
D Programming

D Programming

i

About the Tutorial

D programming language is an object-oriented multi-paradigm system programming

language. D programming is actually developed by re-engineering C++ programming

language, but it is distinct programming language that not only takes in some features of

C++ but also some features of other programming languages such as Java, C#, Python,

and Ruby.

This tutorial covers various topics ranging from the basics of the D programming language

to advanced OOP concepts along with the supplementary examples.

Audience

This tutorial is designed for all those individuals who are looking for a starting point of

learning D Language. Both beginners and advanced users can refer this tutorial as their

learning material. Enthusiastic learners can refer it as their on-the-go reading reference.

Any individual with a logical mindset can enjoy learning D through this tutorial.

Prerequisites

Before proceeding with this tutorial, it is advisable for you to understand the basics

concepts of computer programming. You just need to have a basic understanding of

working with a simple text editor and command line.

Disclaimer & Copyright

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

D Programming

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Disclaimer & Copyright ... i
Table of Contents... ii

PART I - D PROGRAMMING BASICS ... 1

1. D ─ Overview ... 2
Multiple Paradigms .. 2
Learning D .. 3
Scope of D .. 3

2. D ─ Environment ... 4
Try it Option Online ... 4
Local Environment Setup for D .. 4
Text Editor for D Programming .. 4
The D Compiler .. 5
Installation of D on Windows .. 5
Installation of D on Ubuntu/Debian .. 6
Installation of D on Mac OS X .. 6
Installation of D on Fedora .. 6
Installation of D on OpenSUSE ... 7
D IDE .. 7

3. D ─ Basic Syntax .. 8
First D Program .. 8
Import in D ... 8
Main Function .. 8
Tokens in D .. 9
Comments.. 9
Identifiers ... 9
Keywords ... 10
Whitespace in D ... 11

4. D ─ Variables ... 12
Variable Definition in D .. 12
Variable Declaration in D ... 13
Lvalues and Rvalues in D .. 14

5. D ─ Datatypes .. 16
Integer Types ... 16
Floating-Point Types .. 18
Character Types ... 19
The void Type... 20

D Programming

iii

6. D ─ Enums ... 21
The enum Syntax ... 21
Named Enums Properties .. 22
Anonymous Enum .. 23
Enum with Base Type Syntax ... 23
More Features ... 24

7. D ─ Literals .. 26
Integer Literals ... 26
Floating Point Literals .. 27
Boolean Literals ... 27
Character Literals ... 28
String Literals ... 29

8. D ─ Operators .. 30
Arithmetic Operators ... 30
Relational Operators .. 32
Logical Operators ... 34
Bitwise Operators .. 36
Assignment Operators ... 38
Miscillaneous Operators - Sizeof and Ternary ... 41
Operators Precedence in D .. 42

9. D ─ Loops .. 45
While Loop ... 46
for Loop .. 48
Do…While Loop .. 50
Nested Loops ... 52
Loop Control Statements ... 54
Break Statement .. 55
Continue Statement ... 56
The Infinite Loop .. 58

10. D ─ Decisions ... 59
if Statement in D .. 60
if… else Statement ... 61
The if...else if...else Statement ... 63
Nested if Statements ... 65
Switch Statement ... 66
Nested Switch Statement .. 68
The ? : Operator in D ... 70

11. D ─ Functions .. 71
Function Definition in D ... 71
Calling a Function... 71
Function Types in D ... 71
Pure Functions ... 72
Nothrow Functions .. 73
Ref Functions ... 73
Auto Functions ... 74

D Programming

iv

Variadic Functions ... 75
Inout Functions .. 76
Property Functions .. 77

12. D ─ Characters ... 79
Reading Characters in D ... 80

13. D ─ Strings ... 82
Character Array .. 82
Core Language String ... 82
String Concatenation ... 83
Length of String ... 84
String Comparison ... 84
Replacing Strings .. 85
Index Methods ... 86
Handling Cases ... 86
Restricting Characters .. 87

14. D ─ Arrays .. 88
Declaring Arrays ... 88
Initializing Arrays ... 88
Accessing Array Elements .. 89
Static Arrays Versus Dynamic Arrays ... 90
Array Properties ... 90
Multi Dimensional Arrays in D ... 92
Two-Dimensional Arrays in D .. 92
Initializing Two-Dimensional Arrays .. 93
Accessing Two-Dimensional Array Elements ... 93
Common Array Operations in D ... 94

15. D ─ Associative Arrays ... 97
Initializing Associative Array .. 98
Properties of Associative Array.. 98

16. D ─ Pointers ... 101
What Are Pointers? ... 101
Using Pointers in D programming .. 102
Null Pointers .. 103
Pointer Arithmetic ... 103
Incrementing a Pointer .. 104
Pointers vs Array .. 105
Pointer to Pointer .. 106
Passing Pointer to Functions ... 107
Return Pointer from Functions .. 108
Pointer to an Array .. 109

D Programming

v

17. D ─ Tuples ... 111
Tuple Using tuple() .. 111
Tuple using Tuple Template ... 111
Expanding Property and Function Params... 112
TypeTuple .. 113

18. D ─ Structures.. 115
Defining a Structure ... 115
Accessing Structure Members ... 116
Structures as Function Arguments .. 117
Structs Initialization ... 119
Static Members .. 120

19. D ─ Unions ... 122
Defining a Union in D ... 122
Accessing Union Members .. 123

20. D ─ Ranges .. 126
Number ranges .. 126
Phobos Ranges ... 126
InputRange .. 126
ForwardRange.. 129
BidirectionalRange ... 130
Infinite RandomAccessRange .. 132
Finite RandomAccessRange ... 134
OutputRange ... 139

21. D ─ Aliases ... 141
Alias for a Tuple ... 142
Alias for Data Types ... 142
Alias for Class Variables ... 143
Alias This .. 144

22. D ─ Mixins ... 146
String Mixins .. 146
Template Mixins .. 147
Mixin Name Spaces .. 148

23. D ─ Modules .. 150
File and Module Names ... 150
D Packages ... 151
Using Modules in Programs ... 151
Locations of Modules .. 152
Long and Short Module Names ... 152

D Programming

vi

24. D ─ Templates ... 155
Function Template ... 155
Function Template with Multiple Type Parameters .. 156
Class Templates ... 156

25. D ─ Immutables ... 159
Types of Immutable Variables in D .. 159
enum Constants in D .. 159
Immutable Variables in D .. 160
Const Variables in D ... 161
Immutable Parameters in D ... 162

26. D ─ File I/O .. 163
Opening Files in D .. 163
Closing a File in D ... 164
Writing a File in D .. 164
Reading a File in D ... 164

27. D ─ Concurrency .. 167
Initiating Threads in D .. 167
Thread Identifiers in D ... 168
Message Passing in D ... 169
Message Passing with Wait in D .. 171

28. D ─ Exception Handling ... 173
Throwing Exceptions in D .. 174
Catching Exceptions in D.. 174

29. D ─ Contract Programming .. 177
Body Block in D .. 177
In Block for Pre Conditions in D ... 177
Out Blocks for Post Conditions in D ... 178

30. D ─ Conditional Compilation.. 180
Debug Statement in D ... 180
Debug (tag) Statement in D ... 181
Debug (level) Statement in D ... 181
Version (tag) and Version (level) Statements in D ... 182
Static if ... 182

PART II – OBJECT ORIENTED D ... 184

31. D ─ Classes and Objects ... 185
D Class Definitions ... 185
Defining D Objects ... 185
Accessing the Data Members .. 186
Classes and Objects in D .. 187
Class Member Functions in D .. 188
Class Access Modifiers in D .. 189
The Public Members in D ... 190

D Programming

vii

The Private Members .. 191
The Protected Members .. 193
The Class Constructor .. 194
Parameterized Constructor ... 195
The Class Destructor .. 196
this Pointer in D ... 198
Pointer to D Classes ... 199
Static Members of a Class .. 201
Static Function Members ... 202

32. D ─ Inheritance .. 205
Base Classes and Derived Classes in D ... 205
Access Control and Inheritance ... 206
Multi Level Inheritance .. 207

33. D ─ Overloading .. 209
Function Overloading .. 209
Operator Overloading .. 210
Operator Overloading Types ... 213
Unary Operators .. 213
Binary Operators.. 216
Comparison of Operator Overloading ... 219

34. D ─ Encapsulation .. 222
Data Encapsulation in D ... 223
Class Designing Strategy in D ... 224

35. D ─ Interfaces .. 225
Interface with Final and Static Functions in D ... 226

36. D ─ Abstract Classes .. 229
Using Abstract Class in D ... 229
Abstract Functions ... 230

D Programming

1

Part I - D Programming Basics

D Programming

2

D programming language is an object-oriented multi-paradigm system programming

language developed by Walter Bright of Digital Mars. Its development started in 1999 and

was first released in 2001. The major version of D(1.0) was released in 2007. Currently,

we have D2 version of D.

D is language with syntax being C style and uses static typing. There are many features

of C and C++ in D but also there are some features from these language not included part

of D. Some of the notable additions to D includes,

 Unit testing

 True modules

 Garbage collection

 First class arrays

 Free and open

 Associative arrays

 Dynamic arrays

 Inner classes

 Closures

 Anonymous functions

 Lazy evaluation

 Closures

Multiple Paradigms

D is a multiple paradigm programming language. The multiple paradigms includes,

 Imperative

 Object Oriented

 Meta programming

 Functional

 Concurrent

1. D ─ Overview

D Programming

3

Example

import std.stdio;

void main(string[] args)

{

 writeln("Hello World!");

}

Learning D

The most important thing to do when learning D is to focus on concepts and not get lost

in language technical details.

The purpose of learning a programming language is to become a better programmer; that

is, to become more effective at designing and implementing new systems and at

maintaining old ones.

Scope of D

D programming has some interesting features and the official D programming site claims

that D is convenient, powerful and efficient. D programming adds many features in the

core language which C language has provided in the form of Standard libraries such as

resizable array and string function. D makes an excellent second language for intermediate

to advanced programmers. D is better in handling memory and managing the pointers

that often causes trouble in C++.

D programming is intended mainly on new programs that conversion of existing programs.

It provides built in testing and verification an ideal for large new project that will be written

with millions of lines of code by large teams.

D Programming

4

Try it Option Online

You really do not need to set up your own environment to start learning D programming

language. Reason is very simple, we already have set up D Programming environment

online under “Try it” option. Using this option, you can build and execute all the given

examples online at the same time when you are learning theory. This gives you confidence

in what you are reading and checking the result with different options. Feel free to modify

any example and execute it online.

Try following example using Try it option available at the top right corner of the below

sample code box:

import std.stdio;

void main(string[] args)

{

 writeln("Hello World!");

}

For most of the examples given in this tutorial, you will find Try it option, so just make

use of it and enjoy learning.

Local Environment Setup for D

If you are still willing to set up your environment for D programming language, you need

the following two softwares available on your computer, (a) Text Editor,(b)D Compiler.

Text Editor for D Programming

This will be used to type your program. Examples of few editors include Windows Notepad,

OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of text editor can vary on different operating systems. For example,

Notepad will be used on Windows, and vim or vi can be used on windows as well as Linux

or UNIX.

The files you create with your editor are called source files and contain program source

code. The source files for D programs are named with the extension ".d".

Before starting your programming, make sure you have one text editor in place and you

have enough experience to write a computer program, save it in a file, build it and finally

execute it.

2. D ─ Environment

D Programming

5

The D Compiler

Most current D implementations compile directly into machine code for efficient execution.

We have multiple D compilers available and it includes the following.

 DMD - The Digital Mars D compiler is the official D compiler by Walter Bright.

 GDC - A front-end for the GCC back-end, built using the open DMD compiler source

code.

 LDC - A compiler based on the DMD front-end that uses LLVM as its compiler back-

end.

The above different compilers can be downloaded from D downloads

We will be using D version 2 and we recommend not to download D1.

Let’s have a helloWorld.d program as follows. We will use this as first program we run on

platform you choose.

import std.stdio;

void main(string[] args)

{

 writeln("Hello World!");

}

Installation of D on Windows

Download the windows installer.

Run the downloaded executable to install the D which can be done by following the on

screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the

file using cd and then using the following steps:

C:\DProgramming> DMD helloWorld.d

C:\DProgramming> helloWorld

We can see the following output.

hello world

C:\DProgramming is the folder, I am using to save my samples. You can change it to the

folder that you have saved D programs.

http://dlang.org/download.html
http://downloads.dlang.org/releases/2013/dmd-2.064.2.exe

D Programming

6

Installation of D on Ubuntu/Debian

Download the debian installer.

Run the downloaded executable to install the D which can be done by following the on

screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the

file using cd and then using the following steps

$ dmd helloWorld.d

$./helloWorld

We can see the following output.

$ hello world

Installation of D on Mac OS X

Download the Mac installer.

Run the downloaded executable to install the D which can be done by following the on

screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the

file using cd and then using the following steps

$ dmd helloWorld.d

$./helloWorld

We can see the following output.

$ hello world

Installation of D on Fedora

Download the fedora installer.

Run the downloaded executable to install the D which can be done by following the on

screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the

file using cd and then using the following steps:

$ dmd helloWorld.d

$./helloWorld

http://downloads.dlang.org/releases/2013/dmd_2.064.2-0_i386.deb
http://downloads.dlang.org/releases/2013/dmd.2.064.2.dmg
http://downloads.dlang.org/releases/2013/dmd-2.064.2-0.fedora.i386.rpm

D Programming

7

We can see the following output.

$ hello world

Installation of D on OpenSUSE

Download the OpenSUSE installer.

Run the downloaded executable to install the D which can be done by following the on

screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the

file using cd and then using the following steps

$ dmd helloWorld.d

$./helloWorld

We can see the following output.

$ hello world

D IDE

We have IDE support for D in the form of plugins in most cases. This includes,

 Visual D plugin is a plugin for Visual Studio 2005-13

 DDT is a eclipse plugin that provides code completion, debugging with GDB.

 Mono-D code completion, refactoring with dmd/ldc/gdc support. It has been part

of GSoC 2012.

 Code Blocks is a multi-platform IDE that supports D project creation, highlighting

and debugging.

http://downloads.dlang.org/releases/2013/dmd-2.064.2-0.openSUSE.i386.rpm
https://github.com/D-Programming-Language/visuald/releases/download/v0.3.37/VisualD-v0.3.37.exe
http://code.google.com/p/ddt/
http://mono-d.alexanderbothe.com/
http://www.codeblocks.org/downloads/binaries/

D Programming

8

D is quite simple to learn and let’s start creating our first D program!

First D Program

Let us write a simple D program. All D files will have extension ".d". So put the following

source code in a test.d file.

import std.stdio;

/* My first program in D */

void main(string[] args)

{

 writeln("test!");

}

Assuming D environment is setup correctly, lets run the programming using:

$ dmd test.d

$./test

We will get the following output.

test

Let us now see the basic structure of D program, so that it will be easy for you to

understand basic building blocks of the D programming language.

Import in D

Libraries which are collections of reusable program parts can be made available to our

project with the help of import. Here we import the standard io library which provides the

basic I/O operations. writeln which is used in above program is a function in D's standard

library. It is used for printing a line of text. Library contents in D are grouped into modules

which is based on the types of tasks that they intend perform. The only module that this

program uses is std.stdio, which handles data input and output.

Main Function

Main function is the starting of the program and it determines the order of execution and

how other sections of the program should be executed.

3. D ─ Basic Syntax

D Programming

9

Tokens in D

A D program consists of various tokens and a token is either a keyword, an identifier, a

constant, a string literal, or a symbol. For example, the following D statement consists of

four tokens:

writeln("test!");

The individual tokens are:

writeln

(

"test!"

)

;

Comments

Comments are like supporting text in your D program and they are ignored by the

compiler. Multi line comment starts with /* and terminates with the characters */ as shown

below:

/* My first program in D */

Single comment is written using // in the beginning of the comment.

// my first program in D

Identifiers

A D identifier is a name used to identify a variable, function, or any other user-defined

item. An identifier starts with a letter A to Z or a to z or an underscore _ followed by zero

or more letters, underscores, and digits (0 to 9).

D does not allow punctuation characters such as @, $, and % within identifiers. D is a case

sensitive programming language. Thus Manpower and manpower are two different

identifiers in D. Here are some examples of acceptable identifiers:

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

D Programming

10

Keywords

The following list shows few of the reserved words in D. These reserved words may not be

used as constant or variable or any other identifier names.

abstract alias align asm

assert auto body bool

byte case cast catch

char class const continue

dchar debug default delegate

deprecated do double else

enum export extern false

final finally float for

foreach function goto if

import in inout int

interface invariant is long

macro mixin module new

null out override package

pragma private protected public

real ref return scope

short static struct super

switch synchronized template this

D Programming

11

throw true try typeid

typeof ubyte uint ulong

union unittest ushort version

void wchar while with

Whitespace in D

A line containing only whitespace, possibly with a comment, is known as a blank line, and

a D compiler totally ignores it.

Whitespace is the term used in D to describe blanks, tabs, newline characters and

comments. Whitespace separates one part of a statement from another and enables the

interpreter to identify where one element in a statement, such as int, ends and the next

element begins. Therefore, in the following statement:

local age

There must be at least one whitespace character (usually a space) between local and age

for the interpreter to be able to distinguish them. On the other hand, in the following

statement

int fruit = apples + oranges //get the total fruits

No whitespace characters are necessary between fruit and =, or between = and apples,

although you are free to include some if you wish for readability purpose.

D Programming

12

A variable is nothing but a name given to a storage area that our programs can manipulate.

Each variable in D has a specific type, which determines the size and layout of the

variable's memory; the range of values that can be stored within that memory; and the

set of operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character.

It must begin with either a letter or an underscore. Upper and lowercase letters are distinct

because D is case-sensitive. Based on the basic types explained in the previous chapter,

there will be the following basic variable types:

Type Description

char Typically a single octet (one byte). This is an integer type.

int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

D programming language also allows to define various other types of variables such as

Enumeration, Pointer, Array, Structure, Union, etc., which we will cover in subsequent

chapters. For this chapter, let us study only basic variable types.

Variable Definition in D

A variable definition tells the compiler where and how much space to create for the

variable. A variable definition specifies a data type and contains a list of one or more

variables of that type as follows:

type variable_list;

Here, type must be a valid D data type including char, wchar, int, float, double, bool, or

any user-defined object, etc., and variable_list may consist of one or more identifier

names separated by commas. Some valid declarations are shown here:

4. D ─ Variables

D Programming

13

int i, j, k;

char c, ch;

float f, salary;

double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the

compiler to create variables named i, j, and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer

consists of an equal sign followed by a constant expression as follows:

type variable_name = value;

Example

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

When a variable is declared in D, it is always set to its 'default initializer', which can be

manually accessed as T.init where T is the type (ex. int.init). The default initializer for

integer types is 0, for Booleans false, and for floating-point numbers NaN.

Variable Declaration in D

A variable declaration provides assurance to the compiler that there is one variable existing

with the given type and name so that compiler proceed for further compilation without

needing complete detail about the variable. A variable declaration has its meaning at the

time of compilation only, compiler needs actual variable declaration at the time of linking

of the program.

Example

Try the following example, where variables have been declared at the start of the program,

but are defined and initialized inside the main function:

import std.stdio;

int a = 10, b =10;

int c;

float f;

int main ()

D Programming

14

{

 writeln("Value of a is : ", a);

 /* variable re definition: */

 int a, b;

 int c;

 float f;

 /* Initialization */

 a = 30;

 b = 40;

 writeln("Value of a is : ", a);

 c = a + b;

 writeln("Value of c is : ", c);

 f = 70.0/3.0;

 writeln("Value of f is : ", f);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Value of a is : 10

Value of a is : 30

Value of c is : 70

Value of f is : 23.3333

Lvalues and Rvalues in D

There are two kinds of expressions in D:

 lvalue : An expression that is an lvalue may appear as either the left-hand or right-

hand side of an assignment.

 rvalue : An expression that is an rvalue may appear on the right- but not left-hand

side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric

literals are rvalues and so may not be assigned and cannot appear on the left-hand side.

The following statement is valid:

D Programming

15

int g = 20;

But the following is not a valid statement and would generate a compile-time error:

10 = 20;

D Programming

16

In the D programming language, data types refer to an extensive system used for

declaring variables or functions of different types. The type of a variable determines how

much space it occupies in storage and how the stored bit pattern is interpreted.

The types in D can be classified as follows:

Sr. No. Types and Description

1 Basic Types:

They are arithmetic types and consist of the three types: (a) integer, (b)
floating-point, and (c) character.

2 Enumerated types:

They are again arithmetic types. They are used to define variables that can

only be assigned certain discrete integer values throughout the program.

3 The type void:

The type specifier void indicates that no value is available.

4 Derived types:

They include (a) Pointer types, (b) Array types, (c) Structure types, (d)
Union types, and (e) Function types.

The array types and structure types are referred to collectively as the aggregate types.

The type of a function specifies the type of the function's return value. We will see basic

types in the following section whereas other types will be covered in the upcoming

chapters.

