
CHAPTER 2

Logic

1. Logic Definitions

1.1. Propositions.

Definition 1.1.1. A proposition is a declarative sentence that is either

true (denoted either T or 1) or

false (denoted either F or 0).

Notation: Variables are used to represent propositions. The most common variables
used are p, q, and r.

Discussion

Logic has been studied since the classical Greek period ( 600-300BC). The Greeks,
most notably Thales, were the first to formally analyze the reasoning process. Aristo-
tle (384-322BC), the “father of logic”, and many other Greeks searched for universal
truths that were irrefutable. A second great period for logic came with the use of sym-
bols to simplify complicated logical arguments. Gottfried Leibniz (1646-1716) began
this work at age 14, but failed to provide a workable foundation for symbolic logic.
George Boole (1815-1864) is considered the “father of symbolic logic”. He developed
logic as an abstract mathematical system consisting of defined terms (propositions),
operations (conjunction, disjunction, and negation), and rules for using the opera-
tions. It is this system that we will study in the first section.

Boole’s basic idea was that if simple propositions could be represented by pre-
cise symbols, the relation between the propositions could be read as precisely as an
algebraic equation. Boole developed an “algebra of logic” in which certain types of
reasoning were reduced to manipulations of symbols.

1.2. Examples.

Example 1.2.1. “Drilling for oil caused dinosaurs to become extinct.” is a propo-
sition.
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Example 1.2.2. “Look out!” is not a proposition.

Example 1.2.3. “How far is it to the next town?” is not a proposition.

Example 1.2.4. “x+ 2 = 2x” is not a proposition.

Example 1.2.5. “x+ 2 = 2x when x = −2” is a proposition.

Recall a proposition is a declarative sentence that is either true or false. Here are
some further examples of propositions:

Example 1.2.6. All cows are brown.

Example 1.2.7. The Earth is further from the sun than Venus.

Example 1.2.8. There is life on Mars.

Example 1.2.9. 2× 2 = 5.

Here are some sentences that are not propositions.

Example 1.2.10. “Do you want to go to the movies?” Since a question is not a
declarative sentence, it fails to be a proposition.

Example 1.2.11. “Clean up your room.” Likewise, an imperative is not a declar-
ative sentence; hence, fails to be a proposition.

Example 1.2.12. “2x = 2 + x.” This is a declarative sentence, but unless x is
assigned a value or is otherwise prescribed, the sentence neither true nor false, hence,
not a proposition.

Example 1.2.13. “This sentence is false.” What happens if you assume this state-
ment is true? false? This example is called a paradox and is not a proposition, because
it is neither true nor false.

Each proposition can be assigned one of two truth values. We use T or 1 for true
and use F or 0 for false.

1.3. Logical Operators.

Definition 1.3.1. Unary Operator negation: “not p”, ¬p.

Definitions 1.3.1. Binary Operators

(a) conjunction: “p and q”, p ∧ q.
(b) disjunction: “p or q”, p ∨ q.
(c) exclusive or: “exactly one of p or q”, “p xor q”, p⊕ q.
(d) implication: “if p then q”, p→ q.
(e) biconditional: “p if and only if q”, p↔ q.
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Discussion

A sentence like “I can jump and skip” can be thought of as a combination of the
two sentences “I can jump” and “I can skip.” When we analyze arguments or logical
expression it is very helpful to break a sentence down to some composition of simpler
statements.

We can create compound propositions using propositional variables, such as
p, q, r, s, ..., and connectives or logical operators. A logical operator is either a unary
operator, meaning it is applied to only a single proposition; or a binary operator,
meaning it is applied to two propositions. Truth tables are used to exhibit the rela-
tionship between the truth values of a compound proposition and the truth values of
its component propositions.

1.4. Negation. Negation Operator, “not”, has symbol ¬.

Example 1.4.1. p: This book is interesting.

¬p can be read as:

(i.) This book is not interesting.
(ii.) This book is uninteresting.

(iii.) It is not the case that this book is interesting.

Truth Table:
p ¬ p
T F
F T

Discussion

The negation operator is a unary operator which, when applied to a proposition
p, changes the truth value of p. That is, the negation of a proposition p, denoted
by ¬p, is the proposition that is false when p is true and true when p is false. For
example, if p is the statement “I understand this”, then its negation would be “I do
not understand this” or “It is not the case that I understand this.” Another notation
commonly used for the negation of p is ∼ p.

