i4n+1 = i
i4n+2 = −1
i4n+3 = −i
i4n+4 = 1







18It is akin to giving someone lost in a wilderness an aerial map, or a brief lift in a helicopter, so that they can
glimpse their predicament from above. This could indeed be useful in finding a path out of the wilderness, even
if the actual solution is still to be taken at ground level.
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In fact the above pattern follows for n ∈ Z = {· · · ,−2,−1, 0, 1, 2, · · · }, but that requires a
discussion of division for the negative exponents. Before discussing division, one has to first
discuss multiplication, which has its own complications. Assuming in the discussion below that
x1, x2, y1, y2 ∈ R, we have

z1 = x1 + iy1

z2 = x2 + iy2

=⇒
z1z2 = (x1 + iy1)(x2 + iy2)

= (x1x2 − y1y2) + i(x1y2 + x2y1).

We see a kind of intermingling of the real and imaginary parts of z1 and z2 to form the real and
imaginary parts of the product z1z2. While that may appear quite complicated and esoteric, in
fact there is a geometric interpretation which is not all that difficult. For instance, multiplying
by the imaginary unit i has the same effect as a π/2 (90◦) rotation in the complex plane, where
we graph z = x1 + iy1 the same way we graph (x1, y1) in what looks like the regular xy-plane,
though here the horizontal axis is referred to as the real axis, and the vertical axis is referred to
as the imaginary axis. In the diagrams below we do see how multiplying by i is indeed the same
as rotating the point around the origin 0 = 0 + i · 0 by π/2.

1-1

i

−i

x

iy

2 + 3i

−3 + 2i

90◦

x

iy

Note how in the first graph, each time we multiply by i we “travel” from i0 = 1, to i1 = i,
i2 = −1, i3 = −i, back to i4 = 1 and so on. In the second graph note the relative positions of
2 + 3i and i(2 + 3i) = −3 + 2i: the latter is a π/2 rotation from the former.

This already hints at why complex numbers can be useful in the physical sciences: rotations
in a plane can be modeled as multiplications by powers of i.

The scope of this text would have to be greatly expanded to prove the validity of the following,
but the reader should be assured by the presence of dozens of textbooks on the subject, that we
are allowed to perform calculus in complex variables (properly understood), which allows us to
accept, for instance, the following identity of Euler:19

eiθ = cos θ + i sin θ. (11.56)

19Leonhard Euler (sounds like “oiler”), 1707–1783 was an extremely prolific Swiss mathematician and physicist.
A student studying graduate level mathematics will read his name often, perhaps more often than that of any
other historical figure. He had a particular talent for discovering facts ahead of the time in which they could
actually be proved rigorously, such as his identity (11.56).
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This follows from the Maclaurin series for eθ, cos θ and sin θ, where (of course) θ is in radians:

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+ · · ·

= 1 + iθ − θ2

2!
− i

θ3

3!
+

θ4

4!
+ i

θ5

5!
− θ6

6!
− i

θ7

7!
+ · · ·

=

(

1 − θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)

︸ ︷︷ ︸

cos θ

+i

(

θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

)

︸ ︷︷ ︸

sin θ

= cos θ + i sin θ.

This equation (11.56) is useful in many contexts. For instance, it can be used to find the most
basic trigonometric identities that involve more than one angle, if we consider two expansions
for exp[i(α + β)]:

ei(α+β) = cos(α + β) + i sin(α + β), and

ei(α+β) = eiα+iβ

= eiαeiβ

= (cos α + i sin α)(cos β + i sin β)

= (cos α cosβ − sinα sinβ) + i(sinα cosβ + cosα sin β),

=⇒ cos(α + β) + i sin(α + β) = (cos α cosβ − sinα sinβ) + i(sinα cosβ + cosα sin β).

Now anytime we have x1 + iy1 = x2 + iy2, where x1, x2, y1, y2 ∈ R, we must have x1 = x2 and
y1 = y2; that is, the real parts x1, x2 must be the same and the imaginary parts iy1, iy2 must be
the same. Setting the two different forms above for the real part equal, and doing the same for
the imaginary parts (divided by i), we get

cos(α + β) = cosα cosβ − sin α sin β,

sin(α + β) = sin α cosβ + cosα sin β.

The pair of trigonometric identities above are proved geometrically in most trigonometric text-
books, but the proof using complex numbers and Euler’s identity as above is routine once one is
comfortable with complex numbers. Many more trigonometric identities follow from these, and
the facts that cos(−θ) = cos θ and sin(−θ) = − sin θ (both of which can be proved using their
own Maclaurin Series). For instance, if we set α, β = θ we have cos 2θ = cos2 θ − sin2 θ, and
sin 2θ = 2 sin θ cos θ from these.