Integer Types

The following table gives lists standard integer types with their storage sizes and value

ranges:

Type Storage size Value range

bool 1 byte false or true

byte 1 byte -128 to 127

5. D ─ Datatypes

D Programming

17

ubyte 1 byte 0 to 255

int 4 bytes -2,147,483,648 to 2,147,483,647

uint 4 bytes 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

ushort 2 bytes 0 to 65,535

long 8 bytes -9223372036854775808 to 9223372036854775807

ulong 8 bytes 0 to 18446744073709551615

To get the exact size of a type or a variable, you can use the sizeof operator. The

expression type.(sizeof) yields the storage size of the object or type in bytes. The following

example gets the size of int type on any machine:

import std.stdio;

int main()

{

 writeln("Length in bytes: ", ulong.sizeof);

 return 0;

}

When you compile and execute the above program, it produces the following result:

Length in bytes: 8

D Programming

18

Floating-Point Types

The following table mentions standard float-point types with storage sizes, value ranges,

and their purpose:

Type
Storage

size
Value range Purpose

float 4 bytes 1.17549e-38 to 3.40282e+38 6 decimal places

double 8 bytes 2.22507e-308 to 1.79769e+308 15 decimal places

real 10 bytes 3.3621e-4932 to 1.18973e+4932

either the largest

floating point type

that the hardware

supports, or double;
whichever is larger

ifloat 4 bytes 1.17549e-38i to 3.40282e+38i
imaginary value type
of float

idouble 8 bytes 2.22507e-308i to 1.79769e+308i
imaginary value type
of double

ireal 10 bytes 3.3621e-4932 to 1.18973e+4932
imaginary value type
of real

cfloat 8 bytes
1.17549e-38+1.17549e-38i to
3.40282e+38+3.40282e+38i

complex number

type made of two

floats

cdouble 16 bytes
2.22507e-308+2.22507e-308i to

1.79769e+308+1.79769e+308i

complex number

type made of two
doubles

creal 20 bytes
3.3621e-4932+3.3621e-4932i to
1.18973e+4932+1.18973e+4932i

complex number

type made of two
reals

D Programming

19

The following example prints storage space taken by a float type and its range values:

import std.stdio;

int main()

{

 writeln("Length in bytes: ", float.sizeof);

 return 0;

}

When you compile and execute the above program, it produces the following result on

Linux:

Storage size for float : 4

Character Types

The following table lists standard character types with storage sizes and its purpose.

Type Storage size Purpose

char 1 byte UTF-8 code unit

wchar 2 bytes UTF-16 code unit

dchar 4 bytes UTF-32 code unit and Unicode code point

The following example prints storage space taken by a char type.

import std.stdio;

int main()

{

 writeln("Length in bytes: ", char.sizeof);

 return 0;

}

When you compile and execute the above program, it produces the following result:

Storage size for float : 1

D Programming

20

The void Type

The void type specifies that no value is available. It is used in two kinds of situations:

Sr. No. Types and Description

1

Function returns as void

There are various functions in D which do not return value or you can say

they return void. A function with no return value has the return type as void.
For example, void exit (int status);

2

Function arguments as void

There are various functions in D which do not accept any parameter. A
function with no parameter can accept as a void. For example, int

rand(void);

The void type may not be understood to you at this point, so let us proceed and we will

cover these concepts in upcoming chapters.

D Programming

21

An enumeration is used for defining named constant values. An enumerated type is

declared using the enum keyword.

The enum Syntax

The simplest form of an enum definition is the following:

enum enum_name {

 enumeration list

}

Where,

 The enum_name specifies the enumeration type name.

 The enumeration list is a comma-separated list of identifiers.

Each of the symbols in the enumeration list stands for an integer value, one greater than

the symbol that precedes it. By default, the value of the first enumeration symbol is 0. For

example:

enum Days { sun, mon, tue, wed, thu, fri, sat };

Example

The following example demonstrates the use of enum variable:

import std.stdio;

enum Days { sun, mon, tue, wed, thu, fri, sat };

int main(string[] args)

{

 Days day;

 day = Days.mon;

 writefln("Current Day: %d", day);

 writefln("Friday : %d", Days.fri);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Current Day: 1

Friday : 5

6. D ─ Enums

D Programming

22

In the above program, we can see how an enumeration can be used. Initially, we create a

variable named day of our user defined enumeration Days. Then we set it to mon using

the dot operator. We need to use the writefln method to print the value of mon that is

been stored. You also need specify the type. It is of the type integer, hence we use %d

for printing.

Named Enums Properties

The above example uses a name Days for the enumeration and is called named enums.

These named enums have the following properties:

 Init: It initializes the first value in the enumeration.

 Min: It returns the smallest value of enumeration.

 Max: It returns the largest value of enumeration.

 Sizeof: It returns the size of storage for enumeration.

Let us modify the previous example to make use of the properties.

import std.stdio;

// Initialized sun with value 1

enum Days { sun =1, mon, tue, wed, thu, fri, sat };

int main(string[] args)

{

 writefln("Min : %d", Days.min);

 writefln("Max : %d", Days.max);

 writefln("Size of: %d", Days.sizeof);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Min : 3

Max : 9

Size of: 4

D Programming

23

Anonymous Enum

Enumeration without name is called anonymous enum. An example for anonymous enum

is given below.

import std.stdio;

// Initialized sun with value 1

enum { sun , mon, tue, wed, thu, fri, sat };

int main(string[] args)

{

 writefln("Sunday : %d", sun);

 writefln("Monday : %d", mon);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Sunday : 0

Monday : 1

Anonymous enums work pretty much the same way as named enums but they do not

have the max, min, and sizeof properties.

Enum with Base Type Syntax

The syntax for enumeration with base type is shown below.

enum :baseType {

enumeration list

}

Some of the base types includes long, int, and string. An example using long is shown

below.

import std.stdio;

enum : string {

 A = "hello",

 B = "world",

 }

int main(string[] args)

D Programming

24

{

 writefln("A : %s", A);

 writefln("B : %s", B);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

A : hello

B : world

More Features

Enumeration in D provides features like initialization of multiple values in an enumeration

with multiple types. An example is shown below.

import std.stdio;

enum {

 A = 1.2f, // A is 1.2f of type float

 B, // B is 2.2f of type float

 int C = 3, // C is 3 of type int

 D // D is 4 of type int

}

int main(string[] args)

{

 writefln("A : %f", A);

 writefln("B : %f", B);

 writefln("C : %d", C);

 writefln("D : %d", D);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

D Programming

25

A : 1.200000

B : 2.200000

C : 3

D : 4

D Programming

26

Constant values that are typed in the program as a part of the source code are called

literals.

Literals can be of any of the basic data types and can be divided into Integer Numerals,

Floating-Point Numerals, Characters, Strings, and Boolean Values.

Again, literals are treated just like regular variables except that their values cannot be

modified after their definition.

Integer Literals

An integer literal can be of the following types:

 Decimal uses the normal number representation with the first digit cannot be 0 as

that digit is reserved for indicating the octal system. This does not include 0 on its

own: 0 is zero.

 Octal uses 0 as prefix to number.

 Binary uses 0b or 0B as prefix

 Hexadecimal uses 0x or 0X as prefix.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and

long, respectively. The suffix can be uppercase or lowercase and can be in any order.

When you don’t use a suffix, the compiler itself chooses between int, uint, long, and ulong

based on the magnitude of the value.

Here are some examples of integer literals:

212 // Legal

215u // Legal

0xFeeL // Legal

078 // Illegal: 8 is not an octal digit

032UU // Illegal: cannot repeat a suffix

Following are other examples of various types of integer literals:

85 // decimal

0213 // octal

0x4b // hexadecimal

30 // int

30u // unsigned int

30l // long

7. D ─ Literals

D Programming

27

30ul // unsigned long

0b001 // binary

Floating Point Literals

The floating point literals can be specified in either the decimal system as in 1.568 or in

the hexadecimal system as in 0x91.bc.

In the decimal system, an exponent can be represented by adding the character e or E

and a number after that. For example, 2.3e4 means "2.3 times 10 to the power of 4". A

“+” character may be specified before the value of the exponent, but it has no effect. For

example 2.3e4 and 2.3e + 4 are the same.

The “-” character added before the value of the exponent changes the meaning to be

"divided by 10 to the power of". For example, 2.3e-2 means "2.3 divided by 10 to the

power of 2".

In the hexadecimal system, the value starts with either 0x or 0X. The exponent is specified

by p or P instead of e or E. The exponent does not mean "10 to the power of", but "2 to

the power of". For example, the P4 in 0xabc.defP4 means "abc.de times 2 to the power of

4".

Here are some examples of floating-point literals:

3.14159 // Legal

314159E-5L // Legal

510E // Illegal: incomplete exponent

210f // Illegal: no decimal or exponent

.e55 // Illegal: missing integer or fraction

0xabc.defP4 // Legal Hexa decimal with exponent

0xabc.defe4 // Legal Hexa decimal without exponent.

By default, the type of a floating point literal is double. The f and F mean float, and the L

specifier means real.

Boolean Literals

There are two Boolean literals and they are part of standard D keywords:

 A value of true representing true.

 A value of false representing false.

You should not consider the value of true equal to 1 and value of false equal to 0.

D Programming

28

Character Literals

Character literals are enclosed in single quotes.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), ASCII

character (e.g., '\x21'), Unicode character (e.g., '\u011e') or as named character (e.g.

'\©','\♥', '\€').

There are certain characters in D when they are preceded by a backslash they will have

special meaning and they are used to represent like newline (\n) or tab (\t). Here, you

have a list of some of such escape sequence codes:

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

D Programming

29

The following example shows few escape sequence characters:

import std.stdio;

int main(string[] args)

{

 writefln("Hello\tWorld%c\n",'\x21');

 writefln("Have a good day%c",'\x21');

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Hello World!

Have a good day!

String Literals

String literals are enclosed in double quotes. A string contains characters that are similar

to character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separate them using

whitespaces.

Here are some examples of string literals:

import std.stdio;

int main(string[] args)

{

 writeln(q"MY_DELIMITER

Hello World

Have a good day

MY_DELIMITER");

 writefln("Have a good day%c",'\x21');

 auto str = q{int value = 20; ++value;};

 writeln(str);

In the above example, you can find the use of q"MY_DELIMITER MY_DELIMITER" to

represent multi line characters. Also, you can see q{} to represent an D language

statement itself.

D Programming

30

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. D language is rich in built-in operators and provides the following types of

operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

This chapter explains arithmetic, relational, logical, bitwise, assignment, and other

operators one by one.

Arithmetic Operators

The following table shows all arithmetic operators supported by D language. Assume

variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ It adds two operands. A + B gives 30

- It subtracts second operand from the first. A - B gives -10

* It multiplies both operands. A * B gives 200

/ It divides numerator by denumerator. B / A gives 2

% It returns remainder of an integer division. B % A gives 0

++ The increment operator increases integer

value by one.

A++ gives 11

-- The decrements operator decreases integer

value by one.

A-- gives 9

8. D ─ Operators

D Programming

31

Example
Try the following example to understand all the arithmetic operators available in D

programming language:

import std.stdio;

int main(string[] args)

{

 int a = 21;

 int b = 10;

 int c ;

 c = a + b;

 writefln("Line 1 - Value of c is %d\n", c);

 c = a - b;

 writefln("Line 2 - Value of c is %d\n", c);

 c = a * b;

 writefln("Line 3 - Value of c is %d\n", c);

 c = a / b;

 writefln("Line 4 - Value of c is %d\n", c);

 c = a % b;

 writefln("Line 5 - Value of c is %d\n", c);

 c = a++;

 writefln("Line 6 - Value of c is %d\n", c);

 c = a--;

 writefln("Line 7 - Value of c is %d\n", c);

 char[] buf;

 stdin.readln(buf);

 return 0;

}

When you compile and execute the above program, it produces the following result:

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of c is 2

Line 5 - Value of c is 1

Line 6 - Value of c is 21

Line 7 - Value of c is 22

D Programming

32

Relational Operators

The following table shows all the relational operators supported by D language. Assume

variable A holds 10 and variable B holds 20, then:

Operator Description Example

==
Checks if the values of two operands are equal or
not, if yes then condition becomes true.

(A == B) is not true.

!=
Checks if the values of two operands are equal or

not, if values are not equal then condition

becomes true.

(A != B) is true.

>
Checks if the value of left operand is greater than

the value of right operand, if yes then condition

becomes true.

(A > B) is not true.

<
Checks if the value of left operand is less than the

value of right operand, if yes then condition
becomes true.

(A < B) is true.

>=

Checks if the value of left operand is greater than

or equal to the value of right operand, if yes then
condition becomes true.

(A >= B) is not true.

<=
Checks if the value of left operand is less than or

equal to the value of right operand, if yes then

condition becomes true.

(A <= B) is true.

Example

Try the following example to understand all the relational operators available in D

programming language:

import std.stdio;

int main(string[] args)

{

 int a = 21;

 int b = 10;

 int c ;

 if(a == b)

 {

D Programming

33

 writefln("Line 1 - a is equal to b\n");

 }

 else

 {

 writefln("Line 1 - a is not equal to b\n");

 }

 if (a < b)

 {

 writefln("Line 2 - a is less than b\n");

 }

 else

 {

 writefln("Line 2 - a is not less than b\n");

 }

 if (a > b)

 {

 printf("Line 3 - a is greater than b\n");

 }

 else

 {

 writefln("Line 3 - a is not greater than b\n");

 }

 /* Lets change value of a and b */

 a = 5;

 b = 20;

 if (a <= b)

 {

 printf("Line 4 - a is either less than or equal to b\n");

 }

 if (b >= a)

 {

 writefln("Line 5 - b is either greater than or equal to b\n");

 }

 return 0;

}

D Programming

34

When you compile and execute the above program it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b

Logical Operators

The following table shows all the logical operators supported by D language. Assume

variable A holds 1 and variable B holds 0, then:

Operator Description Example

&& It is called Logical AND operator. If both the

operands are non-zero, then condition becomes

true.

(A && B) is false.

|| It is called Logical OR Operator. If any of the two

operands is non-zero, then condition becomes true.

(A || B) is true.

! It is called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true then

Logical NOT operator will make false.

!(A && B) is true.

Example

Try the following example to understand all the logical operators available in D

programming language:

import std.stdio;

int main(string[] args)

{

 int a = 5;

 int b = 20;

 int c ;

 if (a && b)

 {

D Programming

35

 writefln("Line 1 - Condition is true\n");

 }

 if (a || b)

 {

 writefln("Line 2 - Condition is true\n");

 }

 /* lets change the value of a and b */

 a = 0;

 b = 10;

 if (a && b)

 {

 writefln("Line 3 - Condition is true\n");

 }

 else

 {

 writefln("Line 3 - Condition is not true\n");

 }

 if (!(a && b))

 {

 writefln("Line 4 - Condition is true\n");

 }

 return 0;

}

When you compile and execute the above program it produces the following result:

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condition is not true

Line 4 - Condition is true

D Programming

36

Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &, |,

and ^ are as follows:

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume if A = 60; and B = 13. In the binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by D language are listed in the following table. Assume

variable A holds 60 and variable B holds 13, then:

Operator Description Example

&
Binary AND Operator copies a bit to the

result if it exists in both operands.

(A & B) gives 12.

Means 0000 1100.

|
Binary OR Operator copies a bit if it exists

in either operand.

(A | B) gives 61.

Means 0011 1101.

^
Binary XOR Operator copies the bit if it is
set in one operand but not both.

(A ^ B) gives 49.

Means 0011 0001

D Programming

37

~
Binary Ones Complement Operator is
unary and has the effect of 'flipping' bits.

(~A) gives -61.

Means 1100 0011 in 2's
complement form.

<<

Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right
operand.

A << 2 gives 240.

Means 1111 0000.

>>

Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 gives 15.

Means 0000 1111.

Example

Try the following example to understand all the bitwise operators available in D

programming language:

import std.stdio;

int main(string[] args)

{

 uint a = 60; /* 60 = 0011 1100 */

 uint b = 13; /* 13 = 0000 1101 */

 int c = 0;

 c = a & b; /* 12 = 0000 1100 */

 writefln("Line 1 - Value of c is %d\n", c);

 c = a | b; /* 61 = 0011 1101 */

 writefln("Line 2 - Value of c is %d\n", c);

 c = a ^ b; /* 49 = 0011 0001 */

 writefln("Line 3 - Value of c is %d\n", c);

 c = ~a; /*-61 = 1100 0011 */

 writefln("Line 4 - Value of c is %d\n", c);

D Programming

38

 c = a << 2; /* 240 = 1111 0000 */

 writefln("Line 5 - Value of c is %d\n", c);

 c = a >> 2; /* 15 = 0000 1111 */

 writefln("Line 6 - Value of c is %d\n", c);

 return 0;

}

When you compile and execute the above program it produces the following result:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15

Assignment Operators

The following assignment operators are supported by D language:

Operator Description Example

=

It is simple assignment operator. It assigns

values from right side operands to left side

operand

C = A + B assigns value

of A + B into C

+=

It is add AND assignment operator. It adds

right operand to the left operand and assign

the result to left operand

C += A is equivalent to C

= C + A

-=

It is subtract AND assignment operator. It

subtracts right operand from the left operand

and assign the result to left operand.

C -= A is equivalent to C

= C - A

*=

It is multiply AND assignment operator. It

multiplies right operand with the left operand

and assigns the result to left operand.

C *= A is equivalent to C

= C * A

D Programming

39

/=

It is divide AND assignment operator. It

divides left operand with the right operand

and assign the result to left operand.

C /= A is equivalent to C

= C / A

%=

It is modulus AND assignment operator. It

takes modulus using two operands and assign

the result to left operand.

C %= A is equivalent to C

= C % A

<<= It is Left shift AND assignment operator.
C <<= 2 is same as C =

C << 2

>>= It is Right shift AND assignment operator.
C >>= 2 is same as C =

C >> 2

&= It is bitwise AND assignment operator.
C &= 2 is same as C = C

& 2

^=
It is bitwise exclusive OR and assignment

operator.

C ^= 2 is same as C = C

^ 2

|=
It is bitwise inclusive OR and assignment

operator

C |= 2 is same as C = C

| 2

Example

Try the following example to understand all the assignment operators available in D

programming language:

import std.stdio;

int main(string[] args)

{

 int a = 21;

 int c ;

 c = a;

 writefln("Line 1 - = Operator Example, Value of c = %d\n", c);

 c += a;

 writefln("Line 2 - += Operator Example, Value of c = %d\n", c);

D Programming

40

 c -= a;

 writefln("Line 3 - -= Operator Example, Value of c = %d\n", c);

 c *= a;

 writefln("Line 4 - *= Operator Example, Value of c = %d\n", c);

 c /= a;

 writefln("Line 5 - /= Operator Example, Value of c = %d\n", c);

 c = 200;

 c = c % a;

 writefln("Line 6 - %s= Operator Example, Value of c = %d\n",'\x25', c);

 c <<= 2;

 writefln("Line 7 - <<= Operator Example, Value of c = %d\n", c);

 c >>= 2;

 writefln("Line 8 - >>= Operator Example, Value of c = %d\n", c);

 c &= 2;

 writefln("Line 9 - &= Operator Example, Value of c = %d\n", c);

 c ^= 2;

 writefln("Line 10 - ^= Operator Example, Value of c = %d\n", c);

 c |= 2;

 writefln("Line 11 - |= Operator Example, Value of c = %d\n", c);

 return 0;

}

When you compile and execute the above program it produces the following result:

Line 1 - = Operator Example, Value of c = 21

Line 2 - += Operator Example, Value of c = 42

Line 3 - -= Operator Example, Value of c = 21

Line 4 - *= Operator Example, Value of c = 441

D Programming

41

Line 5 - /= Operator Example, Value of c = 21

Line 6 - %= Operator Example, Value of c = 11

Line 7 - <<= Operator Example, Value of c = 44

Line 8 - >>= Operator Example, Value of c = 11

Line 9 - &= Operator Example, Value of c = 2

Line 10 - ^= Operator Example, Value of c = 0

Line 11 - |= Operator Example, Value of c = 2

Miscillaneous Operators - Sizeof and Ternary

There are few other important operators including sizeof and ? : supported by D

Language.

Operator Description Example

sizeof()
Returns the size of an
variable.

sizeof(a), where a is integer, returns 4.

&
Returns the address of a
variable.

&a; gives actual address of the variable.

* Pointer to a variable. *a; gives pointer to a variable.

? : Conditional Expression
If condition is true then value X:

Otherwise value Y.

Example

Try the following example to understand all the miscellaneous operators available in D

programming language:

import std.stdio;

int main(string[] args)

{

 int a = 4;

 short b;

 double c;

 int* ptr;

D Programming

42

 /* example of sizeof operator */

 writefln("Line 1 - Size of variable a = %d\n", a.sizeof);

 writefln("Line 2 - Size of variable b = %d\n", b.sizeof);

 writefln("Line 3 - Size of variable c= %d\n", c.sizeof);

 /* example of & and * operators */

 ptr = &a; /* 'ptr' now contains the address of 'a'*/

 writefln("value of a is %d\n", a);

 writefln("*ptr is %d.\n", *ptr);

 /* example of ternary operator */

 a = 10;

 b = (a == 1) ? 20: 30;

 writefln("Value of b is %d\n", b);

 b = (a == 10) ? 20: 30;

 writefln("Value of b is %d\n", b);

 return 0;

}

When you compile and execute the above program, it produces the following result:

value of a is 4

*ptr is 4.

Value of b is 30

Value of b is 20

Operators Precedence in D

Operator precedence determines the grouping of terms in an expression. This affects how

an expression is evaluated. Certain operators are given precedence over others.

For example, the multiplication operator has higher precedence than the addition operator.

Let us consider an expression

x = 7 + 3 * 2.

Here, x is assigned 13, not 20. The simple reason is, the operator * has higher precedence

than +, hence 3*2 is calculated first and then the result is added into 7.

D Programming

43

Here, operators with the highest precedence appear at the top of the table, those with the

lowest appear at the bottom. Within an expression, higher precedence operators are

evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment
= += -= *= /= %=>>= <<= &= ^=

|=
Right to left

Comma , Left to right

D Programming

44

Example

Try the following example to understand the operator precedence available in D

programming language:

import std.stdio;

int main(string[] args)

{

 int a = 20;

 int b = 10;

 int c = 15;

 int d = 5;

 int e;

 e = (a + b) * c / d; // (30 * 15) / 5

 writefln("Value of (a + b) * c / d is : %d\n", e);

 e = ((a + b) * c) / d; // (30 * 15) / 5

 writefln("Value of ((a + b) * c) / d is : %d\n" , e);

 e = (a + b) * (c / d); // (30) * (15/5)

 writefln("Value of (a + b) * (c / d) is : %d\n", e);

 e = a + (b * c) / d; // 20 + (150/5)

 writefln("Value of a + (b * c) / d is : %d\n" , e);

 return 0;

}

When you compile and execute the above program, it produces the following result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

D Programming

45

There may be a situation, when you need to execute a block of code several number of

times. In general, statements are executed sequentially: The first statement in a function

is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow more complicated

execution paths.

