&

programming basics

tutorialspoint

S I MPLYEASYULEARNINLG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint

D Programming

About the Tutorial

D programming language is an object-oriented multi-paradigm system programming
language. D programming is actually developed by re-engineering C++ programming
language, but it is distinct programming language that not only takes in some features of
C++ but also some features of other programming languages such as Java, C#, Python,
and Ruby.

This tutorial covers various topics ranging from the basics of the D programming language
to advanced OOP concepts along with the supplementary examples.

Audience

This tutorial is designed for all those individuals who are looking for a starting point of
learning D Language. Both beginners and advanced users can refer this tutorial as their
learning material. Enthusiastic learners can refer it as their on-the-go reading reference.
Any individual with a logical mindset can enjoy learning D through this tutorial.

Prerequisites

Before proceeding with this tutorial, it is advisable for you to understand the basics
concepts of computer programming. You just need to have a basic understanding of
working with a simple text editor and command line.

Disclaimer & Copyright

© Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com.

D tutorialspoint

S1M Y ASYLEARNING

mailto:contact@tutorialspoint.com

D Programming

Table of Contents

PN oo U d YT NV o] g - | LU PURTRP i
F B o 1= o ol USSR i
e T g To [T (=TT PP PP PP UPPTPPPPTRNt i
(1R T =T R 0 o1V = o | PP URTPR i
HIE] o1 [l e) d Oo] o1 =T o | £ USURN i
PART | - D PROGRAMMING BASICS ...ttt eeeeeetiieee e e e eeevateeee s e e e eeseatatseeeesesesessnnnnnseseeesennns 1
L. D — OVEIVIEW .. ceeeeiiiiiiiiiiennneiiiiiiitennsssssssiisssnsssnssssssssssssnnssssssssssssnnnsssssssssssnnnnes 2
VLUl o] LI o= T =T L= o TSRS 2
LBAMNING D e et e e e e e e e et et e e e e aaeaees 3
Yole] o T o] D LT TP T PP PPPORUPRPPRRROPPROt 3
2. D —ENVIFONMENT .cceiiiiiiiiiiiiiiiiiitiiitttieeteeeeiteeeeeeetteteetesseteeteesssns 4
TrY it OPLION ONIINE .ottt e e st e et e st e e bt esa bt e sab e e sabeeeaseesabeesaneesabeesnneess 4
Local ENVIroNmMENnt SETUP fOr D....iiuiiiiiieiieeeie ettt ettt ettt st e st e sateesat e e sabeesaneesaneesaneens 4
Text Editor fOr D Programming.......c.cooceeeiieeeiieeniee ettt ettt e st e st e st e st e sabeesabeesabeesabeesaseesabeesnseesabeesnneens 4
B I T3 D 0 4 Yo 1= PRSP PRPROt 5
INSTallation Of D ON WINGAOWS ..cccuiiieiiiiieeccieee ettt et e ettt e e e e tte e e stte e e e sateeeeeastaeesatsaeeeasteeeeansseeessbeaeesssaeenannes 5
INStallation Of D ON UDUNTU/DEDIAN ...ueeveeiieieieieieeeeee ettt e e e e eeeerteeeesesesbaseeeeesesessasteeeesssessesseesesssanssnnees 6
INSTallation Of D 0N IMIAC OS X o.oiuiiiie e ettt et e st e e et e e e e tte e e sbte e e e sabaeeseastaeesssaeeeastseeeanssseessbeeeenssanesanses 6
INStAllation OF D ON FEAOIAuuiieiieii ettt e e e et e e e e e e e e tasaeeeeeeseabasaeeeeeesenssnsaeeeeeesennnnrees 6
Installation Of D 0N OPENSUSE..........uii ittt ettt sttt e st e st e st e st e esabeesateesabeesaneesabeesaneens 7
D 15 U PPPPRN 7
T 0 T = = [og 4 - 8
T A DI e o =41 o o PSP PTPPPPPRUPIN 8
PO N D e 8
Main FUNCEION ..o e e e e e e e e 8
B o] =T 0 T 1 0 USRS 9
(000 101 0 1= 01 £SO 9
To 1Yo 1T PSSR 9
[N o o F3 SRR 10
LAY T =T o ¥ Lol I 1o T PSRRIt 11
L 0 T Y= 4 T 1 <] (=T N 12
Variable Definition iN D...iiiuiie et e e e et e e e st e e s ate e e s aaee e e s beeeeenteeeenaeeeennreeeeanne 12
Variable DECIaration iN Duuieeie it e e e e e s e e e e e e st bt e e e e e e e saabbtaeeeeeesenbrtraaeaeesanarrrres 13
RV [T Ta Lo B 2V | LY 1o T PPN 14
LT 0 Tl B -1 - Y « Y 16
N T Ty DS it e e e e e e e e 16
[T TN T Y=t o YT o Y/ o 1= SRS 18
(0 0T = ot =] gl Y] 1= S PS 19
LI IR o I Y] 1= S 20
]

®

\ tutorialspoint

SIMPLYEASYLEARNINEG

10.

11.

D Programming

D — ENUMS couiiiiiiiiiieiiiiiiieeeeeiieiitieeseasssiseeseeessassssssssteesssssssssssseeesssssssssssseesssssssssssseesssssssssssseessnssssssssnnens 21
TRE ENUM SYNTAX 1.ttt ettt s e e et e sa bt e e ab e e s bt e e bt e e s bt e e bt e e sab e e bt e e sabeeabeeesnneeneeennneennees 21
NAMEA ENUMS PrOPEITIES ..couvtiiiiieiiieeeiie ettt ettt ettt e sab e e ebe e e s bt e s be e e s bt e e bt e e ssneeneeesnnesaneas 22
ANONYMOUS ENUML.ciiiiiiiiiiiiiiiii it a e e s a s s e e e s s aa s s e e e s s senanaes 23
ENUM With Base TYPE SYNEAX ..iiiiiiuiiiiiiiieeiiiiee ettt sstte e sttt e s s ite e e ssaeeessbaeeessabeeessaseeesssbaeeesssseeesnssnnessseeaenns 23
Y Lo T TN =T Y AU =T U 24
Tl =T | L
T A=Y ==Y QLT | KSR
Floating Point Literals
2eTo] LT Lo I =T | £ T TP TOP PP
(0 T ot W =T o L SR SUTPPR
SEIING LITEIALS ettt ettt e s e et e s bt e e bt e e sb b e e e bt e e sab e e e ab e e sabeeeab e e sabeeenbeesareenanee s
D T 0T =T = o N 30
ATTENMETIC OPEIATOIS...eiiiieeieeeiteeet ettt ettt sttt e be e s bt e bt e s bt e bt e sabe e e bt e sabeeesabesbeeesneeeanees 30
RO LA Lo - I @ oT=T =1 o] £ SRR 32
(oY ={Tor: | 0] o= - o] -SRI 34
BItWISE DDAt OrS i e e e e 36
FAN o da] g =T L O] o L= - | o] £ T T TP 38
Miscillaneous Operators - Sizeof aNd TEINAIYccociiie et erre e erre e s re e e e eare e e e eraee e sraeaeens 41
OpPErators PreCeAENCE IN D...couiiiiieeiiieiieete ettt ettt ettt et et e st e e s at e e sabeesabeesabeesabeesabeesateesareenaneens 42
0 Tl o T o F S 45
WWNITE LOOP .ttt ettt ettt et sttt et e st e e bt e s a b et s bt e sab et s bt e s beeebeesabeeebeesabeeennbeebeeenneeeanees 46
JOF LOOP ettt ettt ettt e sa bt e et s b e e et e e s bt e e bt e s bt e ebee s beeeneesabeeenee st 48
[0 IRV 11 =3 W Yo o FO RSP 50
VTR =T I o] o 1SRN 52
[WoTo o M@oY g N i fo] I = 1 =] 4o T=T o] &SRS 54
BreaK STAtEMENT ...ci ettt ettt e sttt e e st e e e e bttt e s bt e e e s b bt e e e aab e e e seabbeeeaabbeeeennteeesaaneeas 55
CONEINUE STATEMEBNT ...ttt ettt e e e e e st e et e e e s e e b et et e e e sesnnbateeeeesesannbeneeeeeeesannnnnees 56
BT 0 11 (=N o o o J PSP 58
D — DECISIONS ceevrrrrrrrerrreereeeeeeeeeeeereeesseessessessnns
L7 1T 1 T=T 0 T T SR SPRNt
] =1 =) = 14 =11 0 1=1 o1 USRSt
The if...else if...else Statement
N I =Te I = =T 0 1=) &SRS
SWILCH STAtEIMENTeiiiiiiee ettt ettt e e st e e e bttt e s bt ee e sabbeeeeaabeeesaasbeeesabbeeeennbaeesaasaeessssaaenns
Nested Switch Statement
BN (oI O o 1=T =1 (o] T T U USPRN
D — FUNCHIONS ceeveririeiiniiiiiiiiieiiiieeiieeeeeeieeeeseeeesesssnss 71
FUNCLION DEFINITION 1N Dvviiiiieeite ettt ettt ettt et e sab e sb e e e s bt e e bt e e sabeesbteesbbeebeeesnsesnneas 71
(0711 1 == TN U ot oY o TSP 71
FUNCEION TYPES IN D cetriiiiiiiiiiiiiieeee ettt ettt e e s e ettt e e e e e s e saabaeeeaeesesassbaeaeeeeessassasaeeeasssnssnnseneeenssanes 71
PUFE FUNCTIONS .ttt ettt et ettt e e e e ettt e e e e e e s s be et e e e e e e s aabe b e e e eeeesanbnbeeeeeeesennnbeeeeaeeaanann 72
NOTRIOW FUNCHIONS ..ottt ettt e e ettt ettt e s st e e e s abe e e sabaeessabbeeessbeeessasaeessabaeaanas 73
RET FUNCHIONS 1.ttt et e ettt e e st e e sttt e e s s abteeesabeeesaabaeessabbeeeesbaeesaasaaeessaeaanns 73
FANT | o I U] ool A o] K- PP OO U PPPUPPPPRRRPOt 74
iii
®

\ tutorialspoint

SIMPLYEASYLEARNINEG

12.

13.

14.

15.

16.

D Programming

VA= Te Lol ST T ot e o OO PSPPI 75
INOUT FUNCEIONS ..ttt ettt e e e e ettt e e e e e e s abe et e e e e e e s aabebteeeeeesaanbnbaeeeaeesenannbaaaeeeesanann 76
Property FUNCEIONS ...cooiiiiiiiiiieeee et e e st s a e e s e e e s e b e e e sennae e s sraeeeeas 77
D — CRAraCtOrS.ccceeeeeeeeeeeeeeeeeeeeeeeeeeeesss 79
REAING CharaCters iN Di....ceoueeeieiiiieeiee ettt ettt et si e bt e sab e e bt e e sbbe s be e e sabeebeeessnesbeeesnnesnneas 80
D — SEEINES cuuiiiiiiiiiieniiiiiiiitereeiieeitieenesssssesitsesnsssssssssssssnnsssssssssssssnssssssssssssnnnssssssssssssnnnssssssssssannnnsssssssanes 82
(0 T T = ot =] g\ 1 RSP 82
(O] C N T =LY< d< I o o o -SSP POPRPRORORPON 82
N gl aT- Ofe] g Lot 1 1T o T- | o] o ISR OSSOSO PP PRPRPRORPON 83
oYY oYY {1 V=< USSR 84
SEFING COMPATISON .ttt s e e s a e e e s b e e s b b e e s s b bt e s e amb e e e smba e e s saraeesennreeesannneas 84
REPIACING STIINES . c.neeiiiiieiee ettt ettt b et e b e e sb bt e bt e e sbb e e bt e e sbb e e bt e e sbbe e bt e e ssnesneeesnneennees 85
[T Yo 13 g 1Y, 1=3 1 oo Yo LSS 86
HaNAINE CaSES..eiiueteiiiieite ettt ettt ettt ettt et ae e s ht e e bt e s bt e e bt e e sb e e e bt e e sbb e e bt e e sbb e e be e e sabeebeeesaneeneeesaneenees 86
T d g Tot] o= @ o T T = ot =] USRS 87
D T L Y - S
[Tol Yo =g V4 - 12U
Initializing Arrays
ACCESSING AITAY EIEMENTS .. .tiiiiiiiii ettt ettt e st e e e et te e e eette e e e s baeeeessaeesssaeeeastsaeeesseeesssaeeaasseeanannes 89
Static Arrays Versus DYNamMIC AITAYS ..cooiuueeiiieeeiiitee ettt e st e s et e seere e s sr e e s e ssre e e snrne e e sreeesennreeesannneas 90
LN AV o] oT=T o A= PP PP PO PPRTPPPPIN 90
Multi DIMeNSIONal Arrays iN D c...eeeieeeeieeiieeiee ettt ettt e st e bt e sat e e be e e sabeesbe e e sanesbeeesnnesnees 92
TWO-DIMENSIONAI ArTays iN D .eoueiiiieieiieiieeee ettt ettt ettt e st e st esat e e sbe e e sabeesbeeesaneeneeesaneeneas 92
INitializing TWO-DIMENSIONAI AITAYSviiiiiiiieieiiee e eciee e st e e e ertte e e eetee e e s taeeeettseeesasaaeessseeeenssaeesansaneessssesanns 93
Accessing TWo-Dimensional Array EI@MENTSccocuiiiiiiiieceiee ettt e e e tr e e e etre e e sareeeesabaeeeennns 93
CommON Array OPEratioNS iN Di...uuuuuuueueueuiieiiiiieiiieieueueuereuereee . ——————————————————————————————————a—a—a—a—atarararara—————. 94
D — ASSOCIATIVE AITAYS . eiieereeeniiiiriieennnsiiiiererennnsssssessereennssssssssssssnnsssssssssssssnnssssssssssssnnnssssssssssennnnsssssssanes 97
[NItIAliZING ASSOCIAtIVE AITAY ...vviiiieiiiiiiiiiieee et e e e e e e e e e e e sttt e e e e e e eessabataeeeeeesessstaeeeaessessnstannaasseannes 98
Properties Of ASSOCIAtIVE ATuiiiciieeiiiiieeeiier e eette e e st ee e et te e e esaeeeesbaeeesssteeesassaeeesssaeeesnsseeessnseneesnsseaeans 98
D — POINTEIS.ceiiieiieiiieeiieieiereeeeeeieeeeeeeeeeeeseeeeesesssnnns 101
WAt A8 POINTEIS? .ttt ettt st e st e st e et e s be e sabeesabeeeabeesabeesaseesabeesnseesabeesseesane 101
Using Pointers in D programming
INUTT POINTEES <.ttt ettt et e ettt e sttt e e s a bt e e e e bttt e saaba e e e sabbeeeeaabaeesaasbeeesanbaeesanbbeesanbaeesnasaeas
POINTEN AFTNMETIC «.etei ettt e st e e e st e e s st e e e s bt e e s sabeeeessbeeesnneeas
INCreMENTING @ POINTEE oo e e e e e ee s
PO NE OIS VS AT Y i
(o[a L =T g (o T o] o | = ST PP PPPTPUPPTRN
Passing POINTEr 0 FUNCLIONSuuiiiiiiiiiiiiiiei ettt e e e e st e e e e e s seaabeeeeeessesaaraaaeesssennns
Return Pointer from FUNCHIONSoouiiiiiiieet ettt et st sae e sbe e sneesane
(o] oL =T o (o T T T o - VPP PUPTRN

iv

®

\ tutorialspoint

SIMPLYEASYLEARNINEG

17.

18.

19.

20.

21.

22.

23.

D Programming

[0 1T o1 [N 111
TUPIE USING TUPIE() -veneeenieeiieeiteie ettt ettt eh e b e b ettt e st e st e sheesbeesbeebeeateeabesaeasbeenbeenbenn 111
Tuple USING TUPIE TEMPIATE....cooiieiiii ettt st st e st sbe e s aee e sareesaeee s 111
Expanding Property and FUNCEION Params.........cueiiiiiiiiiiiiieiieeiee ettt ettt see e s s 112
TYPETUPIE ettt et e b e bt e bt e e bt e e eb e e e bt e e sb b e e bt e e sa b e e he e e sab e e he e e sabeeenneesareeenreens 113
[Y ¥t T SN 115
DEfINING @ STIUCTUIE ..o ieeee ettt ettt e e e e et e e e st e e e et e e e seaeaeeesasseeeestaeeeasssaeesssaaeeasssaesansteeesnseens 115
ACCESSING STIUCTUINE IMEMDEIS ...ttt et e et re e st e e e ata e e s easraeesasseeeestaeesanseaeesnsaeeaans 116
STruCtures a@s FUNCLION AFSUMIENTSuuuuuuiiieieiiiiieiiieiettieieiatetabarererarererereberebarebabebarebababebebassserssesesesssssnsssnnnns 117
SEIUCES INIHIANIZATION 1ueeieiiii et e et s bt e e bt e e sbte e be e e sabeebeeenaeeenbeas 119
) L4 (ol 1V =T oo o 1T PRSPPIt 120
0 T U 3o T o N 122
DefiNiNg @ UNION N D ..ttt ettt ettt et e s bt e bt e s bt e bt e s be e e bt e s beeebeesabeeenbeesabeesneenane 122
ACCESSING UNION IMIEBIMDETS ..ottt et sttt st e e st e st e st e s bt e s bt e sbeesabeesbeesabeesneenane 123
[0 Tl 3= T <N 126
N U Ta oY YT = T = =TSSR 126
[0] oTo I 2TV XSRS 126
INPUERANEE e 126
FOIrWAITRANEE. ..ttt e e e e st e e e e e e st at e e e e e e e sesbataaeeeeesassstaaeeeessansnstaaeeeessannstanneeeeeanes 129
BidirECTIONAIRANEE ...ttt ettt ettt b et e he e s bt bt e e bt bt e s b e e bt e s beeenee et 130
INfinite RANAOMACCESSRANEE .. .veiiiiiiiiiiieeeet ettt ettt et e sbt e s bt s bt e sabeesbeesabeesneenane 132
Finite RANAOMACCESSRANEEecuviiiiiiiiii ettt ettt ettt et ettt s bt e sae e s bt e s bt e s be e s beesabeesbeesabeesneenane 134
OUTPUTRANEE ..ttt e s e e e e e s e s e et e e e e s e s raraeeeesesannnnaee 139
D — AlI@SES . iiiiuunereeiiiiiiiiisneeeetiiiisssssnnseessssssssssnssesssssssssssssssanssssssssssssesssssssssssnnsesessessssssnsassssessssssnnaans 141
F YL T oY= T VT o] L= UURUPRSR 142
AlIaS TOI DAL TYPES coenuiieeeiiiie e ettt ettt e e ettt e e e ette e e eebaee e sbaeeeesataeeeeabaeeesbsaaaaastaseaansaasessseaeastaeeeanseseessreaaans 142
AlTas fOr Class Variablescueiiiiiiieeiiienieesiee sttt st re e st esbeesbeesaeesabeeenbeesabeesbeesnbessseesnns 143
ALIAS TS ettt ittt ettt e e ettt e s eab b e e e sttt e e e bttt e s aabte e e ea bt e e e e abe e e e bt e e e sabte e e e abeeeseabteeesbaeeeaas 144
D — IIIXINS cerrreeeerreeneeeeeeeeeeeeememeeeeeeseeeeessesssnnnss 146
SELINE IMIIXINS ittt e e e e e sttt et e e s s e bbbt e et e e e sasate b e aeeeeesaaasbaaaeaessesasbstaeeessssnssnnranesesssnnnsnnnns 146
TEMPIALE IMIIXINS ceriieetieeeetee et e s e e et e e e sttt e e s aa e e e e sataeeeeaaseeesasaeeeessseeaeassteeesssaeeesnseeeeannseeesnnsnns 147
YT W N T TR o X (ol = PP PPPPPTRN 148
D — IMOUIES c.cceeeernrreneeneeneeeeeeeeeeeeeseeeeeeeeeeeeesessssessnnns 150
File and IMOAUIE NGMES ...coiiiiiieiee ettt e e e sttt e e st e e s sa bt e e s saabeeesabbteessnbbeeessbeeesnneeas 150
B o Tol & T TSP PUPRN 151
USING MOUIES IN PrOSIamS ... ueiiiieeieieicciiieeee e e e sttt e e e e e e etate e e e e e e e et taaeeeeesesanstaaaeeessesnntasseeeseessnssannaeeens 151
LOCALIONS OF IMOTUIES ..cvveiiiieiiit ettt et ettt e st e e sba e e be e e sbaeesbeeenbeesabeesnbeesabeesseasnns 152
Long and Short ModUlE NAMEScccceiiiiiiiie et et e e e e e e ere e e st e e e e s e e e ssanteeesnseeeesnssaesennseeesnneens 152
\

®

\ tutorialspoint

SIMPLYEASYLEARNINEG

D Programming

b 2 S B -1] o] =1 TN 155
FUNCEION TOIMPIATE ittt ettt ettt et e b e e s bt e sbe e s be e e bt e s b et e bt e sabeeebeesabeesneesane 155
Function Template with Multiple TYpe Parameterscoouiiieiiiiieeeiereeeee ettt 156
Cl1aSS TEMIPIALES ...ttt ettt ettt e b e s bt e bt e s bt e e s be e e bt e e ebbe s be e e eabe e ne e e nnreeneas 156

AT o Tl 1431 0 10 =1 « 1 =N 159
Types of Immutable Variables iN Deiiiieeeee ettt e raae e e e st e e e enta e e ennnaeas 159
€NUM CONSTANTS TN Dt e e e e e e e s e s er e e e e s e s nrereeeeesesannnnnnee 159
IMMUEADIE Variabhles iN D ..couieiiiieiieeiit ettt s sae e st e e s sbae s be e s nbeesbaesbeesabaesneesane 160
CONSEVAMADIES TN D ettt ettt et s b e e s bt e e bt e s sbb e s bt e e bbesbe e e sbae e beeenabeebeeenareeres 161
IMMUEADIE ParameEters iN D....eoiieieecie ettt ettt s saaesbe e s sbee s be e s sbeesbeesnbeesabaesseesane 162

p LT o Il 1 [1/ o RSSO 163
OPENING FIlES 1N D ittt ettt ettt ettt e sbt e e bt e be e e bt e ab e e e bt e bt e s be e e baeeabe e e ssbesbeeesaneeneeenneeeneas 163
ClIOSING @ FIlE TN D ittt ettt e b e ettt e be e s bt e bt e e bt e e bte e bt e e st e e beeesabesnbeeesnneennees 164
WIEING @ FIlE N D ettt ettt s e st e e bt e sab e st e e sab e e s bt e s beeeabeesabeesaseesabeesneenane 164
2UT= Lo oY== T 1 (=3 o 1 RS 164

27. D — CONCUITENCY cuuuiiienniiirensiiiressssiressssissssssiensssstsssssstsssssstassssssssssstsssssssssssssssasssstsssssssssssssssssssstsnnsssssnnsss 167
Fo A=Y T oY= g V=T Lo 1 PR 167
THread IAENTIfIEIS IN D ..viiiiiiiie ettt ettt sa e e sat e e sab e e st e e e sabeesateesabeesaseesstaesaseesaseensseens 168
MESSAZE PaSSING IN D.ceieeiiiiiiiicc e 169
Message Passing With Wait i Deiiiiieiii ettt ettt ebee s b e e saeeeane 171

28. D —EXCeption HANAIING ...cccceviiiiiiiiiiiieiiiiiiiiiieieeeemeeeeeeeeeeeeeeessess 173
ThroWing EXCEPLIONS IN D ..ceiuriiiiieeiii ettt ettt ettt ettt e s it e bt e sabeesae e e sabeesaeeesabeesaneesateesnneens 174
CatChing EXCEPLIONS IN D.cuuviieiiiiiiieeiee ettt ettt ettt ettt et e bt e s bt e s bt e sbee e bt e e sbee s bt e e sanesnbeeesneeenneas 174

29. D —Contract Programmingcccccceiiiiiiiiiiimeeiiiiiiiieennssssssssiieesnsssssssssssssnnssssssssssssnnsssssssssssssnnssssssssssssnnnns 177
2 ToTo LY =] o Yol | o TN LR URPRN 177
IN BIOCK fOr Pre CONAITIONS IN D .uviieiiiiiiiiiieiiit ettt esite st st s s siae st e s sbaesba e ssseessbeesbeesnbaesseasane 177
Out Blocks for POst CONAItIONS 1N D ...uvveeieiiiiiiiiiciiteriie ettt sae s siaeesba e e sbaeesba e e saaeebaeesaeeenaeas 178

30. D —Conditional CompPilatioN.......c...cciiiiiiiiieiiiiiiiiieeisceerrreereeesse s s esesnnsssssesssssennsssssssssssssnnsssssssssesnnnnns 180
(=] o0 F ey - 1 4=Y o =T o o T R 180
Debug (tag) STAateMENT IN D ...uicceiieiieecie ettt e tee et e e te e s ta e e saaeebaeeseeebaeeaseesseeanseesnsaeeseennns 181
Debug (IeVel) STAatEMENT IN D..iccuiieieieeciie e eeiie ettt et e et e et e e tee e ta e e saaeebaeesseeebaeeasaessseeanseesnseeenseesnns 181
Version (tag) and Version (level) Statements in D.....cccceicieeeieeiiee et steeetee st e evee s e s reesraeeeee e 182
Y- 1 4o | TP PTOPP 182

PART Il — OBJECT ORIENTED D...ovvvvvvrrviriiiiiiiiiiiiiiiiiiiiiieiiieisieisisisisisisrsrsesnsrssasasasaanasanannnannnn. 184

31. D —Classes aNd ODBjJECESccieiiireeuiiiiiiiiiineeiiiertieeenensseseeeeennnsssssesseeennnssssssssssssnnsssssssssssssnnssssssssssssnnnns 185
D Class DEFINITIONS ...ueiiiiiiiiiiiiee ettt ettt e e sttt e e s e bte e e s bbe e e s sabteeseasbeeesbbaeessabbeesensteeesnneeas 185
D1y T YL a T D@ oot £ 3R 185
ACCESSING The DAta MEIMDEISviiieiiee et ee e e e et e s e e e sate e e esaaee e e snaeeesstaeesnnseeeesnnenaaans 186
(0TI T o [@] o =T o1 w3 1o TN 0 USRS 187
Class Member FUNCLIONS 1N D ...oiiiieiiiiiiieeiie ettt ettt sttt sba e s bt e e bt e s be e e saaesbeeesneesnneas 188
Class ACCESS MOIfIEIS IN D..eeeuveiiiieiiiieiieeiet ettt ettt ettt ettt e s bt e s bt e e sbte s bt e e sate s beeesaeesbeeesssesabeas 189
The PUDIIC MEMDBEIS IN Dottt ettt e et e e st e e s st e e s s ate e e sabaeessabbeeesnbaeesaanaeas 190

Vi
®

\ tutorialspoint

SIMPLYEASYLEARNINEG

32.

