
Ensuring Data Storage Security in Cloud Computing
Cong Wang, Qian Wang, and Kui Ren

Department of ECE
Illinois Institute of Technology

Email: {cwang, qwang, kren}@ece.iit.edu

Wenjing Lou
Department of ECE

Worcester Polytechnic Institute
Email: wjlou@ece.wpi.edu

Abstract—Cloud Computing has been envisioned as the next-
generation architecture of IT Enterprise. In contrast to tr adi-
tional solutions, where the IT services are under proper physical,
logical and personnel controls, Cloud Computing moves the
application software and databases to the large data centers,
where the management of the data and services may not be
fully trustworthy. This unique attribute, however, poses many
new security challenges which have not been well understood.
In this article, we focus on cloud data storage security, which
has always been an important aspect of quality of service. To
ensure the correctness of users’ data in the cloud, we propose an
effective and flexible distributed scheme with two salient features,
opposing to its predecessors. By utilizing the homomorphictoken
with distributed verification of erasure-coded data, our scheme
achieves the integration of storage correctness insuranceand data
error localization, i.e., the identification of misbehaving server(s).
Unlike most prior works, the new scheme further supports secure
and efficient dynamic operations on data blocks, including:data
update, delete and append. Extensive security and performance
analysis shows that the proposed scheme is highly efficient and
resilient against Byzantine failure, malicious data modification
attack, and even server colluding attacks.

I. I NTRODUCTION

Several trends are opening up the era of Cloud Computing,
which is an Internet-based development and use of computer
technology. The ever cheaper and more powerful processors,
together with the software as a service (SaaS) computing archi-
tecture, are transforming data centers into pools of computing
service on a huge scale. The increasing network bandwidth and
reliable yet flexible network connections make it even possible
that users can now subscribe high quality services from data
and software that reside solely on remote data centers.

Moving data into the cloud offers great convenience to
users since they don’t have to care about the complexities
of direct hardware management. The pioneer of Cloud Com-
puting vendors, Amazon Simple Storage Service (S3) and
Amazon Elastic Compute Cloud (EC2) [1] are both well
known examples. While these internet-based online services
do provide huge amounts of storage space and customizable
computing resources, this computing platform shift, however,
is eliminating the responsibility of local machines for data
maintenance at the same time. As a result, users are at the
mercy of their cloud service providers for the availabilityand
integrity of their data. Recent downtime of Amazon’s S3 is
such an example [2].

From the perspective of data security, which has always
been an important aspect of quality of service, Cloud Com-
puting inevitably poses new challenging security threats for

number of reasons. Firstly, traditional cryptographic primitives
for the purpose of data security protection can not be directly
adopted due to the users’ loss control of data under Cloud
Computing. Therefore, verification of correct data storage
in the cloud must be conducted without explicit knowledge
of the whole data. Considering various kinds of data for
each user stored in the cloud and the demand of long term
continuous assurance of their data safety, the problem of
verifying correctness of data storage in the cloud becomes
even more challenging. Secondly, Cloud Computing is not just
a third party data warehouse. The data stored in the cloud
may be frequently updated by the users, including insertion,
deletion, modification, appending, reordering, etc. To ensure
storage correctness under dynamic data update is hence of
paramount importance. However, this dynamic feature also
makes traditional integrity insurance techniques futile and
entails new solutions. Last but not the least, the deployment
of Cloud Computing is powered by data centers running in
a simultaneous, cooperated and distributed manner. Individual
user’s data is redundantly stored in multiple physical loca-
tions to further reduce the data integrity threats. Therefore,
distributed protocols for storage correctness assurance will be
of most importance in achieving a robust and secure cloud data
storage system in the real world. However, such important area
remains to be fully explored in the literature.