A loop statement executes a statement or group of statements multiple times. The

following general form of a loop statement in mostly used in the programming languages:

D programming language provides the following types of loop to handle looping

requirements. Click the following links to check their detail.

Loop Type Description

while loop

It repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the loop
body.

for loop

It executes a sequence of statements multiple times and
abbreviates the code that manages the loop variable.

do...while loop

Like a while statement, except that it tests the condition at the
end of the loop body.

9. D ─ Loops

http://localhost/d_programming/d_programming_while_loop.htm
http://localhost/d_programming/d_programming_for_loop.htm
http://localhost/d_programming/d_programming_do_while_loop.htm

D Programming

46

nested loops

You can use one or more loop inside any another while, for, or

do..while loop.

Let us understand the loops in detail:

While Loop

A while loop statement in D programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax

The syntax of a while loop in D programming language is:

while(condition)

{

 statement(s);

}

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any nonzero value. The loop iterates

while the condition is true.

When the condition becomes false, program control passes to the line immediately

following the loop.

Flow Diagram

http://localhost/d_programming/d_programming_nested_loops.htm

D Programming

47

Here, key point of the while loop is that the loop might not ever run. When the condition

is tested and the result is false, the loop body is skipped and the first statement after the

while loop is executed.

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 10;

 /* while loop execution */

 while(a < 20)

 {

 writefln("value of a: %d", a);

 a++;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

D Programming

48

for Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that

needs to execute a specific number of times.

Syntax

The syntax of a for loop in D programming language is:

for (init; condition; increment)

{

 statement(s);

}

Here is the flow of control during a for loop:

1. The init step is executed first, and only once. This step allows you to declare and

initialize any loop control variables. You are not required to put a statement here,

as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If

it is false, the body of the loop does not execute and flow of control jumps to the

next statement just after the for loop.

3. After the body of the for loop executes, the flow of control jumps back up to the
increment statement. This statement allows you to update any loop control

variables. This statement can be left blank, as long as a semicolon appears after

the condition.

4. The condition is now evaluated again. If it is true, the loop executes and the process

repeats itself (body of loop, then increment step, and then again condition). After
the condition becomes false, the for loop terminates.

D Programming

49

Flow Diagram

Example

import std.stdio;

int main ()

{

 /* for loop execution */

 for(int a = 10; a < 20; a = a + 1)

 {

 writefln("value of a: %d", a);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

D Programming

50

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Do…While Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the

do...while loop in D programming language checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to

execute at least once.

Syntax

The syntax of a do...while loop in D programming language is:

do

{

 statement(s);

}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s)

in the loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in

the loop execute again. This process repeats until the given condition becomes false.

D Programming

51

Flow Diagram

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do

 {

 writefln("value of a: %d", a);

 a = a + 1;

 }while(a < 20);

 return 0;

}

D Programming

52

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Nested Loops

D programming language allows to use one loop inside another loop. The following section

shows few examples to illustrate the concept.

Syntax

The syntax for a nested for loop statement is as follows:

for (init; condition; increment)

{

 for (init; condition; increment)

 {

 statement(s);

 }

 statement(s);

}

The syntax for a nested while loop statement is as follows:

while(condition)

{

 while(condition)

 {

 statement(s);

 }

 statement(s);

}

D Programming

53

The syntax for a nested do...while loop statement is as follows:

do

{

 statement(s);

 do

 {

 statement(s);

 }while(condition);

}while(condition);

A final note on loop nesting is that you can put any type of loop inside of any other type

of loop. For example, a for loop can be inside a while loop or vice versa.

Example

The following program uses a nested for loop to find the prime numbers from 2 to 100:

import std.stdio;

int main ()

{

 /* local variable definition */

 int i, j;

 for(i=2; i<100; i++) {

 for(j=2; j <= (i/j); j++)

 if(!(i%j)) break; // if factor found, not prime

 if(j > (i/j)) writefln("%d is prime", i);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

D Programming

54

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

D supports the following control statements:

Control Statement Description

break statement

Terminates the loop or switch statement and transfers

execution to the statement immediately following the loop

or switch.

continue statement

Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

Let us see the control statements in detail:

http://localhost/d_programming/d_programming_break_statement.htm
http://localhost/d_programming/d_programming_continue_statement.htm

D Programming

55

Break Statement

The break statement in D programming language has the following two usages:

1. When the break statement is encountered inside a loop, the loop is immediately

terminated and the program control resumes at the next statement following the

loop.

2. It can be used to terminate a case in the switch statement (covered in the next

chapter).

If you are using nested loops (i.e., one loop inside another loop), the break statement

stops execution of the innermost loop and start executing the next line of code after the

block.

Syntax

The syntax for a break statement in D is as follows:

break;

Flow Diagram

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 10;

D Programming

56

 /* while loop execution */

 while(a < 20)

 {

 writefln("value of a: %d", a);

 a++;

 if(a > 15)

 {

 /* terminate the loop using break statement */

 break;

 }

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Continue Statement

The continue statement in D programming language works somewhat like the break

statement. Instead of forcing termination, however, continue forces the next iteration of

the loop to take place, skipping any code in between.

For the for loop, continue statement causes the conditional test and increment portions

of the loop to execute. For the while and do...while loops, continue statement causes

the program control passes to the conditional tests.

Syntax

The syntax for a continue statement in D is as follows:

continue;

D Programming

57

Flow Diagram

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do

 {

 if(a == 15)

 {

 /* skip the iteration */

 a = a + 1;

 continue;

 }

 writefln("value of a: %d", a);

 a++;

 }while(a < 20);

 return 0;

}

D Programming

58

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally

used for this purpose. Since none of the three expressions that form the for loop are

required, you can make an endless loop by leaving the conditional expression empty.

import std.stdio;

int main ()

{

 for(; ;)

 {

 writefln("This loop will run forever.");

 }

 return 0;

}

When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but D programmers more commonly use the

for(;;) construct to signify an infinite loop.

Note: You can terminate an infinite loop by pressing Ctrl + C keys.

D Programming

59

The decision making structures contain condition to be evaluated along with the two sets

of statements to be executed. One set of statements is executed if the condition it true

and another set of statements is executed if the condition is false.

The following is the general form of a typical decision making structure found in most of

the programming languages:

D programming language assumes any non-zero and non-null values as true, and if it is

either zero or null, then it is assumed as false value.

D programming language provides the following types of decision making statements.

Statement Description

if statement

An if statement consists of a Boolean expression followed by one

or more statements.

if...else statement

An if statement can be followed by an optional else statement,

which executes when the Boolean expression is false.

nested if

statements

You can use one if or else if statement inside another if or else

if statement(s).

10. D ─ Decisions

http://localhost/d_programming/d_programming_if_statement.htm
http://localhost/d_programming/d_programming_if_else_statement.htm
http://localhost/d_programming/d_programming_nested_if_statements.htm
http://localhost/d_programming/d_programming_nested_if_statements.htm

D Programming

60

switch statement

A switch statement allows a variable to be tested for equality

against a list of values.

nested switch

statements

You can use one switch statement inside another switch

statement(s).

Let us see the decision statements in detail:

if Statement in D

An if statement consists of a Boolean expression followed by one or more statements.

Syntax

The syntax of an if statement in D programming language is:

if(boolean_expression)

{

 /* statement(s) will execute if the boolean expression is true */

}

If the boolean expression evaluates to true, then the block of code inside the if statement

is executed. If boolean expression evaluates to false, then the first set of code after the

end of the if statement (after the closing curly brace) is executed.

D programming language assumes any non-zero and non-null values as true and if it is

either zero or null, then it is assumed as false value.

Flow Diagram

http://localhost/d_programming/d_programming_switch_statement.htm
http://localhost/d_programming/d_programming_nested_switch_statements.htm
http://localhost/d_programming/d_programming_nested_switch_statements.htm

D Programming

61

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 10;

 /* check the boolean condition using if statement */

 if(a < 20)

 {

 /* if condition is true then print the following */

 writefln("a is less than 20");

 }

 writefln("value of a is : %d", a);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

a is less than 20;

value of a is : 10

if… else Statement

An if statement can be followed by an optional else statement, which executes when the

boolean expression is false.

Syntax

The syntax of an if...else statement in D programming language is:

if(boolean_expression)

{

 /* statement(s) will execute if the boolean expression is true */

}

else

{

 /* statement(s) will execute if the boolean expression is false */

}

D Programming

62

If the Boolean expression evaluates to true, then the if block of code is executed,

otherwise else block of code is executed.

D programming language assumes any non-zero and non-null values as true, and if it is

either zero or null, then it is assumed as false value.

Flow Diagram

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 100;

 /* check the boolean condition */

 if(a < 20)

 {

 /* if condition is true then print the following */

 writefln("a is less than 20");

 }

 else

 {

 /* if condition is false then print the following */

D Programming

63

 writefln("a is not less than 20");

 }

 writefln("value of a is : %d", a);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

a is not less than 20;

value of a is : 100

The if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very

useful to test various conditions using single if...else if statement.

When using if, else if, else statements there are few points to keep in mind:

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of the remaining else if's or else's are tested.

Syntax
The syntax of an if...else if...else statement in D programming language is:

if(boolean_expression 1)

{

 /* Executes when the boolean expression 1 is true */

}

else if(boolean_expression 2)

{

 /* Executes when the boolean expression 2 is true */

}

else if(boolean_expression 3)

{

 /* Executes when the boolean expression 3 is true */

}

else

{

 /* executes when the none of the above condition is true */

}

D Programming

64

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 100;

 /* check the boolean condition */

 if(a == 10)

 {

 /* if condition is true then print the following */

 writefln("Value of a is 10");

 }

 else if(a == 20)

 {

 /* if else if condition is true */

 writefln("Value of a is 20");

 }

 else if(a == 30)

 {

 /* if else if condition is true */

 writefln("Value of a is 30");

 }

 else

 {

 /* if none of the conditions is true */

 writefln("None of the values is matching");

 }

 writefln("Exact value of a is: %d", a);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

D Programming

65

Nested if Statements

It is always legal in D programming to nest if-else statements, which means you can use

one if or else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows:

if(boolean_expression 1)

{

 /* Executes when the boolean expression 1 is true */

 if(boolean_expression 2)

 {

 /* Executes when the boolean expression 2 is true */

 }

}

You can nest else if...else in the similar way as you have nested if statement.

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 100;

 int b = 200;

 /* check the boolean condition */

 if(a == 100)

 {

 /* if condition is true then check the following */

 if(b == 200)

 {

 /* if condition is true then print the following */

 writefln("Value of a is 100 and b is 200");

 }

 }

 writefln("Exact value of a is : %d", a);

 writefln("Exact value of b is : %d", b);

D Programming

66

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Switch Statement

A switch statement allows a variable to be tested for equality against a list of values. Each

value is called a case, and the variable being switched on is checked for each switch case.

Syntax

The syntax for a switch statement in D programming language is as follows:

switch(expression){

 case constant-expression :

 statement(s);

 break; /* optional */

 case constant-expression :

 statement(s);

 break; /* optional */

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated

type, or be of a class type in which the class has a single conversion function to an

integral or enumerated type.

 You can have any number of case statements within a switch. Each case is followed

by the value to be compared to and a colon.

 The constant-expression for a case must be the same data type as the variable

in the switch, and it must be a constant or a literal.

 When the variable being switched on is equal to a case, the statements following
that case executes until a break statement is reached.

D Programming

67

 When a break statement is reached, the switch terminates, and the flow of control

jumps to the next line following the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control

falls through to subsequent cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the

end of the switch. The default case can be used for performing a task when none
of the cases is true. No break is needed in the default case.

Flow Diagram

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 char grade = 'B';

 switch(grade)

 {

 case 'A' :

 writefln("Excellent!");

 break;

 case 'B' :

 case 'C' :

 writefln("Well done");

D Programming

68

 break;

 case 'D' :

 writefln("You passed");

 break;

 case 'F' :

 writefln("Better try again");

 break;

 default :

 writefln("Invalid grade");

 }

 writefln("Your grade is %c", grade);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Well done

Your grade is B

Nested Switch Statement

It is possible to have a switch as part of the statement sequence of an outer switch. Even

if the case constants of the inner and outer switch contain common values, no conflicts

arises.

Syntax

The syntax for a nested switch statement is as follows:

switch(ch1) {

 case 'A':

 writefln("This A is part of outer switch");

 switch(ch2) {

 case 'A':

 writefln("This A is part of inner switch");

 break;

 case 'B': /* case code */

 }

 break;

 case 'B': /* case code */

}

D Programming

69

Example

import std.stdio;

int main ()

{

 /* local variable definition */

 int a = 100;

 int b = 200;

 switch(a) {

 case 100:

 writefln("This is part of outer switch", a);

 switch(b) {

 case 200:

 writefln("This is part of inner switch", a);

 default:

 break;

 }

 default:

 break;

 }

 writefln("Exact value of a is : %d", a);

 writefln("Exact value of b is : %d", b);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

This is part of outer switch

This is part of inner switch

Exact value of a is : 100

Exact value of b is : 200

D Programming

70

The ? : Operator in D

We have covered conditional operator ? : in previous chapter which can be used to

replace if...else statements. It has the following general form:

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined as follows:

 Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value of

the entire ? expression.

 If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the

expression.

D Programming

71

This chapter describes the functions used in D programming.

Function Definition in D

A basic function definition consists of a function header and a function body.

Syntax

return_type function_name(parameter list)

{

 body of the function

}

Here are all the parts of a function:

 Return Type: A function may return a value. The return_type is the data type of

the value the function returns. Some functions perform the desired operations
without returning a value. In this case, the return_type is the keyword void.

 Function Name: This is the actual name of the function. The function name and

the parameter list together constitute the function signature.

 Parameters: A parameter is like a placeholder. When a function is invoked, you

pass a value to the parameter. This value is referred to as actual parameter or

argument. The parameter list refers to the type, order, and number of the

parameters of a function. Parameters are optional; that is, a function may contain

no parameters.

 Function Body: The function body contains a collection of statements that define

what the function does.

Calling a Function

You can a call a function as follows:

function_name(parameter_values)

Function Types in D

D programming supports a wide range of functions and they are listed below.

 Pure Functions

 Nothrow Functions

 Ref Functions

11. D ─ Functions

D Programming

72

 Auto Functions

 Variadic Functions

 Inout Functions

 Property Functions

The various functions are explained below.

Pure Functions

Pure functions are functions which cannot access global or static, mutable state save

through their arguments. This can enable optimizations based on the fact that a pure

function is guaranteed to mutate nothing which is not passed to it, and in cases where the

compiler can guarantee that a pure function cannot alter its arguments, it can enable full,

functional purity, that is, the guarantee that the function will always return the same result

for the same arguments).

import std.stdio;

int x = 10;

immutable int y = 30;

const int* p;

pure int purefunc(int i,const char* q,immutable int* s)

{

 //writeln("Simple print"); //cannot call impure function 'writeln'

 debug writeln("in foo()"); // ok, impure code allowed in debug statement

 // x = i; // error, modifying global state

 // i = x; // error, reading mutable global state

 // i = *p; // error, reading const global state

 i = y; // ok, reading immutable global state

 auto myvar = new int; // Can use the new expression:

 return i;

}

void main()

{

 writeln("Value returned from pure function : ",purefunc(x,null,null));

}

When the above code is compiled and executed, it produces the following result:

D Programming

73

Value returned from pure function : 30

Nothrow Functions

Nothrow functions do not throw any exceptions derived from class Exception. Nothrow

functions are covariant with throwing ones.

Nothrow guarantees that a function does not emit any exception.

import std.stdio;

int add(int a, int b) nothrow

{

 //writeln("adding"); This will fail because writeln may throw

 int result;

 try {

 writeln("adding"); // compiles

 result = a + b;

 }

 catch (Exception error) { // catches all exceptions

 }

 return result;

}

void main()

{

 writeln("Added value is ", add(10,20));

}

When the above code is compiled and executed, it produces the following result:

adding

Added value is 30

Ref Functions

Ref functions allow functions to return by reference. This is analogous to ref function

parameters.

D Programming

74

import std.stdio;

ref int greater(ref int first, ref int second)

{

 return (first > second) ? first : second;

}

void main()

{

 int a = 1;

 int b = 2;

 greater(a, b) += 10;

 writefln("a: %s, b: %s", a, b);

}

When the above code is compiled and executed, it produces the following result:

a: 1, b: 12

Auto Functions

Auto functions can return value of any type. There is no restriction on what type to be

returned. A simple example for auto type function is given below.

import std.stdio;

auto add(int first, double second)

{

 double result = first + second;

 return result;

}

void main()

{

 int a = 1;

 double b = 2.5;

 writeln("add(a,b) = ", add(a, b));

}

When the above code is compiled and executed, it produces the following result:

D Programming

75

add(a,b) = 3.5

Variadic Functions

Variadiac functions are those functions in which the number of parameters for a function

is determined in runtime. In C, there is a limitation of having at least one parameter. But

in D programming, there is no such limitation. A simple example is shown below.

import std.stdio;

import core.vararg;

void printargs(int x, ...) {

 for (int i = 0; i < _arguments.length; i++)

 {

 write(_arguments[i]);

 if (_arguments[i] == typeid(int))

 {

 int j = va_arg!(int)(_argptr);

 writefln("\t%d", j);

 }

 else if (_arguments[i] == typeid(long))

 {

 long j = va_arg!(long)(_argptr);

 writefln("\t%d", j);

 }

 else if (_arguments[i] == typeid(double))

 {

 double d = va_arg!(double)(_argptr);

 writefln("\t%g", d);

 }

 }

}

void main()

{

 printargs(1, 2, 3L, 4.5);

D Programming

76

}

When the above code is compiled and executed, it produces the following result:

int 2

long 3

double 4.5

Inout Functions

The inout can be used both for parameter and return types of functions. It is like a template

for mutable, const, and immutable. The mutability attribute is deduced from the

parameter. Means, inout transfers the deduced mutability attribute to the return type. A

simple example showing how mutability gets changed is shown below.

import std.stdio;

inout(char)[] qoutedWord(inout(char)[] phrase)

{

 return '"' ~ phrase ~ '"';

}

void main()

{

 char[] a = "test a".dup;

 a = qoutedWord(a);

 writeln(typeof(qoutedWord(a)).stringof," ", a);

 const(char)[] b = "test b";

 b = qoutedWord(b);

 writeln(typeof(qoutedWord(b)).stringof," ", b);

 immutable(char)[] c = "test c";

 c = qoutedWord(c);

 writeln(typeof(qoutedWord(c)).stringof," ", c);

}

When the above code is compiled and executed, it produces the following result:

char[] "test a"

D Programming

77

const(char)[] "test b"

string "test c"

Property Functions

Properties allow using member functions like member variables. It uses the @property

keyword. The properties are linked with related function that return values based on

requirement. A simple example for property is shown below.

import std.stdio;

struct Rectangle

{

 double width;

 double height;

 double area() const @property

 {

 return width*height;

 }

 void area(double newArea) @property

 {

 auto multiplier = newArea / area;

 width *= multiplier;

 writeln("Value set!");

 }

}

void main()

{

 auto rectangle = Rectangle(20,10);

 writeln("The area is ", rectangle.area);

 rectangle.area(300);

 writeln("Modified width is ", rectangle.width);

}

When the above code is compiled and executed, it produces the following result:

D Programming

78

The area is 200

Value set!

Modified width is 30

D Programming

79

Characters are the building blocks of strings. Any symbol of a writing system is called a

character: letters of alphabets, numerals, punctuation marks, the space character, etc.

Confusingly, the building blocks of characters themselves are called characters as well.

The integer value of the lowercase a is 97 and the integer value of the numeral 1 is 49.

These values have been assigned merely by conventions when the ASCII table has been

designed.

The following table mentions standard character types with their storage sizes and

purposes.

The characters are represented by the char type, which can hold only 256 distinct values.

If you are familiar with the char type from other languages, you may already know that it

is not large enough to support the symbols of many writing systems.

Type Storage size Purpose

char 1 byte UTF-8 code unit

wchar 2 bytes UTF-16 code unit

dchar 4 bytes UTF-32 code unit and Unicode code point

Some useful character functions are listed below:

 isLower: Determines if a lowercase character?

 isUpper: Determines if an uppercase character?

 isAlpha: Determines if a Unicode alphanumeric character (generally, a letter or a

numeral)?

 isWhite: Determines if a whitespace character?

 toLower: It produces the lowercase of the given character.

 toUpper: It produces the uppercase of the given character.

import std.stdio;

import std.uni;

void main()

{

 writeln("Is ğ lowercase? ", isLower('ğ'));

12. D ─ Characters

D Programming

80

 writeln("Is Ş lowercase? ", isLower('Ş'));

 writeln("Is İ uppercase? ", isUpper('İ'));

 writeln("Is ç uppercase? ", isUpper('ç'));

 writeln("Is z alphanumeric? ", isAlpha('z'));

 writeln("Is new-line whitespace? ", isWhite('\n'));

 writeln("Is underline whitespace? ", isWhite('_'));

 writeln("The lowercase of Ğ: ", toLower('Ğ'));

 writeln("The lowercase of İ: ", toLower('İ'));

 writeln("The uppercase of ş: ", toUpper('ş'));

 writeln("The uppercase of ı: ", toUpper('ı'));

}

When the above code is compiled and executed, it produces the following result:

Is ğ lowercase? true

Is Ş lowercase? false

Is İ uppercase? true

Is ç uppercase? false

Is z alphanumeric? true

Is new-line whitespace? true

Is underline whitespace? false

The lowercase of Ğ: ğ

The lowercase of İ: i

The uppercase of ş: Ş

The uppercase of ı: I

Reading Characters in D

We can read characters using readf as shown below.

readf(" %s", &letter);

Since D programming support unicode, in order to read unicode characters, we need to

read twice and write twice to get the expected result. This does not work on the online

compiler. The example is shown below.