33.

34.

35.

36.

D Programming

The Private IMEMDETSeei ettt e e et e e et e e st e e e e s aba e e eesteeesssaeeesstaeeeansteeesnsnens 191
BN (ol e (=T =Te LY =T 0 Y o= USSP 193
BN [N O T o o 1 o U ot oY ST 194
Y 1ol (T g <o I @o] o 1 A AU ot o] (PSPPI 195
BN [N O T D=1 4 U ol o ST 196
L0 T3 oY1 g N o<1 o T s T RSP 198
o 1T =T o o T B = T TR 199
Y LA (ol |V =y o oY= o = T 1 - 1RSSRt 201
Y L (ol U a Tt o] T 1Y, =T 41 o 1T RSPt 202
[0 Il 131 U= 4 =T oS 205
Base Classes and Derived Class@S iN D.......eeiiiciciiiiiee e ccciiieeee e e eecrree e e e e e eeetare e e e e e e sesanraeeeeeesesanraaeeeaaeennns 205
Access CoNtrol anNd INNEITANCEeuieiiiee et e et e e e e e e e ra e e e e e e s e anraeeeaaeeeans 206
MU LEVEI INNEIITANCE ..ottt e e e e e e et e e e e e e e seeaaraeeeeaeseaaasaeeeaeesesnstaaaeaaeeannns 207
[0 0 11T 4 [T o 11V N 209
U o Yot oY W @AY= g (o =T [1 Y-SR 209
(0] o1 1o Tl O 1V/=T ¢ [oT-To 110V~ S PRSPPSOt 210
OpPErator OVErlOAING TYPESuviiiiciieeeiiiee e ettt e eeitee e streeeette e e ssaaeeeesabaeeeessaeesassaeeaasteeeeassseesasseeessssanesanes 213
U aF TV O] o L= - 1 (o] &3P PPPPTRTPRS 213
BINANY O At OrS it e e a e e e e e 216
Comparison of Operator OVErloAdiNGcccuiivuieriiiiiriieeit ettt ettt e saeeeaees 219
D — ENCAPSUIAtION....ccciiieiiiiiiiieiieeeieieeeeeeeeeeesseesseesssnnns 222
Data ENCAPSUIGTION TN D.eeeiiiiieiieeitee ettt ettt et sb e e sae e s bt e bt e s b e e s bee s beesbeesabeeeneenane 223
Class DeSIZNING STrat@EY iN D....eiiuieiiiieiieeiit ettt ettt ettt e s e e b et e sbe e s bt e s bt e s be e e saeeebeeesneeennees 224
[0 Il 1Y =T o = Yol 1N 225
Interface with Final and Static FUNCLIONS IN Doviiiiiiee et ettt e e et e e ete e e e 226
D — ADSEract ClassSescceieeeeeuniiiiiiiiienenniiiiiiireennssssesseseennsssssessssesnnssssssssssssnnssssssssssssnnnsssssssssssnnnnsssssssanne 229
U TN o1 A= T A = T [T PR 229
FAN o1y o = Lot U Vot o] o TR URRN 230

Vii

®

\ tutorialspoint

SIMPLYEASYLEARNINEG

D Programming

Part | - D Programming Basics

@Fuporiglspnint

1. D-—Overview

D programming language is an object-oriented multi-paradigm system programming
language developed by Walter Bright of Digital Mars. Its development started in 1999 and
was first released in 2001. The major version of D(1.0) was released in 2007. Currently,
we have D2 version of D.

D is language with syntax being C style and uses static typing. There are many features
of C and C++ in D but also there are some features from these language not included part
of D. Some of the notable additions to D includes,

e Unit testing

e True modules

e Garbage collection
e First class arrays
e Free and open

e Associative arrays
e Dynamic arrays

e Inner classes

e Closures

e Anonymous functions
e Lazy evaluation

e Closures

Multiple Paradigms

D is a multiple paradigm programming language. The multiple paradigms includes,

o Imperative

e Object Oriented

¢ Meta programming
e Functional

e Concurrent

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Example

import std.stdio;
void main(string[] args)
{
writeln("Hello World!");

Leaming D

The most important thing to do when learning D is to focus on concepts and not get lost
in language technical details.

The purpose of learning a programming language is to become a better programmer; that
is, to become more effective at designing and implementing new systems and at
maintaining old ones.

Scope of D

D programming has some interesting features and the official D programming site claims
that D is convenient, powerful and efficient. D programming adds many features in the
core language which C language has provided in the form of Standard libraries such as
resizable array and string function. D makes an excellent second language for intermediate
to advanced programmers. D is better in handling memory and managing the pointers
that often causes trouble in C++.

D programming is intended mainly on new programs that conversion of existing programs.
It provides built in testing and verification an ideal for large new project that will be written
with millions of lines of code by large teams.

PLYEASYLEARNING

m \ tutorialspoint

2. D—Environment

Try it Option Online

You really do not need to set up your own environment to start learning D programming
language. Reason is very simple, we already have set up D Programming environment
online under “Try it” option. Using this option, you can build and execute all the given
examples online at the same time when you are learning theory. This gives you confidence
in what you are reading and checking the result with different options. Feel free to modify
any example and execute it online.

Try following example using Try it option available at the top right corner of the below
sample code box:

import std.stdio;

void main(string[] args)
{
writeln("Hello World!");

}

For most of the examples given in this tutorial, you will find Try it option, so just make
use of it and enjoy learning.

Local Environment Setup for D

If you are still willing to set up your environment for D programming language, you need
the following two softwares available on your computer, (a) Text Editor,(b)D Compiler.

Text Editor for D Programming

This will be used to type your program. Examples of few editors include Windows Notepad,
OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of text editor can vary on different operating systems. For example,
Notepad will be used on Windows, and vim or vi can be used on windows as well as Linux
or UNIX.

The files you create with your editor are called source files and contain program source
code. The source files for D programs are nhamed with the extension ".d".

Before starting your programming, make sure you have one text editor in place and you
have enough experience to write a computer program, save it in a file, build it and finally
execute it.

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

The D Compiler

Most current D implementations compile directly into machine code for efficient execution.
We have multiple D compilers available and it includes the following.

e DMD - The Digital Mars D compiler is the official D compiler by Walter Bright.

e GDC - A front-end for the GCC back-end, built using the open DMD compiler source
code.

e LDC - A compiler based on the DMD front-end that uses LLVM as its compiler back-
end.

The above different compilers can be downloaded from D downloads
We will be using D version 2 and we recommend not to download D1.

Let’s have a helloWorld.d program as follows. We will use this as first program we run on
platform you choose.

import std.stdio;
void main(string[] args)
{
writeln("Hello World!");

Installation of D on Windows

Download the windows installer.

Run the downloaded executable to install the D which can be done by following the on
screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the
file using cd and then using the following steps:

C:\DProgramming> DMD helloWorld.d
C:\DProgramming> helloWorld

We can see the following output.

hello world

C:\DProgramming is the folder, I am using to save my samples. You can change it to the
folder that you have saved D programs.

PLYEASYLEARNING

m \ tutorialspoint

http://dlang.org/download.html
http://downloads.dlang.org/releases/2013/dmd-2.064.2.exe

D Programming

Installation of D on Ubuntu/Debian

Download the debian installer.

Run the downloaded executable to install the D which can be done by following the on
screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the
file using cd and then using the following steps

$ dmd helloWorld.d
$./helloWorld

We can see the following output.

$ hello world

Installation of D on Mac OS X

Download the Mac installer.

Run the downloaded executable to install the D which can be done by following the on
screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the
file using cd and then using the following steps

$ dmd helloWorld.d
$./helloWorld

We can see the following output.

$ hello world

Installation of D on Fedora

Download the fedora installer.

Run the downloaded executable to install the D which can be done by following the on
screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the
file using cd and then using the following steps:

$ dmd helloWorld.d
$./helloWorld

PLYEASYLEARNING

m \ tutorialspoint

http://downloads.dlang.org/releases/2013/dmd_2.064.2-0_i386.deb
http://downloads.dlang.org/releases/2013/dmd.2.064.2.dmg
http://downloads.dlang.org/releases/2013/dmd-2.064.2-0.fedora.i386.rpm

D Programming

We can see the following output.

$ hello world

Installation of D on OpenSUSE

Download the OpenSUSE installer.

Run the downloaded executable to install the D which can be done by following the on
screen instructions.

Now we can build and run a d file say helloWorld.d by switching to folder containing the
file using cd and then using the following steps

$ dmd helloWorld.d
$./helloWorld

We can see the following output.

$ hello world

D IDE

We have IDE support for D in the form of plugins in most cases. This includes,

e Visual D plugin is a plugin for Visual Studio 2005-13

o DT is a eclipse plugin that provides code completion, debugging with GDB.
e Mono-D code completion, refactoring with dmd/ldc/gdc support. It has been part
of GSoC 2012.

e Code Blocks is a multi-platform IDE that supports D project creation, highlighting
and debugging.

3D tutorialspoint

PLYEASYLEARNING

http://downloads.dlang.org/releases/2013/dmd-2.064.2-0.openSUSE.i386.rpm
https://github.com/D-Programming-Language/visuald/releases/download/v0.3.37/VisualD-v0.3.37.exe
http://code.google.com/p/ddt/
http://mono-d.alexanderbothe.com/
http://www.codeblocks.org/downloads/binaries/

3. D -—Basic Syntax

D is quite simple to learn and let’s start creating our first D program!

First D Program

Let us write a simple D program. All D files will have extension ".d". So put the following
source code in a test.d file.

import std.stdio;

/* My first program in D */
void main(string[] args)
{

writeln("test!");

}

Assuming D environment is setup correctly, lets run the programming using:

$ dmd test.d
$./test

We will get the following output.

test

Let us now see the basic structure of D program, so that it will be easy for you to
understand basic building blocks of the D programming language.

ImportinD

Libraries which are collections of reusable program parts can be made available to our
project with the help of import. Here we import the standard io library which provides the
basic I/O operations. writeln which is used in above program is a function in D's standard
library. It is used for printing a line of text. Library contents in D are grouped into modules
which is based on the types of tasks that they intend perform. The only module that this
program uses is std.stdio, which handles data input and output.

Main Function

Main function is the starting of the program and it determines the order of execution and
how other sections of the program should be executed.

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Tokens inD

A D program consists of various tokens and a token is either a keyword, an identifier, a
constant, a string literal, or a symbol. For example, the following D statement consists of
four tokens:

writeln("test!");

The individual tokens are:

writeln

(

"test!"

)

J

Comments

Comments are like supporting text in your D program and they are ignored by the
compiler. Multi line comment starts with /* and terminates with the characters */ as shown
below:

/* My first program in D */

Single comment is written using // in the beginning of the comment.

// my first program in D

Identifiers

A D identifier is a name used to identify a variable, function, or any other user-defined
item. An identifier starts with a letter A to Z or a to z or an underscore _ followed by zero
or more letters, underscores, and digits (0 to 9).

D does not allow punctuation characters such as @, $, and % within identifiers. D is a case
sensitive programming language. Thus Manpower and manpower are two different
identifiers in D. Here are some examples of acceptable identifiers:

mohd zara abc move_name a_123
myname50 _temp j a23b9 retval
9
@ _ . .
tutorialspoint

MPLYEASYLEARNINEG

Keywords

D Programming

The following list shows few of the reserved words in D. These reserved words may not be

used as constant or variable or any other identifier names.

abstract alias align asm
assert auto body bool
byte case cast catch
char class const continue
dchar debug default delegate
deprecated do double else
enum export extern false
final finally float for
foreach function goto if
import in inout int
interface invariant is long
macro mixin module new
null out override package
pragma private protected public
real ref return scope
short static struct super
switch synchronized template this

10
3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

throw true try typeid

typeof ubyte uint ulong

union unittest ushort version

void wchar while with
Whitespace in D

A line containing only whitespace, possibly with a comment, is known as a blank line, and
a D compiler totally ignores it.

Whitespace is the term used in D to describe blanks, tabs, newline characters and
comments. Whitespace separates one part of a statement from another and enables the
interpreter to identify where one element in a statement, such as int, ends and the next
element begins. Therefore, in the following statement:

local age

There must be at least one whitespace character (usually a space) between local and age
for the interpreter to be able to distinguish them. On the other hand, in the following
statement

int fruit = apples + oranges //get the total fruits

No whitespace characters are necessary between fruit and =, or between = and apples,
although you are free to include some if you wish for readability purpose.

11

3D tutorialspoint

MPLYEASYLEARNINEG

4. D —Variables

A variable is nothing but a name given to a storage area that our programs can manipulate.
Each variable in D has a specific type, which determines the size and layout of the
variable's memory; the range of values that can be stored within that memory; and the
set of operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character.
It must begin with either a letter or an underscore. Upper and lowercase letters are distinct
because D is case-sensitive. Based on the basic types explained in the previous chapter,
there will be the following basic variable types:

Type Description
char Typically a single octet (one byte). This is an integer type.
int The most natural size of integer for the machine.
float A single-precision floating point value.
double A double-precision floating point value.
void Represents the absence of type.

D programming language also allows to define various other types of variables such as
Enumeration, Pointer, Array, Structure, Union, etc., which we will cover in subsequent
chapters. For this chapter, let us study only basic variable types.

Variable Definition in D

A variable definition tells the compiler where and how much space to create for the
variable. A variable definition specifies a data type and contains a list of one or more
variables of that type as follows:

type variable list;

Here, type must be a valid D data type including char, wchar, int, float, double, bool, or
any user-defined object, etc., and variable_list may consist of one or more identifier
names separated by commas. Some valid declarations are shown here:

12

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

int i, j, k;
char c, ch;
float f, salary;
double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the
compiler to create variables named i, j, and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer
consists of an equal sign followed by a constant expression as follows:

type variable_name = value;

Example
extern int d = 3, f = 5; // declaration of d and f.
intd =3, f =5; // definition and initializing d and f.
byte z = 22; // definition and initializes z.
char x = 'x'; // the variable x has the value 'x'.

When a variable is declared in D, it is always set to its 'default initializer', which can be
manually accessed as T.init where T is the type (ex. int.init). The default initializer for
integer types is 0, for Booleans false, and for floating-point humbers NaN.

Variable Declaration in D

A variable declaration provides assurance to the compiler that there is one variable existing
with the given type and name so that compiler proceed for further compilation without
needing complete detail about the variable. A variable declaration has its meaning at the
time of compilation only, compiler needs actual variable declaration at the time of linking
of the program.

Example

Try the following example, where variables have been declared at the start of the program,
but are defined and initialized inside the main function:

import std.stdio;
int a = 10, b =10;

int c;

float f;

int main ()

13

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

{

}

writeln("Value of a is : ", a);
/* variable re definition: */
int a, b;

int c;

float f;

/* Initialization */

a = 30;

b = 40;

writeln("value of a is : ", a);
cC =a+ b;

writeln("vValue of c is : ", c);

f = 70.0/3.0;
writeln("Value of f is : ", f);

return 0;

When the above code is compiled and executed, it produces the following result:

Value of a is : 10

Value of a is : 30

Value of c is : 70
Value of f is : 23.3333

Lvalues and Rvalues in D

Th

Va

ere are two kinds of expressions in D:

¢ lvalue : An expression that is an lvalue may appear as either the left-hand or right-
hand side of an assignment.

e rvalue : An expression that is an rvalue may appear on the right- but not left-hand
side of an assignment.

riables are lvalues and so may appear on the left-hand side of an assignment. Numeric

literals are rvalues and so may not be assigned and cannot appear on the left-hand side.

Th

e following statement is valid:

14

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

int g = 20;

But the following is not a valid statement and would generate a compile-time error:

10 = 20;

15

3D tutorialspoint

PLYEASYLEARNING

5. D—Datatypes

In the D programming language, data types refer to an extensive system used for
declaring variables or functions of different types. The type of a variable determines how
much space it occupies in storage and how the stored bit pattern is interpreted.

The types in D can be classified as follows:

Sr. No. Types and Description

1 Basic Types:

They are arithmetic types and consist of the three types: (a) integer, (b)
floating-point, and (c) character.

2 Enumerated types:

They are again arithmetic types. They are used to define variables that can
only be assigned certain discrete integer values throughout the program.

3 The type void:

The type specifier void indicates that no value is available.

4 Derived types:

They include (a) Pointer types, (b) Array types, (c) Structure types, (d)
Union types, and (e) Function types.

The array types and structure types are referred to collectively as the aggregate types.
The type of a function specifies the type of the function's return value. We will see basic
types in the following section whereas other types will be covered in the upcoming
chapters.

Integer Types

The following table gives lists standard integer types with their storage sizes and value
ranges:

Type Storage size Value range
bool 1 byte false or true
byte 1 byte -128 to 127

16

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

ubyte 1 byte 0 to 255

int 4 bytes -2,147,483,648 to 2,147,483,647

uint 4 bytes 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

ushort 2 bytes 0 to 65,535

long 8 bytes -9223372036854775808 to 9223372036854775807
ulong 8 bytes 0 to 18446744073709551615

To get the exact size of a type or a variable, you can use the sizeof operator. The
expression type.(sizeof) yields the storage size of the object or type in bytes. The following
example gets the size of int type on any machine:

import std.stdio;

int main()

{

writeln("Length in bytes:

return 0;

}

, ulong.sizeof);

When you compile and execute the above program, it produces the following result:

Length in bytes: 8

Stu

torialspoint

PLYEASYLEARNING

17

Floating-Point Types

D Programming

The following table mentions standard float-point types with storage sizes, value ranges,
and their purpose:

Type St:irzaege Value range Purpose

float 4 bytes 1.17549e-38 to 3.40282e+38 6 decimal places

double 8 bytes 2.22507e-308 to 1.79769e+308 15 decimal places
either the largest
floating point type

real 10 bytes 3.3621e-4932 to 1.18973e+4932 that the hardware
supports, or double;
whichever is larger

ifloat | 4 bytes 1.17549e-38i to 3.40282e+38i imaginary value type
of float

.) . . imaginary value type

idouble | 8 bytes 2.22507e-308i to 1.79769e+308i of double

ireal 10 bytes 3.3621e-4932 to 1.18973e+4932 :)”Qfg;?ary value type

loat | 8 bytes 1.17549e-38+1.17549e-38i to for’;pr'ﬁ: dré“g;tzsvro

Y 3.40282e+38+3.40282e+38i yP
floats
. complex humber
2.22507e-308+2.22507e-308i to

cdouble | 16 bytes | 4 '5526001308+1.79769e+308 type made of two
doubles

creal 20 bytes 3.3621e-4932+3.3621e-4932i to fongpr'ﬁ:dré“g;t;svro

Y 1.18973e+4932+1.18973e+4932i régls

IPLYEASY

LEARNING

m \ tutorialspoint

18

D Programming

The following example prints storage space taken by a float type and its range values:

import std.stdio;
int main()

{
writeln("Length in bytes:

, float.sizeof);

return 0;

}

When you compile and execute the above program, it produces the following result on
Linux:

Storage size for float : 4

Character Types
The following table lists standard character types with storage sizes and its purpose.
Type Storage size Purpose
char 1 byte UTF-8 code unit
wchar 2 bytes UTF-16 code unit
dchar 4 bytes UTF-32 code unit and Unicode code point

The following example prints storage space taken by a char type.

import std.stdio;
int main()
{
writeln("Length in bytes:

, char.sizeof);

return 0;

}

When you compile and execute the above program, it produces the following result:

Storage size for float : 1

19

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

The void Type
The void type specifies that no value is available. It is used in two kinds of situations:
Sr. No. Types and Description
Function returns as void
1 There are various functions in D which do not return value or you can say
they return void. A function with no return value has the return type as void.
For example, void exit (int status);
Function arguments as void
2 There are various functions in D which do not accept any parameter. A
function with no parameter can accept as a void. For example, int
rand(void);

The void type may not be understood to you at this point, so let us proceed and we will
cover these concepts in upcoming chapters.

PLYEASYLEARNING

m ' tutorialspoint

20

An enumeration is used for defining named constant values. An enumerated type is
declared using the enum keyword.

The enum Syntax

The simplest form of an enum definition is the following:

enum enum_name {

enumeration list

}

Where,

e The enum_name specifies the enumeration type name.
e The enumeration list is a comma-separated list of identifiers.

Each of the symbols in the enumeration list stands for an integer value, one greater than
the symbol that precedes it. By default, the value of the first enumeration symbol is 0. For
example:

enum Days { sun, mon, tue, wed, thu, fri, sat };

Example
The following example demonstrates the use of enum variable:

import std.stdio;
enum Days { sun, mon, tue, wed, thu, fri, sat };
int main(string[] args)
{
Days day;
day = Days.mon;
writefln("Current Day: %d", day);
writefln("Friday : %d", Days.fri);
return 0;

}

When the above code is compiled and executed, it produces the following result:

Current Day: 1

Friday : 5

21

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

In the above program, we can see how an enumeration can be used. Initially, we create a
variable named day of our user defined enumeration Days. Then we set it to mon using
the dot operator. We need to use the writefln method to print the value of mon that is
been stored. You also need specify the type. It is of the type integer, hence we use %d
for printing.

Named Enums Properties

The above example uses a name Days for the enumeration and is called named enums.
These named enums have the following properties:

e Init: It initializes the first value in the enumeration.
e Min: It returns the smallest value of enumeration.
e Max: It returns the largest value of enumeration.

e Sizeof: It returns the size of storage for enumeration.

Let us modify the previous example to make use of the properties.

import std.stdio;

// Initialized sun with value 1
enum Days { sun =1, mon, tue, wed, thu, fri, sat };
int main(string[] args)
{
writefln("Min : %d", Days.min);
writefln("Max : %d", Days.max);
writefln("Size of: %d", Days.sizeof);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Min : 3
Max : 9
Size of: 4
22
0| dtutorialspoint

MPLYEASYLEARNINEG

D Programming

Anonymous Enum

Enumeration without name is called anonymous enum. An example for anonymous enum
is given below.

import std.stdio;

// Initialized sun with value 1

enum { sun , mon, tue, wed, thu, fri, sat };

int main(string[] args)

{
writefln("Sunday : %d", sun);
writefln("Monday : %d", mon);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Sunday : ©
Monday : 1

Anonymous enums work pretty much the same way as named enums but they do not
have the max, min, and sizeof properties.

Enum with Base Type Syntax

The syntax for enumeration with base type is shown below.

enum :baseType {

enumeration list

}

Some of the base types includes long, int, and string. An example using long is shown
below.

import std.stdio;

enum : string {

"hello",

>
1}

B = "world",

int main(string[] args)

23

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

writefln("A : %s", A);
writefln("B : %s", B);

return 0;

}

When the above code is compiled and executed, it produces the following result:

A : hello
B : world
More Features

Enumeration in D provides features like initialization of multiple values in an enumeration
with multiple types. An example is shown below.

import std.stdio;

enum {
A=1.2f, // A is 1.2f of type float
B, // B is 2.2f of type float
int C = 3, // C is 3 of type int
D // D is 4 of type int

}

int main(string[] args)

{
writefln("A : %f", A);
writefln("B : %f", B);
writefln("C : %d", C);
writefln("D : %d", D);

return 0;

When the above code is compiled and executed, it produces the following result:

24

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

PLYEASYLEARNING

A : 1.200000
B : 2.200000
c : 3
D : 4
25
!:ui:or'ialspnint

7. D —Literals

Constant values that are typed in the program as a part of the source code are called
literals.

Literals can be of any of the basic data types and can be divided into Integer Numerals,
Floating-Point Numerals, Characters, Strings, and Boolean Values.

Again, literals are treated just like regular variables except that their values cannot be
modified after their definition.

Integer Literals

An integer literal can be of the following types:

e Decimal uses the normal number representation with the first digit cannot be 0 as
that digit is reserved for indicating the octal system. This does not include 0 on its
own: O is zero.

e Octal uses 0 as prefix to number.
e Binary uses Ob or 0B as prefix

¢ Hexadecimal uses Ox or 0X as prefix.
An integer literal can also have a suffix that is a combination of U and L, for unsigned and
long, respectively. The suffix can be uppercase or lowercase and can be in any order.

When you don't use a suffix, the compiler itself chooses between int, uint, long, and ulong
based on the magnitude of the value.

Here are some examples of integer literals:

212 // Legal
215u // Legal
OxFeel // Legal
078 // Illegal: 8 is not an octal digit
032UU // Illegal: cannot repeat a suffix

Following are other examples of various types of integer literals:

85 // decimal
0213 // octal
ox4b // hexadecimal
30 // int
30u // unsigned int
301 // long
26
tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

30ul // unsigned long
oboo1l // binary
Floating Point Literals

The floating point literals can be specified in either the decimal system as in 1.568 or in
the hexadecimal system as in 0x91.bc.

