
  

Mathematical Logic
Part Two



  

Outline for Today

● Recap from Last Time
● The Contrapositive
● Using Propositional Logic
● First-Order Logic
● First-Order Translations



  

Recap from Last Time



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Logical Equivalence

● Two propositional formulas φ and ψ are 
called equivalent if they have the same 
truth tables.

● We denote this by writing φ ≡ ψ.
● Some examples:

● ¬(p ∧ q) ≡ ¬p ∨ ¬q
● ¬(p ∨ q) ≡ ¬p ∧ ¬q
● ¬p ∨ q ≡ p → q
● p ∧ ¬q ≡ ¬(p → q)



  

One Last Equivalence



  

The Contrapositive

● The contrapositive of the statement

p → q 

is the statement

¬q → ¬p 
● These are logically equivalent, which is 

why proof by contradiction works:

p → q    ≡    ¬q → ¬p 



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x + y = 16 → x ≥ 8 ∨ y ≥ 8



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



  

Theorem: If x + y = 16, then either x ≥ 8 or
  y ≥ 8.

Proof: By contrapositive.  We prove that if
x < 8 and y < 8, then x + y ≠ 16.  To
see this, note that

x + y < 8 + y
         < 8 + 8 
         = 16

So x + y < 16, so x + y ≠ 16. ■



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

¬(x + y = 16 → x ≥ 8 ∨ y ≥ 8)



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x + y = 16 ∧ x < 8 ∧ y < 8

“x + y = 16, but x < 8 and y < 8.”



  

Theorem: If x + y = 16, then either x ≥ 8 or
  y ≥ 8.

 

Proof: Assume for the sake of contradiction
that x + y = 16, but x < 8 and y < 8. 
Then

 

x + y < 8 + y
         < 8 + 8 
         = 16

 

So x + y < 16, contradicting the fact that
x + y = 16. We have reached a
contradiction, so our assumption was
wrong. Thus if x + y = 16, then x ≥ 8 or
y ≥ 8. ■



  

Why This Matters

● Propositional logic is a tool for reasoning 
about how various statements affect one 
another.

● To better understand how to prove a result, 
it often helps to translate what you're trying 
to prove into propositional logic first.

● That said, propositional logic isn't 
expressive enough to capture all 
statements. For that, we need something 
more powerful.



  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about 

multiple objects simultaneously.



  

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

p
r

q
s



  

Propositional Logic

● In propositional logic, each variable represents a 
proposition, which is either true or false.

● We can directly apply connectives to propositions:
● p → q
● ¬p ∧ q

● The truth of a statement can be determined by 
plugging in the truth values for the input 
propositions and computing the result.

● We can see all possible truth values for a 
statement by checking all possible truth 
assignments to its variables.



  

The Universe of First-Order Logic

Venus

The Morning 
Star

The Evening 
Star

The Sun

The Moon



  

First-Order Logic

● In first-order logic, each variable refers 
to some object in a set called the domain 
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning 

Star

The Evening 
Star



  

Propositional vs. First-Order Logic

● Because propositional variables are 
either true or false, we can directly apply 
connectives to them.

p → q                 ¬p ↔ q ∧ r    

● Because first-order variables refer to 
arbitrary objects, it does not make sense 
to apply connectives to them.

Venus → Sun                137 ↔ ¬42

● This is not C!



  

Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:
● ExtremelyCute(Quokka)
● DeadlockEachOther(House, Senate)

● Predicates can take any number of arguments, 
but each predicate has a fixed number of 
arguments (called its arity)

● Applying a predicate to arguments produces a 
proposition, which is either true or false.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

MorningStar = EveningStar

TomMarvoloRiddle = LordVoldemort
● Equality can only be applied to objects; to see 

if propositions are equal, use ↔.



  

For notational simplicity, define ≠ as

    x ≠ y   ≡   ¬(x = y)



  

Expanding First-Order Logic

(x < 8 ∧ y < 8)  →  (x + y < 16)

Why is this allowed?



  

Functions

● First-order logic allows functions that return objects 
associated with other objects.

● Examples:

x + y

LengthOf(path)

MedianOf(x, y, z)
● As with predicates, functions can take in any number of 

arguments, but each function has a fixed arity.
● Functions evaluate to objects, not propositions.
● There is no syntactic way to distinguish functions and 

predicates; you'll have to look at how they're used.



  

How would we translate the 
statement

“For any natural number n,
n is even iff n2 is even”

into first-order logic?



  

Quantifiers

● The biggest change from propositional 
logic to first-order logic is the use of 
quantifiers.

● A quantifier is a statement that 
expresses that some property is true for 
some or all choices that could be made.