Recently, the importance of ensuring the remote data
integrity has been highlighted by the following research
works [3]–[7]. These techniques, while can be useful to ensure
the storage correctness without having users possessing data,
can not address all the security threats in cloud data storage,
since they are all focusing on single server scenario and
most of them do not consider dynamic data operations. As
an complementary approach, researchers have also proposed
distributed protocols [8]–[10] for ensuring storage correct-
ness across multiple servers or peers. Again, none of these
distributed schemes is aware of dynamic data operations.
As a result, their applicability in cloud data storage can be
drastically limited.

In this paper, we propose an effective and flexible distributed
scheme with explicit dynamic data support to ensure the
correctness of users’ data in the cloud. We rely on erasure-
correcting code in the file distribution preparation to provide
redundancies and guarantee the data dependability. This con-
struction drastically reduces the communication and storage
overhead as compared to the traditional replication-basedfile



distribution techniques. By utilizing the homomorphic token
with distributed verification of erasure-coded data, our scheme
achieves the storage correctness insurance as well as data
error localization: whenever data corruption has been detected
during the storage correctness verification, our scheme can
almost guarantee the simultaneous localization of data errors,
i.e., the identification of the misbehaving server(s).

Our work is among the first few ones in this field to consider
distributed data storage in Cloud Computing. Our contribution
can be summarized as the following three aspects:

1) Compared to many of its predecessors, which only provide
binary results about the storage state across the distributed
servers, the challenge-response protocol in our work further
provides the localization of data error.

2) Unlike most prior works for ensuring remote data integrity,
the new scheme supports secure and efficient dynamic opera-
tions on data blocks, including: update, delete and append.

3) Extensive security and performance analysis shows that
the proposed scheme is highly efficient and resilient against
Byzantine failure, malicious data modification attack, andeven
server colluding attacks.

The rest of the paper is organized as follows. Section II
introduces the system model, adversary model, our design goal
and notations. Then we provide the detailed description of our
scheme in Section III and IV. Section V gives the security
analysis and performance evaluations, followed by SectionVI
which overviews the related work. Finally, Section VII gives
the concluding remark of the whole paper.

II. PROBLEM STATEMENT

A. System Model

A representative network architecture for cloud data storage
is illustrated in Figure 1. Three different network entities can
be identified as follows:

• User: users, who have data to be stored in the cloud and
rely on the cloud for data computation, consist of both
individual consumers and organizations.

• Cloud Service Provider (CSP): a CSP, who has signif-
icant resources and expertise in building and managing
distributed cloud storage servers, owns and operates live
Cloud Computing systems.

• Third Party Auditor (TPA): an optional TPA, who has
expertise and capabilities that users may not have, is
trusted to assess and expose risk of cloud storage services
on behalf of the users upon request.

In cloud data storage, a user stores his data through a CSP
into a set of cloud servers, which are running in a simulta-
neous, cooperated and distributed manner. Data redundancy
can be employed with technique of erasure-correcting code
to further tolerate faults or server crash as user’s data grows
in size and importance. Thereafter, for application purposes,
the user interacts with the cloud servers via CSP to access or
retrieve his data. In some cases, the user may need to perform
block level operations on his data. The most general forms of

Data Flow

Cloud Service Provider

Users

Cloud 

Storage 

Servers

Secu
rit

y 

M
essa

ge F
low

Security Message Flow

Security 
Message Flow

Optional Third Party Auditor

Fig. 1: Cloud data storage architecture

these operations we are considering are block update, delete,
insert and append.

As users no longer possess their data locally, it is of critical
importance to assure users that their data are being correctly
stored and maintained. That is, users should be equipped with
security means so that they can make continuous correctness
assurance of their stored data even without the existence of
local copies. In case that users do not necessarily have the
time, feasibility or resources to monitor their data, they can
delegate the tasks to an optional trusted TPA of their respective
choices. In our model, we assume that the point-to-point
communication channels between each cloud server and the
user is authenticated and reliable, which can be achieved in
practice with little overhead. Note that we don’t address the
issue of data privacy in this paper, as in Cloud Computing,
data privacy is orthogonal to the problem we study here.