In the decimal system, an exponent can be represented by adding the character e or E
and a number after that. For example, 2.3e4 means "2.3 times 10 to the power of 4". A
“+" character may be specified before the value of the exponent, but it has no effect. For
example 2.3e4 and 2.3e + 4 are the same.

The “-” character added before the value of the exponent changes the meaning to be
"divided by 10 to the power of". For example, 2.3e-2 means "2.3 divided by 10 to the
power of 2".

In the hexadecimal system, the value starts with either Ox or 0X. The exponent is specified
by p or P instead of e or E. The exponent does not mean "10 to the power of", but "2 to
the power of". For example, the P4 in Oxabc.defP4 means "abc.de times 2 to the power of
4",

Here are some examples of floating-point literals:

3.14159 // Legal

314159E-5L // Legal

510E // Illegal: incomplete exponent

210f // Illegal: no decimal or exponent

.e55 // Illegal: missing integer or fraction

oxabc.defP4 // Legal Hexa decimal with exponent

oxabc.defe4d // Legal Hexa decimal without exponent.

By default, the type of a floating point literal is double. The f and F mean float, and the L
specifier means real.

Boolean Literals

There are two Boolean literals and they are part of standard D keywords:

e A value of true representing true.
e A value of false representing false.

You should not consider the value of true equal to 1 and value of false equal to 0.

27

PLYEASYLEARNING

m \ tutorialspoint

D Programming

Character Literals

Character literals are enclosed in single quotes.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), ASCII
character (e.g., "\x21"), Unicode character (e.g., "\uOl11le') or as named character (e.g.

I\©I,I\'|, I\€I).
There are certain characters in D when they are preceded by a backslash they will have

special meaning and they are used to represent like newline (\n) or tab (\t). Here, you
have a list of some of such escape sequence codes:

Escape sequence Meaning
\\ \ character
\' ' character
\" " character
\? ? character
\a Alert or bell
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Horizontal tab
\Vv Vertical tab

28

PLYEASYLEARNING

m \ tutorialspoint

D Programming

The following example shows few escape sequence characters:

import std.stdio;

int main(string[] args)

{
writefln("Hello\tWorld%c\n", '\x21");
writefln("Have a good day%c",'\x21");

return 0;

}

When the above code is compiled and executed, it produces the following result:

Hello World!

Have a good day!

String Literals

String literals are enclosed in double quotes. A string contains characters that are similar
to character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separate them using
whitespaces.

Here are some examples of string literals:

import std.stdio;

int main(string[] args)
{
writeln(q"MY_DELIMITER
Hello World
Have a good day

MY_DELIMITER");

writefln("Have a good day%c", '\x21");
auto str = q{int value = 20; ++value;};

writeln(str);

In the above example, you can find the use of q"MY_DELIMITER MY_DELIMITER" to
represent multi line characters. Also, you can see gq{} to represent an D language
statement itself.

29

3D tutorialspoint

MPLYEASYLEARNINEG

8. D —Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. D language is rich in built-in operators and provides the following types of

operators:

e Arithmetic Operators

e Relational Operators

e Logical Operators

e Bitwise Operators

e Assignment Operators

e Misc Operators

This chapter explains arithmetic, relational, logical, bitwise, assignment, and other
operators one by one.

Arithmetic Operators

The following table shows all arithmetic operators supported by D language. Assume
variable A holds 10 and variable B holds 20 then:

value by one.

Operator Description Example
+ It adds two operands. A + B gives 30
- It subtracts second operand from the first. A - B gives -10
* It multiplies both operands. A * B gives 200
/ It divides numerator by denumerator. B/ A gives 2
% It returns remainder of an integer division. B % A gives 0
++ The increment operator increases integer | A++ gives 11

The decrements operator decreases integer
value by one.

A-- gives 9

\ tutorialspoint

SIMPLYEASYLEARNINGEG

30

D Programming

Example

Try the following example to understand all the arithmetic operators available in D
programming language:

import std.stdio;
int main(string[] args)
{

int a = 21;

int b = 10;

int c ;

C =a+ b;

writefln("Line 1 - Value of c¢ is %d\n", c);
c=a - b;

writefln("Line 2 - Value of c is %d\n", c);
c =a * b;

writefln("Line 3 - Value of c¢ is %d\n", c);
c=a/ b;

writefln("Line 4 - Value of c is %d\n", c);
c =a%b;

writefln("Line 5 - Value of c¢ is %d\n", c);
C = at++;

writefln("Line 6 - Value of c is %d\n", c);
c=a--;
writefln("Line 7
char[] buf;
stdin.readln(buf);

Value of c is %d\n", c);

return 0;

}

When you compile and execute the above program, it produces the following result:

Line Value of c is 31

Line - Value of c is 11

Line - Value of c is 210

Line - Value of c is 1

- Value of c is 21

1
2
3

Line 4 - Value of c is 2
5
Line 6
7

Line - Value of c is 22

31

tutorialspoint

MPLYEASYLEARNINEG

Relational Operators

D Programming

The following table shows all the relational operators supported by D language. Assume
variable A holds 10 and variable B holds 20, then:

Operator

Description

Example

Checks if the values of two operands are equal or
not, if yes then condition becomes true.

(A == B) is not true.

Checks if the values of two operands are equal or
not, if values are not equal then condition
becomes true.

(A '= B) is true.

Checks if the value of left operand is greater than
the value of right operand, if yes then condition
becomes true.

(A > B) is not true.

Checks if the value of left operand is less than the
value of right operand, if yes then condition
becomes true.

(A < B) is true.

Checks if the value of left operand is greater than
or equal to the value of right operand, if yes then
condition becomes true.

(A >= B) is not true.

Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

(A <= B) is true.

Example

Try the following example to understand all the relational operators available in D
programming language:

{

{

int b =

int c ;

import std.stdio;

int main(string[] args)

int a = 21;
10;

if(a=="b)

\ tutorialspoint

ASYLEARNINEG

32

D Programming

writefln("Line 1 - a is equal to b\n");

\ tutorialspoint

MPLYEASYLEARNINEG

}
else
{
writefln("Line 1 - a is not equal to b\n");
}
if (a<b)
{
writefln("Line 2 - a is less than b\n");
}
else
{
writefln("Line 2 - a is not less than b\n");
}
if (a>b)
{
printf("Line 3 - a is greater than b\n");
}
else
{
writefln("Line 3 - a is not greater than b\n");
}
/* Lets change value of a and b */
a = 5;
b = 20;
if (a<=b)
{
printf("Line 4 - a is either less than or equal to b\n");
}
if (b>=a)
{
writefln("Line 5 - b is either greater than or equal to b\n");
}
return 0;
33
®

D Programming

When you compile and execute the above program it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b
Logical Operators

The following table shows all the logical operators supported by D language. Assume
variable A holds 1 and variable B holds 0, then:

Operator Description Example
&& It is called Logical AND operator. If both the | (A && B) is false.
operands are non-zero, then condition becomes
true.

[It is called Logical OR Operator. If any of the two | (A || B) is true.
operands is non-zero, then condition becomes true.

! It is called Logical NOT Operator. Use to reverses the | I(A && B) is true.
logical state of its operand. If a condition is true then
Logical NOT operator will make false.

Example

Try the following example to understand all the logical operators available in D
programming language:

import std.stdio;

int main(string[] args)

{
int a = 5;
int b = 20;
int c ;
if (a & b)
{

34

MPLYEASYLEARNINEG

m \ tutorialspoint

D Programming

writefln("Line 1 - Condition is true\n");

}
if (allb)
{
writefln("Line 2 - Condition is true\n");
}
/* lets change the value of a and b */
a = 0;
b = 10;
if (a2 & b))
{
writefln("Line 3 - Condition is true\n");
}
else
{
writefln("Line 3 - Condition is not true\n");
}
if (!(a && b))
{
writefln("Line 4 - Condition is true\n");
}
return 0;

}

When you compile and execute the above program it produces the following result:

Line 1 - Condition is true

Line 2 - Condition is true
Line 3 - Condition is not true
Line 4 - Condition is true
35
o >

tutorialspoint

MPLYEASYLEARNINEG

D Programming

Bitwise Operators

Bitwise operators work on bits and perform bit-by-bit operation. The truth tables for &, |,
and ~ are as follows:

p q P&q pla Pra
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13. In the binary format they will be as follows:
A =0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A”B = 0011 0001

~A = 11000011

The Bitwise operators supported by D language are listed in the following table. Assume
variable A holds 60 and variable B holds 13, then:

Operator Description Example

Binary AND Operator copies a bit to the | (A & B) gives 12.

& result if it exists in both operands. Means 0000 1100.
Binary OR Operator copies a bit if it exists (A | B) gives 61.
in either operand. Means 0011 1101.

R Binary XOR Operator copies the bit if it is | (A " B) gives 49.

set in one operand but not both. Means 0011 0001

36

IPLYEASYLEARNING

m \ tutorialspoint

D Programming

Binary Ones Complement Operator is
unary and has the effect of 'flipping' bits.

(~A) gives -61.

Means 1100 0011
complement form.

in 2's

Binary Left Shift Operator. The left
operands value is moved left by the

A << 2 gives 240.

<< number of bits specified by the right | Means 1111 0000.
operand.
Binary Right Shift Operator. The left .
operands value is moved right by the | A >> 2 gives 15.
> > . o .
number of bits specified by the right | Means 0000 1111,
operand.
Example
Try the following example to understand all the bitwise operators available in D
programming language:
import std.stdio;

int main(st

{

uint a
uint b =

int ¢ =

c=aé&

writefln

c=a |

writefln

c=an"

writefln

C = ~a;

writefln

ring[] args)

60; /* 60 = 0011 1100 */
13; /* 13 = 0000 1101 */
9;

b; /* 12 = 0000 1100 */

("Line 1 - Value of c is %d\n", c);

b; /* 61 = 0011 1101 */

("Line 2 - Value of c is %d\n", c);

b; /* 49 = 0011 0001 */

("Line 3 - Value of c is %d\n", c);

/*-61 = 1100 0011 */
("Line 4 - Value of c is %d\n", c);

\ tutorialspoint

PLYEASYLEARNING

37

D Programming

/* 240 = 1111 0000 */

writefln("Line 5 - Value of c is %d\n", c);

C = a << 2;

/* 15 = 0000 1111 */

writefln("Line 6 - Value of c is %d\n", c);

C =a > 2;

return

}

9;

When you compile and execute the above program it produces the following result:

Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is -61
Line 5 - Value of c is 240
Line 6 - Value of c is 15
Assignment Operators
The following assignment operators are supported by D language:
Operator Description Example
e e e o SR | €= & + B assons value
= 9 P of A + B into C
operand
It is add AND assighment operator. It adds . .
) . +=
+= right operand to the left operand and assign c A s equivalent to C

the result to left operand

=C+A

It is subtract AND assignment operator. It
subtracts right operand from the left operand
and assign the result to left operand.

C -= Ais equivalent to C
=C-A

It is multiply AND assignment operator. It
multiplies right operand with the left operand
and assigns the result to left operand.

C *= Ais equivalent to C
=C*A

MPLYEASYLEARNINEG

m \ tutorialspoint

38

D Programming

It is divide AND assignment operator. It
divides left operand with the right operand
and assign the result to left operand.

C /= A is equivalent to C

=C/A

It is modulus AND assignment operator. It
takes modulus using two operands and assign
the result to left operand.

C %= Ais equivalentto C

=C% A

<<=

It is Left shift AND assignment operator.

C <<= 2issameas C

C<<?2

>>=

It is Right shift AND assignment operator.

C>>=2issameas C

C>>2

= It is bitwise AND assignment operator. g g: 2issameas C = C

A It is bitwise exclusive OR and assignment | C *= 2 issameas C=C
operator. N2

It is bitwise inclusive OR and assignment | C |[= 2 issameas C =C
operator | 2

Example

Try the following example to understand all the assignment operators available in D
programming language:

import std.stdio;

int main(string[] args)

{

int a = 21;

int c ;

C

= a;

writefln("Line 1 - = Operator Example, Value of c

C

+=

a;

writefln("Line 2 - += Operator Example, Value of c

%d\n", c);

%d\n", c);

Stu

torialspoint

PLYEASYLEARNING

39

D Programming

}

writefln("Line

c *= aj;

writefln("Line

c /= a;

writefln("Line

c = 200;
c=<c% a;

writefln("Line

C <K= 2;

writefln("Line

C >>= 2;

writefln("Line

c &= 2;

writefln("Line

c "= 2;

writefln("Line

c|= 25
writefln("Line

return 0;

3 - -= Operator Example,

4 - *= QOperator Example,

5 - /= Operator Example,

Value of c = %d\n", c);

Value of c

%d\n", c);

Value of c %d\n", c);

6 - %s= Operator Example, Value of c = %d\n",'\x25', c);

7 - <<= Operator Example, Value of c

8 - >>= Operator Example, Value of ¢

%d\n", c);

%d\n", c);

9 - &= Operator Example, Value of c = %d\n", c);

10 - ~= Operator Example, Value of c = %d\n", c);

11 - |= Operator Example, Value of c = %d\n", c);

When you compile and execute the above program it produces the following result:

Line 1 - = Operator Example,

Line 2 - += Operator Example,

Line 3

-= Operator Example,

Line 4 - *= Operator Example,

Value
Value
Value

Value

of ¢
of ¢
of ¢

of ¢

21
42
21
441

tutorialspoint

SIMPLYEASYLEARNINEG

40

D Programming

Line 5 - /= Operator Example, Value of c = 21
Line 6 - %= Operator Example, Value of c = 11
Line 7 - <<= Operator Example, Value of c = 44
Line 8 - >>= Operator Example, Value of c = 11
Line 9 - &= Operator Example, Value of c = 2
Line 10 - ~= Operator Example, Value of c = ©
Line 11 - |= Operator Example, Value of ¢ = 2

Miscillaneous Operators - Sizeof and Temary

There are few other important operators including sizeof and ? : supported by D
Language.

Operator Description Example

Returns the size of an

sizeof() variable.

sizeof(a), where a is integer, returns 4.

& Ret_urns the address of a &a; gives actual address of the variable.
variable.

* Pointer to a variable. *a; gives pointer to a variable.

If condition is true then value X:

?: Conditional Expression Otherwise value Y

Example

Try the following example to understand all the miscellaneous operators available in D
programming language:

import std.stdio;

int main(string[] args)
{

int a = 4;

short b;

double c;

int* ptr;

41

MPLYEASYLEARNINEG

m \ tutorialspoint

D Programming

/* example of sizeof operator */
writefln("Line 1 - Size of variable a = %d\n", a.sizeof);
writefln("Line 2 - Size of variable b = %d\n", b.sizeof);

writefln("Line 3 - Size of variable c= %d\n", c.sizeof);

/* example of & and * operators */
ptr = &a; /* 'ptr' now contains the address of 'a'*/
writefln("value of a is %d\n", a);

writefln("*ptr is %d.\n", *ptr);

/* example of ternary operator */

a = 10;

b= (a==1) ? 20: 30;

writefln("Value of b is %d\n", b);

b = (a ==10) ? 20: 30;
writefln("Value of b is %d\n", b);

return 0;

}

When you compile and execute the above program, it produces the following result:

value of a is 4
*ptr is 4.

Value of b is 30
Value of b is 20

Operators Precedence inD

Operator precedence determines the grouping of terms in an expression. This affects how
an expression is evaluated. Certain operators are given precedence over others.

For example, the multiplication operator has higher precedence than the addition operator.
Let us consider an expression
XxX=7+3%*2.

Here, x is assigned 13, not 20. The simple reason is, the operator * has higher precedence
than +, hence 3*2 is calculated first and then the result is added into 7.

42

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Here, operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom. Within an expression, higher precedence operators are

evaluated first.

Category Operator Associativity
Postfix Of[l->.4++-- Left to right
Unary + -1~ 44+ - - (type)* & sizeof Right to left
Multiplicative */ % Left to right
Additive + - Left to right
Shift << >> Left to right
Relational < <=>>= Left to right
Equality == I= Left to right
Bitwise AND & Left to right
Bitwise XOR N Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR [Left to right
Conditional ?: Right to left
Assignment |==+= === %e=>>= <<= 8= 1= Right to left
Comma , Left to right

43
P tutorialspoint

D Programming

Example

Try the following example to understand the operator precedence available in D

programming language:

import std.stdio;

int main(string[] args)

{
int a = 20;
int b = 10;
int ¢ = 15;
int d = 5;
int e;
e=(a+b)*c/d; // (30 %15) /5

writefln("Value of (a + b) * c / d is : %d\n", e);

e =((a+b) *c)/d; // (30 * 15) / 5
writefln("Value of ((a + b) * ¢) / d is : %d\n" , e);

e=(a+b)*(c/d); // (30) * (15/5)
writefln("vValue of (a + b) * (c / d) is : %d\n", e);

e=a+ (b *c)/ d; // 208 + (150/5)
writefln("value of a + (b * ¢) / d is : %d\n" , e);

return 0;

}

When you compile and execute the above program, it produces the following result:

Value of (a + b) * c / d is : 9@
Value of ((a + b) * ¢) / d is : 90
Value of (a + b) * (¢ / d) is : 90
Value of a + (b * ¢) / d is : 50

3D tutorialspoint

MPLYEASYLEARNINEG

44

There may be a situation, when you need to execute a block of code several number of
times. In general, statements are executed sequentially: The first statement in a function
is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow more complicated
execution paths.

A loop statement executes a statement or group of statements multiple times. The
following general form of a loop statement in mostly used in the programming languages:

Conditional Code

If condition
is true

If condition
is false

D programming language provides the following types of loop to handle looping
requirements. Click the following links to check their detail.

Loop Type Description

It repeats a statement or group of statements while a given

while loop condition is true. It tests the condition before executing the loop
body.
for loo It executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

Like a while statement, except that it tests the condition at the

do...while loo end of the loop body.

45

\ tutorialspoint

SIMPLYEASYLEARNINGEG

http://localhost/d_programming/d_programming_while_loop.htm
http://localhost/d_programming/d_programming_for_loop.htm
http://localhost/d_programming/d_programming_do_while_loop.htm

D Programming

You can use one or more loop inside any another while, for, or

nested loops do..while loop.

Let us understand the loops in detail:

While Loop

A while loop statement in D programming language repeatedly executes a target
statement as long as a given condition is true.

Syntax
The syntax of a while loop in D programming language is:

while(condition)

{

statement(s);

}

Here, statement(s) may be a single statement or a block of statements.
The condition may be any expression, and true is any nonzero value. The loop iterates
while the condition is true.

When the condition becomes false, program control passes to the line immediately
following the loop.

Flow Diagram

while(condition)

{

conditional code ;
}

If condition
is true

code block If condition
is false

46

3D tutorialspoint

PLYEASYLEARNING

http://localhost/d_programming/d_programming_nested_loops.htm

D Programming

Here, key point of the while loop is that the loop might not ever run. When the condition
is tested and the result is false, the loop body is skipped and the first statement after the

while loop is executed.

Example

import std.stdio;

int main ()
{
/* local variable definition */

int a = 10;

/* while loop execution */

while(a < 20)

{
writefln("value of a: %d", a);
a++;

}

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19

3D tutorialspoint

MPLYEASYLEARNINEG

47

D Programming

for Loop

A for loop is a repetition control structure that allows you to efficiently write a loop that
needs to execute a specific number of times.

Syntax
The syntax of a for loop in D programming language is:

{

}

for (init; condition; increment)

statement(s);

Here is the flow of control during a for loop:

1.

The init step is executed first, and only once. This step allows you to declare and
initialize any loop control variables. You are not required to put a statement here,
as long as a semicolon appears.

Next, the condition is evaluated. If it is true, the body of the loop is executed. If
it is false, the body of the loop does not execute and flow of control jumps to the
next statement just after the for loop.

After the body of the for loop executes, the flow of control jumps back up to the
increment statement. This statement allows you to update any loop control
variables. This statement can be left blank, as long as a semicolon appears after
the condition.

The condition is now evaluated again. If it is true, the loop executes and the process
repeats itself (body of loop, then increment step, and then again condition). After
the condition becomes false, the for loop terminates.

48

\ tutorialspoint

PLYEASYLEARNING

D Programming

Flow Diagram

for(init; condition; increment)

{

conditional code ;

}

— condition

If condition
is true

code block If condition
is false

increment

Example

import std.stdio;

int main ()

{
/* for loop execution */
for(int a = 10; a < 20; a=a + 1)
{
writefln("value of a: %d", a);
}
return 0;
}

When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11

value of a: 12

\ tutorialspoint

PLYEASYLEARNING

49

D Programming

value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19

Do...While Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the
do...while loop in D programming language checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to
execute at least once.

Syntax
The syntax of a do...while loop in D programming language is:

do
{

statement(s);

twhile(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s)
in the loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in
the loop execute again. This process repeats until the given condition becomes false.

50

3D tutorialspoint

PLYEASYLEARNING

D Programming

Flow Diagram

do{
conditional code ;
} while (condition)

code block

If condition
is true

condition

If condition
is false

Example

import std.stdio;
int main ()
{
/* local variable definition */

int a = 10;

/* do loop execution */

do

{
writefln("value of a: %d", a);
a=a+1;

}while(a < 20);

return 0;

51

\ tutorialspoint

PLYEASYLEARNING

D Programming

When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19

Nested Loops

D programming language allows to use one loop inside another loop. The following section

shows few examples to illustrate the concept.

Syntax
The syntax for a nested for loop statement is as follows:

for (init; condition; increment)

{
for (init; condition; increment)
{
statement(s);
}
statement(s);
}

The syntax for a nested while loop statement is as follows:

while(condition)

{

while(condition)

{

statement(s);

}

statement(s);

3D tutorialspoint

MPLYEASYLEARNINEG

52

D Programming

The syntax for a nested do...while loop statement is as follows:

do

{
statement(s);
do
{

statement(s);

twhile(condition);

twhile(condition);

A final note on loop nesting is that you can put any type of loop inside of any other type
of loop. For example, a for loop can be inside a while loop or vice versa.

Example
The following program uses a nested for loop to find the prime numbers from 2 to 100:

import std.stdio;

int main ()
{
/* local variable definition */

int i, j;

for(i=2; i<100; i++) {
for(j=2; j <= (i/3); J++)
if(!(i%j)) break; // if factor found, not prime
if(j > (i/3)) writefln("%d is prime", i);
}

return 0;

}

When the above code is compiled and executed, it produces the following result:

2 is prime
3 is prime
5 is prime
7 is prime

11 is prime

53

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime

97 is prime

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed.

D supports the following control statements:

Control Statement

Description

break statement

Terminates theloop or switch statement and transfers
execution to the statement immediately following the loop
or switch.

continue statement

Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.

Let us see the control statements in detail:

54

\ tutorialspoint

MPLYEASYLEARNINEG

http://localhost/d_programming/d_programming_break_statement.htm
http://localhost/d_programming/d_programming_continue_statement.htm

D Programming

Break Statement

The break statement in D programming language has the following two usages:

1. When the break statement is encountered inside a loop, the loop is immediately
terminated and the program control resumes at the next statement following the
loop.

2. It can be used to terminate a case in the switch statement (covered in the next
chapter).

If you are using nested loops (i.e., one loop inside another loop), the break statement
stops execution of the innermost loop and start executing the next line of code after the
block.

Syntax
The syntax for a break statement in D is as follows:

break;

Flow Diagram

conditional
code

If condition
is true

condition

If condition
is false

Example

import std.stdio;

int main ()

{
/* local variable definition */
int a = 10;
55
0| dtutorialspoint

PLYEASYLEARNING

D Programming

/* while loop execution */

while(a < 20)
{

writefln("value of a: %d", a);
a++;
if(a > 15)
{
/* terminate the loop using break statement */

break;

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14

value of a: 15

Continue Statement

The continue statement in D programming language works somewhat like the break
statement. Instead of forcing termination, however, continue forces the next iteration of
the loop to take place, skipping any code in between.

For the for loop, continue statement causes the conditional test and increment portions
of the loop to execute. For the while and do...while loops, continue statement causes
the program control passes to the conditional tests.

Syntax
The syntax for a continue statement in D is as follows:

continue;

56

3D tutorialspoint

MPLYEASYLEARNINEG

Flow Diagram

conditional

code

If condition continue
is true

condition

If condition
is false

D Programming

Example
import std.stdio;
int main ()
{
/* local variable definition */
int a = 10;
/* do loop execution */
do
{
if(a == 15)
{
/* skip the iteration */
a=a+1;
continue;
}
writefln("value of a: %d", a);
a++;
Ywhile(a < 20);
return 0;
}
57
tutorialspoint

PLYEASYLEARNING

D Programming

When the above code is compiled and executed, it produces the following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18

value of a: 19

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally
used for this purpose. Since none of the three expressions that form the for loop are
required, you can make an endless loop by leaving the conditional expression empty.

import std.stdio;

int main ()

{
for(5 5)
{
writefln("This loop will run forever.");
}
return 0;
}

When the conditional expression is absent, it is assumed to be true. You may have an
initialization and increment expression, but D programmers more commonly use the
for(;;) construct to signify an infinite loop.

Note: You can terminate an infinite loop by pressing Ctrl + C keys.

58

3D tutorialspoint

MPLYEASYLEARNINEG

10. D —Decisions

The decision making structures contain condition to be evaluated along with the two sets
of statements to be executed. One set of statements is executed if the condition it true
and another set of statements is executed if the condition is false.

The following is the general form of a typical decision making structure found in most of
the programming languages:

Iif condition

is false

If condition
is true

conditional '
code

D programming language assumes any non-zero and non-null values as true, and if it is
either zero or null, then it is assumed as false value.

D programming language provides the following types of decision making statements.

