

Mathematical Logic
Part Two

Outline for Today

● Recap from Last Time
● The Contrapositive
● Using Propositional Logic
● First-Order Logic
● First-Order Translations

Recap from Last Time

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Logical Equivalence

● Two propositional formulas φ and ψ are
called equivalent if they have the same
truth tables.

● We denote this by writing φ ≡ ψ.
● Some examples:

● ¬(p ∧ q) ≡ ¬p ∨ ¬q
● ¬(p ∨ q) ≡ ¬p ∧ ¬q
● ¬p ∨ q ≡ p → q
● p ∧ ¬q ≡ ¬(p → q)

One Last Equivalence

The Contrapositive

● The contrapositive of the statement

p → q

is the statement

¬q → ¬p
● These are logically equivalent, which is

why proof by contradiction works:

p → q ≡ ¬q → ¬p

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then either x ≥ 8 or
 y ≥ 8.

Proof: By contrapositive. We prove that if
x < 8 and y < 8, then x + y ≠ 16. To
see this, note that

x + y < 8 + y
 < 8 + 8
 = 16

So x + y < 16, so x + y ≠ 16. ■

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x + y = 16 → x ≥ 8 ∨ y ≥ 8)

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ x < 8 ∧ y < 8

“x + y = 16, but x < 8 and y < 8.”

Theorem: If x + y = 16, then either x ≥ 8 or
 y ≥ 8.

Proof: Assume for the sake of contradiction
that x + y = 16, but x < 8 and y < 8.
Then

x + y < 8 + y
 < 8 + 8
 = 16

So x + y < 16, contradicting the fact that
x + y = 16. We have reached a
contradiction, so our assumption was
wrong. Thus if x + y = 16, then x ≥ 8 or
y ≥ 8. ■

Why This Matters

● Propositional logic is a tool for reasoning
about how various statements affect one
another.

● To better understand how to prove a result,
it often helps to translate what you're trying
to prove into propositional logic first.

● That said, propositional logic isn't
expressive enough to capture all
statements. For that, we need something
more powerful.

First-Order Logic

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about

multiple objects simultaneously.

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

p
r

q
s

Propositional Logic

● In propositional logic, each variable represents a
proposition, which is either true or false.

● We can directly apply connectives to propositions:
● p → q
● ¬p ∧ q

● The truth of a statement can be determined by
plugging in the truth values for the input
propositions and computing the result.

● We can see all possible truth values for a
statement by checking all possible truth
assignments to its variables.

The Universe of First-Order Logic

Venus

The Morning
Star

The Evening
Star

The Sun

The Moon

First-Order Logic

● In first-order logic, each variable refers
to some object in a set called the domain
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning

Star

The Evening
Star

Propositional vs. First-Order Logic

● Because propositional variables are
either true or false, we can directly apply
connectives to them.

p → q ¬p ↔ q ∧ r

● Because first-order variables refer to
arbitrary objects, it does not make sense
to apply connectives to them.

Venus → Sun 137 ↔ ¬42

● This is not C!

Reasoning about Objects

● To reason about objects, first-order logic uses
predicates.

● Examples:
● ExtremelyCute(Quokka)
● DeadlockEachOther(House, Senate)

● Predicates can take any number of arguments,
but each predicate has a fixed number of
arguments (called its arity)

● Applying a predicate to arguments produces a
proposition, which is either true or false.

First-Order Sentences

● Sentences in first-order logic can be
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand
for something like LessThan(x, 8).
Binary predicates in math are often

written like this, but symbols like < are
not a part of first-order logic.

The notation x < 8 is just a shorthand
for something like LessThan(x, 8).
Binary predicates in math are often

written like this, but symbols like < are
not a part of first-order logic.

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:

MorningStar = EveningStar

TomMarvoloRiddle = LordVoldemort
● Equality can only be applied to objects; to see

if propositions are equal, use ↔.

For notational simplicity, define ≠ as

 x ≠ y ≡ ¬(x = y)

Expanding First-Order Logic

(x < 8 ∧ y < 8) → (x + y < 16)

Why is this allowed?

Functions

● First-order logic allows functions that return objects
associated with other objects.

● Examples:

x + y

LengthOf(path)

MedianOf(x, y, z)
● As with predicates, functions can take in any number of

arguments, but each function has a fixed arity.
● Functions evaluate to objects, not propositions.
● There is no syntactic way to distinguish functions and

predicates; you'll have to look at how they're used.