B. Adversary Model

Security threats faced by cloud data storage can come
from two different sources. On the one hand, a CSP can
be self-interested, untrusted and possibly malicious. Notonly
does it desire to move data that has not been or is rarely
accessed to a lower tier of storage than agreed for monetary
reasons, but it may also attempt to hide a data loss incident
due to management errors, Byzantine failures and so on.
On the other hand, there may also exist an economically-
motivated adversary, who has the capability to compromise
a number of cloud data storage servers in different time
intervals and subsequently is able to modify or delete users’
data while remaining undetected by CSPs for a certain period.
Specifically, we consider two types of adversary with different
levels of capability in this paper:

Weak Adversary: The adversary is interested in corrupting the
user’s data files stored on individual servers. Once a serveris
comprised, an adversary can pollute the original data files by
modifying or introducing its own fraudulent data to prevent
the original data from being retrieved by the user.

Strong Adversary: This is the worst case scenario, in which
we assume that the adversary can compromise all the storage
servers so that he can intentionally modify the data files as
long as they are internally consistent. In fact, this is equivalent
to the case where all servers are colluding together to hide a
data loss or corruption incident.



C. Design Goals

To ensure the security and dependability for cloud data
storage under the aforementioned adversary model, we aim
to design efficient mechanisms for dynamic data verification
and operation and achieve the following goals: (1) Storage
correctness: to ensure users that their data are indeed stored
appropriately and kept intact all the time in the cloud. (2)
Fast localization of data error: to effectively locate the mal-
functioning server when data corruption has been detected.(3)
Dynamic data support: to maintain the same level of storage
correctness assurance even if users modify, delete or append
their data files in the cloud. (4) Dependability: to enhance data
availability against Byzantine failures, malicious data modifi-
cation and server colluding attacks, i.e. minimizing the effect
brought by data errors or server failures. (5) Lightweight:
to enable users to perform storage correctness checks with
minimum overhead.

D. Notation and Preliminaries

• F – the data file to be stored. We assume thatF can be
denoted as a matrix ofm equal-sized data vectors, each
consisting ofl blocks. Data blocks are all well represented
as elements in Galois FieldGF (2p) for p = 8 or 16.

• A – The dispersal matrix used for Reed-Solomon coding.
• G – The encoded file matrix, which includes a set of

n = m + k vectors, each consisting ofl blocks.
• fkey(·) – pseudorandom function (PRF), which is defined

asf : {0, 1}∗ × key → GF (2p).
• φkey(·) – pseudorandom permutation (PRP), which is

defined asφ : {0, 1}log2(l) × key → {0, 1}log2(l).
• ver – a version number bound with the index for individ-

ual blocks, which records the times the block has been
modified. Initially we assumever is 0 for all data blocks.

• sver
ij – the seed for PRF, which depends on the file name,

block indexi, the server positionj as well as the optional
block version numberver.

III. E NSURING CLOUD DATA STORAGE

In cloud data storage system, users store their data in
the cloud and no longer possess the data locally. Thus, the
correctness and availability of the data files being stored on the
distributed cloud servers must be guaranteed. One of the key
issues is to effectively detect any unauthorized data modifica-
tion and corruption, possibly due to server compromise and/or
random Byzantine failures. Besides, in the distributed case
when such inconsistencies are successfully detected, to find
which server the data error lies in is also of great significance,
since it can be the first step to fast recover the storage errors.

To address these problems, our main scheme for ensuring
cloud data storage is presented in this section. The first part of
the section is devoted to a review of basic tools from coding
theory that are needed in our scheme for file distribution across
cloud servers. Then, the homomorphic token is introduced.
The token computation function we are considering belongs
to a family of universal hash function [11], chosen to pre-
serve the homomorphic properties, which can be perfectly

integrated with the verification of erasure-coded data [8] [12].
Subsequently, it is also shown how to derive a challenge-
response protocol for verifying the storage correctness aswell
as identifying misbehaving servers. Finally, the procedure for
file retrieval and error recovery based on erasure-correcting
code is outlined.