Statement

Description

if statement

An if statement consists of a Boolean expression followed by one
or more statements.

if...else statement

An if statement can be followed by an optional else statement,
which executes when the Boolean expression is false.

nested if You can use one if or else if statement inside another if or else
statements if statement(s).
59
tutorialspoint

SIMPLYEASYLEARNINGEG

http://localhost/d_programming/d_programming_if_statement.htm
http://localhost/d_programming/d_programming_if_else_statement.htm
http://localhost/d_programming/d_programming_nested_if_statements.htm
http://localhost/d_programming/d_programming_nested_if_statements.htm

D Programming

A switch statement allows a variable to be tested for equality

switch statement . .
against a list of values.

nested switch You can use one switch statement inside another switch
statements statement(s).

Let us see the decision statements in detail:

if Statementin D

An if statement consists of a Boolean expression followed by one or more statements.

Syntax
The syntax of an if statement in D programming language is:

if(boolean_expression)

{

/* statement(s) will execute if the boolean expression is true */

}

If the boolean expression evaluates to true, then the block of code inside the if statement
is executed. If boolean expression evaluates to false, then the first set of code after the
end of the if statement (after the closing curly brace) is executed.

D programming language assumes any non-zero and non-null values as true and if it is
either zero or null, then it is assumed as false value.

Flow Diagram

If condition
is true

If condition

is false conditional code

60

3D tutorialspoint

MPLYEASYLEARNINEG

http://localhost/d_programming/d_programming_switch_statement.htm
http://localhost/d_programming/d_programming_nested_switch_statements.htm
http://localhost/d_programming/d_programming_nested_switch_statements.htm

D Programming

Example

import std.stdio;

int main ()

{
/* local variable definition */
int a = 10;
/* check the boolean condition using if statement */
if(a < 20)
{
/* if condition is true then print the following */
writefln("a is less than 20");
}
writefln("value of a is : %d", a);
return 0;
}

When the above code is compiled and executed, it produces the following result:

a is less than 20;

value of a is : 10

if... else Statement

An if statement can be followed by an optional else statement, which executes when the
boolean expression is false.

Syntax
The syntax of an if...else statement in D programming language is:

if(boolean_expression)

{
/* statement(s) will execute if the boolean expression is true */
}
else
{

/* statement(s) will execute if the boolean expression is false */

61

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

If the Boolean expression evaluates to true, then the if block of code is executed,
otherwise else block of code is executed.

D programming language assumes any non-zero and non-null values as true, and if it is
either zero or null, then it is assumed as false value.

Flow Diagram

If condition

is true
condition

If condition
is false

else code

Example

import std.stdio;

int main ()

{
/* local variable definition */
int a = 100;
/* check the boolean condition */
if(a < 20)
{
/* if condition is true then print the following */
writefln("a is less than 20");
}
else
{
/* if condition is false then print the following */
62
®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

writefln("a is not less than 20");

}

writefln("value of a is : %d", a);

return 0;

}

When the above code is compiled and executed, it produces the following result:

a is not less than 20;

value of a is : 100

The if..else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very
useful to test various conditions using single if...else if statement.

When using if, else if, else statements there are few points to keep in mind:

e An jf can have zero or one else's and it must come after any else if's.
e An jf can have zero to many else if's and they must come before the else.

¢ Once an else if succeeds, none of the remaining else if's or else's are tested.

Syntax
The syntax of an if...else if...else statement in D programming language is:

if(boolean_expression 1)

{

/* Executes when the boolean expression 1 is true */
}
else if(boolean_expression 2)
{

/* Executes when the boolean expression 2 is true */
}
else if(boolean_expression 3)
{

/* Executes when the boolean expression 3 is true */
}
else
{

/* executes when the none of the above condition is true */
}

63

MPLYEASYLEARNINEG

m \ tutorialspoint

Example

D Programming

import std.stdio;

int main ()

then print the following */

is true */

is true */

{

/* local variable definition */

int a = 100;

/* check the boolean condition */

if(a==10)

{
/* if condition is true
writefln("Value of a is 10");

}

else if(a == 20)

{
/* if else if condition
writefln("Value of a is 20");

}

else if(a == 30)

{
/* if else if condition
writefln("Value of a is 30");

}

else

{
/* if none of the conditions is true */
writefln("None of the values is matching");

}

writefln("Exact value of a is: %d", a);

return 0;

}

When the above code is compiled and executed, it produces the following result:

None of the values is matching

Exact value of a is: 100

3D tutorialspoint

MPLYEASYLEARNINEG

64

D Programming

Nested if Statements

It is always legal in D programming to nest if-else statements, which means you can use
one if or else if statement inside another if or else if statement(s).

Syntax
The syntax for a nested if statement is as follows:

if(boolean_expression 1)

{
/* Executes when the boolean expression 1 is true */
if(boolean_expression 2)
{
/* Executes when the boolean expression 2 is true */
}
}

You can nest else if...else in the similar way as you have nested if statement.

Example

import std.stdio;

int main ()

{
/* local variable definition */
int a = 100;
int b = 200;
/* check the boolean condition */
if(a == 100)
{
/* if condition is true then check the following */
if(b == 200)
{
/* if condition is true then print the following */
writefln("Value of a is 100 and b is 200");
}
}
writefln("Exact value of a is : %d", a);
writefln("Exact value of b is : %d", b);
65
®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

return 0;

}

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200
Exact value of a is : 100

Exact value of b is : 200

Switch Statement

A switch statement allows a variable to be tested for equality against a list of values. Each
value is called a case, and the variable being switched on is checked for each switch case.

Syntax
The syntax for a switch statement in D programming language is as follows:

switch(expression){

case constant-expression
statement(s);

break; /* optional */

case constant-expression
statement(s);

break; /* optional */

/* you can have any number of case statements */
default : /* Optional */

statement(s);

}

The following rules apply to a switch statement:

e The expression used in a switch statement must have an integral or enumerated
type, or be of a class type in which the class has a single conversion function to an
integral or enumerated type.

e You can have any number of case statements within a switch. Each case is followed
by the value to be compared to and a colon.

e The constant-expression for a case must be the same data type as the variable
in the switch, and it must be a constant or a literal.

¢ When the variable being switched on is equal to a case, the statements following
that case executes until a break statement is reached.

66

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

e When a break statement is reached, the switch terminates, and the flow of control
jumps to the next line following the switch statement.

e Not every case needs to contain a break. If no break appears, the flow of control
falls through to subsequent cases until a break is reached.

e A switch statement can have an optional default case, which must appear at the

end of the switch. The default case can be used for performing a task when none
of the cases is true. No break is needed in the default case.

I

expression

Flow Diagram

onge 1 code block 1

case 2 code block 2

case 3

code block 3

N\

f

defauit code block N

Example

import std.stdio;
int main ()
{
/* local variable definition */
char grade = 'B';
switch(grade)
{
case ‘A’
writefln("Excellent!");
break;
case 'B'
case 'C'

writefln("Well done");

67

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

break;

case 'D'
writefln("You passed");
break;

case 'F'
writefln("Better try again");
break;

default :
writefln("Invalid grade");

}

writefln("Your grade is %c", grade);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Well done

Your grade is B

Nested Switch Statement

It is possible to have a switch as part of the statement sequence of an outer switch. Even
if the case constants of the inner and outer switch contain common values, no conflicts

arises.

Syntax
The syntax for a nested switch statement is as follows:

switch(chl) {
case 'A':
writefln("This A is part of outer switch");
switch(ch2) {
case 'A':
writefln("This A is part of inner switch");
break;
case 'B': /* case code */
}
break;

case 'B': /* case code */

3D tutorialspoint

MPLYEASYLEARNINEG

68

D Programming

Example

import std.stdio;

int main ()

{
/* local variable definition */
int a = 100;
int b = 200;
switch(a) {
case 100:
writefln("This is part of outer switch", a);
switch(b) {
case 200:
writefln("This is part of inner switch", a);
default:
break;
}
default:
break;
}
writefln("Exact value of a is : %d", a);
writefln("Exact value of b is : %d", b);
return 0;
}

When the above code is compiled and executed, it produces the following result:

This is part of outer switch
This is part of inner switch
Exact value of a is : 100

Exact value of b is : 200

69

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

The ? : OperatorinD

We have covered conditional operator ? :in previous chapter which can be used to
replace if...else statements. It has the following general form:

Expl ? Exp2 : Exp3;

Where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
The value of a ? expression is determined as follows:

e Expl is evaluated. If it is true, then Exp2 is evaluated and becomes the value of
the entire ? expression.

e If Expl is false, then Exp3 is evaluated and its value becomes the value of the
expression.

70

3D tutorialspoint

PLYEASYLEARNING

11. D — Functions

This chapter describes the functions used in D programming.

Function Definitionin D

A basic function definition consists of a function header and a function body.

Syntax

return_type function_name(parameter list)

{
body of the function

}

Here are all the parts of a function:

¢ Return Type: A function may return a value. The return_type is the data type of
the value the function returns. Some functions perform the desired operations
without returning a value. In this case, the return_type is the keyword void.

¢ Function Name: This is the actual name of the function. The function name and
the parameter list together constitute the function signature.

¢ Parameters: A parameter is like a placeholder. When a function is invoked, you
pass a value to the parameter. This value is referred to as actual parameter or
argument. The parameter list refers to the type, order, and number of the
parameters of a function. Parameters are optional; that is, a function may contain
no parameters.

¢ Function Body: The function body contains a collection of statements that define
what the function does.

Calling a Function

You can a call a function as follows:

function_name(parameter_values)

Function Types inD

D programming supports a wide range of functions and they are listed below.

e Pure Functions
e Nothrow Functions

e Ref Functions

71

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

e Auto Functions
e Variadic Functions
e Inout Functions

e Property Functions

The various functions are explained below.

Pure Functions

Pure functions are functions which cannot access global or static, mutable state save
through their arguments. This can enable optimizations based on the fact that a pure
function is guaranteed to mutate nothing which is not passed to it, and in cases where the
compiler can guarantee that a pure function cannot alter its arguments, it can enable full,
functional purity, that is, the guarantee that the function will always return the same result
for the same arguments).

import std.stdio;
int x = 10;
immutable int y = 30;

const int* p;

pure int purefunc(int i,const char* q,immutable int* s)

{

//writeln("Simple print"); //cannot call impure function 'writeln'’

debug writeln("in foo()"); // ok, impure code allowed in debug statement
// x =1; // error, modifying global state
// i =x; // error, reading mutable global state

/1 i

*p; // error, reading const global state

i=y; // ok, reading immutable global state
auto myvar = new int; // Can use the new expression:

return i;

void main()

{

writeln("Value returned from pure function : ",purefunc(x,null,null));

}

When the above code is compiled and executed, it produces the following result:

72

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Value returned from pure function : 30

Nothrow Functions

Nothrow functions do not throw any exceptions derived from class Exception. Nothrow
functions are covariant with throwing ones.

Nothrow guarantees that a function does not emit any exception.

import std.stdio;
int add(int a, int b) nothrow
{
//writeln("adding"); This will fail because writeln may throw

int result;

try {
writeln("adding"); // compiles

result = a + b;

}

catch (Exception error) { // catches all exceptions
}

return result;

void main()

{
writeln("Added value is ", add(10,20));

}

When the above code is compiled and executed, it produces the following result:

adding
Added value is 30

Ref Functions

Ref functions allow functions to return by reference. This is analogous to ref function
parameters.

73

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

import std.stdio;

ref int greater(ref int first, ref int second)

{

return (first > second) ? first : second;

void main()

{
int a = 1;
int b = 2;
greater(a, b) += 10;
writefln("a: %s, b: %s", a, b);
}

When the above code is compiled and executed, it produces the following result:

a: 1, b: 12

Auto Functions

Auto functions can return value of any type. There is no restriction on what type to be
returned. A simple example for auto type function is given below.

import std.stdio;

auto add(int first, double second)

{

double result = first + second;

return result;

void main()

{

int a = 1;

double b = 2.5;

writeln("add(a,b) = ", add(a, b));
}

When the above code is compiled and executed, it produces the following result:

74

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

add(a,b) = 3.5

Variadic Functions

Variadiac functions are those functions in which the number of parameters for a function
is determined in runtime. In C, there is a limitation of having at least one parameter. But
in D programming, there is no such limitation. A simple example is shown below.

import std.stdio;

import core.vararg;

void printargs(int x, ...) {

for (int i = @; i < _arguments.length; i++)

{
write(_arguments[i]);
if (_arguments[i] == typeid(int))
{
int j = va_arg!(int)(_argptr);
writefln("\t%d", j);
}
else if (_arguments[i] == typeid(long))
{
long j = va_arg!(long)(_argptr);
writefln("\t%d", j);
}
else if (_arguments[i] == typeid(double))
{
double d = va_arg!(double)(_argptr);
writefln("\t%g", d);
}
}
}
void main()
{

printargs(1, 2, 3L, 4.5);

75

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

}

When the above code is compiled and executed, it produces the following result:

int 2

long 3

double 4.5
Inout Functions

The inout can be used both for parameter and return types of functions. It is like a template
for mutable, const, and immutable. The mutability attribute is deduced from the
parameter. Means, inout transfers the deduced mutability attribute to the return type. A
simple example showing how mutability gets changed is shown below.

import std.stdio;
inout(char)[] qoutedWord(inout(char)[] phrase)
{

return

~ phrase ~ 5

void main()

{

char[] a = "test a".dup;

a = goutedWord(a);
writeln(typeof(qoutedWord(a)).stringof," ", a);

const(char)[] b = "test b";
b = goutedWord(b);
writeln(typeof(qoutedWord(b)).stringof," ", b);

immutable(char)[] ¢ = "test c";
¢ = goutedWord(c);

writeln(typeof(qoutedWord(c)).stringof,"
}

» €)s

When the above code is compiled and executed, it produces the following result:

char[] "test a"

76

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

const(char)[] "test b"

string "test c"

Property Functions

Properties allow using member functions like member variables. It uses the @property
keyword. The properties are linked with related function that return values based on

requirement. A simple example for property is shown below.

import std.stdio;

struct Rectangle
{
double width;
double height;

double area() const @property

{

return width*height;

void area(double newArea) @property

{

auto multiplier =

newArea / area;

width *= multiplier;

writeln("Value set!");

void main()

, rectangle.area);

writeln("Modified width is ", rectangle.width);

{
auto rectangle = Rectangle(20,10);
writeln("The area is "
rectangle.area(300);

}

When the above code is compiled and executed, it produces the following result:

\ tutorialspoint

MPLYEASYLEARNINEG

77

D Programming

The area is 200
Value set!

Modified width is 30

78

\ tutorialspoint

PLYEASYLEARNING

12. D — Characters

Characters are the building blocks of strings. Any symbol of a writing system is called a
character: letters of alphabets, numerals, punctuation marks, the space character, etc.
Confusingly, the building blocks of characters themselves are called characters as well.

The integer value of the lowercase a is 97 and the integer value of the numeral 1 is 49.
These values have been assigned merely by conventions when the ASCII table has been
designed.

The following table mentions standard character types with their storage sizes and
purposes.

The characters are represented by the char type, which can hold only 256 distinct values.
If you are familiar with the char type from other languages, you may already know that it
is not large enough to support the symbols of many writing systems.

Type Storage size Purpose
char 1 byte UTF-8 code unit
wchar 2 bytes UTF-16 code unit
dchar 4 bytes UTF-32 code unit and Unicode code point

Some useful character functions are listed below:

e isLower: Determines if a lowercase character?

e isUpper: Determines if an uppercase character?

e isAlpha: Determines if a Unicode alphanumeric character (generally, a letter or a
numeral)?

e isWhite: Determines if a whitespace character?

¢ tolLower: It produces the lowercase of the given character.

e toUpper: It produces the uppercase of the given character.

import std.stdio;
import std.uni;
void main()

{

writeln("Is & lowercase? ", islLower('g'));

79

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

writeln("Is S lowercase? ", isLower('S'));
writeln("Is I uppercase? ", isUpper('iI'));

writeln("Is ¢ uppercase? ", isUpper('¢'));

writeln("Is z alphanumeric? ", isAlpha('z'));

writeln("Is new-line whitespace? ", isWhite('\n"));

writeln("Is underline whitespace? ", isWhite('_"));

writeln("The lowercase of G: ", toLower('G'));

writeln("The lowercase of I: ", toLower('I'));

writeln("The uppercase of s: ", toUpper('s'));

writeln("The uppercase of 1: ", toUpper('1'));

}

When the above code is compiled and executed, it produces the following result:

Is g lowercase? true

Is S lowercase? false

Is I uppercase? true

Is ¢ uppercase? false

Is z alphanumeric? true

Is new-line whitespace? true
Is underline whitespace? false
The lowercase of G: §

The lowercase of I: i

The uppercase of s: S

The uppercase of 1: I

Reading Characters inD

We can read characters using readf as shown below.

readf(" %s", &letter);

Since D programming support unicode, in order to read unicode characters, we need to
read twice and write twice to get the expected result. This does not work on the online
compiler. The example is shown below.

80

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

import std.stdio;

void main()
{
char firstCode;

char secondCode;

write("Please enter a letter: ");
readf(" %s", &firstCode);

readf(" %s", &secondCode);

writeln("The letter that has been read: ",

firstCode, secondCode);

}

When the above code is compiled and executed, it produces the following result:

Please enter a letter: §

The letter that has been read: g

3D tutorialspoint

MPLYEASYLEARNINEG

81

13. D — Strings

D provides following two types of string representations:

e Character array

e Core language string

Character Array

We can represent the character array in one of the two forms as shown below. The first
form provides the size directly and the second form uses the dup method which creates a
writable copy of the string "Good morning".

char[9] greetingl= "Hello all";

char[] greeting2 = "Good morning".dup;

Example
Here is a simple example using the above simple character array forms.

import std.stdio;

void main(string[] args)

{
char[9] greetingl= "Hello all";
writefln("%s",greetingl);
char[] greeting2 = "Good morning".dup;
writefln("%s",greeting2);

}

When the above code is compiled and executed, it produces result something as follows:

Hello all

Good morning

Core Language String

Strings are built-in to the core language of D. These strings are interoperable with the
character array shown above. The following example shows a simple string representation.

string greetingl= "Hello all";

82

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Example

import std.stdio;

void main(string[] args)

{
string greetingl= "Hello all";
writefln("%s",greetingl);

char[] greeting2 = "Good morning".dup;

writefln("%s",greeting2);

string greeting3= greetingl;
writefln("%s",greeting3);

}

When the above code is compiled and executed, it produces result something as follows:

Hello all
Good morning

Hello all

String Concatenation

String concatenation in D programming uses the tilde(~) symbol.

Example

import std.stdio;

void main(string[] args)

{
string greetingl= "Good";
char[] greeting2 = "morning".dup;
char[] greeting3= greetingl~" "~greeting2;
writefln("%s",greeting3);
string greeting4= "morning";
83

®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

string greeting5= greetingl~" "~greeting4;
writefln("%s",greeting5);

}

When the above code is compiled and executed, it produces result something as follows:

Good morning

Good morning

Length of String

The length of string in bytes can retrieved with the help of the length function.

Example

import std.stdio;

void main(string[] args)
{
string greetingl= "Good";

writefln("Length of string greetingl is %d",greetingl.length);

char[] greeting2 = "morning".dup;
writefln("Length of string greeting2 is %d",greeting2.length);
}

When the above code is compiled and executed, it produces the following result:

Length of string greetingl is 4
Length of string greeting2 is 7

String Comparison

String comparison is quite easy in D programming. You can use the ==, <, and > operators
for string comparisons.

Example

import std.stdio;

void main()

{

84

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

"Hello";

string si

string s2 = "World";

string s3 = "World";
if (s2 == s3)
{
writeln("s2: ",s2," and S3: ",s3, " are the same!");
}
if (s1 < s2)
{
writeln("'", s1, "' comes before '", s2, "'.");
}
else
{
writeln("'", s2, "' comes before '", s1, "'.");
}

}

When the above code is compiled and executed, it produces result something as follows:

s2: World and S3: World are the same!

'Hello' comes before 'World'.

Replacing Strings

We can replace strings using the string[].

Example

import std.stdio;

import std.string;

void main()

{
char[] s1 = "hello world ".dup;
char[] s2 = "sample".dup;
s1l[6..12] = s2[0..6];
85
0| dtutorialspoint

MPLYEASYLEARNINEG

D Programming

writeln(sl);

}

When the above code is compiled and executed, it produces result something as follows:

hello sample

Index Methods

Index methods for location of a substring in string including indexOf and lastIndexOf are
explained in the following example.

Example

import std.stdio;

import std.string;

void main()

{
char[] s1 = "hello World ".dup;

writeln("indexOf of 1llo in hello is ",std.string.indexO0f(s1,"110"));

writeln(sl);

writeln("lastIndexOf of O in hello is"
,std.string.lastIndexOf(s1,"0",CaseSensitive.no));

}

When the above code is compiled and executed, it produces the following result:

indexOf of 1lo in hello is 2
hello World
lastIndexOf of O in hello is 7

Handling Cases

Methods used for changing cases is shown in the following example.

Example

import std.stdio;
import std.string;

void main()

86

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

{
char[] s1 = "hello World ".dup;
writeln("Capitalized string of sl is ",capitalize(sl));
writeln("Uppercase string of sl is ",toUpper(sl));
writeln("Lowercase string of sl is ",toLower(sl));

}

When the above code is compiled and executed, it produces the following result:

Capitalized string of s1 is Hello world
Uppercase string of sl is HELLO WORLD

Lowercase string of sl is hello world

Restricting Characters

Restring characters in strings are shown in the following example.

Example

import std.stdio;
import std.string;

void main()

{

string s = "H123Hellol";

string result = munch(s, "©123456789H");

writeln("Restrict trailing characters:",result);

result = squeeze(s, "0123456789H");

writeln("Restrict leading characters:",result);

s =" Hello World *“;

writeln("Stripping leading and trailing whitespace:",strip(s));
}

When the above code is compiled and executed, it produces the following result:

Restrict trailing characters:H123H
Restrict leading characters:ellol

Stripping leading and trailing whitespace:Hello World

87

21 Vtutorialspoint

SIMPLYEASYLEARNINEG

14. D — Arrays

D programming language provides a data structure, named arrays, which stores a fixed-
size sequential collection of elements of the same type. An array is used to store a
collection of data. It is often more useful to think of an array as a collection of variables of
the same type.

Instead of declaring individual variables, such as numberQ, numberl, ..., and number99,
you declare one array variable such as numbers and use numbers[0], numbers[1], and
..., humbers[99] to represent individual variables. A specific element in an array is
accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the
first element and the highest address to the last element.

Declaring Arrays

To declare an array in D programming language, the programmer specifies the type of the
elements and the number of elements required by an array as follows:

type arrayName [arraySize];

This is called a single-dimension array. The arraySize must be an integer constant greater
than zero and type can be any valid D programming language data type. For example, to
declare a 10-element array called balance of type double, use this statement:

double balance[10];

Initializing Arrays

You can initialize D programming language array elements either one by one or using a
single statement as follows:

double balance[5] = [1leee.0, 2.0, 3.4, 17.0, 50.0];

The number of values between square brackets[] on right side cannot be larger than the
number of elements you declare for the array between square brackets []. The following
example assigns a single element of the array:

If you omit the size of the array, an array just big enough to hold the initialization is
created. Therefore, if you write

double balance[] = [1leee.0, 2.0, 3.4, 17.0, 50.0];

then you will create exactly the same array as you did in the previous example.

balance[4] = 50.0;

88

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

The above statement assigns element number 5th in the array a value of 50.0. Array with
4th index will be 5th, i.e., last element because all arrays have 0 as the index of their first
element which is also called base index. The following pictorial representaion shows the
same array we discussed above:

0 1 2 3 4
balance 1000.0 2.0 3.4 7.0 50.0
Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of
the element within square brackets after the name of the array. For example:

double salary = balance[9];

The above statement takes 10th element from the array and assigns the value to the
variable salary. The following example implements declaration, assignment, and accessing
arrays:

import std.stdio;

void main()

{

int n[1@]; // n is an array of 10 integers

// initialize elements of array n to ©
for (int i = 0; i < 10; i++)
{
nf i] =1+ 100; // set element at location i to i + 100

writeln("Element \t Value");

// output each array element's value
for (int j = 0; j < 10; j++)
{

writeln(j," \t ",n[3]);

89

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

When the above code is compiled and executed, it produces the following result:

Element Value
100
101
102
103
104
105
106
107
108
109

O 0 N o0 U1 o W N P O

Static Arrays Versus Dynamic Arrays

If the length of an array is specified while writing program, that array is a static array.
When the length can change during the execution of the program, that array is a dynamic
array.

Defining dynamic arrays is simpler than defining fixed-length arrays because omitting the
length makes a dynamic array:

int[] dynamicArray;

Array Properties

Here are the properties of arrays:

Property Description

Static array returns an array literal with each element of the literal

Anit being the .init property of the array element type.
Static array returns the array length multiplied by the number of
sizeof bytes per array element while dynamic arrays returns the size of the

dynamic array reference, which is 8 in 32-bit builds and 16 on 64-bit
builds.

Static array returns the number of elements in the array while
length dynamic arrays is used to get/set number of elements in the array.
Length is of type size_t.

90

PLYEASYLEARNING

m \ tutorialspoint

D Programming

.ptr Returns a pointer to the first element of the array.

Create a dynamic array of the same size and copy the contents of the

-dup array into it.