D Programming

81

import std.stdio;

void main()

{

 char firstCode;

 char secondCode;

 write("Please enter a letter: ");

 readf(" %s", &firstCode);

 readf(" %s", &secondCode);

 writeln("The letter that has been read: ",

 firstCode, secondCode);

}

When the above code is compiled and executed, it produces the following result:

Please enter a letter: ğ

The letter that has been read: ğ

D Programming

82

D provides following two types of string representations:

 Character array

 Core language string

Character Array

We can represent the character array in one of the two forms as shown below. The first

form provides the size directly and the second form uses the dup method which creates a

writable copy of the string "Good morning".

char[9] greeting1= "Hello all";

char[] greeting2 = "Good morning".dup;

Example

Here is a simple example using the above simple character array forms.

import std.stdio;

void main(string[] args)

{

 char[9] greeting1= "Hello all";

 writefln("%s",greeting1);

 char[] greeting2 = "Good morning".dup;

 writefln("%s",greeting2);

}

When the above code is compiled and executed, it produces result something as follows:

Hello all

Good morning

Core Language String

Strings are built-in to the core language of D. These strings are interoperable with the

character array shown above. The following example shows a simple string representation.

string greeting1= "Hello all";

13. D ─ Strings

D Programming

83

Example

import std.stdio;

void main(string[] args)

{

 string greeting1= "Hello all";

 writefln("%s",greeting1);

 char[] greeting2 = "Good morning".dup;

 writefln("%s",greeting2);

 string greeting3= greeting1;

 writefln("%s",greeting3);

}

When the above code is compiled and executed, it produces result something as follows:

Hello all

Good morning

Hello all

String Concatenation

String concatenation in D programming uses the tilde(~) symbol.

Example

import std.stdio;

void main(string[] args)

{

 string greeting1= "Good";

 char[] greeting2 = "morning".dup;

 char[] greeting3= greeting1~" "~greeting2;

 writefln("%s",greeting3);

 string greeting4= "morning";

D Programming

84

 string greeting5= greeting1~" "~greeting4;

 writefln("%s",greeting5);

}

When the above code is compiled and executed, it produces result something as follows:

Good morning

Good morning

Length of String

The length of string in bytes can retrieved with the help of the length function.

Example

import std.stdio;

void main(string[] args)

{

 string greeting1= "Good";

 writefln("Length of string greeting1 is %d",greeting1.length);

 char[] greeting2 = "morning".dup;

 writefln("Length of string greeting2 is %d",greeting2.length);

}

When the above code is compiled and executed, it produces the following result:

Length of string greeting1 is 4

Length of string greeting2 is 7

String Comparison

String comparison is quite easy in D programming. You can use the ==, <, and > operators

for string comparisons.

Example

import std.stdio;

void main()

{

D Programming

85

 string s1 = "Hello";

 string s2 = "World";

 string s3 = "World";

 if (s2 == s3)

 {

 writeln("s2: ",s2," and S3: ",s3, " are the same!");

 }

 if (s1 < s2)

 {

 writeln("'", s1, "' comes before '", s2, "'.");

 }

 else

 {

 writeln("'", s2, "' comes before '", s1, "'.");

 }

}

When the above code is compiled and executed, it produces result something as follows:

s2: World and S3: World are the same!

'Hello' comes before 'World'.

Replacing Strings

We can replace strings using the string[].

Example

import std.stdio;

import std.string;

void main()

{

 char[] s1 = "hello world ".dup;

 char[] s2 = "sample".dup;

 s1[6..12] = s2[0..6];

D Programming

86

 writeln(s1);

}

When the above code is compiled and executed, it produces result something as follows:

hello sample

Index Methods

Index methods for location of a substring in string including indexOf and lastIndexOf are

explained in the following example.

Example

import std.stdio;

import std.string;

void main()

{

 char[] s1 = "hello World ".dup;

 writeln("indexOf of llo in hello is ",std.string.indexOf(s1,"llo"));

 writeln(s1);

 writeln("lastIndexOf of O in hello is"

 ,std.string.lastIndexOf(s1,"O",CaseSensitive.no));

}

When the above code is compiled and executed, it produces the following result:

indexOf of llo in hello is 2

hello World

lastIndexOf of O in hello is 7

Handling Cases

Methods used for changing cases is shown in the following example.

Example

import std.stdio;

import std.string;

void main()

D Programming

87

{

 char[] s1 = "hello World ".dup;

 writeln("Capitalized string of s1 is ",capitalize(s1));

 writeln("Uppercase string of s1 is ",toUpper(s1));

 writeln("Lowercase string of s1 is ",toLower(s1));

}

When the above code is compiled and executed, it produces the following result:

Capitalized string of s1 is Hello world

Uppercase string of s1 is HELLO WORLD

Lowercase string of s1 is hello world

Restricting Characters

Restring characters in strings are shown in the following example.

Example

import std.stdio;

import std.string;

void main()

{

 string s = "H123Hello1";

 string result = munch(s, "0123456789H");

 writeln("Restrict trailing characters:",result);

 result = squeeze(s, "0123456789H");

 writeln("Restrict leading characters:",result);

 s = " Hello World ";

 writeln("Stripping leading and trailing whitespace:",strip(s));

}

When the above code is compiled and executed, it produces the following result:

Restrict trailing characters:H123H

Restrict leading characters:ello1

Stripping leading and trailing whitespace:Hello World

D Programming

88

D programming language provides a data structure, named arrays, which stores a fixed-

size sequential collection of elements of the same type. An array is used to store a

collection of data. It is often more useful to think of an array as a collection of variables of

the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99,

you declare one array variable such as numbers and use numbers[0], numbers[1], and

..., numbers[99] to represent individual variables. A specific element in an array is

accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the

first element and the highest address to the last element.

Declaring Arrays

To declare an array in D programming language, the programmer specifies the type of the

elements and the number of elements required by an array as follows:

type arrayName [arraySize];

This is called a single-dimension array. The arraySize must be an integer constant greater

than zero and type can be any valid D programming language data type. For example, to

declare a 10-element array called balance of type double, use this statement:

double balance[10];

Initializing Arrays

You can initialize D programming language array elements either one by one or using a

single statement as follows:

double balance[5] = [1000.0, 2.0, 3.4, 17.0, 50.0];

The number of values between square brackets[] on right side cannot be larger than the

number of elements you declare for the array between square brackets []. The following

example assigns a single element of the array:

If you omit the size of the array, an array just big enough to hold the initialization is

created. Therefore, if you write

double balance[] = [1000.0, 2.0, 3.4, 17.0, 50.0];

then you will create exactly the same array as you did in the previous example.

balance[4] = 50.0;

14. D ─ Arrays

D Programming

89

The above statement assigns element number 5th in the array a value of 50.0. Array with

4th index will be 5th, i.e., last element because all arrays have 0 as the index of their first

element which is also called base index. The following pictorial representaion shows the

same array we discussed above:

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of

the element within square brackets after the name of the array. For example:

double salary = balance[9];

The above statement takes 10th element from the array and assigns the value to the

variable salary. The following example implements declaration, assignment, and accessing

arrays:

import std.stdio;

void main()

{

 int n[10]; // n is an array of 10 integers

 // initialize elements of array n to 0

 for (int i = 0; i < 10; i++)

 {

 n[i] = i + 100; // set element at location i to i + 100

 }

 writeln("Element \t Value");

 // output each array element's value

 for (int j = 0; j < 10; j++)

 {

 writeln(j," \t ",n[j]);

 }

}

D Programming

90

When the above code is compiled and executed, it produces the following result:

Element Value

0 100

1 101

2 102

3 103

4 104

5 105

6 106

7 107

8 108

9 109

Static Arrays Versus Dynamic Arrays

If the length of an array is specified while writing program, that array is a static array.

When the length can change during the execution of the program, that array is a dynamic

array.

Defining dynamic arrays is simpler than defining fixed-length arrays because omitting the

length makes a dynamic array:

int[] dynamicArray;

Array Properties

Here are the properties of arrays:

Property Description

.init
Static array returns an array literal with each element of the literal

being the .init property of the array element type.

.sizeof

Static array returns the array length multiplied by the number of

bytes per array element while dynamic arrays returns the size of the

dynamic array reference, which is 8 in 32-bit builds and 16 on 64-bit

builds.

.length

Static array returns the number of elements in the array while

dynamic arrays is used to get/set number of elements in the array.

Length is of type size_t.

D Programming

91

.ptr Returns a pointer to the first element of the array.

.dup
Create a dynamic array of the same size and copy the contents of the

array into it.

.idup
Create a dynamic array of the same size and copy the contents of the

array into it. The copy is typed as being immutable.

.reverse
Reverses in place the order of the elements in the array. Returns the

array.

.sort
Sorts in place the order of the elements in the array. Returns the

array.

Example

The following example explains the various properties of an array:

import std.stdio;

void main()

{

 int n[5]; // n is an array of 5 integers

 // initialize elements of array n to 0

 for (int i = 0; i < 5; i++)

 {

 n[i] = i + 100; // set element at location i to i + 100

 }

 writeln("Initialized value:",n.init);

 writeln("Length: ",n.length);

 writeln("Size of: ",n.sizeof);

 writeln("Pointer:",n.ptr);

 writeln("Duplicate Array: ",n.dup);

 writeln("iDuplicate Array: ",n.idup);

D Programming

92

 n = n.reverse.dup;

 writeln("Reversed Array: ",n);

 writeln("Sorted Array: ",n.sort);

}

When the above code is compiled and executed, it produces the following result:

Initialized value:[0, 0, 0, 0, 0]

Length: 5

Size of: 20

Pointer:7FFF5A373920

Duplicate Array: [100, 101, 102, 103, 104]

iDuplicate Array: [100, 101, 102, 103, 104]

Reversed Array: [104, 103, 102, 101, 100]

Sorted Array: [100, 101, 102, 103, 104]

Multi Dimensional Arrays in D

D programming allows multidimensional arrays. Here is the general form of a

multidimensional array declaration:

type name[size1][size2]...[sizeN];

Example

The following declaration creates a three dimensional 5 . 10 . 4 integer array:

int threedim[5][10][4];

Two-Dimensional Arrays in D

The simplest form of the multidimensional array is the two-dimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-

dimensional integer array of size [x, y] you would write syntax as follows:

type arrayName [x][y];

Where type can be any valid D programming data type and arrayName is a valid D

programming identifier.

A two-dimensional array can be thought as a table, which has x number of rows and y

number of columns. A two-dimensional array a containing three rows and four columns

can be shown as below:

D Programming

93

Thus, every element in array a is identified by an element as a[i][j], where a is the

name of the array, and i and j are the subscripts that uniquely identify each element in a.

Initializing Two-Dimensional Arrays

Multidimensioned arrays may be initialized by specifying bracketed values for each row.

The following array has 3 rows and each row has 4 columns.

int a[3][4] = [

 [0, 1, 2, 3] , /* initializers for row indexed by 0 */

 [4, 5, 6, 7] , /* initializers for row indexed by 1 */

 [8, 9, 10, 11] /* initializers for row indexed by 2 */

];

The nested braces, which indicate the intended row, are optional. The following

initialization is equivalent to previous example:

int a[3][4] = [0,1,2,3,4,5,6,7,8,9,10,11];

Accessing Two-Dimensional Array Elements

An element in 2-dimensional array is accessed using the subscripts, means row index and

column index of the array. For example:

int val = a[2][3];

The above statement takes 4th element from the 3rd row of the array. You can verify it in

the above digram.

import std.stdio;

void main ()

{

 // an array with 5 rows and 2 columns.

 int a[5][2] = [[0,0], [1,2], [2,4], [3,6],[4,8]];

D Programming

94

 // output each array element's value

 for (int i = 0; i < 5; i++)

 for (int j = 0; j < 2; j++)

 {

 writeln("a[" , i , "][" , j , "]: ",a[i][j]);

 }

}

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

Common Array Operations in D

Here are various operations performed on the arrays:

Array Slicing

We often use part of an array and slicing array is often quite helpful. A simple example for

array slicing is shown below.

import std.stdio;

void main ()

{

 // an array with 5 elements.

 double a[5] = [1000.0, 2.0, 3.4, 17.0, 50.0];

 double[] b;

 b = a[1..3];

 writeln(b);

}

D Programming

95

When the above code is compiled and executed, it produces the following result:

[2, 3.4]

Array Copying

We also use copying array . A simple example for array copying is shown below.

import std.stdio;

void main ()

{

 // an array with 5 elements.

 double a[5] = [1000.0, 2.0, 3.4, 17.0, 50.0];

 double b[5];

 writeln("Array a:",a);

 writeln("Array b:",b);

 b[] = a; // the 5 elements of a[5] are copied into b[5]

 writeln("Array b:",b);

 b[] = a[]; // the 5 elements of a[3] are copied into b[5]

 writeln("Array b:",b);

 b[1..2] = a[0..1]; // same as b[1] = a[0]

 writeln("Array b:",b);

 b[0..2] = a[1..3]; // same as b[0] = a[1], b[1] = a[2]

 writeln("Array b:",b);

}

When the above code is compiled and executed, it produces the following result:

Array a:[1000, 2, 3.4, 17, 50]

Array b:[nan, nan, nan, nan, nan]

Array b:[1000, 2, 3.4, 17, 50]

Array b:[1000, 2, 3.4, 17, 50]

Array b:[1000, 1000, 3.4, 17, 50]

Array b:[2, 3.4, 3.4, 17, 50]

D Programming

96

Array Setting

A simple example for setting value in an array is shown below.

import std.stdio;

void main ()

{

 // an array with 5 elements.

 double a[5];

 a[] = 5;

 writeln("Array a:",a);

}

When the above code is compiled and executed, it produces the following result:

Array a:[5, 5, 5, 5, 5]

Array Concatenation

A simple example for concatenation of two arrays is shown below.

import std.stdio;

void main ()

{

 // an array with 5 elements.

 double a[5] = 5;

 double b[5] = 10;

 double [] c;

 c = a~b;

 writeln("Array c: ",c);

}

When the above code is compiled and executed, it produces the following result:

Array c: [5, 5, 5, 5, 5, 10, 10, 10, 10, 10]

D Programming

97

Associative arrays have an index that is not necessarily an integer, and can be sparsely

populated. The index for an associative array is called the Key, and its type is called the

KeyType.

Associative arrays are declared by placing the KeyType within the [] of an array

declaration. A simple example for associative array is shown below.

import std.stdio;

void main ()

{

 int[string] e; // associative array b of ints that are

 e["test"] = 3;

 writeln(e["test"]);

 string[string] f;

 f["test"] = "Tuts";

 writeln(f["test"]);

 writeln(f);

 f.remove("test");

 writeln(f);

}

When the above code is compiled and executed, it produces the following result:

3

Tuts

["test":"Tuts"]

[]

15. D ─ Associative Arrays

D Programming

98

Initializing Associative Array

A simple initialization of associative array is shown below.

import std.stdio;

void main ()

{

 int[string] days =

 ["Monday" : 0, "Tuesday" : 1, "Wednesday" : 2,

 "Thursday" : 3, "Friday" : 4, "Saturday" : 5,

 "Sunday" : 6];

 writeln(days["Tuesday"]);

}

When the above code is compiled and executed, it produces the following result:

1

Properties of Associative Array

Here are the properties of an associative array:

Property Description

.sizeof
Returns the size of the reference to the associative array; it is 4

in 32-bit builds and 8 on 64-bit builds.

.length
Returns number of values in the associative array. Unlike for

dynamic arrays, it is read-only.

.dup
Create a new associative array of the same size and copy the

contents of the associative array into it.

.keys
Returns dynamic array, the elements of which are the keys in the

associative array.

.values
Returns dynamic array, the elements of which are the values in

the associative array.

.rehash Reorganizes the associative array in place so that lookups are

more efficient. rehash is effective when, for example, the program

D Programming

99

is done loading up a symbol table and now needs fast lookups in

it. Returns a reference to the reorganized array.

.byKey()

Returns a delegate suitable for use as an Aggregate to a

ForeachStatement which will iterate over the keys of the

associative array.

.byValue()

Returns a delegate suitable for use as an Aggregate to a

ForeachStatement which will iterate over the values of the

associative array.

.get(Key key, lazy

Value defVal)

Looks up key; if it exists returns corresponding value else

evaluates and returns defVal.

.remove(Key key) Removes an object for key.

Example

An example for using the above properties is shown below.

import std.stdio;

void main ()

{

 int[string] array1;

 array1["test"] = 3;

 array1["test2"] = 20;

 writeln("sizeof: ",array1.sizeof);

 writeln("length: ",array1.length);

 writeln("dup: ",array1.dup);

 array1.rehash;

 writeln("rehashed: ",array1);

 writeln("keys: ",array1.keys);

 writeln("values: ",array1.values);

 foreach (key; array1.byKey) {

D Programming

100

 writeln("by key: ",key);

 }

 foreach (value; array1.byValue) {

 writeln("by value ",value);

 }

 writeln("get value for key test: ",array1.get("test",10));

 writeln("get value for key test3: ",array1.get("test3",10));

 array1.remove("test");

 writeln(array1);

}

When the above code is compiled and executed, it produces the following result:

sizeof: 8

length: 2

dup: ["test2":20, "test":3]

rehashed: ["test":3, "test2":20]

keys: ["test", "test2"]

values: [3, 20]

by key: test

by key: test2

by value 3

by value 20

get value for key test: 3

get value for key test3: 10

["test2":20]

D Programming

101

D programming pointers are easy and fun to learn. Some D programming tasks are

performed more easily with pointers, and other D programming tasks, such as dynamic

memory allocation, cannot be performed without them. A simple pointer is shown below.

Instead of directly pointing to the variable, pointer points to the address of the variable.

As you know every variable is a memory location and every memory location has its

address defined which can be accessed using ampersand (&) operator which denotes an

address in memory. Consider the following which prints the address of the variables

defined:

import std.stdio;

void main ()

{

 int var1;

 writeln("Address of var1 variable: ",&var1);

 char var2[10];

 writeln("Address of var2 variable: ",&var2);

}

When the above code is compiled and executed, it produces the following result:

Address of var1 variable: 7FFF52691928

Address of var2 variable: 7FFF52691930

What Are Pointers?

A pointer is a variable whose value is the address of another variable. Like any variable

or constant, you must declare a pointer before you can work with it. The general form of

a pointer variable declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid programming type and var-

name is the name of the pointer variable. The asterisk you used to declare a pointer is

the same asterisk that you use for multiplication. However; in this statement the asterisk

16. D ─ Pointers

D Programming

102

is being used to designate a variable as a pointer. Following are the valid pointer

declaration:

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

The actual data type of the value of all pointers, whether integer, float, character, or

otherwise, is the same, a long hexadecimal number that represents a memory address.

The only difference between pointers of different data types is the data type of the variable

or constant that the pointer points to.

Using Pointers in D programming

There are few important operations, when we use the pointers very frequently.

 we define a pointer variables

 assign the address of a variable to a pointer

 finally access the value at the address available in the pointer variable.

This is done by using unary operator * that returns the value of the variable located at the

address specified by its operand. The following example makes use of these operations:

import std.stdio;

void main ()

{

 int var = 20; // actual variable declaration.

 int *ip; // pointer variable

 ip = &var; // store address of var in pointer variable

 writeln("Value of var variable: ",var);

 writeln("Address stored in ip variable: ",ip);

 writeln("Value of *ip variable: ",*ip);

}

When the above code is compiled and executed, it produces the following result:

Value of var variable: 20

Address stored in ip variable: 7FFF5FB7E930

Value of *ip variable: 20

D Programming

103

Null Pointers

It is always a good practice to assign the pointer NULL to a pointer variable in case you do

not have exact address to be assigned. This is done at the time of variable declaration. A

pointer that is assigned null is called a null pointer.

The null pointer is a constant with a value of zero defined in several standard libraries,

including iostream. Consider the following program:

import std.stdio;

void main ()

{

 int *ptr = null;

 writeln("The value of ptr is " , ptr) ;

}

When the above code is compiled and executed, it produces the following result:

The value of ptr is null

On most of the operating systems, programs are not permitted to access memory at

address 0 because that memory is reserved by the operating system. However; the

memory address 0 has special significance; it signals that the pointer is not intended to

point to an accessible memory location.

By convention, if a pointer contains the null (zero) value, it is assumed to point to nothing.

To check for a null pointer you can use an if statement as follows:

if(ptr) // succeeds if p is not null

if(!ptr) // succeeds if p is null

Thus, if all unused pointers are given the null value and you avoid the use of a null pointer,

you can avoid the accidental misuse of an uninitialized pointer. Many times, uninitialized

variables hold some junk values and it becomes difficult to debug the program.

Pointer Arithmetic

There are four arithmetic operators that can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider an integer pointer named ptr, which

points to the address 1000. Assuming 32-bit integers, let us perform the following

arithmatic operation on the pointer:

ptr++

then the ptr will point to the location 1004 because each time ptr is incremented, it points

to the next integer. This operation will move the pointer to next memory location without

impacting the actual value at the memory location.

D Programming

104

If ptr points to a character whose address is 1000, then the above operation points to the

location 1001 because next character will be available at 1001.