This gives rise to further geometric aspects of complex numbers. Consider Figure 11.5. It is
customary to define, for z = x + iy, the “absolute value” of z, given by20

|z| =
√

x2 + y2,

which is the distance from z to the origin 0 = 0+i ·0. (Similarly |x| is the distance from x to zero
but on the real line.) We can also define an angle θ which the ray from 0 to z makes with the
positive real axis, measured counterclockwise. If we do so, it is not hard to see that x = |z| cos θ

and y = |z| sin θ. It is common to see |z| replaced by the real variable r, so r =
√

x2 + y2 and

z = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ .

20This quantity |z| has many other names such as the modulus, norm, magnitude, and length of z.
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z = x + iy

x

iy

θ

r = |z| =
√ x

2 + y2

iy
=

i·
r
sin

θ

x = r · cos θ

Figure 11.5: A complex number z = x+ iy written in polar form z = reiθ = r(cos θ+ i sin θ).

This is called the polar form of the complex number z. (A similar theme is developed with the
usual Cartesian Plane, R

2, in Chapter 12.)
This gives us some interesting aspects of complex multiplication. If z1 = r1e

iθ1 and z2 =
r2e

iθ2 , then
z1z2 = r1r2e

i(θ1+θ2),

so that when we multiply two complex numbers, in the product their lengths (absolute values)
are multiplied, and their angles are added.

Besides giving further illumination on the idea that multiplying by i is the same as revolving
the complex number 90◦ around the origin, this also lets us “work backwards” to solve some
other interesting problems. For instance, what should be the square root of i? One problem
with answering this is that there are actually two square roots of i, as there are two square roots
of −1, namely i and −i, and there are two square roots of 9, namely 3 and −3. We usually
choose one to be “the square root,” and so with the complex plane we might choose only those
whose angles θ are within [0, π), though that is only one convention. In fact in most applications
we are interested in all roots, so in the computations below we use quotation marks around the
expressions for the roots. We also exploit the ambiguity regarding what exactly should be θ,
since once we have a workable θ we also have θ + 2nπ also legitimate, for n ∈ Z.

Example 11.6.4 Find all fourth roots of 16.
Solution: Here we write 16 in the form |z|eiθ using four consecutive legitimate values for θ,

and then formally (or “naively”) apply the 1/4 power:

16 = 16ei·0 =⇒ “161/4” = 161/4ei· 04 = 2 (cos 0 + i sin 0) = 2 (1 + i · 0) = 2,

16 = 16ei·2π =⇒ “161/4” = 161/4ei· 2π
4 = 2

(

cos
π

2
+ i sin

π

2

)

= 2 (0 + i · 1) = 2i,

16 = 16ei·4π =⇒ “161/4” = 161/4ei· 4π
4 = 2 (cosπ + i sinπ) = 2 (−1 + i · 0) = −2,

16 = 16ei·6π =⇒ “161/4” = 161/4ei· 6π
4 = 2

(

cos
3π

2
+ i sin

3π

2

)

= 2 (0 + i · (−1)) = −2i.
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If we were to write 16 = 16e8πi, we would get the same root as we got in the first case above,
namely “161/4” = 2ei·2π = 2 as before. Similarly with the other possible values of θ: we would
again get only the four previous fourth roots, namely ±2,±2i.

These fourth roots of 16 can also be found by solving x4 = 16 using high school algebra, but
the technique above also allows us to find any roots of any number which we can write in the
form z = reiθ.

Example 11.6.5 Find the square roots of i.

Solution: We proceed as above, noting that i makes an angle of 90◦ with the positive real
axis. We will use θ = π

2 and θ = 2π + π
2 = 5π

2 to find our two second roots.

i = 1ei·π/2 =⇒ “i1/2” = 11/2ei·π
4 = 1

(

cos
π

4
+ i sin

π

4

)

= 1

(
1√
2

+ i
1√
2

)

=
1 + i√

2
,

i = 1ei·5π/2 =⇒ “i1/2” = 11/2ei· 5π
4 = 1

(

cos
5π

4
+ i sin

5π

4

)

= 1

(

− 1√
2
− i

1√
2

)

= −1 + i√
2

.

Thus the square roots of i are ±(1 + i)/
√

2. Note that these make 45◦ and 225◦ angles with the
positive real axis, so when we square these—and thus double the angles—we arrive at angles of

90◦ and 450◦, which are where we will find i. The lengths of either root are
√

1
2 + 1

2 =
√

1 = 1,

so when we square these roots we get a complex number with length 12 = 1. So our computed
roots have the correct angle and the correct length when squared.

The reader can verify that adding another multiple of 2π to the original angle for i will yield
one of the same two square roots of i in the process above.