Create a dynamic array of the same size and copy the contents of the

idup array into it. The copy is typed as being immutable.
Reverses in place the order of the elements in the array. Returns the
.reverse
array.
sort Sorts in place the order of the elements in the array. Returns the
) array.
Example

The following example explains the various properties of an array:

{

import std.stdio;

void main()

int n[5]; // n is an array of 5 integers

// initialize elements of array n to ©
for (int i =0; i < 5; i++)
{

nf i] =1+ 100; // set element at location i to i + 100

}

writeln("Initialized value:",n.init);

writeln("Length: ",n.length);
writeln("Size of: ",n.sizeof);

writeln("Pointer:",n.ptr);

writeln("Duplicate Array: ",n.dup);

writeln("iDuplicate Array: ",n.idup);

91

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

n = n.reverse.dup;

writeln("Reversed Array: ",n);

writeln("Sorted Array: ",n.sort);

}

When the above code is compiled and executed, it produces the following result:

Initialized value:[0, 0, 0, 0, 9]

Length: 5

Size of: 20

Pointer:7FFF5A373920

Duplicate Array: [100, 101, 102, 103, 104]
iDuplicate Array: [100, 101, 102, 103, 104]
Reversed Array: [104, 103, 102, 101, 100]
Sorted Array: [100, 101, 102, 103, 104]

Multi Dimensional Arrays in D

D programming allows multidimensional arrays. Here is the general form of a
multidimensional array declaration:

type name[sizel][size2]...[sizeN];

Example
The following declaration creates a three dimensional 5. 10 . 4 integer array:

int threedim[5][10][4];

Two-Dimensional Arrays in D

The simplest form of the multidimensional array is the two-dimensional array. A two-
dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-
dimensional integer array of size [x, y] you would write syntax as follows:

type arrayName [x][vy 1;

Where type can be any valid D programming data type and arrayNameis a valid D
programming identifier.

A two-dimensional array can be thought as a table, which has x number of rows and y
number of columns. A two-dimensional array a containing three rows and four columns
can be shown as below:

92

MPLYEASYLEARNINEG

m \ tutorialspoint

D Programming

Column 0 Column 1 Column 2 Column 3
Row 0 a[0][0] a[0][1] a[0][2] af[0][3]
Row 1 a[1][0] af1J[1] | a[1](2] a[1][3]
Row 2 a[2][0] a[2][1] | a[2][2] a[2][3]

Thus, every element in array a is identified by an element asa[i][j], where a is the
name of the array, and i and j are the subscripts that uniquely identify each element in a.

Initializing Two-Dimensional Arrays

Multidimensioned arrays may be initialized by specifying bracketed values for each row.
The following array has 3 rows and each row has 4 columns.

int a[3][4] = [
[e, 1, 2, 3], /* initializers for row indexed by @ */
[4, 5, 6, 7] , /* initializers for row indexed by 1 */
[8, 9, 10, 11] /* initializers for row indexed by 2 */
1

The nested braces, which indicate the intended row, are optional. The following
initialization is equivalent to previous example:

int a[3][4] = [9,1,2,3,4,5,6,7,8,9,10,11];

Accessing Two-Dimensional Array Elements

An element in 2-dimensional array is accessed using the subscripts, means row index and
column index of the array. For example:

int val = a[2][3];

The above statement takes 4th element from the 3rd row of the array. You can verify it in
the above digram.

import std.stdio;

void main ()

{

// an array with 5 rows and 2 columns.

int a[5][2] = [[e,e], [1,2], [2,4], [3,6],[4,8]];

93

3D tutorialspoint

PLYEASYLEARNING

D Programming

// output each array element's value
for (int i = 0; i < 5; i++)
for ((int j =0; j < 2; j++)
{
writeln("a[" , i, "I[" , J , "]+ ",a[il[3]);

}

When the above code is compiled and executed, it produces the following result:

a[e][e]:
a[@][1]:
a[1][e]:
a[1][1]:
a[2][e]:
al[2][1]:
a[3][e]:
a[3][1]:
a[4][e]:
a[4][1]:

o A O W B NN PR O O

Common Array Operations inD

Here are various operations performed on the arrays:

Array Slicing

We often use part of an array and slicing array is often quite helpful. A simple example for

array slicing is shown below.

import std.stdio;

void main ()

{
// an array with 5 elements.
double a[5] = [1ee@.0, 2.0, 3.4, 17.0, 50.0];
double[] b;
b = a[l1..3];
writeln(b);
}
94
@ . . .
tutorialspoint

PLYEASYLEARNING

D Programming

When the above code is compiled and executed, it produces the following result:

[2, 3.4]

Array Copying

We also use copying array . A simple example for array copying is shown below.

import std.stdio;

void main ()

{

// an array with 5 elements.

double a[5] = [1leee.0, 2.0, 3.4, 17.0, 50.0];
double b[5];

writeln("Array a:",a);

writeln("Array b:",b);

b[] = a; // the 5 elements of a[5] are copied into b[5]
writeln("Array b:",b);

b[] = a[]; // the 5 elements of a[3] are copied into b[5]
writeln("Array b:",b);

b[1..2]

a[oe..1]; // same as b[1] al[e]

writeln("Array b:",b);

b[0..2] a[1..3]; // same as b[0@] a[1], b[1] = a[2]

writeln("Array b:",b);
}

When the above code is compiled and executed, it produces the following result:

Array a:[1000, 2, 3.4, 17, 50]
Array b:[nan, nan, nan, nan, nan]
Array b:[1ee0, 2, 3.4, 17, 50]
Array b:[1000, 2, 3.4, 17, 50]
Array b:[1000, 1000, 3.4, 17, 50]
Array b:[2, 3.4, 3.4, 17, 50]

95

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Array Setting

A simple example for setting value in an array is shown below.

import std.stdio;

void main ()
{
// an array with 5 elements.
double a[5];
a[] = 5;
writeln("Array a:",a);

}

When the above code is compiled and executed, it produces the following result:

Array a:[5, 5, 5, 5, 5]

Array Concatenation
A simple example for concatenation of two arrays is shown below.

import std.stdio;

void main ()
{
// an array with 5 elements.
double a[5] 5;
double b[5] 10;
double [] c;

c = a~b;
writeln("Array c: ",c);

}

When the above code is compiled and executed, it produces the following result:

Array c: [5, 5, 5, 5, 5, 10, 10, 10, 10, 10]

3D tutorialspoint

MPLYEASYLEARNINEG

96

15. D — Associative Arrays

Associative arrays have an index that is not necessarily an integer, and can be sparsely
populated. The index for an associative array is called the Key, and its type is called the
KeyType.

Associative arrays are declared by placing the KeyType within the [] of an array
declaration. A simple example for associative array is shown below.

import std.stdio;

void main ()

{
int[string] e; // associative array b of ints that are
e["test"] = 3;
writeln(e["test"]);
string[string] f;
f["test"] = "Tuts";
writeln(f["test"]);
writeln(f);
f.remove("test");
writeln(f);

}

When the above code is compiled and executed, it produces the following result:

3
Tuts
["test":"Tuts"]

[]

97

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Initializing Associative Array

A simple initialization of associative array is shown below.

import std.stdio;

void main ()
{
int[string] days
["Monday"
"Thursday"
"Sunday"
writeln(days["Tu
}

: @, "Tuesday" : 1, "Wednesday" : 2,
: 3, "Friday" : 4, "Saturday" : 5,
16 15

esday”]);

When the above code

is compiled and executed, it produces the following result:

1
Properties of Associative Array
Here are the properties of an associative array:
Property Description
sizeof Returns the size of the reference to the associative array; it is 4
' in 32-bit builds and 8 on 64-bit builds.
Returns number of values in the associative array. Unlike for
Jlength . o
dynamic arrays, it is read-only.
Create a new associative array of the same size and copy the
.dup - . .
contents of the associative array into it.
Kevs Returns dynamic array, the elements of which are the keys in the
ey associative array.
Returns dynamic array, the elements of which are the values in
.values -
the associative array.
.rehash Reorganizes the associative array in place so that lookups are
more efficient. rehash is effective when, for example, the program
98
0| dtutorialspoint

D Programming

it. Returns a reference to the reorganized array.

is done loading up a symbol table and now needs fast lookups in

Returns a delegate suitable for use as an

associative array.

Aggregate to a

.byKey() ForeachStatement which will iterate over the keys of the

Returns a delegate suitable for use as an

associative array.

Aggregate to a

.byValue() ForeachStatement which will iterate over the values of the

Value defval) evaluates and returns defVal.

.get(Key key, lazy | Looks up key; if it exists returns corresponding value else

.remove(Key key) | Removes an object for key.

Example
An example for using the above properties is shown below.

import std.stdio;

void main ()

{

int[string] arrayl;

arrayl["test"] = 3;
arrayl["test2"] = 20;
writeln("sizeof: ",arrayl.sizeof);
writeln("length: ",arrayl.length);
writeln("dup: ",arrayl.dup);

arrayl.rehash;

writeln("rehashed: ",arrayl);

writeln("keys: ",arrayl.keys);

writeln("values: ",arrayl.values);

foreach (key; arrayl.byKey) {

3D tutorialspoint

MPLYEASYLEARNINEG

99

D Programming

writeln("by key: ",key);

foreach (value; arrayl.byValue) {

writeln("by value ",value);

writeln("get value for key test: ",arrayl.get("test",10));
writeln("get value for key test3: ",arrayl.get("test3",10));

arrayl.remove("test");

writeln(arrayl);

}

When the above code is compiled and executed, it produces the following result:

sizeof: 8

length: 2

dup: ["test2":20, "test":3]
rehashed: ["test":3, "test2":20]
keys: ["test", "test2"]
values: [3, 20]

by key: test

by key: test2

by value 3

by value 20

get value for key test: 3
get value for key test3: 10
["test2":20]

3D tutorialspoint

MPLYEASYLEARNINEG

100

16. D — Pointers

D programming pointers are easy and fun to learn. Some D programming tasks are
performed more easily with pointers, and other D programming tasks, such as dynamic
memory allocation, cannot be performed without them. A simple pointer is shown below.

Pointer Variable

Address — Value

Instead of directly pointing to the variable, pointer points to the address of the variable.
As you know every variable is a memory location and every memory location has its
address defined which can be accessed using ampersand (&) operator which denotes an
address in memory. Consider the following which prints the address of the variables
defined:

import std.stdio;

void main ()

{
int varil;
writeln("Address of varl variable: ",&varl);
char var2[10];
writeln("Address of var2 variable: ",&var);
}

When the above code is compiled and executed, it produces the following result:

Address of varl variable: 7FFF52691928
Address of var2 variable: 7FFF52691930

What Are Pointers?

A pointer is a variable whose value is the address of another variable. Like any variable
or constant, you must declare a pointer before you can work with it. The general form of
a pointer variable declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid programming type and var-
name is the name of the pointer variable. The asterisk you used to declare a pointer is
the same asterisk that you use for multiplication. However; in this statement the asterisk

101

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

is being used to designate a variable as a pointer. Following are the valid pointer
declaration:

int *ip; // pointer to an integer
double *dp; // pointer to a double
float *fp; // pointer to a float

char *ch // pointer to character

The actual data type of the value of all pointers, whether integer, float, character, or
otherwise, is the same, a long hexadecimal number that represents a memory address.
The only difference between pointers of different data types is the data type of the variable
or constant that the pointer points to.

Using Pointers in D programming

There are few important operations, when we use the pointers very frequently.

e we define a pointer variables
e assign the address of a variable to a pointer

e finally access the value at the address available in the pointer variable.

This is done by using unary operator * that returns the value of the variable located at the
address specified by its operand. The following example makes use of these operations:

import std.stdio;
void main ()
{
int var = 20; // actual variable declaration.

int *ip; // pointer variable

ip = &var; // store address of var in pointer variable

writeln("Value of var variable: ",var);
writeln("Address stored in ip variable: ",ip);

writeln("Value of *ip variable: ",*ip);

}

When the above code is compiled and executed, it produces the following result:

Value of var variable: 20
Address stored in ip variable: 7FFF5FB7E930

Value of *ip variable: 20

102

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Null Pointers

It is always a good practice to assign the pointer NULL to a pointer variable in case you do
not have exact address to be assigned. This is done at the time of variable declaration. A
pointer that is assigned null is called a null pointer.

The null pointer is a constant with a value of zero defined in several standard libraries,
including iostream. Consider the following program:

import std.stdio;

void main ()

{
int *ptr = null;

writeln("The value of ptr is

}

> ptr) ;

When the above code is compiled and executed, it produces the following result:

The value of ptr is null

On most of the operating systems, programs are not permitted to access memory at
address 0 because that memory is reserved by the operating system. However; the
memory address 0 has special significance; it signals that the pointer is not intended to
point to an accessible memory location.

By convention, if a pointer contains the null (zero) value, it is assumed to point to nothing.
To check for a null pointer you can use an if statement as follows:

if(ptr) // succeeds if p is not null
if(!ptr) // succeeds if p is null

Thus, if all unused pointers are given the null value and you avoid the use of a null pointer,
you can avoid the accidental misuse of an uninitialized pointer. Many times, uninitialized
variables hold some junk values and it becomes difficult to debug the program.

Pointer Arithmetic

There are four arithmetic operators that can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider an integer pointer named ptr, which
points to the address 1000. Assuming 32-bit integers, let us perform the following
arithmatic operation on the pointer:

ptr++

then the ptr will point to the location 1004 because each time ptr is incremented, it points
to the next integer. This operation will move the pointer to next memory location without
impacting the actual value at the memory location.

103

MPLYEASYLEARNINEG

m \ tutorialspoint

D Programming

If ptr points to a character whose address is 1000, then the above operation points to the
location 1001 because next character will be available at 1001.

Incrementing a Pointer

We prefer using a pointer in our program instead of an array because the variable pointer
can be incremented, unlike the array name which cannot be incremented because it is a
constant pointer. The following program increments the variable pointer to access each
succeeding element of the array:

import std.stdio;

const int MAX = 3;

void main ()

{
int var[MAX] = [10, 100, 200];
int *ptr = &var[0];

for (int i = @; i < MAX; i++, ptr++)

{

writeln("Address of var[" , i, "] = ",ptr);

writeln("value of var[" , i, "] = ",*ptr);

}

When the above code is compiled and executed, it produces the following result:

Address of var[@] = 18FDBC
Value of var[@] = 10
Address of var[1] = 18FDC@
Value of var[1l] = 100
Address of var[2] = 18FDC4
Value of var[2] = 200

104

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Pointers vs Array

Pointers and arrays are strongly related. However, pointers and arrays are not completely
interchangeable. For example, consider the following program:

import std.stdio;

const int MAX = 3;

void main ()
{
int var[MAX] = [10, 100, 200];
int *ptr = &var[0];
var.ptr[2] = 290;
ptr[e] = 220;

for (int i = @; i < MAX; i++, ptr++)

{

writeln("Address of var[" , i, "] = ",ptr);

writeln("value of var[" , i, "] = ",*ptr);

}

In the above program, you can see var.ptr[2] to set the second element and ptr[0] which
is used to set the zeroth element. Increment operator can be used with ptr but not with
var.

When the above code is compiled and executed, it produces the following result:

Address of var[@] = 18FDBC
Value of var[0] = 220
Address of var[1] = 18FDC@
Value of var[1l] = 100
Address of var[2] = 18FDC4
Value of var[2] = 290

105

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Pointer to Pointer

A pointer to a pointer is a form of multiple indirection or a chain of pointers. Normally, a
pointer contains the address of a variable. When we define a pointer to a pointer, the first
pointer contains the address of the second pointer, which points to the location that
contains the actual value as shown below.

Pointer Pointer Variable

Address > Address — b Value

A variable that is a pointer to a pointer must be declared as such. This is done by placing
an additional asterisk in front of its name. For example, following is the syntax to declare
a pointer to a pointer of type int:

int **var;

When a target value is indirectly pointed to by a pointer to a pointer, then accessing that
value requires that the asterisk operator be applied twice, as is shown below in the
example:

import std.stdio;

const int MAX = 3;

void main ()

{

int var = 3000;

writeln("Value of var :" , var);

int *ptr = &var;

writeln("Value available at *ptr :" ,*ptr);

int **pptr = &ptr;

writeln("Value available at **pptr :",**pptr);
}

When the above code is compiled and executed, it produces the following result:

Value of var :3000
Value available at *ptr :3000
Value available at **pptr :3000

106

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Passing Pointer to Functions

D allows you to pass a pointer to a function. To do so, it simply declares the function
parameter as a pointer type.

The following simple example passes a pointer to a function.

import std.stdio;

void main ()

{
// an int array with 5 elements.
int balance[5] = [1000, 2, 3, 17, 50];
double avg;

avg = getAverage(&balance[0], 5) ;

writeln("Average is :" , avg);

double getAverage(int *arr, int size)

{
int i;

double avg, sum = O;

for (i = 0; i < size; ++i)
{

sum += arr[i];

avg = sum/size;
return avg;

}

When the above code is compiled together and executed, it produces the following result:

Average is :214.4

107

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Retum Pointer from Functions

Consider the following function, which returns 10 numbers using a pointer, means the
address of first array element.

import std.stdio;

void main ()

{
int *p = getNumber();
for (int i =0; i < 10; i++)
{
writeln("*(p + " , i, ") : ",*(p + 1));
}
}

int * getNumber()

{
static int r [10];
for (int i = 9; i < 10; ++i)
{
r[i] = i;
}
return &r[0];
}

When the above code is compiled and executed, it produces the following result:

*(p + 0) :
*(p+ 1) :
*(p + 2) :
*(p + 3) :
*(p + 4) :
*(p + 5) :
*(p + 6) :
*(p+7) :
*(p + 8) :
*(p +9) :

O 0 N oo U1 A W N R O©

108

3D tutorialspoint

PLYEASYLEARNING

D Programming

Pointer to an Array

An array name is a constant pointer to the first element of the array. Therefore, in the
declaration:

double balance[50];

balance is a pointer to &balance[0], which is the address of the first element of the array
balance. Thus, the following program fragment assigns p the address of the first element
of balance:

double *p;
double balance[10];

p = balance;

It is legal to use array names as constant pointers, and vice versa. Therefore, *(balance
+ 4) is a legitimate way of accessing the data at balance[4].

Once you store the address of first element in p, you can access array elements using *p,
*(p+1), *(p+2) and so on. The following example shows all the concepts discussed above:

import std.stdio;

void main ()

{
// an array with 5 elements.
double balance[5] = [1lee@.0, 2.0, 3.4, 17.0, 50.0];
double *p;

p = &balance[0];

// output each array element's value

writeln("Array values using pointer ");

for (int i =0; i < 5; i++)

{

weiteIn("*(p + ", 1, ") ", *(p + 1));

109

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

When the above code is compiled and executed, it produces the following result:

Array values using pointer
*(p + ©) : 1000

*p+1) @ 2

*(p+2) : 3.4

*(p + 3) @ 17

*(p + 4) : 50

110

3D tutorialspoint

PLYEASYLEARNING

17. D —Tuples

Tuples are used for combining multiple values as a single object. Tuples contains a
sequence of elements. The elements can be types, expressions, or aliases. The number
and elements of a tuple are fixed at compile time and they cannot be changed at run time.

Tuples have characteristics of both structs and arrays. The tuple elements can be of
different types like structs. The elements can be accessed via indexing like arrays. They
are implemented as a library feature by the Tuple template from the std.typecons module.
Tuple makes use of TypeTuple from the std.typetuple module for some of its operations.

Tuple Using tuple()

Tuples can be constructed by the function tuple(). The members of a tuple are accessed
by index values. An example is shown below.

Example

import std.stdio;

import std.typecons;

void main()

{
auto myTuple = tuple(1, "Tuts");
writeln(myTuple);
writeln(myTuple[@]);
writeln(myTuple[1]);

}

When the above code is compiled and executed, it produces the following result:

Tuple!(int, string)(1, "Tuts")
1
Tuts

Tuple using Tuple Template

Tuple can also be constructed directly by the Tuple template instead of the tuple() function.
The type and the name of each member are specified as two consecutive template
parameters. It is possible to access the members by properties when created using
templates.

111

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

import std.stdio;

import std.typecons;

void main()

{
auto myTuple = Tuple!(int, "id",string, "value")(1, "Tuts");
writeln(myTuple);

writeln("by index @ : ", myTuple[0]);
writeln("by .id : ", myTuple.id);

writeln("by index 1 : ", myTuple[1]);

writeln("by .value

}

, myTuple.value);

When the above code is compiled and executed, it produces the following result:

Tuple!(int, "id", string, "value")(1, "Tuts")
by index @ : 1

by .id : 1

by index 1 : Tuts

by .value Tuts

Expanding Property and Function Params

The members of Tuple can be expanded either by the .expand property or by slicing. This
expanded/sliced value can be passed as function argument list. An example is shown
below.

Example

import std.stdio;
import std.typecons;

void methodl(int a, string b, float c, char d)

{
writeln("method 1 ",a,"\t",b,"\t",c,"\t",d);
}
void method2(int a, float b, char c)
{
112
o

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

writeln("method 2 ",a,"\t",b,"\t",c);

}

void main()

{
auto myTuple = tuple(5, "my string", 3.3, 'r');
writeln("methodl call 1");
methodl(myTuple[]);
writeln("methodl call 2");
methodl(myTuple.expand);
writeln("method2 call 1");
method2(myTuple[@], myTuple[$-2..%$]);

}

When the above code is compiled and executed, it produces the following result:

methodl call 1

method 1 5 my string 3.3 r
methodl call 2

method 1 5 my string 3.3 r
method2 call 1

method 2 5 3.3 r

TypeTuple

TypeTuple is defined in the std.typetuple module. A comma-separated list of values and
types. A simple example using TypeTuple is given below. TypeTuple is used to create
argument list, template list, and array literal list.

import std.stdio;
import std.typecons;

import std.typetuple;

alias TypeTuple!(int, long) TL;

void methodl(int a, string b, float c, char d)
{

113

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

}

writeln("method 1 ",a,"\t",b,"\t",c,"\t",d);

void method2(TL tl)

{

writeln(tl[0],"\t", t1[1]);

void main()

{

}

auto arguments = TypeTuple!(5, "my string", 3.3,'r");
methodl(arguments);
method2(5, 6L);

When the above code is compiled and executed, it produces the following result:

method 1 5 my string 3.3 r

5

6

3D tutorialspoint

MPLYEASYLEARNINEG

114

18. D — Structures

The structure is yet another user defined data type available in D programming, which
allows you to combine data items of different kinds.

Structures are used to represent a record. Suppose you want to keep track of your books
in a library. You might want to track the following attributes about each book:

e Title

e Author

e Subject

e Book ID
Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines a
new data type, with more than one member for your program. The format of the struct
statement is this:

struct [structure tag]

{

member definition;

member definition;

member definition;

} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition,
such as int i; or float f; or any other valid variable definition. At the end of the structure's
definition before the semicolon, you can specify one or more structure variables which are
optional. Here is the way you would declare the Books structure:

struct Books

{
char [] title;
char [] author;
char [] subject;
int book_id;
};

115

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Accessing Structure Members

To access any member of a structure, you use the member access operator (.). The
member access operator is coded as a period between the structure variable name and
the structure member that we wish to access. You would use struct keyword to define
variables of structure type. The following example explains the usage of structure:

import std.stdio;

struct Books

{
char [] title;
char [] author;
char [] subject;
int book_id;
}s

void main()

{

Books Book1; /* Declare Bookl of type Book */
Books Book2; /* Declare Book2 of type Book */
/* book 1 specification */

Bookl.title = "D Programming".dup;

Bookl.author = "Raj".dup;

Bookl.subject = "D Programming Tutorial".dup;
Book1.book_id = 6495407;

/* book 2 specification */

Book2.title = "D Programming".dup;

Book2.author = "Raj".dup;

Book2.subject = "D Programming Tutorial".dup;
Book2.book_id = 6495700;

/* print Bookl info */

writeln("Book 1 title : ", Bookl.title);

writeln("Book 1 author : ", Bookl.author);

writeln("Book 1 subject : ", Bookl.subject);

116

®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

}

writeln("Book 1 book_ id :

writeln("Book 2 author :
writeln("Book 2 subject :
writeln("Book 2 book_id :

", Bookl.book_id);

/* print Book2 info */
writeln("Book 2 title :

", Book2.title);
", Book2.author);

, Book2.subject);
", Book2.book_id);

When the above code is compiled and executed, it produces the following result:

Book 1 title

Book 1 subject

: D Programming

Book 1 author :

Raj

: D Programming Tutorial

Book 1 book_id : 6495407
Book 2 title : D Programming
Book 2 author : Raj
Book 2 subject : D Programming Tutorial
Book 2 book_id : 6495700
Structures as Function Arguments

You can pass a structure as a function argument in very similar way as you pass any other
variable or pointer. You would access structure variables in the similar way as you have
accessed in the above example:

import std.stdio;

struct Books

{

char [] title;
char [] author;
char [] subject;
int book_id;

};

void main()

{
Books Book1;

/* Declare Bookl of type Book */

\ tutorialspoint

MPLYEASYLEARNINEG

117

D Programming

Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */
Bookl.title = "D Programming".dup;
Book1.author = "Raj".dup;

Book1.subject
Book1.book_id

"D Programming Tutorial".dup;

6495407 ;

/* book 2 specification */

Book2.title = "D Programming".dup;
Book2.author = "Raj".dup;

Book2.subject = "D Programming Tutorial".dup;

Book2.book_id = 6495700;

/* print Bookl info */
printBook(Bookl);

/* Print Book2 info */
printBook(Book2);

void printBook(Books book)

{
writeln("Book title : ", book.title);
writeln("Book author : ", book.author);
writeln("Book subject : ", book.subject);
writeln("Book book_id : ", book.book_id);
}

When the above code is compiled and executed, it produces the following result:

Book title : D Programming

Book author : Raj

Book subject : D Programming Tutorial
Book book_id : 6495407

Book title : D Programming

3D tutorialspoint

MPLYEASYLEARNINEG

118

D Programming

Book author : Raj
Book subject : D Programming Tutorial

Book book_id : 6495700

Structs Initialization

Structs can be initialized in two forms, one using construtor and other using the {} format.

An example is shown below.