● Useful for statements like “for every 
action, there is an equal and opposite 
reaction.”



  

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

The Universal Quantifier

● A statement of the form ∀x. ψ asserts that 
for every choice of x in our domain, ψ is 
true.

● Examples:

∀v. (Puppy(v) → Cute(v))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(SK) →
∀x. (SK ≠ x → ShorterThan(x, SK))



  

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

The Existential Quantifier

● A statement of the form ∃x. ψ asserts 
that for some choice of x in our domain, 
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)



  

Operator Precedence (Again)

● When writing out a formula in first-order logic, 
the quantifiers ∀ and ∃ have precedence just 
below ¬.

● Thus

∀x. P(x) ∨ R(x) → Q(x)

is interpreted as the (malformed) statement

((∀x. P(x)) ∨ R(x)) → Q(x)

rather than the (intended, valid) statement

∀x. (P(x) ∨ R(x) → Q(x))



  

Time-Out for Announcements!



  

Problem Set Three

● Problem Set Two due at the start of today's lecture.
● Due on Monday with a late period.

● Problem Set Three goes out now.
● Checkpoint problem due on Monday at the start of class.
● Remaining problems due next Friday at the start of 

class.
● Explore graph theory and logic!

● A note: We may not cover everything necessary for 
the last two problems on this problem set until 
Monday.



  

Back to CS103!



  

Translating into First-Order Logic



  

Translating Into Logic

● First-order logic is an excellent tool for 
manipulating definitions and theorems to 
learn more about them.

● Applications:
● Determining the negation of a complex 

statement.
● Figuring out the contrapositive of a tricky 

implication.



  

Translating Into Logic

● Translating statements into first-order 
logic is a lot more difficult than it looks.

● There are a lot of nuances that come up when 
translating into first-order logic.

● We'll cover examples of both good and bad 
translations into logic so that you can learn 
what to watch for.

● We'll also show lots of examples of translations 
so that you can see the process that goes into it.



  

Some Incorrect Translations



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

Although the original statement is 
true, this logical statement is false. 

It's therefore not a correct 
translation.

Although the original statement is 
true, this logical statement is false. 

It's therefore not a correct 
translation.



  

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?



  

Another Bad Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

Although the original statement is 
false, this logical statement is true. 

It's therefore not a correct 
translation.

Although the original statement is 
false, this logical statement is true. 

It's therefore not a correct 
translation.



  

A Better Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?

What happens if

1. The above statement is false, but
2. x refers to a cute puppy?



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Good Pairings

● The ∀ quantifier usually is paired with →.
● The ∃ quantifier usually is paired with ∧.
● In the case of ∀, the → connective prevents 

the statement from being false when speaking 
about some object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking 
about some object you don't care about.



  

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ (Tall(t) → Sequoia(t)))

This statement can 
be true even if no 
tall sequoias exist.

This statement can 
be true even if no 
tall sequoias exist.



  

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ Tall(t) ∧ Sequoia(t))

Do you see why this 
statement doesn't 
have this problem?

Do you see why this 
statement doesn't 
have this problem?



  

Checking a Translation

Every tall tree is a sequoia.

∀t. ((Tree(t) ∧ Tall(t)) → Sequoia(t))

What do you think? 
Is this a faithful 

translation?

What do you think? 
Is this a faithful 

translation?



  

Translating into Logic

● We've just covered the biggest common 
pitfall: using the wrong connectives with 
∀ and ∃.

● Now that we've covered that, let's go and 
see how to translate more complex 
statements into first-order logic.



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “everybody 
loves someone else.”



  

Everybody loves someone else 
 
 
 
 



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is 
someone that everyone else loves.”



  

There is a person that everyone else loves 
 
 
 
 



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ q ≠ p →

Loves(q, p)
)

)



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.



  

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.



  

Everyone Loves Someone Else



  

There is Someone Everyone Else Loves



  

There is Someone Everyone Else Loves

This person 
does not 

love anyone 
else.

This person 
does not 

love anyone 
else.



  

Everyone Loves Someone Else



  

Everyone Loves Someone Else

No one here 
is universally 

loved.

No one here 
is universally 

loved.



  

Everyone Loves Someone Else and
There is Someone Everyone Else Loves



  

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧



  

Quantifier Ordering

● The statement

 ∀x. ∃y. P(x, y)  

means “for any choice x, there's some y 
where P(x, y) is true.”

● The choice of y can be different every 
time and can depend on x.



  

Quantifier Ordering

● The statement

 ∃x. ∀y. P(x, y)  

means “there is some x where for any 
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any 
choice of y, this places a lot of 
constraints on what x can be.



  

Order matters when mixing existential 
and universal quantifiers!
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