Anytime we graph the nth roots of a number, on the complex plane these roots will always
have the same absolute value (distance from the origin), and successive ones will make angles of
2π/n between them, because we write the original number with successive angles in increments
of 2π, so when we take the “1/n” power we get angles differing by 2π/n. This also explains why
there will be exactly n such roots, after which the process’s outcomes are repeated.

11.6.3 The Complex Plane’s Role

While very useful and interesting in their own right, the main purpose of introducing complex
numbers here is to show their importance in the theory of power series. In particular, Abel’s
Theorem is actually a theorem about power series for complex numbers:

Theorem 11.6.1 Any power series

∞∑

k=0

ak (z − z0)
k
, where z0, a0, a1, a2, · · · ∈ C, will converge

absolutely either

(i) at z0 only, or

(ii) on all of C, or

(iii) within a circle where |z − z0| < R for some R > 0, and diverge where |z − z0| > R

In each of these cases, the convergence will be absolute, meaning that
∑
∣
∣
∣ak (z − z0)

k
∣
∣
∣ will con-

verge.
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This theorem then applies to R ⊆ C, and we see that when we intersect the “open circles” of
convergence in C for a series centered at some a ∈ R, with the real line R, we get open intervals
in R of convergence centered at a ∈ R. Like the previous statement of Abel’s Theorem, there is
no mention of the boundary, which is the actual circle |z − z0| = R in C.

The theorem can shed some light on why the Taylor Series for certain “well-behaved”
functions—unlike those in Subsection 11.6.1—fail to converge on all of R: they might not be so
well behaved in C.

Example 11.6.6 Consider the function f(x) = 1/(x2 + 1). This function and all of its deriva-
tives exist on all of R, as the reader can verify. Its Maclaurin Series is given by

1

x2 + 1
=

1

1 − (−x2)
=

∞∑

k=0

(−1)kx2k,

which we get from geometric series methods. The interval of convergence is x ∈ [−1, 1].

If instead we look at f as a function of a complex variable z with the same formula, we have

f(z) =
1

z2 + 1

which is undefined at z = ±i, where the denominator would be zero. With Abel’s Theorem
stating that outside of a circle of some radius R the series representation

f(z) =
1

z2 + 1
=

∞∑

k=0

(−1)kz2k

will diverge, and converge inside the open disc bounded by the circle, it is reasonable that the
series for f(z) should converge for |z| < 1, and diverge for |z| > 1 since |z| = 1 is where the
function first encounters any discontinuities (in this case, in the function and all its derivatives).

i

−i

1−1

In the diagram at the left, the white re-

gion is |z| < 1, where the series converges
(absolutely), and the gray region is |z| > 1,
where it diverges. Note that ±i are on the
boundaries of the dashed circle. These points
±i are precisely where f(z) = 1

z2+1 has a
discontinuity (dividing by zero), and so we
should expect the Maclaurin series to be valid
at most up to the circle, as per Abel’s The-
orem, and this would imply absolute conver-
gence of the real-variable

series for f(x) within x ∈ (−1, 1). (One must test the boundary points separately.)

So when we attempt to determine the region in which a series expansion for a function is
valid, the more complete context is C. For instance, if we are only looking in R then the function
f(x) = 1

x2+1 has no problems in the function itself or its derivatives anywhere in R, but when

we consider the context of C, perhaps rewriting it as f(z) = 1/(z2 + 1), we can immediately
detect a problem at z = ±i.
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Example 11.6.7 Find the largest open interval of convergence for the Taylor Series represen-
tation of f(x) = 1

x2+1 centered at x = 5. Do not write the actual series.
Solution: Again, in C the only discontinuities in the function or its derivatives are at z = ±i,

which are a distance
√

52 + 12 =
√

26 from the center a = 5, and so the largest open interval of
convergence would be x ∈

(
5 −

√
26, 5 +

√
26
)
. The reader is encouraged to draw the open disc

in C as above, though it would be centered at z = 5 and would extend to its boundary which
would contain z = ±i. (Note that the left endpoint of the real interval of convergence would be
negative.) The actual series would be of the form

∑
ak(x − 5)k.

The technique above would be much easier than first finding the actual form of the series,
and then using a Ratio Test technique to find the actual interval of convergence.