Incrementing a Pointer

We prefer using a pointer in our program instead of an array because the variable pointer

can be incremented, unlike the array name which cannot be incremented because it is a

constant pointer. The following program increments the variable pointer to access each

succeeding element of the array:

import std.stdio;

const int MAX = 3;

void main ()

{

 int var[MAX] = [10, 100, 200];

 int *ptr = &var[0];

 for (int i = 0; i < MAX; i++, ptr++)

 {

 writeln("Address of var[" , i , "] = ",ptr);

 writeln("Value of var[" , i , "] = ",*ptr);

 }

}

When the above code is compiled and executed, it produces the following result:

Address of var[0] = 18FDBC

Value of var[0] = 10

Address of var[1] = 18FDC0

Value of var[1] = 100

Address of var[2] = 18FDC4

Value of var[2] = 200

D Programming

105

Pointers vs Array

Pointers and arrays are strongly related. However, pointers and arrays are not completely

interchangeable. For example, consider the following program:

import std.stdio;

const int MAX = 3;

void main ()

{

 int var[MAX] = [10, 100, 200];

 int *ptr = &var[0];

 var.ptr[2] = 290;

 ptr[0] = 220;

 for (int i = 0; i < MAX; i++, ptr++)

 {

 writeln("Address of var[" , i , "] = ",ptr);

 writeln("Value of var[" , i , "] = ",*ptr);

 }

}

In the above program, you can see var.ptr[2] to set the second element and ptr[0] which

is used to set the zeroth element. Increment operator can be used with ptr but not with

var.

When the above code is compiled and executed, it produces the following result:

Address of var[0] = 18FDBC

Value of var[0] = 220

Address of var[1] = 18FDC0

Value of var[1] = 100

Address of var[2] = 18FDC4

Value of var[2] = 290

D Programming

106

Pointer to Pointer

A pointer to a pointer is a form of multiple indirection or a chain of pointers. Normally, a

pointer contains the address of a variable. When we define a pointer to a pointer, the first

pointer contains the address of the second pointer, which points to the location that

contains the actual value as shown below.

A variable that is a pointer to a pointer must be declared as such. This is done by placing

an additional asterisk in front of its name. For example, following is the syntax to declare

a pointer to a pointer of type int:

int **var;

When a target value is indirectly pointed to by a pointer to a pointer, then accessing that

value requires that the asterisk operator be applied twice, as is shown below in the

example:

import std.stdio;

const int MAX = 3;

void main ()

{

 int var = 3000;

 writeln("Value of var :" , var);

 int *ptr = &var;

 writeln("Value available at *ptr :" ,*ptr);

 int **pptr = &ptr;

 writeln("Value available at **pptr :",**pptr);

}

When the above code is compiled and executed, it produces the following result:

Value of var :3000

Value available at *ptr :3000

Value available at **pptr :3000

D Programming

107

Passing Pointer to Functions

D allows you to pass a pointer to a function. To do so, it simply declares the function

parameter as a pointer type.

The following simple example passes a pointer to a function.

import std.stdio;

void main ()

{

 // an int array with 5 elements.

 int balance[5] = [1000, 2, 3, 17, 50];

 double avg;

 avg = getAverage(&balance[0], 5) ;

 writeln("Average is :" , avg);

}

double getAverage(int *arr, int size)

{

 int i;

 double avg, sum = 0;

 for (i = 0; i < size; ++i)

 {

 sum += arr[i];

 }

 avg = sum/size;

 return avg;

}

When the above code is compiled together and executed, it produces the following result:

Average is :214.4

D Programming

108

Return Pointer from Functions

Consider the following function, which returns 10 numbers using a pointer, means the

address of first array element.

import std.stdio;

void main ()

{

 int *p = getNumber();

 for (int i = 0; i < 10; i++)

 {

 writeln("*(p + " , i , ") : ",*(p + i));

 }

}

int * getNumber()

{

 static int r [10];

 for (int i = 0; i < 10; ++i)

 {

 r[i] = i;

 }

 return &r[0];

}

When the above code is compiled and executed, it produces the following result:

*(p + 0) : 0

*(p + 1) : 1

*(p + 2) : 2

*(p + 3) : 3

*(p + 4) : 4

*(p + 5) : 5

*(p + 6) : 6

*(p + 7) : 7

*(p + 8) : 8

*(p + 9) : 9

D Programming

109

Pointer to an Array

An array name is a constant pointer to the first element of the array. Therefore, in the

declaration:

double balance[50];

balance is a pointer to &balance[0], which is the address of the first element of the array

balance. Thus, the following program fragment assigns p the address of the first element

of balance:

double *p;

double balance[10];

p = balance;

It is legal to use array names as constant pointers, and vice versa. Therefore, *(balance

+ 4) is a legitimate way of accessing the data at balance[4].

Once you store the address of first element in p, you can access array elements using *p,

*(p+1), *(p+2) and so on. The following example shows all the concepts discussed above:

import std.stdio;

void main ()

{

 // an array with 5 elements.

 double balance[5] = [1000.0, 2.0, 3.4, 17.0, 50.0];

 double *p;

 p = &balance[0];

 // output each array element's value

 writeln("Array values using pointer ");

 for (int i = 0; i < 5; i++)

 {

 writeln("*(p + ", i, ") : ", *(p + i));

 }

}

D Programming

110

When the above code is compiled and executed, it produces the following result:

Array values using pointer

*(p + 0) : 1000

*(p + 1) : 2

*(p + 2) : 3.4

*(p + 3) : 17

*(p + 4) : 50

D Programming

111

Tuples are used for combining multiple values as a single object. Tuples contains a

sequence of elements. The elements can be types, expressions, or aliases. The number

and elements of a tuple are fixed at compile time and they cannot be changed at run time.

Tuples have characteristics of both structs and arrays. The tuple elements can be of

different types like structs. The elements can be accessed via indexing like arrays. They

are implemented as a library feature by the Tuple template from the std.typecons module.

Tuple makes use of TypeTuple from the std.typetuple module for some of its operations.

Tuple Using tuple()

Tuples can be constructed by the function tuple(). The members of a tuple are accessed

by index values. An example is shown below.

Example

import std.stdio;

import std.typecons;

void main()

{

 auto myTuple = tuple(1, "Tuts");

 writeln(myTuple);

 writeln(myTuple[0]);

 writeln(myTuple[1]);

}

When the above code is compiled and executed, it produces the following result:

Tuple!(int, string)(1, "Tuts")

1

Tuts

Tuple using Tuple Template

Tuple can also be constructed directly by the Tuple template instead of the tuple() function.

The type and the name of each member are specified as two consecutive template

parameters. It is possible to access the members by properties when created using

templates.

17. D ─ Tuples

D Programming

112

import std.stdio;

import std.typecons;

void main()

{

 auto myTuple = Tuple!(int, "id",string, "value")(1, "Tuts");

 writeln(myTuple);

 writeln("by index 0 : ", myTuple[0]);

 writeln("by .id : ", myTuple.id);

 writeln("by index 1 : ", myTuple[1]);

 writeln("by .value ", myTuple.value);

}

When the above code is compiled and executed, it produces the following result:

Tuple!(int, "id", string, "value")(1, "Tuts")

by index 0 : 1

by .id : 1

by index 1 : Tuts

by .value Tuts

Expanding Property and Function Params

The members of Tuple can be expanded either by the .expand property or by slicing. This

expanded/sliced value can be passed as function argument list. An example is shown

below.

Example

import std.stdio;

import std.typecons;

void method1(int a, string b, float c, char d)

{

 writeln("method 1 ",a,"\t",b,"\t",c,"\t",d);

}

void method2(int a, float b, char c)

{

D Programming

113

 writeln("method 2 ",a,"\t",b,"\t",c);

}

void main()

{

 auto myTuple = tuple(5, "my string", 3.3, 'r');

 writeln("method1 call 1");

 method1(myTuple[]);

 writeln("method1 call 2");

 method1(myTuple.expand);

 writeln("method2 call 1");

 method2(myTuple[0], myTuple[$-2..$]);

}

When the above code is compiled and executed, it produces the following result:

method1 call 1

method 1 5 my string 3.3 r

method1 call 2

method 1 5 my string 3.3 r

method2 call 1

method 2 5 3.3 r

TypeTuple

TypeTuple is defined in the std.typetuple module. A comma-separated list of values and

types. A simple example using TypeTuple is given below. TypeTuple is used to create

argument list, template list, and array literal list.

import std.stdio;

import std.typecons;

import std.typetuple;

alias TypeTuple!(int, long) TL;

void method1(int a, string b, float c, char d)

{

D Programming

114

 writeln("method 1 ",a,"\t",b,"\t",c,"\t",d);

}

void method2(TL tl)

{

 writeln(tl[0],"\t", tl[1]);

}

void main()

{

 auto arguments = TypeTuple!(5, "my string", 3.3,'r');

 method1(arguments);

 method2(5, 6L);

}

When the above code is compiled and executed, it produces the following result:

method 1 5 my string 3.3 r

5 6

D Programming

115

The structure is yet another user defined data type available in D programming, which

allows you to combine data items of different kinds.

Structures are used to represent a record. Suppose you want to keep track of your books

in a library. You might want to track the following attributes about each book:

 Title

 Author

 Subject

 Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines a

new data type, with more than one member for your program. The format of the struct

statement is this:

struct [structure tag]

{

 member definition;

 member definition;

 ...

 member definition;

} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition,

such as int i; or float f; or any other valid variable definition. At the end of the structure's

definition before the semicolon, you can specify one or more structure variables which are

optional. Here is the way you would declare the Books structure:

struct Books

{

 char [] title;

 char [] author;

 char [] subject;

 int book_id;

};

18. D ─ Structures

D Programming

116

Accessing Structure Members

To access any member of a structure, you use the member access operator (.). The

member access operator is coded as a period between the structure variable name and

the structure member that we wish to access. You would use struct keyword to define

variables of structure type. The following example explains the usage of structure:

import std.stdio;

struct Books

{

 char [] title;

 char [] author;

 char [] subject;

 int book_id;

};

void main()

{

 Books Book1; /* Declare Book1 of type Book */

 Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 Book1.title = "D Programming".dup;

 Book1.author = "Raj".dup;

 Book1.subject = "D Programming Tutorial".dup;

 Book1.book_id = 6495407;

 /* book 2 specification */

 Book2.title = "D Programming".dup;

 Book2.author = "Raj".dup;

 Book2.subject = "D Programming Tutorial".dup;

 Book2.book_id = 6495700;

 /* print Book1 info */

 writeln("Book 1 title : ", Book1.title);

 writeln("Book 1 author : ", Book1.author);

 writeln("Book 1 subject : ", Book1.subject);

D Programming

117

 writeln("Book 1 book_id : ", Book1.book_id);

 /* print Book2 info */

 writeln("Book 2 title : ", Book2.title);

 writeln("Book 2 author : ", Book2.author);

 writeln("Book 2 subject : ", Book2.subject);

 writeln("Book 2 book_id : ", Book2.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book 1 title : D Programming

Book 1 author : Raj

Book 1 subject : D Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : D Programming

Book 2 author : Raj

Book 2 subject : D Programming Tutorial

Book 2 book_id : 6495700

Structures as Function Arguments

You can pass a structure as a function argument in very similar way as you pass any other

variable or pointer. You would access structure variables in the similar way as you have

accessed in the above example:

import std.stdio;

struct Books

{

 char [] title;

 char [] author;

 char [] subject;

 int book_id;

};

void main()

{

 Books Book1; /* Declare Book1 of type Book */

D Programming

118

 Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 Book1.title = "D Programming".dup;

 Book1.author = "Raj".dup;

 Book1.subject = "D Programming Tutorial".dup;

 Book1.book_id = 6495407;

 /* book 2 specification */

 Book2.title = "D Programming".dup;

 Book2.author = "Raj".dup;

 Book2.subject = "D Programming Tutorial".dup;

 Book2.book_id = 6495700;

 /* print Book1 info */

 printBook(Book1);

 /* Print Book2 info */

 printBook(Book2);

}

void printBook(Books book)

{

 writeln("Book title : ", book.title);

 writeln("Book author : ", book.author);

 writeln("Book subject : ", book.subject);

 writeln("Book book_id : ", book.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : D Programming

Book author : Raj

Book subject : D Programming Tutorial

Book book_id : 6495407

Book title : D Programming

D Programming

119

Book author : Raj

Book subject : D Programming Tutorial

Book book_id : 6495700

Structs Initialization

Structs can be initialized in two forms, one using construtor and other using the {} format.

An example is shown below.

Example

import std.stdio;

struct Books

{

 char [] title;

 char [] subject = "Empty".dup;

 int book_id = -1;

 char [] author = "Raj".dup;

};

void main()

{

 Books Book1 = Books("D Programming".dup, "D Programming Tutorial".dup,
6495407);

 printBook(Book1);

 Books Book2 = Books("D Programming".dup, "D Programming Tutorial".dup,
6495407,"Raj".dup);

 printBook(Book2);

 Books Book3 = {title:"Obj C programming".dup, book_id : 1001};

 printBook(Book3);

}

void printBook(Books book)

{

 writeln("Book title : ", book.title);

D Programming

120

 writeln("Book author : ", book.author);

 writeln("Book subject : ", book.subject);

 writeln("Book book_id : ", book.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : D Programming

Book author : Raj

Book subject : D Programming Tutorial

Book book_id : 6495407

Book title : D Programming

Book author : Raj

Book subject : D Programming Tutorial

Book book_id : 6495407

Book title : Obj C programming

Book author : Raj

Book subject : Empty

Book book_id : 1001

Static Members

Static variables are initialized only once. For example, to have the unique ids for the books

we can make the book_id as static and increment the book id. An example is shown below.

Example

import std.stdio;

struct Books

{

 char [] title;

 char [] subject = "Empty".dup;

 int book_id;

 char [] author = "Raj".dup;

 static int id = 1000;

};

void main()

D Programming

121

{

 Books Book1 = Books("D Programming".dup, "D Programming
Tutorial".dup,++Books.id);

 printBook(Book1);

 Books Book2 = Books("D Programming".dup, "D Programming
Tutorial".dup,++Books.id);

 printBook(Book2);

 Books Book3 = {title:"Obj C programming".dup, book_id:++Books.id};

 printBook(Book3);

}

void printBook(Books book)

{

 writeln("Book title : ", book.title);

 writeln("Book author : ", book.author);

 writeln("Book subject : ", book.subject);

 writeln("Book book_id : ", book.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : D Programming

Book author : Raj

Book subject : D Programming Tutorial

Book book_id : 1001

Book title : D Programming

Book author : Raj

Book subject : D Programming Tutorial

Book book_id : 1002

Book title : Obj C programming

Book author : Raj

Book subject : Empty

Book book_id : 1003

D Programming

122

A union is a special data type available in D that enables you to store different data types

in the same memory location. You can define a union with many members, but only one

member can contain a value at any given time. Unions provide an efficient way of using

the same memory location for multiple purposes.

Defining a Union in D

To define a union, you must use the union statement in very similar way as you did while

defining structure. The union statement defines a new data type, with more than one

member for your program. The format of the union statement is as follows:

union [union tag]

{

 member definition;

 member definition;

 ...

 member definition;

} [one or more union variables];

The union tag is optional and each member definition is a normal variable definition, such

as int i; or float f; or any other valid variable definition. At the end of the union's definition,

before the final semicolon, you can specify one or more union variables but it is optional.

Here is the way you would define a union type named Data which has the three members

i, f, and str:

union Data

{

 int i;

 float f;

 char str[20];

} data;

A variable of Data type can store an integer, a floating-point number, or a string of

characters. This means a single variable (same memory location) can be used to store

multiple types of data. You can use any built-in or user defined data types inside a union

based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the

union. For example, in the above example, Data type will occupy 20 bytes of memory

space because this is the maximum space which can be occupied by character string. The

following example displays total memory size occupied by the above union:

19. D ─ Unions

D Programming

123

import std.stdio;

union Data

{

 int i;

 float f;

 char str[20];

};

int main()

{

 Data data;

 writeln("Memory size occupied by data : ", data.sizeof);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.). The member

access operator is coded as a period between the union variable name and the union

member that we wish to access. You would use union keyword to define variables of union

type.

Example

The following example explains usage of union:

import std.stdio;

union Data

{

 int i;

 float f;

 char str[13];

};

D Programming

124

void main()

{

 Data data;

 data.i = 10;

 data.f = 220.5;

 data.str = "D Programming".dup;

 writeln("size of : ", data.sizeof);

 writeln("data.i : ", data.i);

 writeln("data.f : ", data.f);

 writeln("data.str : ", data.str);

}

When the above code is compiled and executed, it produces the following result:

size of : 16

data.i : 1917853764

data.f : 4.12236e+30

data.str : D Programming

Here, you can see that values of i and f members of union got corrupted because final

value assigned to the variable has occupied the memory location and this is the reason

that the value of str member is getting printed very well.

Now let us look into the same example once again where we will use one variable at a

time which is the main purpose of having union:

Modified Example

import std.stdio;

union Data

{

 int i;

 float f;

 char str[13];

};

void main()

{

 Data data;

D Programming

125

 writeln("size of : ", data.sizeof);

 data.i = 10;

 writeln("data.i : ", data.i);

 data.f = 220.5;

 writeln("data.f : ", data.f);

 data.str = "D Programming".dup;

 writeln("data.str : ", data.str);

}

When the above code is compiled and executed, it produces the following result:

size of : 16

data.i : 10

data.f : 220.5

data.str : D Programming

Here, all the members are getting printed very well because one member is being used at

a time.

D Programming

126

Ranges are an abstraction of element access. This abstraction enables the use of great

number of algorithms over great number of container types. Ranges emphasize how

container elements are accessed, as opposed to how the containers are implemented.

Ranges is a very simple concept that is based on whether a type defines certain sets of

member functions.

Ranges are an integral part of D. D's slices happen to be implementations of the most

powerful range RandomAccessRange, and there are many range features in Phobos. Many

Phobos algorithms return temporary range objects. For example, filter() chooses elements

that are greater than 10 in the following code actually returns a range object, not an array.

Number ranges

Number ranges are quite commonly used and these number ranges is of type int. A few

examples for number ranges is shown below:

// Example 1

foreach (value; 3..7)

// Example 2

int[] slice = array[5..10];

Phobos Ranges

Ranges related to structs and class interfaces is phobos ranges. Phobos is the official

runtime and standard library that comes with the D language compiler.

There are various types of ranges which include:

 InputRange

 ForwardRange

 BidirectionalRange

 RandomAccessRange

 OutputRange

InputRange

The simplest range is the input range. The other ranges bring more requirements on top

of the range that they are based on. There are three functions that InputRange requires:

 empty: It specifies whether the range is empty; it must return true when the range

is considered to be empty; false otherwise.

 front: It provides access to the element at the beginning of the range.

20. D ─ Ranges

D Programming

127

 popFront(): It shortens the range from the beginning by removing the first

element.

Example

import std.stdio;

import std.string;

struct Student

{

 string name;

 int number;

 string toString() const

 {

 return format("%s(%s)", name, number);

 }

}

struct School

{

 Student[] students;

}

struct StudentRange

{

 Student[] students;

 this(School school)

 {

 this.students = school.students;

 }

 @property bool empty() const

 {

 return students.length == 0;

 }

D Programming

128

 @property ref Student front()

 {

 return students[0];

 }

 void popFront()

 {

 students = students[1 .. $];

 }

}

void main(){

 auto school = School([Student("Raj", 1), Student("John", 2) ,
Student("Ram", 3)]);

 auto range = StudentRange(school);

 writeln(range);

 writeln(school.students.length);

 writeln(range.front);

 range.popFront;

 writeln(range.empty);

 writeln(range);

}

When the above code is compiled and executed, it produces the following result:

[Raj(1), John(2), Ram(3)]

3

Raj(1)

false

[John(2), Ram(3)]

D Programming

129

ForwardRange

ForwardRange additionally requires the save member function part from the other three

function of InputRange and return a copy of the range when the save function is called.

import std.array;

import std.stdio;

import std.string;

import std.range;

struct FibonacciSeries

{

 int first = 0;

 int second = 1;

 enum empty = false; // infinite range

 @property int front() const

 {

 return first;

 }

 void popFront()

 {

 int third = first + second;

 first = second;

 second = third;

 }

 @property FibonacciSeries save() const

 {

 return this;

 }

}

void report(T)(const dchar[] title, const ref T range)

{

 writefln("%s: %s", title, range.take(5));

}

D Programming

130

void main()

{

 auto range = FibonacciSeries();

 report("Original range", range);

 range.popFrontN(2);

 report("After removing two elements", range);

 auto theCopy = range.save;

 report("The copy", theCopy);

 range.popFrontN(3);

 report("After removing three more elements", range);

 report("The copy", theCopy);

}

When the above code is compiled and executed, it produces the following result:

Original range: [0, 1, 1, 2, 3]

After removing two elements: [1, 2, 3, 5, 8]

The copy: [1, 2, 3, 5, 8]

After removing three more elements: [5, 8, 13, 21, 34]

The copy: [1, 2, 3, 5, 8]

BidirectionalRange

BidirectionalRange additionally provides two member functions over the member functions

of ForwardRange. The back function which is similar to front, provides access to the last

element of the range. The popBack function is similar to popFront function and it removes

the last element from the range.

