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Abstract

Fractional dynamics is an attractive framework for understanding the complex phenomena that are likely to
emerge beyond the energy range of the Standard Model for particle physics (SM). Using fractional
dynamics and complex-scalar field theory as a baseline, our work explores how physics on the high-energy
scale may help solve some of the open questions surrounding SM. Predictions are shown to be consistent
with experimental results.

Key words: Renormalization Group flow; Fractional dynamics; Feigenbaum scaling; Standard Model

PACS numbers: 11.10.Hi; 11.10. Ef; 12.60. - i; 12.90. + b.

1. Introduction and motivation

As of today, predictions derived from the Standard Model of elementary particles (SM)
— a body of knowledge discovered in the early 1970’s — agree with all the experiments
that have been conducted to date. Nevertheless, the majority of particle theorists feel that
SM is not a complete framework, but rather an “effective field theory” that needs to be
extended by new physics at some higher energy scale reaching in the TeV region. The
most cited reasons for this belief are: a) the recent discovery of neutrino oscillations and
masses; b) SM does not include the contribution of gravity and gravitational corrections
to both quantum field theory and renormalization group (RG) equations; c¢) SM does not
fix the large number of free parameters that enter the theory (in particular the spectra of
masses, gauge couplings and fermion mixing angles); d) SM has a gauge hierarchy

problem, which requires fine-tuning; €) SM postulates that the origin of electroweak



symmetry breaking is the Higgs mechanism, whose confirmation is sought in future
accelerator experiments. The number and physical attributes of the Higgs boson are
neither explained by SM nor fixed from first principles, f) SM does not clarify the origin
of its underlying SU(3)xSU(2)xU(1) gauge group and why quarks and leptons occur in
certain representations of this group, g) SM does not explain why the weak interactions

are chiral, that is, why only fermions with one handedness experience the force
transmitted by the triplet of massive vector bosons W*,W~,Z°.

Despite years of research on multiple fronts, there is currently no compelling and
universally accepted resolution to the above-mentioned challenges. A large body of
proposed extensions of SM exists, each of them attempting to resolve some unsatisfactory
aspects of the theory while introducing new unknowns. Expanding on a series of recent
contributions centered on RG, nonlinear dynamics, chaos and fractal geometry [3-4, 6-10,
12-14, 17-19], our work explores how the physics on the TeV regime may shed light onto
some of the open questions surrounding SM.

The paper is organized as follows: section 2 surveys the motivation for fractional
dynamics in the far ultraviolet region of field theory. The principle of local scale
invariance is briefly introduced in section 4. Fractional dynamics of a “toy” model based
on complex scalar fields is analyzed in section 5. Sections 6 to 8 discuss how critical
behavior in continuous dimension acts as source of massive field theories and makes
connection to SM data. Concluding remarks are presented in the last section. We
emphasize from the outset the introductory nature of our work. As such, its content is not
aimed to be either entirely rigorous or formally complete. Independent research efforts are

required to confirm, develop or disprove these preliminary results.



2. Fractional dynamics and the far ultraviolet region of field theory

It is generally believed that quantum field theory breaks down near the so-called Cohen-
Kaplan threshold of ~100 7eV as a result of exposure to large vacuum fluctuations and
strong-gravitational effects. No convenient redefinition of observables is capable of
turning off the dynamic contribution of these effects. For instance, it is known that the
zero-point vacuum energy diverges quadratically in the presence of gravitation. Quantum
field theory in Euclidean space-time discards the zero-point vacuum energy through the
use of a normal time ordering procedure [5, 20]. Because vacuum energy is gravitating
and couples to all other field energies present at the quantum level, cancellation of the
zero-point term is no longer possible when gravitational effects are significant. Likewise,
this strong coupling regime of the far ultraviolet region suggests that even asymptotically
free theories such as QCD reverse their properties in response to arbitrarily large non-
perturbative effects. In fact, complex dynamics of quark-gluon plasma is expected to arise
near the so-called transition temperature [16].