Example

import std.stdio;

struct Books

{
char [] title;
char [] subject = "Empty".dup;
int book_id = -1;
char [] author = "Raj".dup;
}s

void main()

{

Books Bookl = Books("D Programming"”.dup, "D Programming Tutorial”.dup,

6495407);
printBook(Bookl);

Books Book2 = Books("D Programming"”.dup, "D Programming Tutorial”.dup,

6495407,"Raj".dup);
printBook(Book2);

Books Book3 = {title:"Obj C programming"”.dup, book_id :

printBook(Book3);

void printBook(Books book)

{
writeln("Book title : ", book.title);

1001};

3D tutorialspoint

MPLYEASYLEARNINEG

119

D Programming

writeln("Book author :

writeln("Book subject :

writeln("Book book_id : ", book.book_id);

}

, book.author);

, book.subject);

When the above code is compiled and executed, it produces the following result:

Book title : D Programming
Book author : Raj

Book subject : D Programming Tutorial

Book book_id : 6495407
Book title : D Programming
Book author : Raj

Book subject : D Programming Tutorial

Book book_id : 6495407

Book title : Obj C programming
Book author : Raj

Book subject : Empty

Book book_id : 1001

Static Members

Static variables are initialized only once. For example, to have the unique ids for the books
we can make the book_id as static and increment the book id. An example is shown below.

Example

import std.stdio;

struct Books

{
char [] title;
char [] subject = "Empty".dup;
int book_id;
char [] author = "Raj".dup;
static int id = 1000;

}s

void main()

3D tutorialspoint

MPLYEASYLEARNINEG

120

D Programming

Books Bookl = Books("D Programming".dup, "D Programming

Tutorial”.dup,++Books.id);

printBook(Bookl);

Books Book2 = Books("D Programming".dup, "D Programming

Tutorial".dup,++Books.id);

printBook(Book2);

Books Book3 = {title:"Obj C programming".dup, book_id:++Books.id};

printBook(Book3);

void printBook(Books book)

{
writeln(
writeln(
writeln(
writeln(
}

"Book title : ", book.title);

"Book author : ", book.author);

"Book subject :
"Book book_id : ", book.book_id);

, book.subject);

When the above code is compiled and executed, it produces the following result:

Book title : D Programming
Book author : Raj
Book subject : D Programming Tutorial
Book book_id : 1001
Book title : D Programming
Book author : Raj
Book subject : D Programming Tutorial
Book book_id : 1002
Book title : Obj C programming
Book author : Raj
Book subject : Empty
Book book_id : 1003
121
%0j dtutorialspoint

MPLYEASYLEARNINEG

19. D — Unions

A union is a special data type available in D that enables you to store different data types
in the same memory location. You can define a union with many members, but only one
member can contain a value at any given time. Unions provide an efficient way of using
the same memory location for multiple purposes.

Defining a Unionin D

To define a union, you must use the union statement in very similar way as you did while
defining structure. The union statement defines a new data type, with more than one
member for your program. The format of the union statement is as follows:

union [union tag]

{

member definition;

member definition;

member definition;

} [one or more union variables];

The union tag is optional and each member definition is a normal variable definition, such
asinti; or float f; or any other valid variable definition. At the end of the union's definition,
before the final semicolon, you can specify one or more union variables but it is optional.
Here is the way you would define a union type named Data which has the three members
i, f, and str:

union Data

{

int i;

float f;

char str[20];
} data;

A variable of Data type can store an integer, a floating-point number, or a string of
characters. This means a single variable (same memory location) can be used to store
multiple types of data. You can use any built-in or user defined data types inside a union
based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the
union. For example, in the above example, Data type will occupy 20 bytes of memory
space because this is the maximum space which can be occupied by character string. The
following example displays total memory size occupied by the above union:

122

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

import std.stdio;

union Data

{

int i;

float f;

char str[20];
};

int main()

{
Data data;
writeln("Memory size occupied by data : ", data.sizeof);
return 0;

}

When the above code is compiled and executed, it produces the following result:

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.). The member
access operator is coded as a period between the union variable name and the union
member that we wish to access. You would use union keyword to define variables of union

type.

Example
The following example explains usage of union:

import std.stdio;

union Data

{
int i;
float f;
char str[13];
}s
123
®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

void main()

{
Data data;
data.i = 10;
data.f = 220.5;
data.str = "D Programming".dup;
writeln("size of : ", data.sizeof);
writeln("data.i : ", data.i);
writeln("data.f : ", data.f);
writeln("data.str : ", data.str);

}

When the above code is compiled and executed, it produces the following result:

size of : 16
data.i : 1917853764
data.f : 4.12236e+30

data.str : D Programming

Here, you can see that values of i and f members of union got corrupted because final
value assigned to the variable has occupied the memory location and this is the reason

that the value of str member is getting printed very well.

Now let us look into the same example once again where we will use one variable at a

time which is the main purpose of having union:

Modified Example

import std.stdio;

union Data
{
int i;
float f;
char str[13];
}s5
void main()

{

Data data;

3D tutorialspoint

MPLYEASYLEARNINEG

124

D Programming

writeln("size of : ", data.sizeof);

data.i = 10;

writeln("data.i : ", data.i);

data.f = 220.5;
writeln("data.f : ", data.f);

data.str = "D Programming".dup;

writeln("data.str : ", data.str);

}

When the above code is compiled and executed, it produces the following result:

size of : 16
data.i : 10
data.f : 220.5

data.str : D Programming

Here, all the members are getting printed very well because one member is being used at
a time.

125

3D tutorialspoint

MPLYEASYLEARNINEG

20. D — Ranges

Ranges are an abstraction of element access. This abstraction enables the use of great
number of algorithms over great number of container types. Ranges emphasize how
container elements are accessed, as opposed to how the containers are implemented.
Ranges is a very simple concept that is based on whether a type defines certain sets of
member functions.

Ranges are an integral part of D. D's slices happen to be implementations of the most
powerful range RandomAccessRange, and there are many range features in Phobos. Many
Phobos algorithms return temporary range objects. For example, filter() chooses elements
that are greater than 10 in the following code actually returns a range object, not an array.

Number ranges

Number ranges are quite commonly used and these number ranges is of type int. A few
examples for number ranges is shown below:

// Example 1

foreach (value; 3..7)

// Example 2

int[] slice = array[5..10];

Phobos Ranges

Ranges related to structs and class interfaces is phobos ranges. Phobos is the official
runtime and standard library that comes with the D language compiler.

There are various types of ranges which include:

¢ InputRange

¢ ForwardRange

e BidirectionalRange

¢ RandomAccessRange

e OutputRange

InputRange

The simplest range is the input range. The other ranges bring more requirements on top
of the range that they are based on. There are three functions that InputRange requires:

o empty: It specifies whether the range is empty; it must return true when the range
is considered to be empty; false otherwise.

e front: It provides access to the element at the beginning of the range.
126

\ tutorialspoint

SIMPLYEASYLEARNINGEG

e popFront(): It shortens the range from the
element.

Example

D Programming

beginning by removing the first

import std.stdio;

import std.string;

struct Student

{
string name;
int number;
string toString() const
{
return format("%s(%s)", name, number);
}
}

struct School

{
Student[] students;

struct StudentRange

{
Student[] students;

this(School school)
{

this.students = school.students;

@property bool empty() const
{

return students.length == 0;

3D tutorialspoint

MPLYEASYLEARNINEG

127

D Programming

@property ref Student front()

{

return students[0];

void popFront()

{
students = students[1 ..

void main(){

auto school = School([Student("Raj", 1), Student("John", 2) ,

Student("Ram", 3)]);

$1;

auto range = StudentRange(school);

writeln(range);

writeln(school.students.length);

writeln(range.front);

range.popFront;

writeln(range.empty);

writeln(range);

}

When the above code is compiled and executed, it produces the following result:

[Raj(1), John(2), Ram(3)]
3

Raj(1)

false

[John(2), Ram(3)]

3D tutorialspoint

MPLYEASYLEARNINEG

128

ForwardRange

D Programming

ForwardRange additionally requires the save member function part from the other three
function of InputRange and return a copy of the range when the save function is called.

import std.array;
import std.stdio;
import std.string;

import std.range;

struct FibonacciSeries

int first = 0;
int second = 1;

enum empty = false; // infinite range

@property int front() const
{

return first;

void popFront()
{

int third = first + second;
first = second;

second = third;

@property FibonacciSeries save() const

{

return this;

void report(T)(const dchar[] title, const ref T range)

{
writefln("%s: %s", title, range.take(5));

3D tutorialspoint

MPLYEASYLEARNINEG

129

D Programming

void main()
{
auto range = FibonacciSeries();

report("Original range", range);

range.popFrontN(2);

report("After removing two elements", range);

auto theCopy = range.save;

report("The copy", theCopy);

range.popFrontN(3);
report("After removing three more elements", range);
report("The copy", theCopy);

}

When the above code is compiled and executed, it produces the following result:

Original range: [0, 1, 1, 2, 3]

After removing two elements: [1, 2, 3, 5, 8]

The copy: [1, 2, 3, 5, 8]

After removing three more elements: [5, 8, 13, 21, 34]

The copy: [1, 2, 3, 5, 8]

BidirectionalRange

BidirectionalRange additionally provides two member functions over the member functions
of ForwardRange. The back function which is similar to front, provides access to the last
element of the range. The popBack function is similar to popFront function and it removes
the last element from the range.

Example

import std.array;
import std.stdio;
import std.string;

struct Reversed

{

130

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

int[] range;
this(int[] range)
{

this.range = range;

@property bool empty() const
{

return range.empty;

@property int front() const
{

return range.back; // reverse

@property int back() const
{

return range.front; // reverse

void popFront()

{
range.popBack();

void popBack()

{
range.popFront();

void main()

{
writeln(Reversed([1, 2, 3]));

3D tutorialspoint

MPLYEASYLEARNINEG

131

D Programming

When the above code is compiled and executed, it produces the following result:

[3, 2, 1]

Infinite RandomAccessRange

oplIndex() is additionally required when compared to the ForwardRange. Also, the value of
an empty function to be known at compile time as false. A simple example is explained

with squares range is shown below.

import std.array;
import std.stdio;
import std.string;
import std.range;

import std.algorithm;

class SquaresRange

{

int first;

this(int first = @)

{
this.first = first;

enum empty = false;

@property int front() const
{

return opIndex(®);

void popFront()
{

++first;

@property SquaresRange save() const

{

3D tutorialspoint

MPLYEASYLEARNINEG

132

D Programming

return new SquaresRange(first);

int opIndex(size_t index) const

{
/* This function operates at constant time */
immutable integerValue = first + cast(int)index;
return integerValue * integerValue;

}

bool are_lastTwoDigitsSame(int value)
{
/* Must have at least two digits */
if (value < 10) {
return false;
}
/* Last two digits must be divisible by 11 */
immutable lastTwoDigits = value % 100;
return (lastTwoDigits % 11) == 0;

void main()

{
auto squares = new SquaresRange();
writeln(squares[5]);
writeln(squares[10]);
squares.popFrontN(5);
writeln(squares[0]);

writeln(squares.take(50).filter!are_lastTwoDigitsSame);

133

21 Vtutorialspoint

SIMPLYEASYLEARNINEG

D Programming

When the above code is compiled and executed, it produces the following result:

25

100

25

[100, 144, 400, 900, 1444, 1600, 2500]

Finite RandomAccessRange

opIndex() and length are additionally required when compared to bidirectional range. This
is explained with the help of detailed example that uses the Fibonacci series and Squares
Range example used earlier. This example works well on normal D compiler but does not
work on online compiler.

Example

import std.array;

import std.stdio;

import std.string;

import std.range;

import std.algorithm;

struct FibonacciSeries

{
int first = 0;
int second = 1;
enum empty = false; // infinite range
@property int front() const
{
return first;
}
void popFront()
{
int third = first + second;
first = second;
second = third;
}
134
®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

@property FibonacciSeries save() const

{

return this;

void report(T)(const dchar[] title, const ref T range)

{
writefln("%40s: %s", title, range.take(5));

class SquaresRange

{
int first;
this(int first = 0)
{
this.first = first;
}
enum empty = false;
@property int front() const
{
return opIndex(®);
}
void popFront()
{
++first;
}
@property SquaresRange save() const
{
return new SquaresRange(first);
}
135
o

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

int opIndex(size_t index) const

{

/* This function operates at constant time */
immutable integerValue = first + cast(int)index;
return integerValue * integerValue;

}

bool are_lastTwoDigitsSame(int value)

{
/* Must have at least two digits */

if (value < 10) {

return false;

/* Last two digits must be divisible by 11 */
immutable lastTwoDigits = value % 100;
return (lastTwoDigits % 11) == 0;

struct Together

{
const(int)[][] slices;
this(const(int)[][] slices ...)
{
this.slices = slices.dup;
clearFront();
clearBack();
}
private void clearFront()
{
while (!slices.empty && slices.front.empty) {
slices.popFront();
136
®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

private void clearBack()

{
while (!slices.empty && slices.back.empty) {

slices.popBack();

@property bool empty() const
{

return slices.empty;

@property int front() const
{

return slices.front.front;

void popFront()
{

slices.front.popFront();

clearFront();

@property Together save() const
{

return Together(slices.dup);

@property int back() const
{

return slices.back.back;

137

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

void popBack()

{
slices.back.popBack();
clearBack();

@property size_t length() const
{

return reduce!((a, b) => a + b.length)(size_t.init, slices);

int opIndex(size_t index) const

{
/* Save the index for the error message */
immutable originalIndex = index;
foreach (slice; slices) {
if (slice.length > index) {
return slice[index];
} else {
index -= slice.length;
}
}
throw new Exception(
format("Invalid index: %s (length: %s)",
originalIndex, this.length));
}

void main(){
auto range = Together(FibonacciSeries().take(10).array,
[777, 888],
(new SquaresRange()).take(5).array);

writeln(range.save);

138

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

When the above code is compiled and executed, it produces the following result:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 777, 888, 0, 1, 4, 9, 16]

OutputRange

OutputRange represents streamed element output, similar to sending characters to stdout.
OutputRange requires support for the put(range, element) operation. put() is a function
defined in the std.range module. It determines the capabilities of the range and the
element at compile time and uses the most appropriate method to use to output the
elements. A simple example is shown below.

import std.algorithm;

import std.stdio;

struct MultiFile
{

string delimiter;

File[] files;
this(string delimiter, string[] fileNames ...)
{
this.delimiter = delimiter;
/* stdout is always included */
this.files ~= stdout;
/* A File object for each file name */
foreach (fileName; fileNames) {

this.files ~= File(fileName, "w");

void put(T)(T element)

{
foreach (file; files) {
file.write(element, delimiter);
}
}
}
139
0| dtutorialspoint

MPLYEASYLEARNINEG

D Programming

void main(){
auto output = MultiFile("\n", "output_0", "output_1");
copy([1, 2, 3], output);

copy(["red", "blue", "green"], output);
}

When the above code is compiled and executed, it produces the following result:

[1, 2, 3]

["r‘ed", "blue", ngr\eenu]

140

3D tutorialspoint

MPLYEASYLEARNINEG

21. D — Aliases

Alias, as the name refers provides an alternate name for existing names. The syntax for
alias is shown below.

alias new_name = existing_name;

The following is the older syntax, just in case you refer some older format examples. Its
is strongly discouraged the use of this.

alias existing_name new_name;

There is also another syntax that is used with expression and it is given below in which we
can directly use the alias name instead of the expression.

alias expression alias_name ;

As you may know, a typedef adds the ability to create new types. Alias can do the work of
a typedef and even more. A simple example for using alias is shown below that uses the
std.conv header which provides the type conversion ability.

import std.stdio;

import std.conv:to;

alias to!(string) toString;

void main()

{
int a = 10;

string s = "Test"~toString(a);
writeln(s);

}

When the above code is compiled and executed, it produces the following result:

Testl0

In the above example instead of using to!string(a), we assigned it to alias name toString
making it more convenient and simpler to understand.

141

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Alias for a Tuple

Let us a look at another example where we can set alias name for a Tuple.

import std.stdio;

import std.typetuple;

alias TypeTuple!(int, long) TL;

void method1(TL tl)

{
writeln(tl[e],"\t", t1[1]);

void main()

{
method1(5, 6L);

}

When the above code is compiled and executed, it produces the following result:

5 6

In the above example, the type tuple is assigned to the alias variable and it simplifies the
method definition and access of variables. This kind of access is even more useful when
we try to reuse such type tuples.

Alias for Data Types

Many times, we may define common data types that needs to be used across the
application. When multiple programmers code an application, it can be cases where one
person uses int, another double, and so on. To avoid such conflicts, we often use types for
data types. A simple example is shown below.

Example

import std.stdio;

alias int myAppNumber;
alias string myAppString;

void main()

{

142

MPLYEASYLEARNINEG

m \ tutorialspoint

D Programming

myAppNumber i

10;

myAppString s "TestString";

writeln(i,s);

}

When the above code is compiled and executed, it produces the following result:

10TestString

Alias for Class Variables

There is often a requirement where we need to access the member variables of the
superclass in the subclass, this can made possible with alias, possibly under a different
name.

In case you are new to the the concept of classes and inheritance, have a look at the
tutorial on classes and inheritance before starting with this section.

Example
A simple example is shown below.

import std.stdio;

class Shape

{

int area;

class Square : Shape

{

string name() const @property

{

return "Square";

}

alias Shape.area squareArea;
}
void main()
{

auto square = new Square;

143
®

\ tutorialspoint

MPLYEASYLEARNINEG

http://localhost/d_programming/d_programming_classes_objects.htm
http://localhost/d_programming/d_programming_inheritance.htm

D Programming

square.squareArea = 42;

writeln(square.name);

writeln(square.squareArea);

}

When the above code is compiled and executed, it produces the following result:

Square

42

Alias This

Alias this provides the capability of automatic type conversions of user-defined types. The
syntax is shown below where the keywords alias and this are written on either sides of the
member variable or member function.

alias member_variable_or_member_function this;

Example
An example is shown below to show the power of alias this.

import std.stdio;

struct Rectangle

{
long length;
long breadth;

double value() const @property

{
return cast(double) length * breadth;

}

alias value this;

double volume(double rectangle, double height)
{

return rectangle * height;

144

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

}

void main()

{
auto rectangle = Rectangle(2, 3);
writeln(volume(rectangle, 5));

}

In the above example, you can see that the struct rectangle is converted to double value
with the help of alias this method.

When the above code is compiled and executed, it produces the following result:

30

145

3D tutorialspoint

PLYEASYLEARNING

Mixins are structs that allow mixing of the generated code into the source code. Mixins can
be of the following types:

e String Mixins
e Template Mixins

e Mixin name spaces

String Mixins
D has the capability to insert code as string as long as that string is known at compile
time. The syntax of string mixins is shown below:

mixin (compile_time_generated_string)

Example
A simple example for string mixins is shown below.

import std.stdio;

void main()

{

mixin("writeln("Hello World!");");

}

When the above code is compiled and executed, it produces the following result:

Hello World!

Here is another example where we can pass the string in compile time so that mixins can
use the functions to reuse code. It is shown below.

import std.stdio;
string print(string s)

{

return “writeln("> ~ s ~ ");;

void main()

146

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

mixin (print("stri"));
mixin (print("str2"));

}

When the above code is compiled and executed, it produces the following result:

strl
str2

Template Mixins

D templates define common code patterns, for the compiler to generate actual instances
from that pattern. The templates can generate functions, structs, unions, classes,
interfaces, and any other legal D code. The syntax of template mixins is as shown below.

mixin a_template! (template_parameters)

A simple example for string mixins is shown below where we create a template with class
Department and a mixin instantiating a template and hence making the the functions
setName and printNames available to the structure college.

Example

import std.stdio;

template Department(T, size_t count)

{

T[count] names;

void setName(size_t index, T name)

{

names[index] = name;

void printNames()

{

writeln("The names");

foreach (i, name; names)

{

147

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

writeln(i," , hame);

struct College
{

mixin Department!(string, 2);

void main()

{
auto college = College();
college.setName(@, "namel");
college.setName(1, "name2");
college.printNames();

}

When the above code is compiled and executed, it produces the following result:

The names
0 : namel

1 : name2

Mixin Name Spaces

Mixin name spaces are used to avoid ambiguities in template mixins. For example, there
can be two variables, one defined explicitly in main and the other is mixed in. When a
mixed-in name is the same as a name that is in the surrounding scope, then the name
that is in the surrounding scope gets used. This example is shown below.

Example

import std.stdio;

template Person()

{

3D tutorialspoint

MPLYEASYLEARNINEG

148

D Programming

string name;
void print()
{

writeln(name);

void main()

{

}

string name;

mixin Person a;

name = "name 1";

writeln(name);

a.name = "name 2";

print();

When the above code is compiled and executed, it produces the following result:

name 1

name 2

3D tutorialspoint

MPLYEASYLEARNINEG

149

23. D — Modules

Modules are the building blocks of D. They are based on a simple concept. Every source
file is @ module. Accordingly, the single files in which we write the programs are individual
modules. By default, the name of a module is the same as its filename without the .d
extension.

When explicitly specified, the name of the module is defined by the module keyword, which
must appear as the first non-comment line in the source file. For example, assume that
the name of a source file is "employee.d". Then the name of the module is specified by
the module keyword followed by employee. It is as shown below.

module employee;

class Employee

{

// Class definition goes here.

}

The module line is optional. When not specified, it is the same as the file name without
the .d extension.

File and Module Names

D supports Unicode in source code and module names. However, the Unicode support of
file systems vary. For example, although most Linux file systems support Unicode, the file
names in Windows file systems may not distinguish between lower and upper case letters.
Additionally, most file systems limit the characters that can be used in file and directory
names. For portability reasons, I recommend that you use only lower case ASCII letters
in file names. For example, "employee.d" would be a suitable file name for a class nhamed
employee.

Accordingly, the name of the module would consist of ASCII letters as well:

module employee; // Module name consisting of ASCII letters

class eémployéé

{
}

150

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

D Packages

A combination of related modules are called a package. D packages are a simple concept
as well: The source files that are inside the same directory are considered to belong to the
same package. The name of the directory becomes the name of the package, which must
also be specified as the first parts of module names.

For example, if "employee.d" and "office.d" are inside the directory "company", then
specifying the directory name along with the module name makes them be a part of the
same package:

module company.employee;

class Employee

{
}

Similarly, for the office module:

module company.office;

class Office

{
}

Since package names correspond to directory names, the package names of modules that
are deeper than one directory level must reflect that hierarchy. For example, if the
"company" directory included a "branch" directory, the name of a module inside that
directory would include branch as well.

module company.branch.employee;

Using Modules in Programs

The import keyword, which we have been using in almost every program so far, is for
introducing a module to the current module:

import std.stdio;

The module name may contain the package name as well. For example, the std. part above
indicates that stdio is a module that is a part of the std package.

151

PLYEASYLEARNING

m \ tutorialspoint

D Programming

Locations of Modules

The compiler finds the module files by converting the package and module names directly
to directory and file names.

For example, the two modules employee and office would be located as
"company/employee.d" and "animal/office.d", respectively (or "company\employee.d" and
"company\office.d", depending on the file system) for company.employee and
company.office.

Long and Short Module Names

The names that are used in the program may be spelled out with the module and package
names as shown below.

import company.employee;
auto employee@ = Employee();

auto employeel = company.employee.Employee();

The long names are normally not needed but sometimes there are name conflicts. For
example, when referring to a name that appears in more than one module, the compiler
cannot decide which one is meant. The following program is spelling out the long names
to distinguish between two separate employee structs that are defined in two separate
modules: company and college.

The first employee module in folder company is as follows.

module company.employee;

import std.stdio;

class Employee

{
public:
string str;
void print(){
writeln("Company Employee: ",str);
}
}

152

PLYEASYLEARNING

m \ tutorialspoint

D Programming

The second employee module in folder college is as follows.

module college.employee;

import std.stdio;

class Employee

{
public:
string str;
void print(){
writeln("College Employee: ",str);
}
}

The main module in hello.d should be saved in the folder which contains the college and
company folders. It is as follows.

import company.employee;

import college.employee;

import std.stdio;

void main()

{
auto myemployeel = new company.employee.Employee();
myemployeel.str = "empl";
myemployeel.print();
auto myemployee2 = new college.employee.Employee();
myemployee2.str = "emp2";
myemployee2.print();

}

The import keyword is not sufficient to make modules become parts of the program. It
simply makes available the features of a module inside the current module. That much is
needed only to compile the code.

For the program above to be built, "company/employee.d" and "college/employee.d" must
also be specified on the compilation line.

When the above code is compiled and executed, it produces the following result:

153

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

$ dmd hello.d company/employee.d college/employee.d -ofhello.amx
$./hello.amx

Company Employee: empl

College Employee: emp2

\ tutorialspoint

PLYEASYLEARNING

154

24. D — Templates

Templates are the foundation of generic programming, which involve writing code in a way
that is independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function.

Templates are the feature that allows describing the code as a pattern, for the compiler to
generate program code automatically. Parts of the source code may be left to the compiler
to be filled in until that part is actually used in the program. The compiler fills in the missing
parts.

Function Template

Defining a function as a template is leaving one or more of the types that it uses as
unspecified, to be deduced later by the compiler. The types that are being left unspecified
are defined within the template parameter list, which comes between the name of the
function and the function parameter list. For that reason, function templates have two
parameter lists:

e template parameter list

e function parameter list

import std.stdio;
void print(T)(T value)

{

writefln("%s", value);

void main()

{
print(42);
print(1.2);
print("test");
}

If we compile and run above code, this would produce the following result:

42
1.2
test

155

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Function Template with Multiple Type Parameters

There can be multiple parameter types. They are shown in the following example.