Example

import std.array;

import std.stdio;

import std.string;

struct Reversed

{

D Programming

131

 int[] range;

 this(int[] range)

 {

 this.range = range;

 }

 @property bool empty() const

 {

 return range.empty;

 }

 @property int front() const

 {

 return range.back; // reverse

 }

 @property int back() const

 {

 return range.front; // reverse

 }

 void popFront()

 {

 range.popBack();

 }

 void popBack()

 {

 range.popFront();

 }

}

void main()

{

 writeln(Reversed([1, 2, 3]));

}

D Programming

132

When the above code is compiled and executed, it produces the following result:

[3, 2, 1]

Infinite RandomAccessRange

opIndex() is additionally required when compared to the ForwardRange. Also, the value of

an empty function to be known at compile time as false. A simple example is explained

with squares range is shown below.

import std.array;

import std.stdio;

import std.string;

import std.range;

import std.algorithm;

class SquaresRange

{

 int first;

 this(int first = 0)

 {

 this.first = first;

 }

 enum empty = false;

 @property int front() const

 {

 return opIndex(0);

 }

 void popFront()

 {

 ++first;

 }

 @property SquaresRange save() const

 {

D Programming

133

 return new SquaresRange(first);

 }

 int opIndex(size_t index) const

 {

 /* This function operates at constant time */

 immutable integerValue = first + cast(int)index;

 return integerValue * integerValue;

 }

}

bool are_lastTwoDigitsSame(int value)

{

 /* Must have at least two digits */

 if (value < 10) {

 return false;

 }

 /* Last two digits must be divisible by 11 */

 immutable lastTwoDigits = value % 100;

 return (lastTwoDigits % 11) == 0;

}

void main()

{

 auto squares = new SquaresRange();

 writeln(squares[5]);

 writeln(squares[10]);

 squares.popFrontN(5);

 writeln(squares[0]);

 writeln(squares.take(50).filter!are_lastTwoDigitsSame);

}

D Programming

134

When the above code is compiled and executed, it produces the following result:

25

100

25

[100, 144, 400, 900, 1444, 1600, 2500]

Finite RandomAccessRange

opIndex() and length are additionally required when compared to bidirectional range. This

is explained with the help of detailed example that uses the Fibonacci series and Squares

Range example used earlier. This example works well on normal D compiler but does not

work on online compiler.

Example

import std.array;

import std.stdio;

import std.string;

import std.range;

import std.algorithm;

struct FibonacciSeries

{

 int first = 0;

 int second = 1;

 enum empty = false; // infinite range

 @property int front() const

 {

 return first;

 }

 void popFront()

 {

 int third = first + second;

 first = second;

 second = third;

 }

D Programming

135

 @property FibonacciSeries save() const

 {

 return this;

 }

}

void report(T)(const dchar[] title, const ref T range)

{

 writefln("%40s: %s", title, range.take(5));

}

class SquaresRange

{

 int first;

 this(int first = 0)

 {

 this.first = first;

 }

 enum empty = false;

 @property int front() const

 {

 return opIndex(0);

 }

 void popFront()

 {

 ++first;

 }

 @property SquaresRange save() const

 {

 return new SquaresRange(first);

 }

D Programming

136

 int opIndex(size_t index) const

 {

 /* This function operates at constant time */

 immutable integerValue = first + cast(int)index;

 return integerValue * integerValue;

 }

}

bool are_lastTwoDigitsSame(int value)

{

 /* Must have at least two digits */

 if (value < 10) {

 return false;

 }

 /* Last two digits must be divisible by 11 */

 immutable lastTwoDigits = value % 100;

 return (lastTwoDigits % 11) == 0;

}

struct Together

{

 const(int)[][] slices;

 this(const(int)[][] slices ...)

 {

 this.slices = slices.dup;

 clearFront();

 clearBack();

 }

 private void clearFront()

 {

 while (!slices.empty && slices.front.empty) {

 slices.popFront();

D Programming

137

 }

 }

 private void clearBack()

 {

 while (!slices.empty && slices.back.empty) {

 slices.popBack();

 }

 }

 @property bool empty() const

 {

 return slices.empty;

 }

 @property int front() const

 {

 return slices.front.front;

 }

 void popFront()

 {

 slices.front.popFront();

 clearFront();

 }

 @property Together save() const

 {

 return Together(slices.dup);

 }

 @property int back() const

 {

 return slices.back.back;

 }

D Programming

138

 void popBack()

 {

 slices.back.popBack();

 clearBack();

 }

 @property size_t length() const

 {

 return reduce!((a, b) => a + b.length)(size_t.init, slices);

 }

 int opIndex(size_t index) const

 {

 /* Save the index for the error message */

 immutable originalIndex = index;

 foreach (slice; slices) {

 if (slice.length > index) {

 return slice[index];

 } else {

 index -= slice.length;

 }

 }

 throw new Exception(

 format("Invalid index: %s (length: %s)",

 originalIndex, this.length));

 }

}

void main(){

 auto range = Together(FibonacciSeries().take(10).array,

 [777, 888],

 (new SquaresRange()).take(5).array);

 writeln(range.save);

}

D Programming

139

When the above code is compiled and executed, it produces the following result:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 777, 888, 0, 1, 4, 9, 16]

OutputRange

OutputRange represents streamed element output, similar to sending characters to stdout.

OutputRange requires support for the put(range, element) operation. put() is a function

defined in the std.range module. It determines the capabilities of the range and the

element at compile time and uses the most appropriate method to use to output the

elements. A simple example is shown below.

import std.algorithm;

import std.stdio;

struct MultiFile

{

 string delimiter;

 File[] files;

 this(string delimiter, string[] fileNames ...)

 {

 this.delimiter = delimiter;

 /* stdout is always included */

 this.files ~= stdout;

 /* A File object for each file name */

 foreach (fileName; fileNames) {

 this.files ~= File(fileName, "w");

 }

 }

 void put(T)(T element)

 {

 foreach (file; files) {

 file.write(element, delimiter);

 }

 }

}

D Programming

140

void main(){

 auto output = MultiFile("\n", "output_0", "output_1");

 copy([1, 2, 3], output);

 copy(["red", "blue", "green"], output);

}

When the above code is compiled and executed, it produces the following result:

[1, 2, 3]

["red", "blue", "green"]

D Programming

141

Alias, as the name refers provides an alternate name for existing names. The syntax for

alias is shown below.

alias new_name = existing_name;

The following is the older syntax, just in case you refer some older format examples. Its

is strongly discouraged the use of this.

alias existing_name new_name;

There is also another syntax that is used with expression and it is given below in which we

can directly use the alias name instead of the expression.

alias expression alias_name ;

As you may know, a typedef adds the ability to create new types. Alias can do the work of

a typedef and even more. A simple example for using alias is shown below that uses the

std.conv header which provides the type conversion ability.

import std.stdio;

import std.conv:to;

alias to!(string) toString;

void main()

{

 int a = 10;

 string s = "Test"~toString(a);

 writeln(s);

}

When the above code is compiled and executed, it produces the following result:

Test10

In the above example instead of using to!string(a), we assigned it to alias name toString

making it more convenient and simpler to understand.

21. D ─ Aliases

D Programming

142

Alias for a Tuple

Let us a look at another example where we can set alias name for a Tuple.

import std.stdio;

import std.typetuple;

alias TypeTuple!(int, long) TL;

void method1(TL tl)

{

 writeln(tl[0],"\t", tl[1]);

}

void main()

{

 method1(5, 6L);

}

When the above code is compiled and executed, it produces the following result:

5 6

In the above example, the type tuple is assigned to the alias variable and it simplifies the

method definition and access of variables. This kind of access is even more useful when

we try to reuse such type tuples.

Alias for Data Types

Many times, we may define common data types that needs to be used across the

application. When multiple programmers code an application, it can be cases where one

person uses int, another double, and so on. To avoid such conflicts, we often use types for

data types. A simple example is shown below.

Example

import std.stdio;

alias int myAppNumber;

alias string myAppString;

void main()

{

D Programming

143

 myAppNumber i = 10;

 myAppString s = "TestString";

 writeln(i,s);

}

When the above code is compiled and executed, it produces the following result:

10TestString

Alias for Class Variables

There is often a requirement where we need to access the member variables of the

superclass in the subclass, this can made possible with alias, possibly under a different

name.

In case you are new to the the concept of classes and inheritance, have a look at the

tutorial on classes and inheritance before starting with this section.

Example

A simple example is shown below.

import std.stdio;

class Shape

{

 int area;

}

class Square : Shape

{

 string name() const @property

 {

 return "Square";

 }

 alias Shape.area squareArea;

}

void main()

{

 auto square = new Square;

http://localhost/d_programming/d_programming_classes_objects.htm
http://localhost/d_programming/d_programming_inheritance.htm

D Programming

144

 square.squareArea = 42;

 writeln(square.name);

 writeln(square.squareArea);

}

When the above code is compiled and executed, it produces the following result:

Square

42

Alias This

Alias this provides the capability of automatic type conversions of user-defined types. The

syntax is shown below where the keywords alias and this are written on either sides of the

member variable or member function.

alias member_variable_or_member_function this;

Example

An example is shown below to show the power of alias this.

import std.stdio;

struct Rectangle

{

 long length;

 long breadth;

 double value() const @property

 {

 return cast(double) length * breadth;

 }

 alias value this;

}

double volume(double rectangle, double height)

{

 return rectangle * height;

D Programming

145

}

void main()

{

 auto rectangle = Rectangle(2, 3);

 writeln(volume(rectangle, 5));

}

In the above example, you can see that the struct rectangle is converted to double value

with the help of alias this method.

When the above code is compiled and executed, it produces the following result:

30

D Programming

146

Mixins are structs that allow mixing of the generated code into the source code. Mixins can

be of the following types:

 String Mixins

 Template Mixins

 Mixin name spaces

String Mixins

D has the capability to insert code as string as long as that string is known at compile

time. The syntax of string mixins is shown below:

mixin (compile_time_generated_string)

Example

A simple example for string mixins is shown below.

import std.stdio;

void main()

{

 mixin(`writeln("Hello World!");`);

}

When the above code is compiled and executed, it produces the following result:

Hello World!

Here is another example where we can pass the string in compile time so that mixins can

use the functions to reuse code. It is shown below.

import std.stdio;

string print(string s)

{

 return `writeln("` ~ s ~ `");`;

}

void main()

22. D ─ Mixins

D Programming

147

{

 mixin (print("str1"));

 mixin (print("str2"));

}

When the above code is compiled and executed, it produces the following result:

str1

str2

Template Mixins

D templates define common code patterns, for the compiler to generate actual instances

from that pattern. The templates can generate functions, structs, unions, classes,

interfaces, and any other legal D code. The syntax of template mixins is as shown below.

mixin a_template!(template_parameters)

A simple example for string mixins is shown below where we create a template with class

Department and a mixin instantiating a template and hence making the the functions

setName and printNames available to the structure college.

Example

import std.stdio;

template Department(T, size_t count)

{

 T[count] names;

 void setName(size_t index, T name)

 {

 names[index] = name;

 }

 void printNames()

 {

 writeln("The names");

 foreach (i, name; names)

 {

D Programming

148

 writeln(i," : ", name);

 }

 }

}

struct College

{

 mixin Department!(string, 2);

}

void main()

{

 auto college = College();

 college.setName(0, "name1");

 college.setName(1, "name2");

 college.printNames();

}

When the above code is compiled and executed, it produces the following result:

The names

0 : name1

1 : name2

Mixin Name Spaces

Mixin name spaces are used to avoid ambiguities in template mixins. For example, there

can be two variables, one defined explicitly in main and the other is mixed in. When a

mixed-in name is the same as a name that is in the surrounding scope, then the name

that is in the surrounding scope gets used. This example is shown below.

Example

import std.stdio;

template Person()

{

D Programming

149

 string name;

 void print()

 {

 writeln(name);

 }

}

void main()

{

 string name;

 mixin Person a;

 name = "name 1";

 writeln(name);

 a.name = "name 2";

 print();

}

When the above code is compiled and executed, it produces the following result:

name 1

name 2

D Programming

150

Modules are the building blocks of D. They are based on a simple concept. Every source

file is a module. Accordingly, the single files in which we write the programs are individual

modules. By default, the name of a module is the same as its filename without the .d

extension.

When explicitly specified, the name of the module is defined by the module keyword, which

must appear as the first non-comment line in the source file. For example, assume that

the name of a source file is "employee.d". Then the name of the module is specified by

the module keyword followed by employee. It is as shown below.

module employee;

class Employee

{

 // Class definition goes here.

}

The module line is optional. When not specified, it is the same as the file name without

the .d extension.

File and Module Names

D supports Unicode in source code and module names. However, the Unicode support of

file systems vary. For example, although most Linux file systems support Unicode, the file

names in Windows file systems may not distinguish between lower and upper case letters.

Additionally, most file systems limit the characters that can be used in file and directory

names. For portability reasons, I recommend that you use only lower case ASCII letters

in file names. For example, "employee.d" would be a suitable file name for a class named

employee.

Accordingly, the name of the module would consist of ASCII letters as well:

module employee; // Module name consisting of ASCII letters

class eëmployëë

{

}

23. D ─ Modules

D Programming

151

D Packages

A combination of related modules are called a package. D packages are a simple concept

as well: The source files that are inside the same directory are considered to belong to the

same package. The name of the directory becomes the name of the package, which must

also be specified as the first parts of module names.

For example, if "employee.d" and "office.d" are inside the directory "company", then

specifying the directory name along with the module name makes them be a part of the

same package:

module company.employee;

class Employee

{

}

Similarly, for the office module:

module company.office;

class Office

{

}

Since package names correspond to directory names, the package names of modules that

are deeper than one directory level must reflect that hierarchy. For example, if the

"company" directory included a "branch" directory, the name of a module inside that

directory would include branch as well.

module company.branch.employee;

Using Modules in Programs

The import keyword, which we have been using in almost every program so far, is for

introducing a module to the current module:

import std.stdio;

The module name may contain the package name as well. For example, the std. part above

indicates that stdio is a module that is a part of the std package.

D Programming

152

Locations of Modules

The compiler finds the module files by converting the package and module names directly

to directory and file names.

For example, the two modules employee and office would be located as

"company/employee.d" and "animal/office.d", respectively (or "company\employee.d" and

"company\office.d", depending on the file system) for company.employee and

company.office.

Long and Short Module Names

The names that are used in the program may be spelled out with the module and package

names as shown below.

import company.employee;

auto employee0 = Employee();

auto employee1 = company.employee.Employee();

The long names are normally not needed but sometimes there are name conflicts. For

example, when referring to a name that appears in more than one module, the compiler

cannot decide which one is meant. The following program is spelling out the long names

to distinguish between two separate employee structs that are defined in two separate

modules: company and college.

The first employee module in folder company is as follows.

module company.employee;

import std.stdio;

class Employee

{

public:

 string str;

 void print(){

 writeln("Company Employee: ",str);

 }

}

D Programming

153

The second employee module in folder college is as follows.

module college.employee;

import std.stdio;

class Employee

{

public:

 string str;

 void print(){

 writeln("College Employee: ",str);

 }

}

The main module in hello.d should be saved in the folder which contains the college and

company folders. It is as follows.

import company.employee;

import college.employee;

import std.stdio;

void main()

{

 auto myemployee1 = new company.employee.Employee();

 myemployee1.str = "emp1";

 myemployee1.print();

 auto myemployee2 = new college.employee.Employee();

 myemployee2.str = "emp2";

 myemployee2.print();

}

The import keyword is not sufficient to make modules become parts of the program. It

simply makes available the features of a module inside the current module. That much is

needed only to compile the code.

For the program above to be built, "company/employee.d" and "college/employee.d" must

also be specified on the compilation line.

When the above code is compiled and executed, it produces the following result:

D Programming

154

$ dmd hello.d company/employee.d college/employee.d -ofhello.amx

$./hello.amx

Company Employee: emp1

College Employee: emp2

D Programming

155

Templates are the foundation of generic programming, which involve writing code in a way

that is independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function.

Templates are the feature that allows describing the code as a pattern, for the compiler to

generate program code automatically. Parts of the source code may be left to the compiler

to be filled in until that part is actually used in the program. The compiler fills in the missing

parts.

Function Template

Defining a function as a template is leaving one or more of the types that it uses as

unspecified, to be deduced later by the compiler. The types that are being left unspecified

are defined within the template parameter list, which comes between the name of the

function and the function parameter list. For that reason, function templates have two

parameter lists:

 template parameter list

 function parameter list

import std.stdio;

void print(T)(T value)

{

 writefln("%s", value);

}

void main()

{

 print(42);

 print(1.2);

 print("test");

}

If we compile and run above code, this would produce the following result:

42

1.2

test

24. D ─ Templates

D Programming

156

Function Template with Multiple Type Parameters

There can be multiple parameter types. They are shown in the following example.

Example

import std.stdio;

void print(T1, T2)(T1 value1, T2 value2)

{

 writefln(" %s %s", value1, value2);

}

void main()

{

 print(42, "Test");

 print(1.2, 33);

}

If we compile and run above code, this would produce the following result:

 42 Test

 1.2 33

Class Templates

Just as we can define function templates, we can also define class templates. The following

example defines class Stack and implements generic methods to push and pop the

elements from the stack.

import std.stdio;

import std.string;

class Stack(T)

{

 private:

 T[] elements;

 public:

 void push(T element)

D Programming

157

 {

 elements ~= element;

 }

 void pop()

 {

 --elements.length;

 }

 T top() const @property

 {

 return elements[$ - 1];

 }

 size_t length() const @property

 {

 return elements.length;

 }

}

void main()

{

 auto stack = new Stack!string;

 stack.push("Test1");

 stack.push("Test2");

 writeln(stack.top);

 writeln(stack.length);

 stack.pop;

 writeln(stack.top);

 writeln(stack.length);

}

D Programming

158

When the above code is compiled and executed, it produces the following result:

Test2

2

Test1

1

D Programming

159

We often use variables that are mutable but there can be many occasions mutability is not

required. Immutable variables can be used in such cases. A few examples are given below

where immutable variable can be used.

 In case of math constants such as pi that never change.

 In case of arrays where we want to retain values and it is not requirements of

mutation.

Immutability makes it possible to understand whether the variables are immutable or

mutable guaranteeing that certain operations do not change certain variables. It also

reduces the risk of certain types of program errors. The immutability concept of D is

represented by the const and immutable keywords. Although the two words themselves

are close in meaning, their responsibilities in programs are different and they are

sometimes incompatible.

The immutability concept of D is represented by the const and immutable keywords.

Although the two words themselves are close in meaning, their responsibilities in programs

are different and they are sometimes incompatible.

Types of Immutable Variables in D

There are three types of defining variables that can never be mutated.

 enum constants

 immutable variables

 const variables

enum Constants in D

The enum constants makes it possible to relate constant values to meaningful names. A

simple example is shown below.

Example

import std.stdio;

enum Day{

 Sunday = 1,

 Monday,

 Tuesday,

 Wednesday,

 Thursday,

25. D ─ Immutables

D Programming

160

 Friday,

 Saturday

}

void main()

{

 Day day;

 day = Day.Sunday;

 if (day == Day.Sunday)

 {

 writeln("The day is Sunday");

 }

}

When the above code is compiled and executed, it produces the following result:

The day is Sunday

Immutable Variables in D

Immutable variables can be determined during the execution of the program. It just directs

the compiler that after the initialization, it becomes immutable. A simple example is shown

below.

Example

import std.stdio;

import std.random;

void main()

{

 int min = 1;

 int max = 10;

 immutable number = uniform(min, max + 1);

 // cannot modify immutable expression number

 // number = 34;

 typeof(number) value = 100;

D Programming

161

 writeln(typeof(number).stringof, number);

 writeln(typeof(value).stringof, value);

}

When the above code is compiled and executed, it produces the following result:

immutable(int)4

immutable(int)100

You can see in the above example how it is possible to transfer the data type to another

variable and use stringof while printing.

Const Variables in D

Const variables cannot be modified similar to immutable. immutable variables can be

passed to functions as their immutable parameters and hence it is recommended to use

immutable over const. The same example used earlier is modified for const as shown

below.

Example

import std.stdio;

import std.random;

void main()

{

 int min = 1;

 int max = 10;

 const number = uniform(min, max + 1);

 // cannot modify const expression number|

 // number = 34;

 typeof(number) value = 100;

 writeln(typeof(number).stringof, number);

 writeln(typeof(value).stringof, value);

}

D Programming

162

If we compile and run above code, this would produce the following result:

const(int)7

const(int)100

Immutable Parameters in D

const erases the information about whether the original variable is mutable or immutable

and hence using immutable makes it pass it other functions with the original type retained.

A simple example is shown below.

Example

import std.stdio;

void print(immutable int[] array)

{

 foreach (i, element; array)

 {

 writefln("%s: %s", i, element);

 }

}

void main()

{

 immutable int[] array = [1, 2];

 print(array);

}

When the above code is compiled and executed, it produces the following result:

0: 1

1: 2

D Programming

163

Files are represented by the File struct of the std.stdio module. A file represents a sequence

of bytes, does not matter if it is a text file or binary file.

D programming language provides access on high level functions as well as low level (OS

level) calls to handle file on your storage devices.

Opening Files in D

The standard input and output streams stdin and stdout are already open when programs

start running. They are ready to be used. On the other hand, files must first be opened by

specifying the name of the file and the access rights that are needed.

File file = File(filepath, "mode");

Here, filename is string literal, which you use to name the file and access mode can have

one of the following values:

Mode Description

r Opens an existing text file for reading purpose.

w

Opens a text file for writing, if it does not exist then a new file is created.

Here your program will start writing content from the beginning of the

file.

a

Opens a text file for writing in appending mode, if it does not exist then

a new file is created. Here your program will start appending content in

the existing file content.

r+ Opens a text file for reading and writing both.

w+
Opens a text file for reading and writing both. It first truncate the file to

zero length if it exists otherwise create the file if it does not exist.

a+

Opens a text file for reading and writing both. It creates the file if it does

not exist. The reading will start from the beginning but writing can only

be appended.

26. D ─ File I/O

D Programming

164

Closing a File in D

To close a file, use the file.close() function where file holds the file reference. The prototype

of this function is:

file.close();

Any file that has been opened by a program must be closed when the program finishes

using that file. In most cases the files need not be closed explicitly; they are closed

automatically when File objects are terminated.

Writing a File in D

file.writeln is used to write to an open file.

file.writeln("hello");

Example

import std.stdio;

import std.file;

void main()

{

 File file = File("test.txt", "w");

 file.writeln("hello");

 file.close();

}

When the above code is compiled and executed, it creates a new file test.txt in the

directory that it has been started under (in the program working directory).