Generally, an appropriately inserted “not” or removed “not” is sufficient to negate
a simple statement. Negating a compound statement may be a bit more complicated
as we will see later on.
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1.5. Conjunction. Conjunction Operator, “and”, has symbol ∧.

Example 1.5.1. p: This book is interesting. q: I am staying at home.

p ∧ q: This book is interesting, and I am staying at home.

Truth Table:
p q p ∧ q
T T T
T F F
F T F
F F F

Discussion

The conjunction operator is the binary operator which, when applied to two propo-
sitions p and q, yields the proposition “p and q”, denoted p∧q. The conjunction p∧q of
p and q is the proposition that is true when both p and q are true and false otherwise.

1.6. Disjunction. Disjunction Operator, inclusive “or”, has symbol ∨.

Example 1.6.1. p: This book is interesting. q: I am staying at home.

p ∨ q: This book is interesting, or I am staying at home.

Truth Table:
p q p ∨ q
T T T
T F T
F T T
F F F

Discussion

The disjunction operator is the binary operator which, when applied to two propo-
sitions p and q, yields the proposition “p or q”, denoted p ∨ q. The disjunction p ∨ q
of p and q is the proposition that is true when either p is true, q is true, or both are
true, and is false otherwise. Thus, the “or” intended here is the inclusive or. In fact,
the symbol ∨ is the abbreviation of the Latin word vel for the inclusive “or”.
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1.7. Exclusive Or. Exclusive Or Operator, “xor”, has symbol ⊕.

Example 1.7.1. p: This book is interesting. q: I am staying at home.

p⊕ q: Either this book is interesting, or I am staying at home, but not both.

Truth Table:
p q p⊕ q
T T F
T F T
F T T
F F F

Discussion

The exclusive or is the binary operator which, when applied to two propositions
p and q yields the proposition “p xor q”, denoted p ⊕ q, which is true if exactly one
of p or q is true, but not both. It is false if both are true or if both are false.

Many times in our every day language we use “or” in the exclusive sense. In logic,
however, we always mean the inclusive or when we simply use “or” as a connective
in a proposition. If we mean the exclusive or it must be specified. For example, in a
restaurant a menu may say there is a choice of soup or salad with a meal. In logic
this would mean that a customer may choose both a soup and salad with their meal.
The logical implication of this statement, however, is probably not what is intended.
To create a sentence that logically states the intent the menu could say that there
is a choice of either soup or salad (but not both). The phrase “either . . . or . . . ” is
normally indicates the exclusive or.

1.8. Implications. Implication Operator, “if...then...”, has symbol →.

Example 1.8.1. p: This book is interesting. q: I am staying at home.

p→ q: If this book is interesting, then I am staying at home.

Truth Table:
p q p→ q
T T T
T F F
F T T
F F T

Equivalent Forms of “If p then q”:
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• p implies q
• If p, q
• p only if q
• p is a sufficient condition for q
• q if p
• q whenever p
• q is a necessary condition for p

Discussion

The implication p → q is the proposition that is often read “if p then q.” “If p
then q” is false precisely when p is true but q is false. There are many ways to say
this connective in English. You should study the various forms as shown above.

One way to think of the meaning of p → q is to consider it a contract that says
if the first condition is satisfied, then the second will also be satisfied. If the first
condition, p, is not satisfied, then the condition of the contract is null and void. In
this case, it does not matter if the second condition is satisfied or not, the contract
is still upheld.

For example, suppose your friend tells you that if you meet her for lunch, she
will give you a book she wants you to read. According to this statement, you would
expect her to give you a book if you do go to meet her for lunch. But what if you do
not meet her for lunch? She did not say anything about that possible situation, so
she would not be breaking any kind of promise if she dropped the book off at your
house that night or if she just decided not to give you the book at all. If either of
these last two possibilities happens, we would still say the implication stated was true
because she did not break her promise.

Exercise 1.8.1. Which of the following statements are equivalent to “If x is even,
then y is odd”? There may be more than one or none.

(1) y is odd only if x is even.
(2) x is even is sufficient for y to be odd.
(3) x is even is necessary for y to be odd.
(4) If x is odd, then y is even.
(5) x is even and y is even.
(6) x is odd or y is odd.