Example

import std.stdio;

void print(T1, T2)(T1 valuel, T2 value2)
{

writefln(" %s %s", valuel, value2);

void main()

{
print(42, "Test");
print(1.2, 33);

}

If we compile and run above code, this would produce the following result:

42 Test
1.2 33

Class Templates

Just as we can define function templates, we can also define class templates. The following
example defines class Stack and implements generic methods to push and pop the
elements from the stack.

import std.stdio;

import std.string;
class Stack(T)

{

private:

T[] elements;

public:

void push(T element)

156

PLYEASYLEARNING

m \ tutorialspoint

D Programming

{
elements ~= element;
}
void pop()
{
--elements.length;
}

T top() const @property
{

return elements[$ - 1];

size_t length() const @property
{

return elements.length;

void main()

{

auto stack = new Stack!string;

stack.push("Test1");
stack.push("Test2");

writeln(stack.top);
writeln(stack.length);

stack.pop;
writeln(stack.top);
writeln(stack.length);

3D tutorialspoint

MPLYEASYLEARNINEG

157

D Programming

When the above code is compiled and executed, it produces the following result:

Test2
2
Testl

158

\ tutorialspoint

PLYEASYLEARNING

25. D — Immutables

We often use variables that are mutable but there can be many occasions mutability is not
required. Immutable variables can be used in such cases. A few examples are given below
where immutable variable can be used.

¢ In case of math constants such as pi that never change.

e In case of arrays where we want to retain values and it is not requirements of
mutation.

Immutability makes it possible to understand whether the variables are immutable or
mutable guaranteeing that certain operations do not change certain variables. It also
reduces the risk of certain types of program errors. The immutability concept of D is
represented by the const and immutable keywords. Although the two words themselves
are close in meaning, their responsibilities in programs are different and they are
sometimes incompatible.

The immutability concept of D is represented by the const and immutable keywords.
Although the two words themselves are close in meaning, their responsibilities in programs
are different and they are sometimes incompatible.

Types of Immutable Variables in D

There are three types of defining variables that can never be mutated.

e enum constants
e immutable variables

e const variables

enum Constants inD

The enum constants makes it possible to relate constant values to meaningful names. A
simple example is shown below.

Example

import std.stdio;

enum Day{
Sunday = 1,
Monday,
Tuesday,
Wednesday,
Thursday,

159

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Friday,
Saturday

void main()
{
Day day;
day = Day.Sunday;
if (day == Day.Sunday)
{
writeln("The day is Sunday");

}

When the above code is compiled and executed, it produces the following result:

The day is Sunday

Immutable Variables in D

Immutable variables can be determined during the execution of the program. It just directs
the compiler that after the initialization, it becomes immutable. A simple example is shown
below.

Example

import std.stdio;

import std.random;

void main()

{

int min

1;

int max 10;

immutable number = uniform(min, max + 1);

// cannot modify immutable expression number
// number = 34;

typeof (number) value = 100;

160

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

writeln(typeof(number).stringof, number);

writeln(typeof(value).stringof, value);

}

When the above code is compiled and executed, it produces the following result:

immutable(int)4
immutable(int)1e0

You can see in the above example how it is possible to transfer the data type to another
variable and use stringof while printing.

ConstVariables inD

Const variables cannot be modified similar to immutable. immutable variables can be
passed to functions as their immutable parameters and hence it is recommended to use
immutable over const. The same example used earlier is modified for const as shown
below.

Example

import std.stdio;

import std.random;

void main()

{
int min = 1;
int max = 10;
const number = uniform(min, max + 1);
// cannot modify const expression number|
// number = 34;
typeof(number) value = 100;
writeln(typeof(number).stringof, number);
writeln(typeof(value).stringof, value);
}
161
®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

If we compile and run above code, this would produce the following result:

const(int)7
const(int)1ee

Immutable Parameters in D

const erases the information about whether the original variable is mutable or immutable
and hence using immutable makes it pass it other functions with the original type retained.

A simple example is shown below.

Example

import std.stdio;

void print(immutable int[] array)

{

foreach (i, element; array)

{

writefln("%s: %s", i, element);

void main()

{
immutable int[] array = [1, 2];
print(array);

}

When the above code is compiled and executed, it produces the following result:

0: 1
1: 2

3D tutorialspoint

PLYEASYLEARNING

162

26.D—File l/O

Files are represented by the File struct of the std.stdio module. A file represents a sequence
of bytes, does not matter if it is a text file or binary file.

D programming language provides access on high level functions as well as low level (OS
level) calls to handle file on your storage devices.

Opening Files in D

The standard input and output streams stdin and stdout are already open when programs
start running. They are ready to be used. On the other hand, files must first be opened by
specifying the name of the file and the access rights that are needed.

File file = File(filepath, "mode");

Here, filename is string literal, which you use to name the file and access mode can have
one of the following values:

Mode Description

r Opens an existing text file for reading purpose.

Opens a text file for writing, if it does not exist then a new file is created.
w Here your program will start writing content from the beginning of the
file.

Opens a text file for writing in appending mode, if it does not exist then
a a new file is created. Here your program will start appending content in
the existing file content.

r+ Opens a text file for reading and writing both.

Opens a text file for reading and writing both. It first truncate the file to

w+ zero length if it exists otherwise create the file if it does not exist.

Opens a text file for reading and writing both. It creates the file if it does
a+ not exist. The reading will start from the beginning but writing can only
be appended.

163

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Closing aFileinD

To close a file, use the file.close() function where file holds the file reference. The prototype
of this function is:

file.close();

Any file that has been opened by a program must be closed when the program finishes
using that file. In most cases the files need not be closed explicitly; they are closed
automatically when File objects are terminated.

Wiriting aFileinD

file.writeln is used to write to an open file.

file.writeln("hello");

Example

import std.stdio;

import std.file;

void main()

{
File file = File("test.txt", "w");
file.writeln("hello");
file.close();

}

When the above code is compiled and executed, it creates a new file test.txt in the
directory that it has been started under (in the program working directory).

Reading aFileinD

The following method reads a single line from a file:

string s = file.readln();

A complete example of read and write is shown below.

import std.stdio;

import std.file;

void main()

164

3D tutorialspoint

PLYEASYLEARNING

D Programming

File file = File("test.txt", "w");
file.writeln("hello");
file.close();

file = File("test.txt", "r");
string s = file.readln();
writeln(s);

file.close();

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

hello

Here is another example for reading file till end of file.

import std.stdio;

import std.string;

void main()

{
File file = File("test.txt", "w");
file.writeln("hello");
file.writeln("world");
file.close();
file = File("test.txt", "r");
while (!file.eof())
{
string line = chomp(file.readln());
writeln("line -", line);
}
}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

3D tutorialspoint

MPLYEASYLEARNINEG

165

D Programming

line -hello
line -world

line -

You can see in the above example an empty third line since writeln takes it to next line
once it is executed.

166

\ tutorialspoint

PLYEASYLEARNING

27. D — Concurrency

Concurrency is making a program run on multiple threads at a time. An example of a
concurrent program is a web server responding many clients at the same time.
Concurrency is easy with message passing but very difficult to write if they are based on
data sharing.

Data that is passed between threads are called messages. Messages may be composed of
any type and any number of variables. Every thread has an id, which is used for specifying
recipients of messages. Any thread that starts another thread is called the owner of the
new thread.

Initiating Threads in D

The function spawn() takes a pointer as a parameter and starts a new thread from that
function. Any operations that are carried out by that function, including other functions
that it may call, would be executed on the new thread. The owner and the worker both
start executing separately as if they were independent programs.

Example

import std.stdio;
import std.stdio;
import std.concurrency;

import core.thread;

void worker(int a)

{
foreach (i; @ .. 4)
{
Thread.sleep(1l);
writeln("Worker Thread ",a + i);
}
}

void main()

{
foreach (i; 1 .. 4)

{
Thread.sleep(2);

167

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

writeln("Main Thread ",1i);
spawn(&worker, i * 5);
}

writeln("main is done.");

}

When the above code is compiled and executed, it reads the file created in previous section

and produces the following result:

Main Thread 1
Worker Thread 5
Main Thread 2
Worker Thread 6
Worker Thread 10
Main Thread 3
main is done.
Worker Thread 7
Worker Thread 11
Worker Thread 15
Worker Thread 8
Worker Thread 12
Worker Thread 16
Worker Thread 13
Worker Thread 17
Worker Thread 18

Thread Identifiers inD

The thisTid variable available globally at the module level is always the id of the current
thread. Also you can receive the threadld when spawn is called. An example is shown

below.

Example

import std.stdio;

import std.concurrency;

void printTid(string tag)
{

3D tutorialspoint

MPLYEASYLEARNINEG

168

D Programming

writefln("%s: %s, address: %s", tag, thisTid, &thisTid);

void worker()

{
printTid("Worker");

void main()

{
Tid myWorker = spawn(&worker);
printTid("Owner ");
writeln(myWorker);

}

When the above code is compiled and executed, it reads the file created in previous section
and produces the following result:

Owner : Tid(std.concurrency.MessageBox), address: 10C71A59C
Worker: Tid(std.concurrency.MessageBox), address: 10C71A59C

Tid(std.concurrency.MessageBox)

Message Passing in D

The function send() sends messages and the function receiveOnly() waits for a message
of a particular type. There are other functions named prioritySend(), receive(), and
receiveTimeout(), which are explained later.

The owner in the following program sends its worker a message of type int and waits for
a message from the worker of type double. The threads continue sending messages back
and forth until the owner sends a negative int. An example is shown below.

Example

import std.stdio;
import std.concurrency;
import core.thread;

import std.conv;

void workerFunc(Tid tid)

{

169

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

int value = 0;

while (value >= 0)

{
value = receiveOnly!int();
auto result = tol!double(value) * 5;
tid.send(result);

}

void main()

{
Tid worker = spawn(&workerFunc,thisTid);
foreach (value; 5 .. 10) {
worker.send(value);
auto result = receiveOnly!double();
writefln("sent: %s, received: %s", value, result);
}
worker.send(-1);
}

When the above code is compiled and executed, it reads the file created in previous section
and produces the following result:

sent: 5, received: 25
sent: 6, received: 30
sent: 7, received: 35
sent: 8, received: 40
sent: 9, received: 45
170
®

\ tutorialspoint

MPLYEASYLEARNINEG

Message Passing with Wait in D

D Programming

A simple example with the message passing with wait is shown below.

import std.stdio;
import std.concurrency;
import core.thread;

import std.conv;

void workerFunc(Tid tid)

{
Thread.sleep(dur!("msecs")(500),);

tid.send("hello");

void main()

{
spawn(&workerFunc,thisTid);
writeln("Waiting for a message");
bool received = false;
while (!received)
{
received = receiveTimeout(dur!("msecs")(100),
(string message){
writeln("received: ", message);
1
if (!received) {
writeln("... no message yet");
}
}
}
171
@ . . .
tutorialspoint

MPLYEASYLEARNINEG

D Programming

When the above code is compiled and executed, it reads the file created in previous section
and produces the following result:

Waiting for a message
. ho message yet
. ho message yet
. ho message yet
. ho message yet

received: hello

172

\ tutorialspoint

PLYEASYLEARNING

28. D — Exception Handling

An exception is a problem that arises during the execution of a program. A D exception is
a response to an exceptional circumstance that arises while a program is running, such as
an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. D
exception handling is built upon three keywords: try, catch, and throw.

e throw: A program throws an exception when a problem shows up. This is done
using a throw keyword.

e catch: A program catches an exception with an exception handler at the place in
a program where you want to handle the problem. The catch keyword indicates
the catching of an exception.

e try: A try block identifies a block of code for which particular exceptions are
activated. It is followed by one or more catch blocks.

Assuming a block will raise an exception, a method catches an exception using a
combination of the try and catch keywords. A try/catch block is placed around the code
that might generate an exception. Code within a try/catch block is referred to as protected
code, and the syntax for using try/catch looks like the following:

try
{
// protected code
}
catch(ExceptionName el)
{
// catch block
}
catch(ExceptionName e2)
{
// catch block
}
catch(ExceptionName eN)
{
// catch block
}

You can list down multiple catch statements to catch different type of exceptions in case
your try block raises more than one exception in different situations.

173

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Throwing Exceptions inD

Exceptions can be thrown anywhere within a code block using throw statements. The
operand of the throw statements determines a type for the exception and can be any
expression and the type of the result of the expression determines the type of exception
thrown.

The following example throws an exception when dividing by zero condition occurs:

Example
double division(int a, int b)
{
if(b ==0)
{
throw new Exception("Division by zero condition!");
}
return (a/b);
}
Catching Exceptions in D

The catch block following the try block catches any exception. You can specify what type
of exception you want to catch and this is determined by the exception declaration that
appears in parentheses following the keyword catch.

try
{
// protected code
}
catch(ExceptionName e)
{
// code to handle ExceptionName exception
}

The above code catches an exception of ExceptionName type. If you want to specify that
a catch block should handle any type of exception that is thrown in a try block, you must
put an ellipsis,..., between the parentheses enclosing the exception declaration as follows:

try

{
// protected code

174

3D tutorialspoint

PLYEASYLEARNING

D Programming

catch(...)
{

// code to handle any exception

}

The following example throws a division by zero exception. It is caught in catch block.

import std.stdio;

import std.string;

string division(int a, int b)

{
string result = "";
try {
if(b ==9)
{
throw new Exception("Cannot divide by zero!");
}
else
{
result = format("%s",a/b);
}
}
catch (Exception e)
{
result = e.msg;
}
return result;
}

void main ()

{
int x = 50;
int y = 0;
175
0| dtutorialspoint

MPLYEASYLEARNINEG

D Programming

writeln(division(x, y));

y=10;
writeln(division(x, y));

}

When the above code is compiled and executed, it reads the file created in previous section
and produces the following result:

Cannot divide by zero!

5

176

3D tutorialspoint

MPLYEASYLEARNINEG

29. D — Contract Programming

Contract programming in D programming is focused on providing a simple and
understandable means of error handling. Contract programming in D are implemented by
three types of code blocks:

e body block
e in block

e out block

Body Block in D

Body block contains the actual functionality code of execution. The in and out blocks are
optional while the body block is mandatory. A simple syntax is shown below.

return_type function_name(function_params)
in
{
// in block
}
out (result)
{
// in block
}
body

{
// actual function block

In Block for Pre Conditions in D

In block is for simple pre conditions that verify whether the input parameters are
acceptable and in range that can be handled by the code. A benefit of an in block is that
all of the entry conditions can be kept together and separate from the actual body of the
function. A simple precondition for validating password for its minimum length is shown
below.

import std.stdio;

import std.string;

177

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

bool isValid(string password)
in
{

assert(password.length>=5);
}
body
{

// other conditions

return true;

void main()

{

writeln(isvalid("password"));

}

When the above code is compiled and executed, it reads the file created in previous section
and produces the following result:

true

Out Blocks for Post Conditions in D

The out block takes care of the return values from the function. It validates the return
value is in expected range. A simple example containing both in and out is shown below
that converts months, year to a combined decimal age form.

import std.stdio;

import std.string;

double getAge(double months,double years)
in
{

assert(months >= 0);

assert(months <= 12);

}
out (result)

{

assert(result>=years);

178

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

}
body
{
return years + months/12;
}

void main ()

{
writeln(getAge(10,12));

}

When the above code is compiled and executed, it reads the file created in previous section
and produces the following result:

12.8333

179

3D tutorialspoint

PLYEASYLEARNING

30. D — Conditional Compilation

Conditional compilation is the process of selecting which code to compile and which code
to not compile similar to the #if / #else / #endif in C and C++. Any statement that is not
compiled in still must be syntactically correct.

Conditional compilation involves condition checks that are evaluable at compile time.
Runtime conditional statements like if, for, while are not conditional compilation features.
The following features of D are meant for conditional compilation:

e debug
e version
e static if
Debug Statementin D

The debug is useful during program development. The expressions and statements that
are marked as debug are compiled into the program only when the -debug compiler switch
is enabled.

debug a_conditionally_compiled_expression;

debug
{
// ... conditionally compiled code ...
}
else
{
// ... code that is compiled otherwise ...
}

The else clause is optional. Both the single expression and the code block above are
compiled only when the -debug compiler switch is enabled.

Instead of being removed altogether, the lines can be marked as debug instead.

debug writefln("%s debug only statement"”, value);

Such lines are included in the program only when the -debug compiler switch is enabled.

dmd test.d -oftest -w -debug

180

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Debug (tag) Statementin D

The debug statements can be given names (tags) to be included in the program selectively.

debug(mytag) writefln("%s not found", value);

Such lines are included in the program only when the -debug compiler switch is enabled.

dmd test.d -oftest -w -debug=mytag

The debug blocks can have tags as well.

debug(mytag)
{

//
}

It is possible to enable more than one debug tag at a time.

dmd test.d -oftest -w -debug=mytagl -debug=mytag2

Debug (level) Statement in D

Sometimes it is more useful to associate debug statements by numerical levels. Increasing
levels can provide more detailed information.

import std.stdio;

void myFunction()

{
debug(1) writeln("debugl");
debug(2) writeln("debug2");

void main()

{

myFunction();

181

PLYEASYLEARNING

m \ tutorialspoint

D Programming

The debug expressions and blocks that are lower than or equal to the specified level would
be compiled.

$ dmd test.d -oftest -w -debug=1
$./test
debugl

Version (tag) and Version (level) Statements in D

Version is similar to debug and is used in the same way. The else clause is optional.
Although version works essentially the same as debug, having separate keywords helps
distinguish their unrelated uses. As with debug, more than one version can be enabled.

import std.stdio;

void myFunction()

{

version(1l) writeln("versionl");

version(2) writeln("version2");

void main()

{

myFunction();

}

The debug expressions and blocks that are lower than or equal to the specified level would
be compiled.

$ dmd test.d -oftest -w -version=1
$./test

versionl

Static if
Static if is the compile time equivalent of the if statement. Just like the if statement, static
if takes a logical expression and evaluates it. Unlike the if statement, static if is not about

execution flow; rather, it determines whether a piece of code should be included in the
program or not.

The if expression is unrelated to the is operator that we have seen earlier, both
syntactically and semantically. It is evaluated at compile time. It produces an int value,
either 0 or 1; depending on the expression specified in parentheses. Although the

182

PLYEASYLEARNING

m \ tutorialspoint

D Programming

expression that it takes is not a logical expression, the is expression itself is used as a
compile time logical expression. It is especially useful in static if conditionals and template
constraints.

import std.stdio;

enum Days

{
sun,
mon,
tue,
wed,
thu,
fri,
sat

s

void myFunction(T) (T mytemplate)

{
static if (is (T == class))
{
writeln("This is a class type");
}
else static if (is (T == enum))
{
writeln("This is an enum type");
}
}

void main()

{
Days day;
myFunction(day);

}

When we compile and run we will get some output as follows.

This is an enum type

183

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Part Il — Object Oriented D

184

@Fuporiglspnint

31. D —Classes and Objects

Classes are the central feature of D programming that supports object-oriented
programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation and
methods for manipulating that data into one neat package. The data and functions within
a class are called members of the class.

D Class Definitions

When you define a class, you define a blueprint for a data type. This does not actually
define any data, but it defines what the class name means, that is, what an object of the
class will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class
body, enclosed by a pair of curly braces. A class definition must be followed either by a
semicolon or a list of declarations. For example, we defined the Box data type using the
keyword class as follows:

class Box
{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
}

The keyword public determines the access attributes of the members of the class that
follow it. A public member can be accessed from outside the class anywhere within the
scope of the class object. You can also specify the members of a class as private or
protected which we will discuss in a sub-section.

Defining D Objects

A class provides the blueprints for objects, so basically an object is created from a class.
You declare objects of a class with exactly the same sort of declaration that you declare
variables of basic types. The following statements declare two objects of class Box:

Box Box1; // Declare Boxl of type Box
Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 have their own copy of data members.

185

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Accessing the Data Members

The public data members of objects of a class can be accessed using the direct member

access operator (.). Let us try the following example to make the things clear:

import std.stdio;
class Box
{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

void main()

{
Box boxl = new Box(); // Declare Boxl of type Box
Box box2 = new Box(); // Declare Box2 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification
box1l.height = 5.0;
6.90;
box1l.breadth = 7.0;

box1.length

// box 2 specification
10.09;
box2.length 12.0;
box2.breadth = 13.0;

box2.height

// volume of box 1
volume = boxl.height * box1.length * boxl.breadth;

writeln("Volume of Box1l : ",volume);

// volume of box 2

volume = box2.height * box2.length * box2.breadth;

writeln("Volume of Box2 : ", volume);

3D tutorialspoint

MPLYEASYLEARNINEG

186

D Programming

When the above code is compiled and executed, it produces the following result:

Volume of Box1l : 210
Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed directly
using direct member access operator (.). Shortly you will learn how private and protected

members can be accessed.

Classes and Objects inD

So far, you have got very basic idea about D Classes and Objects. There are further
interesting concepts related to D Classes and Objects which we will discuss in various sub-

sections listed below:

Concept

Description

Class member functions

A member function of a class is a function that has its
definition or its prototype within the class definition like any
other variable.

Class access modifiers

A class member can be defined as public, private or protected.
By default members would be assumed as private.

Constructor &
destructor

A class constructor is a special function in a class that is called
when a new object of the class is created. A destructor is also
a special function which is called when created object is
deleted.

The this pointer in D

Every object has a special pointer this which points to the
object itself.

Pointer to D classes

A pointer to a class is done exactly the same way a pointer to
a structure is. In fact a class is really just a structure with
functions in it.

Static members of a
class

Both data members and function members of a class can be
declared as static.

Let us understand these in detail:

187

MPLYEASYLEARNINEG

m \ tutorialspoint

D Programming

Class Member Functions in D

A member function is a function specific to a class. It operates on any object of the class
of which it is a member, and has access to all the members of a class for that object.

A member function is called using a dot operator (.) on a object where it manipulates data
related to that object.

Let us put above concepts to set and get the value of different class members in a class:

import std.stdio;

class Box
{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

double getVolume()

{
return length * breadth * height;

void setLength(double len)

{
length = 1len;

void setBreadth(double bre)

{
breadth = bre;

void setHeight(double hei)

{
height = hei;

188

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

void main()

{
Box Boxl = new Box(); // Declare Boxl of type Box
Box Box2 = new Box(); // Declare Box2 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification
Box1l.setlLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);

// box 2 specification
Box2.setlLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.90);

// volume of box 1
volume = Box1l.getVolume();

writeln("Volume of Boxl : ",volume);

// volume of box 2

volume = Box2.getVolume();

writeln("Volume of Box2 : ", volume);

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1l : 210
Volume of Box2 : 1560

Class Access Modifiers in D

Data hiding is one of the important features of Object Oriented Programming which allows
preventing the functions of a program to directly access the internal representation of a
class type. The access restriction to the class members is specified by the labeled public,
private, and protected sections within the class body. The keywords public, private, and
protected are called access specifiers.

A class can have multiple public, protected, or private labeled sections. Each section
remains in effect until either another section label or the closing right brace of the class
body is seen. The default access for members and classes is private.

189

m \ tutorialspoint

MPLYEASYLEARNINEG

D Programming

class Base {

public:

// public members go here

protected:

// protected members go here

private:

// private members go here

s

The Public Members inD

A public member is accessible from anywhere outside the class but within a program. You

can set and get the value of public variables without any member function as shown in the
following example:

Example

import std.stdio;

class Line

{
public:
double length;
double getLength()
{
return length ;

}
void setLength(double len)
{

length = len;

190
@ . . .
tutorialspoint

MPLYEASYLEARNINEG

D Programming

void main()

{
Line line = new Line();
// set line length
line.setLength(6.9);
writeln("Length of line : ", line.getLength());
// set line length without member function
line.length = 10.0; // OK: because length is public
writeln("Length of line : ",line.length);
}

When the above code is compiled and executed, it produces the following result:

Length of line : 6
Length of line : 10

The Private Members

A private member variable or function cannot be accessed, or even viewed from outside
the class. Only the class and friend functions can access private members.

By default all the members of a class are private. For example in the following class
width is a private member, which means until you label a member explicitly, it is assumed
as a private member:

class Box
{
double width;
public:
double length;
void setWidth(double wid);
double getWidth(void);

191

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Practically, you need to define data in private section and related functions in public section
so that they can be called from outside of the class as shown in the following program.

import std.stdio;

class Box

{
public:
double length;

// Member functions definitions

double getWidth()
{

return width ;

void setWidth(double wid)

{
width = wid;
}
private:

double width;

// Main function for the program

void main()

{
Box box = new Box();
box.length = 10.0; /
writeln("Length of box : ", box.length);
box.setWidth(10.0);
writeln("Width of box : ", box.getWidth());
}

192

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

When the above code is compiled and executed, it produces the following result:

Length of box : 10
Width of box : 1@

The Protected Members

A protected member variable or function is very similar to a private member but it
provided one additional benefit that they can be accessed in child classes which are called
derived classes.

You will learn derived classes and inheritance in next chapter. For now you can check
following example where one child class SmallBox is derived from a parent class Box.

The following example is similar to above example and here width member is accessible
by any member function of its derived class SmallBox.

import std.stdio;

class Box

{
protected:

double width;

class SmallBox:Box // SmallBox is the derived class.

{
public:
double getSmallWidth()
{
return width ;
}
void setSmallWidth(double wid)
{
width = wid;
}
}

void main()

193

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

{
SmallBox box = new SmallBox();
// set box width using member function
box.setSmallWidth(5.0);
writeln("Width of box : ", box.getSmallWidth());
}

When the above code is compiled and executed, it produces the following result:

Width of box : 5

The Class Constructor

A class constructor is a special member function of a class that is executed whenever we
create new objects of that class.

A constructor has exactly the same name as the class and it does not have any return
type at all, not even void. Constructors can be very useful for setting initial values for
certain member variables.