Reading a File in D

The following method reads a single line from a file:

string s = file.readln();

A complete example of read and write is shown below.

import std.stdio;

import std.file;

void main()

D Programming

165

{

 File file = File("test.txt", "w");

 file.writeln("hello");

 file.close();

 file = File("test.txt", "r");

 string s = file.readln();

 writeln(s);

 file.close();

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

hello

Here is another example for reading file till end of file.

import std.stdio;

import std.string;

void main()

{

 File file = File("test.txt", "w");

 file.writeln("hello");

 file.writeln("world");

 file.close();

 file = File("test.txt", "r");

 while (!file.eof())

 {

 string line = chomp(file.readln());

 writeln("line -", line);

 }

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

D Programming

166

line -hello

line -world

line -

You can see in the above example an empty third line since writeln takes it to next line

once it is executed.

D Programming

167

Concurrency is making a program run on multiple threads at a time. An example of a

concurrent program is a web server responding many clients at the same time.

Concurrency is easy with message passing but very difficult to write if they are based on

data sharing.

Data that is passed between threads are called messages. Messages may be composed of

any type and any number of variables. Every thread has an id, which is used for specifying

recipients of messages. Any thread that starts another thread is called the owner of the

new thread.

Initiating Threads in D

The function spawn() takes a pointer as a parameter and starts a new thread from that

function. Any operations that are carried out by that function, including other functions

that it may call, would be executed on the new thread. The owner and the worker both

start executing separately as if they were independent programs.

Example

import std.stdio;

import std.stdio;

import std.concurrency;

import core.thread;

void worker(int a)

{

 foreach (i; 0 .. 4)

 {

 Thread.sleep(1);

 writeln("Worker Thread ",a + i);

 }

}

void main()

{

 foreach (i; 1 .. 4)

 {

 Thread.sleep(2);

27. D ─ Concurrency

D Programming

168

 writeln("Main Thread ",i);

 spawn(&worker, i * 5);

 }

 writeln("main is done.");

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

Main Thread 1

Worker Thread 5

Main Thread 2

Worker Thread 6

Worker Thread 10

Main Thread 3

main is done.

Worker Thread 7

Worker Thread 11

Worker Thread 15

Worker Thread 8

Worker Thread 12

Worker Thread 16

Worker Thread 13

Worker Thread 17

Worker Thread 18

Thread Identifiers in D

The thisTid variable available globally at the module level is always the id of the current

thread. Also you can receive the threadId when spawn is called. An example is shown

below.

Example

import std.stdio;

import std.concurrency;

void printTid(string tag)

{

D Programming

169

 writefln("%s: %s, address: %s", tag, thisTid, &thisTid);

}

void worker()

{

 printTid("Worker");

}

void main()

{

 Tid myWorker = spawn(&worker);

 printTid("Owner ");

 writeln(myWorker);

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

Owner : Tid(std.concurrency.MessageBox), address: 10C71A59C

Worker: Tid(std.concurrency.MessageBox), address: 10C71A59C

Tid(std.concurrency.MessageBox)

Message Passing in D

The function send() sends messages and the function receiveOnly() waits for a message

of a particular type. There are other functions named prioritySend(), receive(), and

receiveTimeout(), which are explained later.

The owner in the following program sends its worker a message of type int and waits for

a message from the worker of type double. The threads continue sending messages back

and forth until the owner sends a negative int. An example is shown below.

Example

import std.stdio;

import std.concurrency;

import core.thread;

import std.conv;

void workerFunc(Tid tid)

{

D Programming

170

 int value = 0;

 while (value >= 0)

 {

 value = receiveOnly!int();

 auto result = to!double(value) * 5;

 tid.send(result);

 }

}

void main()

{

 Tid worker = spawn(&workerFunc,thisTid);

 foreach (value; 5 .. 10) {

 worker.send(value);

 auto result = receiveOnly!double();

 writefln("sent: %s, received: %s", value, result);

 }

 worker.send(-1);

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

sent: 5, received: 25

sent: 6, received: 30

sent: 7, received: 35

sent: 8, received: 40

sent: 9, received: 45

D Programming

171

Message Passing with Wait in D

A simple example with the message passing with wait is shown below.

import std.stdio;

import std.concurrency;

import core.thread;

import std.conv;

void workerFunc(Tid tid)

{

 Thread.sleep(dur!("msecs")(500),);

 tid.send("hello");

}

void main()

{

 spawn(&workerFunc,thisTid);

 writeln("Waiting for a message");

 bool received = false;

 while (!received)

 {

 received = receiveTimeout(dur!("msecs")(100),

 (string message){

 writeln("received: ", message);

 });

 if (!received) {

 writeln("... no message yet");

 }

 }

}

D Programming

172

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

Waiting for a message

... no message yet

... no message yet

... no message yet

... no message yet

received: hello

D Programming

173

An exception is a problem that arises during the execution of a program. A D exception is

a response to an exceptional circumstance that arises while a program is running, such as

an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. D

exception handling is built upon three keywords: try, catch, and throw.

 throw: A program throws an exception when a problem shows up. This is done

using a throw keyword.

 catch: A program catches an exception with an exception handler at the place in

a program where you want to handle the problem. The catch keyword indicates

the catching of an exception.

 try: A try block identifies a block of code for which particular exceptions are

activated. It is followed by one or more catch blocks.

Assuming a block will raise an exception, a method catches an exception using a

combination of the try and catch keywords. A try/catch block is placed around the code

that might generate an exception. Code within a try/catch block is referred to as protected

code, and the syntax for using try/catch looks like the following:

try

{

 // protected code

}

catch(ExceptionName e1)

{

 // catch block

}

catch(ExceptionName e2)

{

 // catch block

}

catch(ExceptionName eN)

{

 // catch block

}

You can list down multiple catch statements to catch different type of exceptions in case

your try block raises more than one exception in different situations.

28. D ─ Exception Handling

D Programming

174

Throwing Exceptions in D

Exceptions can be thrown anywhere within a code block using throw statements. The

operand of the throw statements determines a type for the exception and can be any

expression and the type of the result of the expression determines the type of exception

thrown.

The following example throws an exception when dividing by zero condition occurs:

Example

double division(int a, int b)

{

 if(b == 0)

 {

 throw new Exception("Division by zero condition!");

 }

 return (a/b);

}

Catching Exceptions in D

The catch block following the try block catches any exception. You can specify what type

of exception you want to catch and this is determined by the exception declaration that

appears in parentheses following the keyword catch.

try

{

 // protected code

}

catch(ExceptionName e)

{

 // code to handle ExceptionName exception

}

The above code catches an exception of ExceptionName type. If you want to specify that

a catch block should handle any type of exception that is thrown in a try block, you must

put an ellipsis,..., between the parentheses enclosing the exception declaration as follows:

try

{

 // protected code

}

D Programming

175

catch(...)

{

 // code to handle any exception

}

The following example throws a division by zero exception. It is caught in catch block.

import std.stdio;

import std.string;

string division(int a, int b)

{

 string result = "";

 try {

 if(b == 0)

 {

 throw new Exception("Cannot divide by zero!");

 }

 else

 {

 result = format("%s",a/b);

 }

 }

 catch (Exception e)

 {

 result = e.msg;

 }

 return result;

}

void main ()

{

 int x = 50;

 int y = 0;

D Programming

176

 writeln(division(x, y));

 y=10;

 writeln(division(x, y));

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

Cannot divide by zero!

5

D Programming

177

Contract programming in D programming is focused on providing a simple and

understandable means of error handling. Contract programming in D are implemented by

three types of code blocks:

 body block

 in block

 out block

Body Block in D

Body block contains the actual functionality code of execution. The in and out blocks are

optional while the body block is mandatory. A simple syntax is shown below.

return_type function_name(function_params)

in

{

 // in block

}

out (result)

{

 // in block

}

body

{

 // actual function block

}

In Block for Pre Conditions in D

In block is for simple pre conditions that verify whether the input parameters are

acceptable and in range that can be handled by the code. A benefit of an in block is that

all of the entry conditions can be kept together and separate from the actual body of the

function. A simple precondition for validating password for its minimum length is shown

below.

import std.stdio;

import std.string;

29. D ─ Contract Programming

D Programming

178

bool isValid(string password)

in

{

 assert(password.length>=5);

}

body

{

 // other conditions

 return true;

}

void main()

{

 writeln(isValid("password"));

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

true

Out Blocks for Post Conditions in D

The out block takes care of the return values from the function. It validates the return

value is in expected range. A simple example containing both in and out is shown below

that converts months, year to a combined decimal age form.

import std.stdio;

import std.string;

double getAge(double months,double years)

in

{

 assert(months >= 0);

 assert(months <= 12);

}

out (result)

{

 assert(result>=years);

D Programming

179

}

body

{

 return years + months/12;

}

void main ()

{

 writeln(getAge(10,12));

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

12.8333

D Programming

180

Conditional compilation is the process of selecting which code to compile and which code

to not compile similar to the #if / #else / #endif in C and C++. Any statement that is not

compiled in still must be syntactically correct.

Conditional compilation involves condition checks that are evaluable at compile time.

Runtime conditional statements like if, for, while are not conditional compilation features.

The following features of D are meant for conditional compilation:

 debug

 version

 static if

Debug Statement in D

The debug is useful during program development. The expressions and statements that

are marked as debug are compiled into the program only when the -debug compiler switch

is enabled.

debug a_conditionally_compiled_expression;

debug

{

 // ... conditionally compiled code ...

}

else

{

 // ... code that is compiled otherwise ...

}

The else clause is optional. Both the single expression and the code block above are

compiled only when the -debug compiler switch is enabled.

Instead of being removed altogether, the lines can be marked as debug instead.

debug writefln("%s debug only statement", value);

Such lines are included in the program only when the -debug compiler switch is enabled.

dmd test.d -oftest -w -debug

30. D ─ Conditional Compilation

D Programming

181

Debug (tag) Statement in D

The debug statements can be given names (tags) to be included in the program selectively.

debug(mytag) writefln("%s not found", value);

Such lines are included in the program only when the -debug compiler switch is enabled.

dmd test.d -oftest -w -debug=mytag

The debug blocks can have tags as well.

debug(mytag)

{

 //

}

It is possible to enable more than one debug tag at a time.

dmd test.d -oftest -w -debug=mytag1 -debug=mytag2

Debug (level) Statement in D

Sometimes it is more useful to associate debug statements by numerical levels. Increasing

levels can provide more detailed information.

import std.stdio;

void myFunction()

{

 debug(1) writeln("debug1");

 debug(2) writeln("debug2");

}

void main()

{

 myFunction();

}

D Programming

182

The debug expressions and blocks that are lower than or equal to the specified level would

be compiled.

$ dmd test.d -oftest -w -debug=1

$./test

debug1

Version (tag) and Version (level) Statements in D

Version is similar to debug and is used in the same way. The else clause is optional.

Although version works essentially the same as debug, having separate keywords helps

distinguish their unrelated uses. As with debug, more than one version can be enabled.

import std.stdio;

void myFunction()

{

 version(1) writeln("version1");

 version(2) writeln("version2");

}

void main()

{

 myFunction();

}

The debug expressions and blocks that are lower than or equal to the specified level would

be compiled.

$ dmd test.d -oftest -w -version=1

$./test

version1

Static if

Static if is the compile time equivalent of the if statement. Just like the if statement, static

if takes a logical expression and evaluates it. Unlike the if statement, static if is not about

execution flow; rather, it determines whether a piece of code should be included in the

program or not.

The if expression is unrelated to the is operator that we have seen earlier, both

syntactically and semantically. It is evaluated at compile time. It produces an int value,

either 0 or 1; depending on the expression specified in parentheses. Although the

D Programming

183

expression that it takes is not a logical expression, the is expression itself is used as a

compile time logical expression. It is especially useful in static if conditionals and template

constraints.

import std.stdio;

enum Days

{

 sun,

 mon,

 tue,

 wed,

 thu,

 fri,

 sat

};

void myFunction(T)(T mytemplate)

{

 static if (is (T == class))

 {

 writeln("This is a class type");

 }

 else static if (is (T == enum))

 {

 writeln("This is an enum type");

 }

}

void main()

{

 Days day;

 myFunction(day);

}

When we compile and run we will get some output as follows.

This is an enum type

D Programming

184

Part II – Object Oriented D

D Programming

185

Classes are the central feature of D programming that supports object-oriented

programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation and

methods for manipulating that data into one neat package. The data and functions within

a class are called members of the class.

D Class Definitions

When you define a class, you define a blueprint for a data type. This does not actually

define any data, but it defines what the class name means, that is, what an object of the

class will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class

body, enclosed by a pair of curly braces. A class definition must be followed either by a

semicolon or a list of declarations. For example, we defined the Box data type using the

keyword class as follows:

class Box

{

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

}

The keyword public determines the access attributes of the members of the class that

follow it. A public member can be accessed from outside the class anywhere within the

scope of the class object. You can also specify the members of a class as private or

protected which we will discuss in a sub-section.

Defining D Objects

A class provides the blueprints for objects, so basically an object is created from a class.

You declare objects of a class with exactly the same sort of declaration that you declare

variables of basic types. The following statements declare two objects of class Box:

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 have their own copy of data members.

31. D ─ Classes and Objects

D Programming

186

Accessing the Data Members

The public data members of objects of a class can be accessed using the direct member

access operator (.). Let us try the following example to make the things clear:

import std.stdio;

class Box

{

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

}

void main()

{

 Box box1 = new Box(); // Declare Box1 of type Box

 Box box2 = new Box(); // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 box1.height = 5.0;

 box1.length = 6.0;

 box1.breadth = 7.0;

 // box 2 specification

 box2.height = 10.0;

 box2.length = 12.0;

 box2.breadth = 13.0;

 // volume of box 1

 volume = box1.height * box1.length * box1.breadth;

 writeln("Volume of Box1 : ",volume);

 // volume of box 2

 volume = box2.height * box2.length * box2.breadth;

 writeln("Volume of Box2 : ", volume);

}

D Programming

187

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed directly

using direct member access operator (.). Shortly you will learn how private and protected

members can be accessed.

Classes and Objects in D

So far, you have got very basic idea about D Classes and Objects. There are further

interesting concepts related to D Classes and Objects which we will discuss in various sub-

sections listed below:

Concept Description

Class member functions

A member function of a class is a function that has its

definition or its prototype within the class definition like any

other variable.

Class access modifiers
A class member can be defined as public, private or protected.

By default members would be assumed as private.

Constructor &

destructor

A class constructor is a special function in a class that is called

when a new object of the class is created. A destructor is also

a special function which is called when created object is

deleted.

The this pointer in D
Every object has a special pointer this which points to the

object itself.

Pointer to D classes

A pointer to a class is done exactly the same way a pointer to

a structure is. In fact a class is really just a structure with

functions in it.

Static members of a

class

Both data members and function members of a class can be

declared as static.

Let us understand these in detail:

D Programming

188

Class Member Functions in D

A member function is a function specific to a class. It operates on any object of the class

of which it is a member, and has access to all the members of a class for that object.

A member function is called using a dot operator (.) on a object where it manipulates data

related to that object.

Let us put above concepts to set and get the value of different class members in a class:

import std.stdio;

class Box

{

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

 double getVolume()

 {

 return length * breadth * height;

 }

 void setLength(double len)

 {

 length = len;

 }

 void setBreadth(double bre)

 {

 breadth = bre;

 }

 void setHeight(double hei)

 {

 height = hei;

 }

}

D Programming

189

void main()

{

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 // volume of box 1

 volume = Box1.getVolume();

 writeln("Volume of Box1 : ",volume);

 // volume of box 2

 volume = Box2.getVolume();

 writeln("Volume of Box2 : ", volume);

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Class Access Modifiers in D

Data hiding is one of the important features of Object Oriented Programming which allows

preventing the functions of a program to directly access the internal representation of a

class type. The access restriction to the class members is specified by the labeled public,

private, and protected sections within the class body. The keywords public, private, and

protected are called access specifiers.

A class can have multiple public, protected, or private labeled sections. Each section

remains in effect until either another section label or the closing right brace of the class

body is seen. The default access for members and classes is private.

D Programming

190

class Base {

 public:

 // public members go here

 protected:

 // protected members go here

 private:

 // private members go here

};

The Public Members in D

A public member is accessible from anywhere outside the class but within a program. You

can set and get the value of public variables without any member function as shown in the

following example:

Example

import std.stdio;

class Line

{

 public:

 double length;

 double getLength()

 {

 return length ;

 }

 void setLength(double len)

 {

 length = len;

D Programming

191

 }

}

void main()

{

 Line line = new Line();

 // set line length

 line.setLength(6.0);

 writeln("Length of line : ", line.getLength());

 // set line length without member function

 line.length = 10.0; // OK: because length is public

 writeln("Length of line : ",line.length);

}

When the above code is compiled and executed, it produces the following result:

Length of line : 6

Length of line : 10

The Private Members

A private member variable or function cannot be accessed, or even viewed from outside

the class. Only the class and friend functions can access private members.

By default all the members of a class are private. For example in the following class

width is a private member, which means until you label a member explicitly, it is assumed

as a private member:

class Box

{

 double width;

 public:

 double length;

 void setWidth(double wid);

 double getWidth(void);

}

D Programming

192

Practically, you need to define data in private section and related functions in public section

so that they can be called from outside of the class as shown in the following program.

import std.stdio;

class Box

{

 public:

 double length;

 // Member functions definitions

 double getWidth()

 {

 return width ;

 }

 void setWidth(double wid)

 {

 width = wid;

 }

 private:

 double width;

}

// Main function for the program

void main()

{

 Box box = new Box();

 box.length = 10.0; /

 writeln("Length of box : ", box.length);

 box.setWidth(10.0);

 writeln("Width of box : ", box.getWidth());

}

D Programming

193

When the above code is compiled and executed, it produces the following result:

Length of box : 10

Width of box : 10

The Protected Members

A protected member variable or function is very similar to a private member but it

provided one additional benefit that they can be accessed in child classes which are called

derived classes.

You will learn derived classes and inheritance in next chapter. For now you can check

following example where one child class SmallBox is derived from a parent class Box.

The following example is similar to above example and here width member is accessible

by any member function of its derived class SmallBox.

import std.stdio;

class Box

{

 protected:

 double width;

}

class SmallBox:Box // SmallBox is the derived class.

{

 public:

 double getSmallWidth()

 {

 return width ;

 }

 void setSmallWidth(double wid)

 {

 width = wid;

 }

}

void main()

D Programming

194

{

 SmallBox box = new SmallBox();

 // set box width using member function

 box.setSmallWidth(5.0);

 writeln("Width of box : ", box.getSmallWidth());

}

When the above code is compiled and executed, it produces the following result:

Width of box : 5

The Class Constructor

A class constructor is a special member function of a class that is executed whenever we

create new objects of that class.

A constructor has exactly the same name as the class and it does not have any return

type at all, not even void. Constructors can be very useful for setting initial values for

certain member variables.

The following example explains the concept of constructor:

import std.stdio;

class Line

{

 public:

 void setLength(double len)

 {

 length = len;

 }

 double getLength()

 {

 return length;

 }

 this()

 {

 writeln("Object is being created");

D Programming

195

 }

 private:

 double length;

}

void main()

{

 Line line = new Line();

 // set line length

 line.setLength(6.0);

 writeln("Length of line : " , line.getLength());

}

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

Parameterized Constructor

A default constructor does not have any parameter, but if you need, a constructor can

have parameters. This helps you to assign initial value to an object at the time of its

creation as shown in the following example:

Example

import std.stdio;

class Line

{

 public:

 void setLength(double len)

 {

 length = len;

 }

 double getLength()

D Programming

196

 {

 return length;

 }

 this(double len)

 {

 writeln("Object is being created, length = " , len);

 length = len;

 }

 private:

 double length;

}

// Main function for the program

void main()

{

 Line line = new Line(10.0);

 // get initially set length.

 writeln("Length of line : ",line.getLength());

 // set line length again

 line.setLength(6.0);

 writeln("Length of line : ", line.getLength());

}

When the above code is compiled and executed, it produces the following result:

Object is being created, length = 10

Length of line : 10

Length of line : 6

The Class Destructor

A destructor is a special member function of a class that is executed whenever an object

of its class goes out of scope or whenever the delete expression is applied to a pointer to

the object of that class.

A destructor has exactly the same name as the class prefixed with a tilde (~). It can

neither return a value nor can it take any parameters. Destructor can be very useful for

D Programming

197

releasing resources before coming out of the program like closing files, releasing memories

etc.

The following example explains the concept of destructor:

import std.stdio;

class Line

{

 public:

 this()

 {

 writeln("Object is being created");

 }

 ~this()

 {

 writeln("Object is being deleted");

 }

 void setLength(double len)

 {

 length = len;

 }

 double getLength()

 {

 return length;

 }

 private:

 double length;

}

// Main function for the program

void main()

{

 Line line = new Line();

 // set line length

D Programming

198

 line.setLength(6.0);

 writeln("Length of line : ", line.getLength());

}

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

Object is being deleted

this Pointer in D

Every object in D has access to its own address through an important pointer called this

pointer. The this pointer is an implicit parameter to all member functions. Therefore,

inside a member function, this may be used to refer to the invoking object.

Let us try the following example to understand the concept of this pointer:

import std.stdio;

class Box

{

 public:

 // Constructor definition

 this(double l=2.0, double b=2.0, double h=2.0)

 {

 writeln("Constructor called.");

 length = l;

 breadth = b;

 height = h;

 }

 double Volume()

 {

 return length * breadth * height;

 }

 int compare(Box box)

 {

 return this.Volume() > box.Volume();

 }

D Programming

199

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

}

void main()

{

 Box Box1 = new Box(3.3, 1.2, 1.5); // Declare box1

 Box Box2 = new Box(8.5, 6.0, 2.0); // Declare box2

 if(Box1.compare(Box2))

 {

 writeln("Box2 is smaller than Box1");

 }

 else

 {

 writeln("Box2 is equal to or larger than Box1");

 }

}

When the above code is compiled and executed, it produces the following result:

Constructor called.