1.9. Terminology. For the compound statement p→ q

• p is called the premise, hypothesis, or the antecedent.
• q is called the conclusion or consequent.
• q → p is the converse of p→ q.
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• ¬p→ ¬q is the inverse of p→ q.
• ¬q → ¬p is the contrapositive of p→ q.

Discussion

We will see later that the converse and the inverse are not equivalent to the
original implication, but the contrapositive ¬q → ¬p is. In other words, p → q and
its contrapositive have the exact same truth values.

1.10. Example.

Example 1.10.1. Implication: If this book is interesting, then I am staying at
home.

• Converse: If I am staying at home, then this book is interesting.
• Inverse: If this book is not interesting, then I am not staying at home.
• Contrapositive: If I am not staying at home, then this book is not inter-

esting.

Discussion

The converse of your friend’s promise given above would be “if she gives you a
book she wants you to read, then you will meet her for lunch,” and the inverse would
be “If you do not meet her for lunch, then she will not give you the book.” We can
see from the discussion about this statement that neither of these are the same as the
original promise. The contrapositive of the statement is “if she does not give you the
book, then you do not meet her for lunch.” This is, in fact, equivalent to the original
promise. Think about when would this promise be broken. It should be the exact
same situation where the original promise is broken.

Exercise 1.10.1. p is the statement “I will prove this by cases”, q is the statement
“There are more than 500 cases,” and r is the statement “I can find another way.”

(1) State (¬r ∨ ¬q)→ p in simple English.
(2) State the converse of the statement in part 1 in simple English.
(3) State the inverse of the statement in part 1 in simple English.
(4) State the contrapositive of the statement in part 1 in simple English.

1.11. Biconditional. Biconditional Operator, ”if and only if”, has symbol
↔.

Example 1.11.1. p: This book is interesting. q: I am staying at home.

p↔ q: This book is interesting if and only if I am staying at home.
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Truth Table:
p q p↔ q
T T T
T F F
F T F
F F T

Discussion

The biconditional statement is equivalent to (p → q) ∧ (q → p). In other words,
for p ↔ q to be true we must have both p and q true or both false. The difference
between the implication and biconditional operators can often be confusing, because
in our every day language we sometimes say an “if...then” statement, p→ q, when we
actually mean the biconditional statement p ↔ q. Consider the statement you may
have heard from your mother (or may have said to your children): “If you eat your
broccoli, then you may have some ice cream.” Following the strict logical meaning of
the first statement, the child still may or may not have ice cream even if the broccoli
isn’t eaten. The “if...then” construction does not indicate what would happen in the
case when the hypothesis is not true. The intent of this statement, however, is most
likely that the child must eat the broccoli in order to get the ice cream.

When we set out to prove a biconditional statement, we often break the proof
down into two parts. First we prove the implication p → q, and then we prove the
converse q → p.

Another type of “if...then” statement you may have already encountered is the one
used in computer languages. In this “if...then” statement, the premise is a condition
to be tested, and if it is true then the conclusion is a procedure that will be performed.
If the premise is not true, then the procedure will not be performed. Notice this is
different from “if...then” in logic. It is actually closer to the biconditional in logic.
However, it is not actually a logical statement at all since the “conclusion” is really
a list of commands, not a proposition.

1.12. NAND and NOR Operators.

Definition 1.12.1. The NAND Operator, which has symbol | (“Sheffer Stroke”),
is defined by the truth table

p q p|q
T T F
T F T
F T T
F F T



1. LOGIC DEFINITIONS 29

Definition 1.12.2. The NOR Operator, which has symbol ↓ (“Peirce Arrow”),
is defined by the truth table

p q p ↓ q
T T F
T F F
F T F
F F T

Discussion

These two additional operators are very useful as logical gates in a combinatorial
circuit, a topic we will discuss later.

1.13. Example.

Example 1.13.1. Write the following statement symbolically, and then make a
truth table for the statement. “If I go to the mall or go to the movies, then I will not
go to the gym.”