The non-linearity of the underlying field theory combined with the far-from-equilibrium
dynamics induced by highly unstable vacuum fluctuations are prone to lead to self-
organized criticality [6]. Because dynamical instabilities can develop on long time-scales,
the macroscopic description of phenomena in terms of conventional differential operators
breaks down. This is, in essence, the main argument for using fractal operators in the far
TeV region of field theory and for the passage from ordinary to fractional dynamics [14,
18-19, 21]. Since application of fractals in contemporary physics has become far ranging,
the interest in fractional dynamics has grown at a steady pace in the last decade. There is

now a broad range of applications of fractional dynamics in research areas where fractal



attributes of underlying processes and the onset of long-range correlations demand the use
of fractional calculus. These areas include, but are not limited to, wave propagation in
complex and porous media, models of systems with chaotic and pseudo-chaotic
dynamics, random walks with memory, colored noise and pattern formation, anomalous
transport and Levy flights, studies of scaling phenomena and critical behavior, plasma
physics, turbulence, quantum field theory, far-from-equilibrium statistical models,
complex dynamics of traffic networks and so on (for a brief review of current
applications, see [21-26]).

3. Conventions and assumptions

a) Einstein summation convention is applied throughout.

b) the Poincare index is denoted by x#=0,1,2,3.

¢) we study a basic “toy” model containing a single pair of massive complex-scalar fields
P(x), 9'(x).

d) the analysis is carried out exclusively at the classical level. Suppression of quantum
attributes and transition to classical behavior is the result of decoherence induced by

steady exposure to large random fluctuations [27, 28].

¢) following [22-26] we use in our work the left Caputo fractional derivative defined as

a X 1 f ¢(n)(s)
Do(x)= I'rn-a) -(‘; (x—s5)**™" ds M

where n—-1<a<n and (o(")(s)édn¢(s) e We note that, in addition to using (1),

many studies based on fractional calculus often start from alternative operators such as



Riemann-Liouville and Grunwald-Letnikov derivatives and integrals (see [30-33] for
details).

f) space-time variables and fields are suitably normalized as dimensionless observables.
g) assuming that the field dynamics has low-level fractionality, we use the so-called ¢ -
expansion to perform the transition from first order to Caputo derivatives of order
a =1-¢ according to the prescription [22]

D™ p(x) = 0¢(x) + £ D, ()
@)

Dyp(x) = 0¢(0) In|x| + ygp(x)+ j 0°p(s)In|x—s|ds

4. Loocal scale invariance at the onset of fractional dynamics

The novel symmetry principle that underlies the onset of fractional dynamics in the TeV
region is the local scale invariance of the theory [17]. There is a two-fold rationale for the
onset of this symmetry, namely,

a) field dynamics is scale-invariant. This is equivalent to stating that, in dimensional
regularization scheme, the outcome of the regularization procedure does not depend on
the particular choice of £ =4-d [20].

b) by analogy with the definition of the Lipschitz-Hélder exponent and to ensure
compliance with relativity [14, 17], we take the continuous dimension parameter £ to

denote a locally defined function of space-time coordinates, £(x). In addition, we assume
that £(x) may be expressed either as a contravariant £'(x) or a covariant £,(x) four-

vector. This motivates us to formally extend (2) to

D" p(x) = 9*p(x) + £"(x) D p()



Dy p(x)= 8" p(0)In|x| + y“p(x) + I (0®)@(s)In|x—s|ds
(3)
D, »9(x)= 0,0(x)+£,(x) D, ,p(x)

D, ,¢(x)=0,9(0)In |x| +70,p(x)+ I (62)/, (o(s)lnlx - sl ds

5. Fractional dynamics of the complex-scalar field

The goal of this section is to show that the principle of local scale invariance and the
introduction of fractional dynamics lead to a mechanism of gauge boson-fermion
unification that is fundamentally distinct from the mechanism advocated by
supersymmetry.