The following example explains the concept of constructor:

import std.stdio;

class Line

{
public:

void setLength(double len)
{

length = len;
}
double getLength()
{

return length;

}
this()
{

writeln("Object is being created");

194
°

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

private:

double length;

void main()

{

Line line = new Line();

// set line length
line.setLength(6.0);

writeln("Length of line :
}

, line.getLength());

When the above code is compiled and executed, it produces the following result:

Object is being created

Length of line : 6

Parameterized Constructor

A default constructor does not have any parameter, but if you need, a constructor can
have parameters. This helps you to assign initial value to an object at the time of its
creation as shown in the following example:

Example

import std.stdio;

class Line

{
public:
void setLength(double len)

{
length = len;

double getlLength()

195

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

{

return length;
}
this(double len)
{

writeln("Object is being created, length = " , len);

length = len;

private:

double length;

// Main function for the program
void main()

{

Line line = new Line(10.0);

// get initially set length.
writeln("Length of line : ",line.getLength());

// set line length again
line.setLength(6.0);
writeln("Length of line : ", line.getLength());

}

When the above code is compiled and executed, it produces the following result:

Object is being created, length = 10
Length of line : 10
Length of line : 6

The Class Destructor

A destructor is a special member function of a class that is executed whenever an object
of its class goes out of scope or whenever the delete expression is applied to a pointer to
the object of that class.

A destructor has exactly the same name as the class prefixed with a tilde (~). It can
neither return a value nor can it take any parameters. Destructor can be very useful for

196

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

releasing resources before coming out of the program like closing files, releasing memories

etc.

The following example explains the concept of destructor:

import std.stdio;

class Line

{
public:
this()
{
writeln("Object is being created");
}
~this()
{
writeln("Object is being deleted");
}
void setLength(double len)
{
length = len;
}
double getLength()
{
return length;
}
private:
double length;
}

// Main function for the program

void main()

{

Line line = new Line();

// set line length

3D tutorialspoint

MPLYEASYLEARNINEG

197

D Programming

line.setLength(6.0);

writeln("Length of line : ", line.getlLength());

}

When the above code is compiled and executed, it produces the following result:

Object is being created
Length of line : 6
Object is being deleted

this Pointer inD

Every object in D has access to its own address through an important pointer called this
pointer. The this pointer is an implicit parameter to all member functions. Therefore,
inside a member function, this may be used to refer to the invoking object.

Let us try the following example to understand the concept of this pointer:

import std.stdio;

class Box
{
public:
// Constructor definition

this(double 1=2.0, double b=2.0, double h=2.0)

{
writeln("Constructor called.");
length = 1;
breadth = b;
height = h;
}
double Volume()
{
return length * breadth * height;
}
int compare(Box box)
{
return this.Volume() > box.Volume();
}
198
0| dtutorialspoint

MPLYEASYLEARNINEG

D Programming

private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

void main()

{
Box Boxl = new Box(3.3, 1.2, 1.5); // Declare box1l
Box Box2 = new Box(8.5, 6.9, 2.9); // Declare box2
if(Box1.compare(Box2))
{
writeln("Box2 is smaller than Box1");
}
else
{
writeln("Box2 is equal to or larger than Box1");
}
}

When the above code is compiled and executed, it produces the following result:

Constructor called.

Constructor called.

Box2 is equal to or larger than Box1l

Pointer to D Classes

A pointer to a D class is done exactly the same way as a pointer to a structure and to
access members of a pointer to a class you use the member access operator => operator,
just as you do with pointers to structures. Also as with all pointers, you must initialize the
pointer before using it.

Let us try the following example to understand the concept of pointer to a class:

import std.stdio;

class Box

199

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

public:
// Constructor definition
this(double 1=2.0, double b=2.0, double h=2.9)
{

writeln("Constructor called.");

length = 1;
breadth = b;
height = h;
}
double Volume()
{
return length * breadth * height;
}
private:
double length; // Length of a box

double breadth; // Breadth of a box
double height; // Height of a box

void main()

{

Box Boxl = new Box(3.3, 1.2, 1.5); // Declare box1

Box Box2 = new Box(8.5, 6.0, 2.90); // Declare box2

Box *ptrBox; // Declare pointer to a class.
// Save the address of first object

ptrBox = &Box1;

// Now try to access a member using member access operator
writeln("Volume of Boxl: ",ptrBox.Volume());

// Save the address of first object

ptrBox = &Box2;

// Now try to access a member using member access operator

200

®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

writeln("Volume of Box2:

}

, ptrBox.Volume());

When the above code is compiled and executed, it produces the following result:

Constructor called.
Constructor called.
Volume of Boxl: 5.94
Volume of Box2: 102

Static Members of a Class

We can define class members static using static keyword. When we declare a member of
a class as static it means no matter how many objects of the class are created, there is
only one copy of the static member.

A static member is shared by all objects of the class. All static data is initialized to zero
when the first object is created, if no other initialization is present. You cannot put it in
the class definition but it can be initialized outside the class as done in the following
example by redeclaring the static variable, using the scope resolution operator ::to
identify which class it belongs to.

Let us try the following example to understand the concept of static data members:

import std.stdio;

class Box
{
public:
static int objectCount = 0;
// Constructor definition
this(double 1=2.0, double b=2.0, double h=2.0)
{
writeln("Constructor called.");
length = 1;
breadth = b;
height = h;

// Increase every time object is created

objectCount++;

201

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

double Volume()

{
return length * breadth * height;
}
private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

}s

void main()

{
Box Boxl = new Box(3.3, 1.2, 1.5); // Declare box1l
Box Box2 = new Box(8.5, 6.0, 2.9); // Declare box2
// Print total number of objects.
writeln("Total objects: ",Box.objectCount);

}

When the above code is compiled and executed, it produces the following result:

Constructor called.
Constructor called.

Total objects: 2

Static Function Members

By declaring a function member as static, you make it independent of any particular object
of the class. A static member function can be called even if no objects of the class exist
and the static functions are accessed using only the class name and the scope resolution
operator ::.

A static member function can only access static data member, other static member
functions, and any other functions from outside the class.

Static member functions have a class scope and they do not have access to
the this pointer of the class. You could use a static member function to determine whether
some objects of the class have been created or not.

202

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Let us try the following example to understand the concept of static function members:

import std.stdio;

class Box
{
public:
static int objectCount = 0;
// Constructor definition

this(double 1=2.0, double b=2.0, double h=2.0)

{
writeln("Constructor called.");
length = 1;
breadth = b;
height = h;
// Increase every time object is created
objectCount++;
}
double Volume()
{
return length * breadth * height;
}
static int getCount()
{
return objectCount;
}
private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

}s

void main()

{

// Print total number of objects before creating object.

writeln("Inital Stage Count: ",Box.getCount());

203

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Box Boxl = new Box(3.3, 1.2, 1.5); // Declare box1l
Box Box2 = new Box(8.5, 6.0, 2.9); // Declare box2

// Print total number of objects after creating object.

writeln("Final Stage Count: ",Box.getCount());
}

When the above code is compiled and executed, it produces the following result:

Inital Stage Count: ©
Constructor called.
Constructor called.

Final Stage Count: 2

21 Vtutorialspoint

SIMPLYEASYLEARNINEG

204

32. D —Inheritance

One of the most important concepts in object-oriented programming is inheritance.
Inheritance allows to define a class in terms of another class, which makes it easier to
create and maintain an application. This also provides an opportunity to reuse the code
functionality and fast implementation time.

When creating a class, instead of writing completely new data members and member
functions, the programmer can designate that the new class should inherit the members
of an existing class. This existing class is called the base class, and the new class is
referred to as the derived class.

The idea of inheritance implements the is a relationship. For example, mammal IS-A
animal, dog IS-A mammal hence dog IS-A animal as well and so on.

Base Classes and Derived Classes in D

A class can be derived from more than one classes, which means it can inherit data and
functions from multiple base classes. To define a derived class, we use a class derivation
list to specify the base class(es). A class derivation list names one or more base classes
and has the form:

class derived-class: base-class

Consider a base class Shape and its derived class Rectangle as follows:

import std.stdio;

// Base class

class Shape

{
public:
void setWidth(int w)
{
width = w;
}
void setHeight(int h)
{
height = h;
}
protected:
int width;
205
tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

int height;

// Derived class

class Rectangle: Shape

{
public:
int getArea()
{
return (width * height);
}
}

void main()

{

Rectangle Rect = new Rectangle();

Rect.setWidth(5);
Rect.setHeight(7);

// Print the area of the object.

writeln("Total area: ", Rect.getArea());

}

When the above code is compiled and executed, it produces the following result:

Total area: 35

Access Control and Inheritance

A derived class can access all the non-private members of its base class. Thus base-class
members that should not be accessible to the member functions of derived classes should
be declared private in the base class.

A derived class inherits all base class methods with the following exceptions:

e Constructors, destructors, and copy constructors of the base class.

e Overloaded operators of the base class.

206

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

Multi Level Inheritance

The inheritance can be of multiple levels and it is shown in the following example.

import std.stdio;

// Base class
class Shape
{
public:
void setWidth(int w)
{
width = w;
}
void setHeight(int h)
{
height = h;
}
protected:
int width;
int height;

// Derived class

class Rectangle: Shape

{
public:
int getArea()
{
return (width * height);
}
}

class Square: Rectangle

{
this(int side)

{

207

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

this.setWidth(side);
this.setHeight(side);

void main()

{

Square square = new Square(13);

// Print the area of the object.

writeln("Total area:

}

, square.getArea());

When the above code is compiled and executed, it produces the following result:

Total area: 169

208

3D tutorialspoint

MPLYEASYLEARNINEG

33. D —Overloading

D allows you to specify more than one definition for a function name or an operator in
the same scope, which is called function overloading and operator overloading
respectively.

An overloaded declaration is a declaration that had been declared with the same name as
a previous declaration in the same scope, except that both declarations have different
arguments and obviously different definition (implementation).

When you call an overloaded function or operator, the compiler determines the most
appropriate definition to use by comparing the argument types you used to call the
function or operator with the parameter types specified in the definitions. The process of
selecting the most appropriate overloaded function or operator is called overload
resolution.

Function Overloading

You can have multiple definitions for the same function name in the same scope. The
definition of the function must differ from each other by the types and/or the number of
arguments in the argument list. You cannot overload function declarations that differ only
by return type.

Example
The following example uses same function print() to print different data types:

import std.stdio;
import std.string;
class printData
{
public:
void print(int i) {

writeln("Printing int: ",i);

void print(double) {
writeln("Printing float: ",f);

void print(string s) {

writeln("Printing string: ",s);

209

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

}s5

void main()

{
printData pd = new printData();
// Call print to print integer
pd.print(5);
// Call print to print float
pd.print(500.263);
// Call print to print character
pd.print("Hello D");

}

When the above code is compiled and executed, it produces the following result:

Printing int: 5
Printing float: 500.263
Printing string: Hello D

Operator Overloading

You can redefine or overload most of the built-in operators available in D. Thus a
programmer can use operators with user-defined types as well.

Operators can be overloaded using string op followed by Add, Sub, and so on based on
the operator that is being overloaded. We can overload the operator + to add two boxes
as shown below.

Box opAdd(Box b)

{
Box box = new Box();
box.length = this.length + b.length;
box.breadth = this.breadth + b.breadth;
box.height = this.height + b.height;

return box;

}

The following example shows the concept of operator overloading using a member
function. Here an object is passed as an argument whose properties are accessed using
this object. The object which calls this operator can be accessed using this operator as
explained below:

210

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

import std.stdio;

class Box

{
public:

double getVolume()

{
return length * breadth * height;

}
void setLength(double len)

{
length = len;

void setBreadth(double bre)

{
breadth = bre;

void setHeight(double hei)

{
height = hei;

Box opAdd(Box b)

{
Box box = new Box();
box.length = this.length + b.length;
box.breadth = this.breadth + b.breadth;
box.height = this.height + b.height;
return box;

}

private:
double length; // Length of a box
double breadth; // Breadth of a box
211
0| dtutorialspoint

MPLYEASYLEARNINEG

D Programming

double height; // Height of a box

¥

// Main function for the program

void main()

{
Box box1l = new Box(); // Declare box1l of type Box
Box box2 = new Box(); // Declare box2 of type Box
Box box3 = new Box(); // Declare box3 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification
boxl.setlLength(6.0);
box1.setBreadth(7.0);
box1l.setHeight(5.0);

// box 2 specification
box2.setlLength(12.0);
box2.setBreadth(13.0);
box2.setHeight(10.0);

// volume of box 1

volume = boxl.getVolume();

writeln("Volume of Boxl : ", volume);

// volume of box 2
volume = box2.getVolume();

writeln("Volume of Box2 : ", volume);
// Add two object as follows:

box3 = box1l + box2;

// volume of box 3

volume = box3.getVolume();

writeln("Volume of Box3 : ", volume);

3D tutorialspoint

MPLYEASYLEARNINEG

212

When the above code is compiled and executed, it produces the following result:

D Programming

Volume of Box1 :
Volume of Box2 :

Volume of Box3 :

210
1560
5400

Operator Overloading Types

Basically, there are three types of operator overloading as listed below.

Sr. No.

Overloading Types

1 Unary Operators Overloading

2 Binary Operators Overloading

3 Comparison Operators Overloading

Let us understand D Overloading types in detail:

Unary Operators
The following table shows the list of unary operators and its purpose.
Function Name Operator | Purpose
opUnary - Negative of (numeric complement of)
opUnary + The same value as (or, a copy of)
opUnary ~ Bitwise negation
opUnary * Access to what it points to
opUnary ++ Increment
opUnary -- Decrement
213
@

\ tutorialspoint

ASYLEARNINEG

http://localhost/d_programming/d_programming_unary_operators_overloading.htm
http://localhost/d_programming/d_programming_binary_operators_overloading.htm
http://localhost/d_programming/d_programming_comparison_operators_overloading.htm

D Programming

An example is shown below which explains how to overload a binary operator.

import std.stdio;
class Box
{

public:

double getVolume()

{
return length * breadth * height;
}
void setLength(double len)
{
length = len;
}

void setBreadth(double bre)

{
breadth = bre;

void setHeight(double hei)

{
height = hei;
}
Box opUnary(string op)()
{
if(op == "++")
{
Box box = new Box();
box.length = this.length + 1;
box.breadth = this.breadth + 1 ;
box.height = this.height + 1;
return box;
}
}
214
@ . . .
tutorialspoint

MPLYEASYLEARNINEG

D Programming

private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

}s
// Main function for the program

void main()

{

Box Boxl = new Box(); // Declare Boxl of type Box
Box Box2 = new Box(); // Declare Box2 of type Box

double volume = 90.0; // Store the volume of a box here

// box 1 specification
Boxl.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);

// volume of box 1
volume = Boxl.getVolume();

writeln("Volume of Box1 :

// Add two object as follows:

Box2 = ++Box1;

// volume of box2
volume = Box2.getVolume();

writeln("Volume of Box2 :

}

, volume);

, volume);

When the above code is compiled and executed, it produces the following result:

Volume of Box1l : 210
Volume of Box2 : 336

3D tutorialspoint

MPLYEASYLEARNINEG

215

D Programming

Binary Operators
The following table shows the list of binary operators and its purpose.
Function Name Operator Purpose

opBinary + Add
opBinary - subtract
opBinary * multiply
opBinary / divide
opBinary % remainder of
opBinary AN to the power of
opBinary & bitwise and
opBinary | bitwise or
opBinary A bitwise xor
opBinary << left-shift
opBinary >> right-shift
opBinary >>> logical right-shift
opBinary ~ concatenate
opBinary in whether contained in

SYLEARNINEG

m Mtutorialspoint

216

D Programming

An example is shown below which explains how to overload a binary operator.

Example

import std.stdio;

class Box

{

public:

double getVolume()
{

return length * breadth * height;

}
void setLength(double len)

{
length = len;

void setBreadth(double bre)

{
breadth = bre;

void setHeight(double hei)

{
height = hei;

}
Box opBinary(string op)(Box b)

{
if(op == "+")

{

Box box = new Box();

box.length = this.length + b.length;
box.breadth = this.breadth + b.breadth;
box.height = this.height + b.height;

return box;

-

\ tutorialspoint

MPLYEASYLEARNINEG

217

D Programming

}

private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

}s5

// Main function for the program

void main()

{
Box boxl = new Box(); // Declare Box1l of type Box
Box box2 = new Box(); // Declare Box2 of type Box

Box box3

new Box(); // Declare Box3 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification
box1.setLength(6.0);
box1.setBreadth(7.0);
box1l.setHeight(5.0);

// box 2 specification
box2.setLength(12.9);
box2.setBreadth(13.0);
box2.setHeight(10.0);

// volume of box 1
volume = box1.getVolume();

writeln("Volume of Boxl : ", volume);
// volume of box 2
volume = box2.getVolume();

writeln("Volume of Box2 : ", volume);

// Add two object as follows:

box3 = box1l + box2;

// volume of box 3

3D tutorialspoint

MPLYEASYLEARNINEG

218

D Programming

volume = box3.getVolume();

writeln("Volume of Box3 :

}

, volume);

When the above code is compiled and executed, it produces the following result:

Volume of Box1l : 210
Volume of Box2 : 1560
Volume of Box3 : 5400

Comparison of Operator Overloading

The following table shows the list of comparsion operators and its purpose.

Function Name Operator Purpose
opCmp < whether before
opCmp <= whether not after
opCmp > whether after
opCmp >= whether not before

Comparison operators are used for sorting arrays. The following example shows how to

use comparion operators.

import std.random;
import std.stdio;

import std.string;

struct Box

{

int volume;

int opCmp(const ref Box box) const

{

return (volume == box.volume

? box.volume - volume: volume - box.volume);

MPLYEASYLEARNINEG

m \ tutorialspoint

219

D Programming

}

string toString() const
{

return format("Volume:%s\n", volume);

void main()

{

}

Box[] boxes;
int j= 10;
foreach (i; @ .. 10) {

boxes ~= Box(j*j*j);

writeln("Unsorted Array");

writeln(boxes);

boxes.sort;

writeln("Sorted Array");
writeln(boxes);
writeln(boxes[@]<boxes[1]);
writeln(boxes[@]>boxes[1]);
writeln(boxes[@]<=boxes[1]);
writeln(boxes[@]>=boxes[1]);

When the above code is compiled and executed, it produces the following result:

Unsorted Array

[Volume:1000

)

)

)

Volume:729
Volume:512
Volume:343
Volume:216
Volume:125
Volume:64

3D tutorialspoint

MPLYEASYLEARNINEG

220

D Programming

, Volume:27
,» Volume:8

, Volume:1

]

Sorted Array
[Volume:1

, Volume:8

, Volume:27
, Volume:64
, Volume:125
, Volume:216
, Volume:343
, Volume:512
, Volume:729
, Volume:1000

true
false
true

false

221

21 Vtutorialspoint

SIMPLYEASYLEARNINEG

34. D — Encapsulation

All D programs are composed of the following two fundamental elements:

¢ Program statements (code): This is the part of a program that performs actions
and they are called functions.

¢ Program data: It is the information of the program which affected by the program
functions.

Encapsulation is an Object Oriented Programming concept that binds data and functions
that manipulate the data together, and that keeps both safe from outside interference and
misuse. Data encapsulation led to the important OOP concept of data hiding.

Data encapsulation is a mechanism of bundling the data, and the functions that use
them and data abstraction is a mechanism of exposing only the interfaces and hiding the
implementation details from the user.

D supports the properties of encapsulation and data hiding through the creation of user-
defined types, called classes. We already have studied that a class can contain private,
protected, and public members. By default, all items defined in a class are private. For
example:

class Box
{
public:
double getVolume()

{
return length * breadth * height;

}
private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
};

The variables length, breadth, and height are private. This means that they can be
accessed only by other members of the Box class, and not by any other part of your
program. This is one way encapsulation is achieved.

To make parts of a class public (i.e., accessible to other parts of your program), you must
declare them after the public keyword. All variables or functions defined after the public
specifier are accessible by all other functions in your program.

Making one class a friend of another exposes the implementation details and reduces
encapsulation. It is ideal to keep as many details of each class hidden from all other classes
as possible.

222

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

Data Encapsulation in D

Any D program where you implement a class with public and private members is an

example of data encapsulation and data abstraction. Consider the following example:

Example

import std.stdio;

class Adder{
public:
// constructor
this(int i = 9)
{
total = 1i;
}
// interface to outside world
void addNum(int number)

{

total += number;

}

// interface to outside world

int getTotal()

{
return total;
}s
private:

// hidden data from outside world
int total;

}

void main()

{

Adder a = new Adder();
a.addNum(10);

a.addNum(20);

a.addNum(30);

writeln("Total ",a.getTotal());

}

When the above code is compiled and executed, it produces the following result:

3D tutorialspoint

MPLYEASYLEARNINEG

223

D Programming

Total 60

Above class adds numbers together, and returns the sum. The public members addNum
and getTotal are the interfaces to the outside world and a user needs to know them to
use the class. The private member total is something that is hidden from the outside
world, but is needed for the class to operate properly.

Class Designing Strategy in D

Most of us have learned through bitter experience to make class members private by
default unless we really need to expose them. That is just good encapsulation.

This wisdom is applied most frequently to data members, but it applies equally to all
members, including virtual functions.

224

3D tutorialspoint

PLYEASYLEARNING

35. D — Interfaces

An interface is a way of forcing the classes that inherit from it to have to implement certain
functions or variables. Functions must not be implemented in an interface because they
are always implemented in the classes that inherit from the interface.

An interface is created using the interface keyword instead of the class keyword even
though the two are similar in a lot of ways. When you want to inherit from an interface
and the class already inherits from another class then you need to separate the name of
the class and the name of the interface with a comma.

Let us look at an simple example that explains the use of an interface.

Example

import std.stdio;

// Base class

interface Shape

{
public:
void setWidth(int w);
void setHeight(int h);
}

// Derived class
class Rectangle: Shape
{

int width;

int height;

public:

void setWidth(int w)
{

width = w;
}
void setHeight(int h)
{

height = h;
}

225

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

int getArea()

{
return (width * height);

void main()

{
Rectangle Rect = new Rectangle();
Rect.setWidth(5);
Rect.setHeight(7);
// Print the area of the object.

writeln("Total area: ", Rect.getArea());

}

When the above code is compiled and executed, it produces the following result:

Total area: 35

Interface with Final and Static Functions in D

An interface can have final and static method for which definitions should be included in
interface itself. These functions cannot be overriden by the derived class. A simple example
is shown below.

Example

import std.stdio;

// Base class
interface Shape
{
public:
void setWidth(int w);
void setHeight(int h);
static void myfunctionl()

{

writeln("This is a static method");

226

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

}
final void myfunction2()
{
writeln("This is a final method");
}

// Derived class

class Rectangle: Shape

{
int width;
int height;
public:
void setWidth(int w)
{
width = w;
}
void setHeight(int h)
{
height = h;
}
int getArea()
{
return (width * height);
}
}

void main()

{

Rectangle rect = new Rectangle();

rect.setWidth(5);
rect.setHeight(7);
// Print the area of the object.

writeln("Total area: ", rect.getArea());

227

3D tutorialspoint

MPLYEASYLEARNINEG

D Programming

rect.myfunctionl();

rect.myfunction2();

}

When the above code is compiled and executed, it produces the following result:

Total area: 35
This is a static method

This is a final method

3D tutorialspoint

MPLYEASYLEARNINEG

228

36. D — Abstract Classes

Abstraction refers to the ability to make a class abstract in OOP. An abstract class is one
that cannot be instantiated. All other functionality of the class still exists, and its fields,
methods, and constructors are all accessed in the same manner. You just cannot create
an instance of the abstract class.

If a class is abstract and cannot be instantiated, the class does not have much use unless
it is subclass. This is typically how abstract classes come about during the design phase.
A parent class contains the common functionality of a collection of child classes, but the
parent class itself is too abstract to be used on its own.

Using Abstract Class in D

Use the abstract keyword to declare a class abstract. The keyword appears in the class
declaration somewhere before the class keyword. The following shows an example of how
abstract class can be inherited and used.

Example

import std.stdio;
import std.string;

import std.datetime;

abstract class Person
{
int birthYear, birthDay, birthMonth;
string name;
int getAge()
{
SysTime sysTime = Clock.currTime();

return sysTime.year - birthYear;

class Employee : Person

{
int emplID;

229

\ tutorialspoint

SIMPLYEASYLEARNINGEG

D Programming

void main()

{
Employee emp = new Employee();
emp.empID = 101;
emp.birthYear = 1980;
emp.birthDay = 10;
emp.birthMonth = 10;
emp.name = "Empl";
writeln(emp.name);
writeln(emp.getAge);

}

When we compile and run the above program, we will get the following output.

Emp1l
34

Abstract Functions

Similar to functions, classes can also be abstract. The implementation of such function is
not given in its class but should be provided in the class that inherits the class with abstract
function. The above example is updated with abstract function.

Example

import std.stdio;
import std.string;

import std.datetime;

abstract class Person

{
int birthYear, birthDay, birthMonth;
string name;
int getAge()
{
SysTime sysTime = Clock.currTime();
return sysTime.year - birthYear;
}
abstract void print();
230
®

\ tutorialspoint

MPLYEASYLEARNINEG

D Programming

class Employee : Person

{
int empID;
override void print()
{
writeln("The employee details are as follows:");
writeln("Emp ID: ", this.empID);
writeln("Emp Name: ", this.name);
writeln("Age: ",this.getAge);
}
}

void main()

{
Employee emp = new Employee();
emp.empID = 101;
emp.birthYear = 1980;
emp.birthDay = 10;
emp.birthMonth = 10;
emp.name = "Empl";
emp.print();

}

When we compile and run the above program, we will get the following output.

The employee details are as follows:
Emp ID: 101

Emp Name: Empl

Age: 34

231

3D tutorialspoint

MPLYEASYLEARNINEG