How would we translate the
statement

“For any natural number n,
n is even iff n2 is even”

into first-order logic?

Quantifiers

● The biggest change from propositional
logic to first-order logic is the use of
quantifiers.

● A quantifier is a statement that
expresses that some property is true for
some or all choices that could be made.

● Useful for statements like “for every
action, there is an equal and opposite
reaction.”

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

The Universal Quantifier

● A statement of the form ∀x. ψ asserts that
for every choice of x in our domain, ψ is
true.

● Examples:

∀v. (Puppy(v) → Cute(v))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(SK) →
∀x. (SK ≠ x → ShorterThan(x, SK))

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

The Existential Quantifier

● A statement of the form ∃x. ψ asserts
that for some choice of x in our domain,
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)

Operator Precedence (Again)

● When writing out a formula in first-order logic,
the quantifiers ∀ and ∃ have precedence just
below ¬.

● Thus

∀x. P(x) ∨ R(x) → Q(x)

is interpreted as the (malformed) statement

((∀x. P(x)) ∨ R(x)) → Q(x)

rather than the (intended, valid) statement

∀x. (P(x) ∨ R(x) → Q(x))

Time-Out for Announcements!

Problem Set Three

● Problem Set Two due at the start of today's lecture.
● Due on Monday with a late period.

● Problem Set Three goes out now.
● Checkpoint problem due on Monday at the start of class.
● Remaining problems due next Friday at the start of

class.
● Explore graph theory and logic!

● A note: We may not cover everything necessary for
the last two problems on this problem set until
Monday.

Back to CS103!

Translating into First-Order Logic

Translating Into Logic

● First-order logic is an excellent tool for
manipulating definitions and theorems to
learn more about them.

● Applications:
● Determining the negation of a complex

statement.
● Figuring out the contrapositive of a tricky

implication.

Translating Into Logic

● Translating statements into first-order
logic is a lot more difficult than it looks.

● There are a lot of nuances that come up when
translating into first-order logic.

● We'll cover examples of both good and bad
translations into logic so that you can learn
what to watch for.

● We'll also show lots of examples of translations
so that you can see the process that goes into it.

Some Incorrect Translations

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

Although the original statement is
true, this logical statement is false.

It's therefore not a correct
translation.

Although the original statement is
true, this logical statement is false.

It's therefore not a correct
translation.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

Although the original statement is
false, this logical statement is true.

It's therefore not a correct
translation.

Although the original statement is
false, this logical statement is true.

It's therefore not a correct
translation.

A Better Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))

Good Pairings

● The ∀ quantifier usually is paired with →.
● The ∃ quantifier usually is paired with ∧.
● In the case of ∀, the → connective prevents

the statement from being false when speaking
about some object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking
about some object you don't care about.

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ (Tall(t) → Sequoia(t)))

This statement can
be true even if no
tall sequoias exist.

This statement can
be true even if no
tall sequoias exist.

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ Tall(t) ∧ Sequoia(t))

Do you see why this
statement doesn't
have this problem?

Do you see why this
statement doesn't
have this problem?

Checking a Translation

Every tall tree is a sequoia.

∀t. ((Tree(t) ∧ Tall(t)) → Sequoia(t))

What do you think?
Is this a faithful

translation?

What do you think?
Is this a faithful

translation?

Translating into Logic

● We've just covered the biggest common
pitfall: using the wrong connectives with
∀ and ∃.

● Now that we've covered that, let's go and
see how to translate more complex
statements into first-order logic.

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “everybody
loves someone else.”

Everybody loves someone else

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is
someone that everyone else loves.”

There is a person that everyone else loves

∃p. (Person(p) ∧
∀q. (Person(q) ∧ q ≠ p →

Loves(q, p)
)

)

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Everyone Loves Someone Else

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

This person
does not

love anyone
else.

This person
does not

love anyone
else.

Everyone Loves Someone Else

Everyone Loves Someone Else

No one here
is universally

loved.

No one here
is universally

loved.

Everyone Loves Someone Else and
There is Someone Everyone Else Loves

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧

Quantifier Ordering

● The statement

 ∀x. ∃y. P(x, y)

means “for any choice x, there's some y
where P(x, y) is true.”

● The choice of y can be different every
time and can depend on x.

Quantifier Ordering

● The statement

 ∃x. ∀y. P(x, y)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.

Order matters when mixing existential
and universal quantifiers!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