11.6.4 Summary

The reader might at this point be wondering how we know the series referred to in the above
example would converge to the function in that interval, while the Maclaurin Series for the
function in Example 11.6.3, page 801 does not, even though there are no troubles on all of R

with the function or derivative. The explanation is that the function e−1/z2

has some very violent
behavior near z = 0 in the complex plane, behavior which does not occur anywhere along the
real line.21

The correct explanation, which again is not proved here due to the scope of this textbook,
is that our usual functions found in this textbook, with the exception of those defined piecewise
(including |x|), will have Taylor Series which converge in any open disc |z − z0| < R, where z0

is the center and where R is the distance from z0 to the nearest discontinuity. This was the
analysis in Example 11.6.6, page 807 and the subsequent Example 11.6.7. This applies to all
combinations of polynomial, root, trigonometric, arc-trigonometric, exponential and logarithmic
functions using addition, subtraction, multiplication, division and functional composition (mean-
ing the output of one function is fed as an input into another). It is also helpful to know (by
a contrapositive-type argument using Abel’s Theorem) that any function with a Taylor Series
which converges to that function on all of R must have that series converge on all of C: if it did
not converge on all of C, it could not on all of R either, as a problem in C would limit the size
of a disc of convergence there, which could therefore not include all of R.

21The point z = 0 is called, in complex function theory, an essential singularity. In fact, as we can see from
the series for ez, we could write

e−1/z2
= 1 − 1

z2
+

1

2! · z4
− 1

3! · z6
+ · · · ,

we can expect more and more “singular” behavior as z → 0 in C, meaning as 0 < |z| < ε for smaller and smaller
ε > 0. Recall how z−n = (1/z)n will make angle nθ from the positive real axis, where θ is the angle made by
1/z, and so these terms in the above series, until the factorials take over, can have some dramatic behavior in
the partial sums. (That is not so much the case when θ ∈ {0, π}, i.e., when z ∈ R.)

A surprising and beautiful theorem of complex analysis says that any open disc containing an essential singu-
larity z0 will “map to” all of C excepting perhaps a single value, so for such a function f we have the output
from the function, with input from the disc, is all of C or could possibly miss a single value in C. Thus

n

f(z)
˛

˛

˛

0 < |z − z0| < ε
o

= C, or C − {w0} ,

where w0 ∈ C depending upon the function. Once a student of complex variables is aware of the nature of an
essential singularity (having a series representation with infinitely many negative powers of (z − z0) being the
signature of such functions and their singularities at z0), detecting them is routine, and that student could use
that knowledge to again help detect where a function can be represented by a convergent Taylor Series, and where

that is impossible. In fact f(z) = e−1/z2
can have a series in any disc that avoids the singularity, namely the

origin. In fact the only value not in the range of the function is zero, though that value is approached as z → 0±,
that is, along the real axis. That is why we defined f(x) to be zero at x = 0 in Example 11.6.3, page 801.
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We can conclude that we can find Taylor Series representations for most of the functions we
encounter in this textbook, and that these series will be valid on intervals the limits of which
might be easier to find by looking at the functions in the complex plane C instead of in R. That
was the case with f(x) = 1/(x2 +1), because we can see f(z) = 1/(z2 +1) has clear problems at
z = ±i, but when we look instead at functions such as logarithms, the definitions of which are
somewhat complicated in C, it is perhaps better to use real-number methods (such as the Ratio
Test), though it should be noted that f(x) = lnx has a discontinuity at x = 0, so we expect
the same of f(z) = ln z (whatever that means), and so the disc in C in which a series centered
at z = 1 cannot extend more than a distance of 1 in any direction, so clearly neither can the
interval of convergence in R.

Piecewise-defined functions have the other difficulty discussed in this Section 11.6, in that a
Taylor Series that works very well for the formula for one piece is unlikely to extend to the other
pieces, which we expect to have different formulas for their definitions there.

With these two ideas in mind (being wary of piece-wise defined functions, and the possibility
of looking into C to find where a real Taylor Series converges), one can avoid some common
mistakes of scientific researchers who assume a series expansion of a function in order to fit data
to polynomials. That assumption is often correct, but not always, and it is important to be able
to detect when function input values lie outside the interval where a Taylor Series is valid.

Exercises

1. Show by direct computation that if z =
(1 + i)/

√
2, then z2 = i.

2. Find the four fourth roots of −16, us-
ing the technique in Example 11.6.4,
page 11.6.4. Graph all the roots to-
gether.

3. Where will the Maclaurin Series for
f(x) = 1/(x4 + 16) be valid? Use two
different methods for solving this:

(a) using geometric series arguments,
and

(b) using the previous problem and a
complex plane argument.

4. Consider the complex conjugate of a
complex number z ∈ C defined by z
as below:

z = x + iy

⇐⇒ z = x − iy. (11.57)

This is also written x + iy = x − iy.

(a) Show that zz = |z|2.

(b) Show how to use this with divi-
sion, where

a + bi

c + di
=

(ac + bd) + i(bc − ad)

c2 + d2
.

5. Show that when we divide z1 by z2,
the quotient z1/z2 has angle θ = θ1 −
θ2, there z1, z2 have angles θ1, θ2, re-
spectively, in the sense of Figure 11.5,
page 805.

6. Show that z and 1
z will have angles

whose terminal rays point in opposite
directions, assuming z 6= 0.