The Lagrangian density of our model is
L=0,p(x) 0“9 (x) —~m’¢"(x) p(x) Q)]
where m is the mass of the field and x is a shorthand notation for (x*) or (x,). Using

the framework of Caputo derivatives and & -expansion [22], one obtains
=~ pl-&(x) J-e(x) * 2 =
L=D, " p(x) D~ p(x)-m ¢’ (x) o(x) ()
in which the locally defined infinitesimal dimension &(x) satisfies the condition
£(x) < 1. Our aim is to show that, in contrast with conventional field theory embodied in

(4), use of Caputo derivatives guarantees invariance under local gauge transformations
without the explicit need for gauge fields and covariant operators. To this end, let us

perform the local phase change

ia(x)

9(x) > " Vo(x)

6
—ia(x)

P'(x) > e P'(x)



Up to a first order approximation, Caputo derivatives transform as [22]

DL P p(x) > D “O[“Dp(x)] = 3,[e“Vp(x)]+ 51D}, [“ V()]

)
D' Y (x) — DM [ * O (x)]= 8 [6*Pp"(x)] + £(x)D)* [€ *Pp’(x)]
where
D}w (x) = In|x|8,[e“Pp(0) ]+ I 0% [€*Dp(D]In|x - A|dA +y 0, [e“Pp(x)]
0
(®)
D}*(x) = In|x|0* [¢ “Dp*(0)] + ]‘ 0% [€ “Dp(A)]In|x - A|dA +y8*[€ “Pp"(x)]
0
in which y stands for the Euler constant and
8,[€*Pp(x)] = "?[3, +id, a(x)] p(x) 9)

Local gauge invariance of (5) is preserved if Caputo derivatives transform covariantly,

that is

D/ll—e(x) [ eia(x) (0( x)] - eia(x) D/l;g(x) ¢( x)

(10)
D*1 e g (x) ] = e DA P g(x)
On account of (7) and (10), we arrive at the following set of conditions
Pe) o(x) 6,, a(x) = &(x) { Dll/l [ eia(x)¢(x)] — o™ Dll ”¢(x)}
(11)

(=)™ P9’ (x) 9,a(x) = £(x) {D* [ (1)] —¢ “ D’ ¢ (x)}

The direct consequence of (11) is that gauge fields are no longer required in a field
theory built on fractional dynamics. The compensating role of the vector bosons is played

by the continuous dimension parameter £(x) . This conclusion is consistent with previous

studies and points to a novel unification mechanism of gauge boson and fermion fields,



including classical gravitation. This mechanism is fundamentally different from the
unification scheme postulated by supersymmetry and related quantum field models [20].
6. Emergence of massive field theories

It is known that, allowing elementary particles to have nonzero masses in quantum field
theory violates local gauge and weak isospin symmetries imposed on the standard model
lagrangian. The mechanism of so-called spontaneous symmetry breaking (SSB) posits
that the vacuum itself acquires a non-zero charge distribution that leaves the Lagrangian
invariant and generates both fermion and vector boson masses [5, 20]. In SM, massive
fermions exist in both left-handed and right-handed states. The only Dirac field operators

that yield a non-vanishing mass are bilinear products of fields having the form

m;VI:m(;RWL.*_;LWR) (12)
However, such mass terms mix right and left-handed spinors and are forbidden from the
Lagrangian on account of violation of the weak isospin symmetry [5, 20]. Stated

differently, since y, represents a SU(2) doublet and y, a SU(2) singlet, the product of

the two is not a singlet, as it ought to be in order to preserve the weak isospin symmetry.
An immediate question that arises from the previous section is whether or not SSB still
exists in a field theory based on fractional dynamics. Stated differently, can mass terms be
introduced in the Lagrangian without violating local and weak isospin symmetries?. To
answer this question, we note that the first order Caputo operator may be defined either

from the “left” or from the “right” and, in general, the effect produced by D'**is not

identical with the effect produced by D™ It follows that the proper description of