Solution. Suppose we set

• p = I go to the mall
• q = I go to the movies
• r = I will go to the gym

The proposition can then be expressed as “If p or q, then not r,” or (p ∨ q)→ ¬r.

p q r (p ∨ q) ¬r (p ∨ q)→ ¬r
T T T T F F
T T F T T T
T F T T F F
T F F T T T
F T T T F F
F T F T T T
F F T F F T
F F F F T T

Discussion

When building a truth table for a compound proposition, you need a row for every
possible combination of T’s and F’s for the component propositions. Notice if there
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is only one proposition involved, there are 2 rows. If there are two propositions, there
are 4 rows, if there are 3 propositions there are 8 rows.

Exercise 1.13.1. How many rows should a truth table have for a statement in-
volving n different propositions?

It is not always so clear cut how many columns one needs. If we have only three
propositions p, q, and r, you would, in theory, only need four columns: one for
each of p, q, and r, and one for the compound proposition under discussion, which is
(p ∨ q) → ¬r in this example. In practice, however, you will probably want to have
a column for each of the successive intermediate propositions used to build the final
one. In this example it is convenient to have a column for p∨ q and a column for ¬r,
so that the truth value in each row in the column for (p ∨ q)→ ¬r is easily supplied
from the truth values for p ∨ q and ¬r in that row.

Another reason why you should show the intermediate columns in your truth table
is for grading purposes. If you make an error in a truth table and do not give this
extra information, it will be difficult to evaluate your error and give you partial credit.

Example 1.13.2. Suppose p is the proposition “the apple is delicious” and q is
the proposition “I ate the apple.” Notice the difference between the two statements
below.

(a) ¬p ∧ q = The apple is not delicious, and I ate the apple.
(b) ¬(p ∧ q) = It is not the case that: the apple is delicious and I ate the apple.

Exercise 1.13.2. Find another way to express Example 1.13.2 Part b without
using the phrase “It is not the case.”

Example 1.13.3. Express the proposition “If you work hard and do not get dis-
tracted, then you can finish the job” symbolically as a compound proposition in terms
of simple propositions and logical operators.

Set

• p = you work hard
• q = you get distracted
• r = you can finish the job

In terms of p, q, and r, the given proposition can be written

(p ∧ ¬q)→ r.

The comma in Example 1.13.3 is not necessary to distinguish the order of the
operators, but consider the sentence “If the fish is cooked then dinner is ready and I
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am hungry.” Should this sentence be interpreted as f → (r∧h) or (f → r)∧h, where
f , r, and h are the natural choices for the simple propositions? A comma needs to
be inserted in this sentence to make the meaning clear or rearranging the sentence
could make the meaning clear.

Exercise 1.13.3. Insert a comma into the sentence “If the fish is cooked then
dinner is ready and I am hungry.” to make the sentence mean

(a) f → (r ∧ h)
(b) (f → r) ∧ h

Example 1.13.4. Here we build a truth table for p → (q → r) and (p ∧ q) → r.
When creating a table for more than one proposition, we may simply add the necessary
columns to a single truth table.

p q r q → r p ∧ q p→ (q → r) (p ∧ q)→ r
T T T T T T T
T T F F T F F
T F T T F T T
T F F T F T T
F T T T F T T
F T F F F T T
F F T T F T T
F F F T F T T

Exercise 1.13.4. Build one truth table for f → (r ∧ h) and (f → r) ∧ h.

1.14. Bit Strings.

Definition 1.14.1. A bit is a 0 or a 1 and a bit string is a list or string of
bits.

The logical operators can be turned into bit operators by thinking of 0 as false
and 1 as true. The obvious substitutions then give the table

0 = 1 1 = 0

0 ∨ 0 = 0 0 ∧ 0 = 0 0⊕ 0 = 0

0 ∨ 1 = 1 0 ∧ 1 = 0 0⊕ 1 = 1

1 ∨ 0 = 1 1 ∧ 0 = 0 1⊕ 0 = 1

1 ∨ 1 = 1 1 ∧ 1 = 1 1⊕ 1 = 0
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Discussion

We can define the bitwise NEGATION of a string and bitwise OR, bitwise AND,
and bitwise XOR of two bit strings of the same length by applying the logical operators
to the corresponding bits in the natural way.

Example 1.14.1.

(a) 11010 = 00101

(b) 11010 ∨ 10001 = 11011

(c) 11010 ∧ 10001 = 10000

(d) 11010⊕ 10001 = 01011