Constructor called.

Box2 is equal to or larger than Box1

Pointer to D Classes

A pointer to a D class is done exactly the same way as a pointer to a structure and to

access members of a pointer to a class you use the member access operator -> operator,

just as you do with pointers to structures. Also as with all pointers, you must initialize the

pointer before using it.

Let us try the following example to understand the concept of pointer to a class:

import std.stdio;

class Box

D Programming

200

{

 public:

 // Constructor definition

 this(double l=2.0, double b=2.0, double h=2.0)

 {

 writeln("Constructor called.");

 length = l;

 breadth = b;

 height = h;

 }

 double Volume()

 {

 return length * breadth * height;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

}

void main()

{

 Box Box1 = new Box(3.3, 1.2, 1.5); // Declare box1

 Box Box2 = new Box(8.5, 6.0, 2.0); // Declare box2

 Box *ptrBox; // Declare pointer to a class.

 // Save the address of first object

 ptrBox = &Box1;

 // Now try to access a member using member access operator

 writeln("Volume of Box1: ",ptrBox.Volume());

 // Save the address of first object

 ptrBox = &Box2;

 // Now try to access a member using member access operator

D Programming

201

 writeln("Volume of Box2: ", ptrBox.Volume());

}

When the above code is compiled and executed, it produces the following result:

Constructor called.

Constructor called.

Volume of Box1: 5.94

Volume of Box2: 102

Static Members of a Class

We can define class members static using static keyword. When we declare a member of

a class as static it means no matter how many objects of the class are created, there is

only one copy of the static member.

A static member is shared by all objects of the class. All static data is initialized to zero

when the first object is created, if no other initialization is present. You cannot put it in

the class definition but it can be initialized outside the class as done in the following

example by redeclaring the static variable, using the scope resolution operator :: to

identify which class it belongs to.

Let us try the following example to understand the concept of static data members:

import std.stdio;

class Box

{

 public:

 static int objectCount = 0;

 // Constructor definition

 this(double l=2.0, double b=2.0, double h=2.0)

 {

 writeln("Constructor called.");

 length = l;

 breadth = b;

 height = h;

 // Increase every time object is created

 objectCount++;

 }

D Programming

202

 double Volume()

 {

 return length * breadth * height;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

void main()

{

 Box Box1 = new Box(3.3, 1.2, 1.5); // Declare box1

 Box Box2 = new Box(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects.

 writeln("Total objects: ",Box.objectCount);

}

When the above code is compiled and executed, it produces the following result:

Constructor called.

Constructor called.

Total objects: 2

Static Function Members

By declaring a function member as static, you make it independent of any particular object

of the class. A static member function can be called even if no objects of the class exist

and the static functions are accessed using only the class name and the scope resolution

operator ::.

A static member function can only access static data member, other static member

functions, and any other functions from outside the class.

Static member functions have a class scope and they do not have access to

the this pointer of the class. You could use a static member function to determine whether

some objects of the class have been created or not.

D Programming

203

Let us try the following example to understand the concept of static function members:

import std.stdio;

class Box

{

 public:

 static int objectCount = 0;

 // Constructor definition

 this(double l=2.0, double b=2.0, double h=2.0)

 {

 writeln("Constructor called.");

 length = l;

 breadth = b;

 height = h;

 // Increase every time object is created

 objectCount++;

 }

 double Volume()

 {

 return length * breadth * height;

 }

 static int getCount()

 {

 return objectCount;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

void main()

{

 // Print total number of objects before creating object.

 writeln("Inital Stage Count: ",Box.getCount());

D Programming

204

 Box Box1 = new Box(3.3, 1.2, 1.5); // Declare box1

 Box Box2 = new Box(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects after creating object.

 writeln("Final Stage Count: ",Box.getCount());

}

When the above code is compiled and executed, it produces the following result:

Inital Stage Count: 0

Constructor called.

Constructor called.

Final Stage Count: 2

D Programming

205

One of the most important concepts in object-oriented programming is inheritance.

Inheritance allows to define a class in terms of another class, which makes it easier to

create and maintain an application. This also provides an opportunity to reuse the code

functionality and fast implementation time.

When creating a class, instead of writing completely new data members and member

functions, the programmer can designate that the new class should inherit the members

of an existing class. This existing class is called the base class, and the new class is

referred to as the derived class.

The idea of inheritance implements the is a relationship. For example, mammal IS-A

animal, dog IS-A mammal hence dog IS-A animal as well and so on.

Base Classes and Derived Classes in D

A class can be derived from more than one classes, which means it can inherit data and

functions from multiple base classes. To define a derived class, we use a class derivation

list to specify the base class(es). A class derivation list names one or more base classes

and has the form:

class derived-class: base-class

Consider a base class Shape and its derived class Rectangle as follows:

import std.stdio;

// Base class

class Shape

{

 public:

 void setWidth(int w)

 {

 width = w;

 }

 void setHeight(int h)

 {

 height = h;

 }

 protected:

 int width;

32. D ─ Inheritance

D Programming

206

 int height;

}

// Derived class

class Rectangle: Shape

{

 public:

 int getArea()

 {

 return (width * height);

 }

}

void main()

{

 Rectangle Rect = new Rectangle();

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 writeln("Total area: ", Rect.getArea());

}

When the above code is compiled and executed, it produces the following result:

Total area: 35

Access Control and Inheritance

A derived class can access all the non-private members of its base class. Thus base-class

members that should not be accessible to the member functions of derived classes should

be declared private in the base class.

A derived class inherits all base class methods with the following exceptions:

 Constructors, destructors, and copy constructors of the base class.

 Overloaded operators of the base class.

D Programming

207

Multi Level Inheritance

The inheritance can be of multiple levels and it is shown in the following example.

import std.stdio;

// Base class

class Shape

{

 public:

 void setWidth(int w)

 {

 width = w;

 }

 void setHeight(int h)

 {

 height = h;

 }

 protected:

 int width;

 int height;

}

// Derived class

class Rectangle: Shape

{

 public:

 int getArea()

 {

 return (width * height);

 }

}

class Square: Rectangle

{

 this(int side)

 {

D Programming

208

 this.setWidth(side);

 this.setHeight(side);

 }

}

void main()

{

 Square square = new Square(13);

 // Print the area of the object.

 writeln("Total area: ", square.getArea());

}

When the above code is compiled and executed, it produces the following result:

Total area: 169

D Programming

209

D allows you to specify more than one definition for a function name or an operator in

the same scope, which is called function overloading and operator overloading

respectively.

An overloaded declaration is a declaration that had been declared with the same name as

a previous declaration in the same scope, except that both declarations have different

arguments and obviously different definition (implementation).

When you call an overloaded function or operator, the compiler determines the most

appropriate definition to use by comparing the argument types you used to call the

function or operator with the parameter types specified in the definitions. The process of

selecting the most appropriate overloaded function or operator is called overload

resolution.

Function Overloading

You can have multiple definitions for the same function name in the same scope. The

definition of the function must differ from each other by the types and/or the number of

arguments in the argument list. You cannot overload function declarations that differ only

by return type.

Example
The following example uses same function print() to print different data types:

import std.stdio;

import std.string;

class printData

{

 public:

 void print(int i) {

 writeln("Printing int: ",i);

 }

 void print(double f) {

 writeln("Printing float: ",f);

 }

 void print(string s) {

 writeln("Printing string: ",s);

 }

33. D ─ Overloading

D Programming

210

};

void main()

{

 printData pd = new printData();

 // Call print to print integer

 pd.print(5);

 // Call print to print float

 pd.print(500.263);

 // Call print to print character

 pd.print("Hello D");

}

When the above code is compiled and executed, it produces the following result:

Printing int: 5

Printing float: 500.263

Printing string: Hello D

Operator Overloading

You can redefine or overload most of the built-in operators available in D. Thus a

programmer can use operators with user-defined types as well.

Operators can be overloaded using string op followed by Add, Sub, and so on based on

the operator that is being overloaded. We can overload the operator + to add two boxes

as shown below.

Box opAdd(Box b)

{

 Box box = new Box();

 box.length = this.length + b.length;

 box.breadth = this.breadth + b.breadth;

 box.height = this.height + b.height;

 return box;

}

The following example shows the concept of operator overloading using a member

function. Here an object is passed as an argument whose properties are accessed using

this object. The object which calls this operator can be accessed using this operator as

explained below:

D Programming

211

import std.stdio;

class Box

{

 public:

 double getVolume()

 {

 return length * breadth * height;

 }

 void setLength(double len)

 {

 length = len;

 }

 void setBreadth(double bre)

 {

 breadth = bre;

 }

 void setHeight(double hei)

 {

 height = hei;

 }

 Box opAdd(Box b)

 {

 Box box = new Box();

 box.length = this.length + b.length;

 box.breadth = this.breadth + b.breadth;

 box.height = this.height + b.height;

 return box;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

D Programming

212

 double height; // Height of a box

};

// Main function for the program

void main()

{

 Box box1 = new Box(); // Declare box1 of type Box

 Box box2 = new Box(); // Declare box2 of type Box

 Box box3 = new Box(); // Declare box3 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 box1.setLength(6.0);

 box1.setBreadth(7.0);

 box1.setHeight(5.0);

 // box 2 specification

 box2.setLength(12.0);

 box2.setBreadth(13.0);

 box2.setHeight(10.0);

 // volume of box 1

 volume = box1.getVolume();

 writeln("Volume of Box1 : ", volume);

 // volume of box 2

 volume = box2.getVolume();

 writeln("Volume of Box2 : ", volume);

 // Add two object as follows:

 box3 = box1 + box2;

 // volume of box 3

 volume = box3.getVolume();

 writeln("Volume of Box3 : ", volume);

}

D Programming

213

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Volume of Box3 : 5400

Operator Overloading Types

Basically, there are three types of operator overloading as listed below.

Sr. No. Overloading Types

1 Unary Operators Overloading

2 Binary Operators Overloading

3 Comparison Operators Overloading

Let us understand D Overloading types in detail:

Unary Operators

The following table shows the list of unary operators and its purpose.

Function Name Operator Purpose

opUnary - Negative of (numeric complement of)

opUnary + The same value as (or, a copy of)

opUnary ~ Bitwise negation

opUnary * Access to what it points to

opUnary ++ Increment

opUnary -- Decrement

http://localhost/d_programming/d_programming_unary_operators_overloading.htm
http://localhost/d_programming/d_programming_binary_operators_overloading.htm
http://localhost/d_programming/d_programming_comparison_operators_overloading.htm

D Programming

214

An example is shown below which explains how to overload a binary operator.

import std.stdio;

class Box

{

 public:

 double getVolume()

 {

 return length * breadth * height;

 }

 void setLength(double len)

 {

 length = len;

 }

 void setBreadth(double bre)

 {

 breadth = bre;

 }

 void setHeight(double hei)

 {

 height = hei;

 }

 Box opUnary(string op)()

 {

 if(op == "++")

 {

 Box box = new Box();

 box.length = this.length + 1;

 box.breadth = this.breadth + 1 ;

 box.height = this.height + 1;

 return box;

 }

 }

D Programming

215

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

// Main function for the program

void main()

{

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // volume of box 1

 volume = Box1.getVolume();

 writeln("Volume of Box1 : ", volume);

 // Add two object as follows:

 Box2 = ++Box1;

 // volume of box2

 volume = Box2.getVolume();

 writeln("Volume of Box2 : ", volume);

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 336

D Programming

216

Binary Operators

The following table shows the list of binary operators and its purpose.

Function Name Operator Purpose

opBinary + Add

opBinary - subtract

opBinary * multiply

opBinary / divide

opBinary % remainder of

opBinary ^^ to the power of

opBinary & bitwise and

opBinary | bitwise or

opBinary ^ bitwise xor

opBinary << left-shift

opBinary >> right-shift

opBinary >>> logical right-shift

opBinary ~ concatenate

opBinary in whether contained in

D Programming

217

An example is shown below which explains how to overload a binary operator.

Example

import std.stdio;

class Box

{

 public:

 double getVolume()

 {

 return length * breadth * height;

 }

 void setLength(double len)

 {

 length = len;

 }

 void setBreadth(double bre)

 {

 breadth = bre;

 }

 void setHeight(double hei)

 {

 height = hei;

 }

 Box opBinary(string op)(Box b)

 {

 if(op == "+")

 {

 Box box = new Box();

 box.length = this.length + b.length;

 box.breadth = this.breadth + b.breadth;

 box.height = this.height + b.height;

 return box;

 }

D Programming

218

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

// Main function for the program

void main()

{

 Box box1 = new Box(); // Declare Box1 of type Box

 Box box2 = new Box(); // Declare Box2 of type Box

 Box box3 = new Box(); // Declare Box3 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 box1.setLength(6.0);

 box1.setBreadth(7.0);

 box1.setHeight(5.0);

 // box 2 specification

 box2.setLength(12.0);

 box2.setBreadth(13.0);

 box2.setHeight(10.0);

 // volume of box 1

 volume = box1.getVolume();

 writeln("Volume of Box1 : ", volume);

 // volume of box 2

 volume = box2.getVolume();

 writeln("Volume of Box2 : ", volume);

 // Add two object as follows:

 box3 = box1 + box2;

 // volume of box 3

D Programming

219

 volume = box3.getVolume();

 writeln("Volume of Box3 : ", volume);

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Volume of Box3 : 5400

Comparison of Operator Overloading

The following table shows the list of comparsion operators and its purpose.

Function Name Operator Purpose

opCmp < whether before

opCmp <= whether not after

opCmp > whether after

opCmp >= whether not before

Comparison operators are used for sorting arrays. The following example shows how to

use comparion operators.

import std.random;

import std.stdio;

import std.string;

struct Box

{

 int volume;

 int opCmp(const ref Box box) const

 {

 return (volume == box.volume

 ? box.volume - volume: volume - box.volume);

D Programming

220

 }

 string toString() const

 {

 return format("Volume:%s\n", volume);

 }

}

void main()

{

 Box[] boxes;

 int j= 10;

 foreach (i; 0 .. 10) {

 boxes ~= Box(j*j*j);

 j = j-1;

 }

 writeln("Unsorted Array");

 writeln(boxes);

 boxes.sort;

 writeln("Sorted Array");

 writeln(boxes);

 writeln(boxes[0]<boxes[1]);

 writeln(boxes[0]>boxes[1]);

 writeln(boxes[0]<=boxes[1]);

 writeln(boxes[0]>=boxes[1]);

}

When the above code is compiled and executed, it produces the following result:

Unsorted Array

[Volume:1000

, Volume:729

, Volume:512

, Volume:343

, Volume:216

, Volume:125

, Volume:64

D Programming

221

, Volume:27

, Volume:8

, Volume:1

]

Sorted Array

[Volume:1

, Volume:8

, Volume:27

, Volume:64

, Volume:125

, Volume:216

, Volume:343

, Volume:512

, Volume:729

, Volume:1000

]

true

false

true

false

D Programming

222

All D programs are composed of the following two fundamental elements:

 Program statements (code): This is the part of a program that performs actions

and they are called functions.

 Program data: It is the information of the program which affected by the program

functions.

Encapsulation is an Object Oriented Programming concept that binds data and functions

that manipulate the data together, and that keeps both safe from outside interference and

misuse. Data encapsulation led to the important OOP concept of data hiding.

Data encapsulation is a mechanism of bundling the data, and the functions that use

them and data abstraction is a mechanism of exposing only the interfaces and hiding the

implementation details from the user.

D supports the properties of encapsulation and data hiding through the creation of user-

defined types, called classes. We already have studied that a class can contain private,

protected, and public members. By default, all items defined in a class are private. For

example:

class Box

{

 public:

 double getVolume()

 {

 return length * breadth * height;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

The variables length, breadth, and height are private. This means that they can be

accessed only by other members of the Box class, and not by any other part of your

program. This is one way encapsulation is achieved.

To make parts of a class public (i.e., accessible to other parts of your program), you must

declare them after the public keyword. All variables or functions defined after the public

specifier are accessible by all other functions in your program.

Making one class a friend of another exposes the implementation details and reduces

encapsulation. It is ideal to keep as many details of each class hidden from all other classes

as possible.

34. D ─ Encapsulation

D Programming

223

Data Encapsulation in D

Any D program where you implement a class with public and private members is an

example of data encapsulation and data abstraction. Consider the following example:

Example

import std.stdio;

class Adder{

 public:

 // constructor

 this(int i = 0)

 {

 total = i;

 }

 // interface to outside world

 void addNum(int number)

 {

 total += number;

 }

 // interface to outside world

 int getTotal()

 {

 return total;

 };

 private:

 // hidden data from outside world

 int total;

}

void main()

{

 Adder a = new Adder();

 a.addNum(10);

 a.addNum(20);

 a.addNum(30);

 writeln("Total ",a.getTotal());

}

When the above code is compiled and executed, it produces the following result:

D Programming

224

Total 60

Above class adds numbers together, and returns the sum. The public members addNum

and getTotal are the interfaces to the outside world and a user needs to know them to

use the class. The private member total is something that is hidden from the outside

world, but is needed for the class to operate properly.

Class Designing Strategy in D

Most of us have learned through bitter experience to make class members private by

default unless we really need to expose them. That is just good encapsulation.

This wisdom is applied most frequently to data members, but it applies equally to all

members, including virtual functions.

D Programming

225

An interface is a way of forcing the classes that inherit from it to have to implement certain

functions or variables. Functions must not be implemented in an interface because they

are always implemented in the classes that inherit from the interface.

An interface is created using the interface keyword instead of the class keyword even

though the two are similar in a lot of ways. When you want to inherit from an interface

and the class already inherits from another class then you need to separate the name of

the class and the name of the interface with a comma.

Let us look at an simple example that explains the use of an interface.

Example

import std.stdio;

// Base class

interface Shape

{

 public:

 void setWidth(int w);

 void setHeight(int h);

}

// Derived class

class Rectangle: Shape

{

 int width;

 int height;

 public:

 void setWidth(int w)

 {

 width = w;

 }

 void setHeight(int h)

 {

 height = h;

 }

35. D ─ Interfaces

D Programming

226

 int getArea()

 {

 return (width * height);

 }

}

void main()

{

 Rectangle Rect = new Rectangle();

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 writeln("Total area: ", Rect.getArea());

}

When the above code is compiled and executed, it produces the following result:

Total area: 35

Interface with Final and Static Functions in D

An interface can have final and static method for which definitions should be included in

interface itself. These functions cannot be overriden by the derived class. A simple example

is shown below.

Example

import std.stdio;

// Base class

interface Shape

{

 public:

 void setWidth(int w);

 void setHeight(int h);

 static void myfunction1()

 {

 writeln("This is a static method");

D Programming

227

 }

 final void myfunction2()

 {

 writeln("This is a final method");

 }

}

// Derived class

class Rectangle: Shape

{

 int width;

 int height;

 public:

 void setWidth(int w)

 {

 width = w;

 }

 void setHeight(int h)

 {

 height = h;

 }

 int getArea()

 {

 return (width * height);

 }

}

void main()

{

 Rectangle rect = new Rectangle();

 rect.setWidth(5);

 rect.setHeight(7);

 // Print the area of the object.

 writeln("Total area: ", rect.getArea());

D Programming

228

 rect.myfunction1();

 rect.myfunction2();

}

When the above code is compiled and executed, it produces the following result:

Total area: 35

This is a static method

This is a final method

D Programming

229

Abstraction refers to the ability to make a class abstract in OOP. An abstract class is one

that cannot be instantiated. All other functionality of the class still exists, and its fields,

methods, and constructors are all accessed in the same manner. You just cannot create

an instance of the abstract class.

If a class is abstract and cannot be instantiated, the class does not have much use unless

it is subclass. This is typically how abstract classes come about during the design phase.

A parent class contains the common functionality of a collection of child classes, but the

parent class itself is too abstract to be used on its own.

Using Abstract Class in D

Use the abstract keyword to declare a class abstract. The keyword appears in the class

declaration somewhere before the class keyword. The following shows an example of how

abstract class can be inherited and used.

Example

import std.stdio;

import std.string;

import std.datetime;

abstract class Person

{

 int birthYear, birthDay, birthMonth;

 string name;

 int getAge()

 {

 SysTime sysTime = Clock.currTime();

 return sysTime.year - birthYear;

 }

}

class Employee : Person

{

 int empID;

}

36. D ─ Abstract Classes

D Programming

230

void main()

{

 Employee emp = new Employee();

 emp.empID = 101;

 emp.birthYear = 1980;

 emp.birthDay = 10;

 emp.birthMonth = 10;

 emp.name = "Emp1";

 writeln(emp.name);

 writeln(emp.getAge);

}

When we compile and run the above program, we will get the following output.

Emp1

34

Abstract Functions

Similar to functions, classes can also be abstract. The implementation of such function is

not given in its class but should be provided in the class that inherits the class with abstract

function. The above example is updated with abstract function.

Example

import std.stdio;

import std.string;

import std.datetime;

abstract class Person

{

 int birthYear, birthDay, birthMonth;

 string name;

 int getAge()

 {

 SysTime sysTime = Clock.currTime();

 return sysTime.year - birthYear;

 }

 abstract void print();

D Programming

231

}

class Employee : Person

{

 int empID;

 override void print()

 {

 writeln("The employee details are as follows:");

 writeln("Emp ID: ", this.empID);

 writeln("Emp Name: ", this.name);

 writeln("Age: ",this.getAge);

 }

}

void main()

{

 Employee emp = new Employee();

 emp.empID = 101;

 emp.birthYear = 1980;

 emp.birthDay = 10;

 emp.birthMonth = 10;

 emp.name = "Emp1";

 emp.print();

}

When we compile and run the above program, we will get the following output.

The employee details are as follows:

Emp ID: 101

Emp Name: Emp1

Age: 34

