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Polynomial functions are easy to understand but complicated functions, infinite polynomials,
are not obvious. Infinite polynomials are made easier when represented using series: complicated

functions are easily represented using Taylor’s series.

This representation make some functions

properties easy to study such as the asymptotic behavior. Differential equations are made easy

with Taylor series.

Taylor’s series is an essential theoretical tool in computational science and

approximation. This paper points out and attempts to illustrate some of the many applications of
Taylor’s series expansion. Concrete examples in the physical science division and various engineering
fields are used to paint the applications pointed out.

INTRODUCTION

Taylors series is an expansion of a function into an
infinite series of a variable x or into a finite series plus a
remainder term[1]. The coefficients of the expansion or of
the subsequent terms of the series involve the successive
derivatives of the function. The function to be expanded
should have a nth derivative in the interval of expansion.
The series resulting from Taylors expansion is referred
to as the Taylor series. The series is finite and the only
concern is the magnitude of the remainder. Given the
interval of expansion a < ¢ < b the Lagrangian form of
the remainder is given as follows:
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a, is the reference point. The f(™ (€) is the nth derivative
at a. When the expanding function is such that:
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the Taylors series of the expanding function becomes
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Taylor series specifies the value of a function at one point,
x. Setting the derivative operator, D = d/dx, the Taylor
expansion becomes:

Fatm =" r@ =" @ @
n=0 :

Taylor series could also be written in the context of a
complex variable

EVALUATING DEFINITE INTEGRALS

Some functions have no anti-derivative which can be
expressed in terms of familiar functions. This makes

evaluating definite integrals of these functions difficult
because the fundamental theorem of calculus cannot be
used. However, a series representation of this function
eases things up. Suppose we want to evaluate the defi-
nite integral

u/plsin,(xQ) dx (5)
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this integrand has no anti-derivative expressible in terms
of familial functions. However, we know how to find its
Taylor series:
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if, we substitute t = 22 , then
sin (2) =2 — 4+ + S+ ... (7)

The Taylor series can then be integrated:
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This is an alternating series and by adding all the terms,

the series converges to 0.31026 [1].

UNDERSTANDING ASYMPTOTIC BEHAVIOR

Sometimes the Taylor series is used to describe how a
function behaves in a sub domain [2]. The electric field
obeys the inverse square law.
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Where E is the electric field, q is the charge, r is the
distance away from the charge and k is some constant
of proportionality. Two opposite charges placed side by
side, setup an electric dipole moment such that we can



consider the electric field far away from the dipole mo-
ment. Taylor’s series is used to study this behavior.
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An electric field further away from the dipole is obtained
from (10) after expanding the terms in the denominator.

E = (10)

kq kq
E= — . 11
2 (1-5) @ (1+3) "

Taylor’s series can be used to expand the denominators
if (x>>r)
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In the field of physics and chemistry, there is a great
need for geometric optimization of physical systems. In
chemistry, as an example, the quasi-newton method make
use of a two variable Taylor’s series to approximate the
equilibrium geometry of a cluster of atoms [3]. Consider
U,the geometry of a molecule, and assume it is a function
of only two variables, x and y, let 1 and y; be the initial
coordinates, if terms higher than the quadratic terms are
neglected then the Taylor series is as follows:
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The U(x, y) function fits well around the equilibrium po-
sition, the quadratic approximation works well around
the minimum. If U were accurately a quadratic function
of the coordinates in the region near (z1,y1), then the
elements of the Hessian matrix (second partial deriva-
tives) will be constant in this region. Accurate ab initio
self consistent field calculation of the second derivatives
is very time consuming, thus the optimization usually
starts with an approximation of the Hessian and then
proceeds to improve on this approximation. If U(x,y) is
written in the form below then, the first approximation to
the Hessian matrix element at (or near) the equilibrium

geometry can be computed.
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FIG. 1: Dipole of optimized water molecule[8]

geometry autosym units angstrom
O 0.00000 0.00000 0.00000

H 0.922641 0.652406 0.00000
H -0.922641 0.652406 0.00000

TABLE I: Nwchem[9]cartesian coordinates of water molecule

The superscript denotes the first approximation to the
Hessian matrix elements at or near the equilibrium ge-
ometry. The molecular geometry has a 3N-6 dimensional
vector when internal coordinates are considered and by
3N when only cartesian coordinates are used. N is the
number of atoms in the molecule. In cartesian coordi-
nates, rotation and translation accounts for the six in
3N-6. Once the Hessian matrix elements are determined,
the molecular properties can be extracted via the Tay-
lor’s series expansion.