1-£,(x)

D1+£R (x)

fractional differentiation requires a doublet of Caputo operators ( J and a doublet



£,(%)

of scalars [
gx(x

J with &, ,(x)-x <« 1. Therefore, mass terms that correspond to Dirac

bilinears assume the form:

w > D™y or y— D%y for singlets
(13)
o Wl —~¢, +¢, '//1
(vi wvo)=| .. |(vi v,) and > (D™= D) for doublets
D™ v, v,

It can be seen that these mass terms automatically preserve the weak isospin symmetry in
a similar manner in which the Higgs scalar doublet works in the electroweak model [5,
20, 29].

7. Critical behavior in continuous dimension

The previous sections have shown that the concept of dimension takes on a key role in the
far ultraviolet region of field theory. Here we elaborate on this conjecture by making
connection to the philosophy of the Renormalization Group and critical behavior in
continuous dimension [1, 2]. To streamline the derivation, we refer in what follows to the

original Lagrangian (4). Let us start by adding a potential term to (4), that is

L=0,p(x)0"p (x) -m’ 9" () @(x) + A’ [p'(x) p(x)’ (14
Here g=A" represents the self-interaction strength of the field. According to the
renormalization group, the so-called beta-function defines how g “flows” with the
sliding energy scale u, that is

@)

it (15)

Bg)=

where



téln(yﬁj (16)

for an arbitrary reference scale 1, . In the basin of attraction of a critical point ¢, the field

correlation length scales as

Exle—ef” 17
Here, critical exponent v is given by [1, 2]
o8 (18)
o(g) -

and g" stands for a fixed point of the beta-function, #(g*) =0.

One can exploit the interchangeable roles played by the sliding scale ¢ and the dimension
parameter d(x) as follows. Assume that d, represents the critical dimension for which g
flows into the fixed point g*. The mass of the complex-scalar field is known to be

inversely proportional to the divergent correlation length and vanishes identically at the
fixed point [1, 2]

m[g'(d,),d.]=0 (19)

In the basin of attraction of g* the field develops mass according to the power law

m(g*(d,), d(x)-d,1~|d(x)-d,|"® =|e(x)|"“ (20)
where
4 op
d)=—-"" 21
vid,) o)., 1)

We are led to conclude that, as the fixed point is asymptotically approached and the

continuous space-time dimensionality collapses to d(x) > d, =4, the complex-scalar

10



field becomes massless, in agreement with conventional quantum field theory. Numerical
analysis yields v(d,) =0.5 for d, =4 which is found to match well the value reported in
the literature [1-2].

An important observation is now in order. Following the universal properties of the RG

flow near the onset of chaos in low-dimensional maps, the dimensional control parameter
e(x)= |dc -d (x)| is expected to asymptotically approach the critical value ¢, =0
according to the geometric progression [15]:

g,(x)-¢e,=a,(x)-07" (22)
in which 7> 1 is the index defining the number of iteration steps, & stands for a scaling

constant that is representative for the class of dynamical maps under consideration and

a,(x) is a coefficient which becomes asymptotically independent of » and x, that is,

a,, = a . Substituting (22) in (20) produces to the mass scaling series

M,[g'(d,), d, ~d,(x) |~[a,6 ") @3)

We may go a step further and state that, given the generic link between the coupling flow
and the corresponding flows of masses and fields in RG [5, 20, 29], similar scaling

pattern develops for g, and the underlying fields of the theory, 7,. We thus expect to

obtain, for n>>1

8. ~g (d)=87W"

24

7, =1 (d) = 85"

where A(d,) and ¢(d,) represent two additional critical exponents dependent on d, .

