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Abstract

• Hydrogen can be used as an alternative source of energy since it has the
potential to eliminate the problems associated with fossil fuel.

• Most hydrogen gas is currently produced using thermochemical reformation
of fossil fuels, resulting in carbon dioxide bi-products.6

• Biohydrogen production presents an environmentally-friendly conversion
of hydrogen energy for the future.4

• One emerging area of focus involves taking advantage of the dark
fermentation process in microorganisms.

• We recognized key elements from existing systems that can modified into a
new pathway that may optimize bacterial production of hydrogen gas
towards the ideal ratio.

• Our project focuses on producing hydrogen gas from Escherichia coli by
knocking out then inserting select components to maximize hydrogen
production through the dark fermentation process.
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To exploit the fermentative capabilities of Escherichia coli to produce
hydrogen gas, we performed P1 transduction on strain FMJ39 from
JW1228-1 to produce the desired triple mutant with the necessary
metabolic flux to hydrogen production. In the fermentation process E.
coli converts glucose into various intermediate states to generate energy.
The transduction of the adhE knockout found in JW1228-2 to FMJ39 will
produce a triple mutant with the following genes deleted: ldhA, pflB, and
adhE. From these deletions insertions of mhpF, pyruvate decarboxylase,
and ferredoxin oxidoreductase will result in a more direct metabolic line
towards hydrogen production.
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Materials & Methods

Results

• Test the fusion protein with acetaldehyde dehydrogenase and
ferredoxin oxidoreductase in the FMJ39 E. coli strain.

• Test each of the two separate genes for activity.
• Test other fermentative pathways for comparative analysis.
• Design a photo-fermentation pathway and pair with the dark-

fermentation pathway designed here. Photo-fermentation is
capable of breaking down small organic acids to potentially
produce more hydrogen.

• Design a pathway for efficient breakdown of cellulose to glucose.
Inclusion of this step will yield a complete system capable of
producing hydrogen from raw cellulose.
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Figure 4. FMJ competent cells were successfully transformed using a reporter 
Biobrick containing red fluorescence protein (RFP).  (left) Single transformed 
colony plated on streptomycin and chloramphenicol.  (right) After smearing 
and overnight growth, the transformed cells grew abundantly.

Figure 3. Gel images with 
ladder sizes marked on left. 
(top left) standardized Biobrick
prefix and suffix parts. (top 
right) Gibson assembly 
product.  (bottom left) PCR of 
gene inserts with various 
MgCl2 concentrations

Figure 1. The composite part mapped with different BioBrick components. (Top) The mhpF and FO are 
parts that we submitted to the Registry of Standard Biological Parts. (Bottom) The PDC is a part taken 
from the Registry.

Figure 2. Combining the BioBrick standard of prefix and suffix along with Gibson Assembly yields a 
composite part that includes our own design without scar during ligation.
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