The position of the atom in the molecule constantly
shift from the equilibrium position. an overall atomic
behavior , in the course of vibration, is modeled on
the Lennard-Jones 6-12 potential. The dynamics of
the vibrations can be study by expanding the poten-
tial in a Taylor’s series. The second derivative of the
Taylor’s series expansion correspond to the gradient of
the,(harmonic) potential curve of a short range vibration
around the equilibrium position,r..

V(r)= 46[(9)12 - (5)6 (17)
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EXAMPLES OF APPLICATIONS OF TAYLOR
SERIES

The Gassmann relations of poroelasticity provide a
connection between the dry and the saturated elastic
moduli of porous rock and are useful in a variety of
petroleum geoscience applications [4]. Because some un-
certainty is usually associated with the input parameters,
the propagation of error in the inputs into the final mod-
uli estimates is immediately of interest. Two common ap-
proaches to error propagation include: a first-order Tay-
lor’s series expansion and Monte-Carlo methods. The
Taylor’s series approach requires derivatives, which are
obtained either analytically or numerically and is usually
limited to a first-order analysis. The formulae for ana-
lytical derivatives were often prohibitively complicated
before modern symbolic computation packages became
prevalent but they are now more accessible [4].

A numerical method for simulations of nonlinear sur-
face water waves over variable bathymetry (study of
underwater depth of third dimension of lake or ocean
floor) and which is applicable to either two- or three-
dimensional flows, as well as to either static or mov-
ing bottom topography, is based on the reduction of the
problem to a lower-dimensional Hamiltonian system in-
volving boundary quantities alone. A key component of
this formulation is the Dirichlet-Neumann operator (used
in analysing boundary conditions e.g fluid dynamics and
crystal growth) which, in light of its joint analyticity
properties with respect to surface and bottom deforma-
tions, is computed using its Taylor’s series representation.
The new stabilized forms for the Taylor terms, are effi-
ciently computed by a pseudo spectral method using the
fast Fourier transform [5].

The current-mode pseudo-exponential circuit based is
optimized using the n-order Taylor’s series expansion.
The effect of this optimization is noticed in the circuit,
wherein a smaller value of the total computing error (un-
der 0.3 dB) is obtained. The maximum output range of
the proposed function generator is greater than 40 dB.
The total error could be very easily reduced by increasing
the number of terms considered in the Taylor expansion
[6].

In stochastic processes, generalized processes are ex-
pressed theoretically through the Gaussian random walk.
The cumulants (some expectation value or variance of
statistical data) are expressed in terms of Taylor series
with coefficients that involve the Riemann Zeta function
(special function that arises from definite integration and
can give the asymptotic form for the prime counting func-
tion 7 (n),which count the number of primes less than
some integer, )n. The method of obtaining the cumulate
is systematized such as to yield Taylor series xpression for
all cumulants. The Taylor series for the kth cumulants is
then obtained [7].

The Galerkin Computational Fluid Dynamics ( a ro-

bust and high accuracy methode that is use to study abi-
trary shapes) (CFD) algorithm is optimally made accu-
rate for the unsteady Incompressible Navier-Stokes (INS)
equation via Taylor series (TS) operation followed by
pseudo-limit process. A spatially finite element democra-
tization in the implementation of the INS termed Taylor
Weak Statement (TWS) generates a CFD algorithm for
analysis. The TWS algorithm phase velocity and am-
plification factor error function are then derived for lin-
ear and bi-linear basis implementations assembled at the
generic node. The lower order error terms are affected as
a result of a subsequent TS expansion in wave number
space.

CONCLUSION

We have probe through the complexity of Taylor series
and shown evidence of its extensive and very effective
applications. The effectiveness in error determination,
function optimization, definite integral resolution, and
limit determination is evidence of the Taylor series being
an enormous tool in physical sciences and in Computa-
tional science as well as an effective way of representing
complicated functions.
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