8. Universal scaling of fermion masses

11



Period-doubling bifurcations are defined by »=2", with m >1 [15]. Replacing in (23)

yields the following mass series:

M, (x)=fa.(x)-67 (25)

where 0 =4.669... represents the Feigenbaum constant for the onset of chaos in unimodal

maps. The ratio of two arbitrary masses is therefore

M,(x) ~ | % =) .5_2“ (26)
M, (x) \a.(x) 67"

.. a . . . .
where lim—L- =1 as /,m — «. Thus, for two sufficiently distant consecutive terms in the
a

m

mass series, the dependence of a,(x) on the space-time variable may be suppressed and

M, 25 a6 @7
M, Ay 22

It is important to emphasize that (27) provides only a first-order approximation

we obtain

considering that a) (27) is less accurate if the iteration index is not large enough, that is, if
I = 0(1), b) there is a fair amount of uncertainty involved in determining the quark mass
spectrum [11]. Numerical results derived from (27) are displayed in the table below. This
table contains a side-by-side comparison of estimated versus actual mass ratios for
charged leptons and quarks and a similar comparison of gauge coupling ratios. All masses
and couplings are evaluated at the energy scale given by the top quark mass. Quark

masses are averaged using the most recent reports issued by the Particle Data Group [11].

12



Specifically, m, = 2.12 MeV; m, = 4.22 MeV; m, = 80.9 MeV; m_= 630 MeV; m,=

2847 MeV; m,= 170,300 MeV.

Scaling ratio | 2! | Experimental value | Estimated value

“ 4 3.365x107 2.104x107

4 3.689x107 2.104x107

2 0.052 0.046

4 4.745%107° 2.104x107

mC
ml
m,
mS
mS
/”b 2 0.028 0.046
me
m,
m,
mT

2 0.061 0.046

(“E% » | 2 0.045 0.046
W

("“”‘%)2 4 2.368x107 2.104x10°

Table 1: Fermion masses and coupling ratios
The scaling sequence of charged leptons and quarks may be graphically summarized with

the help of the following diagrams:

52 &2
| pama—| 1
d s s b
54 54
1 | —
u c c t

13



| | S—|
e u L T
&2 82
2 2 2 2
Cpy Oy ay a

Based on the above scheme, one may infer that neutrinos masses are arranged according

to the possible pattern:

It is also instructive to note that quarks and charged leptons follow a different period
doubling path. To this end, let us organize the charged lepton and quark masses in a

collection of triplets, that is

m, m,
M, i[me m, m,] M,=\m, m, (28)
m, m,

It can be seen that the mass scaling for adjacent quarks stays constant within either one of

the triplets (u,c,t) or (d,s,b), whereas the mass scaling for charged leptons varies as a
geometric series in &, within the triplet (e,u,7). This finding points out toward a

symmetry breaking mechanism that segregates lepton and quark phases in the process of
cooling from the far ultraviolet region of field theory to the low-energy region of SM.

9. Concluding remarks

We have argued that fractional dynamics represents an analytic framework suitable for
the description of physical phenomena that are likely to arise in the TeV realm of particle
physics. Unlike conventional quantum field theory, fractional dynamics describes far-

from-equilibrium statistical processes that give raise to manifest scale invariance, non-

14



local correlations and extensive symmetry breaking. Using fractional dynamics and the
benchmark example of complex-scalar field theory, we have explored the potential
spectrum of phenomena that is likely to emerge beyond the energy range of SM. Based on
this framework, we have shown that, near the ultraviolet boundary of field theory, a)
gauge bosons and fermions become unified through a fundamentally different mechanism
than the one advocated by supersymmtry; b) SSB and the emergence of massive field
theories occur as a result of critical behavior in continuous dimension; c) particles
develop a family structure that is tied to the universal transition to chaos in unimodal
maps. First order predictions were found to match reasonably well current experimental
data. However, as pointed out in section 1, our goal is not to formulate a comprehensive
solution to the host of open challenges surrounding SM. Concurrent research efforts are
needed to confirm or falsify these preliminary findings. In particular, the long-awaited
operation of the Large Hadron Collider and similar high-energy accelerator sites should
soon produce experimental evidence that backs or disproves our model.
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