A. File Distribution Preparation

It is well known that erasure-correcting code may be used
to tolerate multiple failures in distributed storage systems. In
cloud data storage, we rely on this technique to disperse the
data fileF redundantly across a set ofn = m + k distributed
servers. A(m + k, k) Reed-Solomon erasure-correcting code
is used to createk redundancy parity vectors fromm data
vectors in such a way that the originalm data vectors can be
reconstructed from anym out of them + k data and parity
vectors. By placing each of them + k vectors on a different
server, the original data file can survive the failure of anyk of
them+k servers without any data loss, with a space overhead
of k/m. For support of efficient sequential I/O to the original
file, our file layout is systematic, i.e., the unmodifiedm data
file vectors together withk parity vectors is distributed across
m + k different servers.

Let F = (F1, F2, . . . , Fm) and Fi = (f1i, f2i, . . . , fli)
T

(i ∈ {1, . . . , m}), where l ≤ 2p − 1. Note all these blocks
are elements ofGF (2p). The systematic layout with parity
vectors is achieved with the information dispersal matrixA,
derived from anm× (m + k) Vandermonde matrix [13]:





1 1 . . . 1 1 . . . 1
β1 β2 . . . βm βm+1 . . . βn

...
...

. . .
...

...
. . .

...
βm−1

1 βm−1
2 . . . βm−1

m βm−1
m+1 . . . βm−1

n




,

where βj (j ∈ {1, . . . , n}) are distinct elements randomly
picked fromGF (2p).

After a sequence of elementary row transformations, the
desired matrixA can be written as

A = (I|P) =





1 0 . . . 0 p11 p12 . . . p1k

0 1 . . . 0 p21 p22 . . . p2k

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 pm1 pm2 . . . pmk




,

whereI is am×m identity matrix andP is the secret parity
generation matrix with sizem × k. Note thatA is derived
from a Vandermonde matrix, thus it has the property that any
m out of them + k columns form an invertible matrix.

By multiplying F by A, the user obtains the encoded file:

G = F ·A = (G(1), G(2), . . . , G(m), G(m+1), . . . , G(n))

= (F1, F2, . . . , Fm, G(m+1), . . . , G(n)),

where G(j) = (g
(j)
1 , g

(j)
2 , . . . , g

(j)
l )T (j ∈ {1, . . . , n}). As

noticed, the multiplication reproduces the original data file
vectors ofF and the remaining part(G(m+1), . . . , G(n)) are
k parity vectors generated based onF.



Algorithm 1 Token Pre-computation
1: procedure
2: Choose parametersl, n and functionf, φ;
3: Choose the numbert of tokens;
4: Choose the numberr of indices per verification;
5: Generate master keyKprp and challengekchal;
6: for vectorG(j), j ← 1, n do
7: for round i← 1, t do
8: Derive αi = fkchal

(i) andk
(i)
prp from KPRP .

9: Computev
(j)
i =

∑r

q=1 αq
i ∗G(j)[φ

k
(i)
prp

(q)]

10: end for
11: end for
12: Store all thevis locally.
13: end procedure

B. Challenge Token Precomputation

In order to achieve assurance of data storage correctness
and data error localization simultaneously, our scheme entirely
relies on the pre-computed verification tokens. The main idea
is as follows: before file distribution the user pre-computes a
certain number of short verification tokens on individual vector
G(j) (j ∈ {1, . . . , n}), each token covering a random subset
of data blocks. Later, when the user wants to make sure the
storage correctness for the data in the cloud, he challenges
the cloud servers with a set of randomly generated block
indices. Upon receiving challenge, each cloud server computes
a short “signature” over the specified blocks and returns them
to the user. The values of these signatures should match the
corresponding tokens pre-computed by the user. Meanwhile,
as all servers operate over the same subset of the indices, the
requested response values for integrity check must also be a
valid codeword determined by secret matrixP.

Suppose the user wants to challenge the cloud serverst
times to ensure the correctness of data storage. Then, he
must pre-computet verification tokens for eachG(j) (j ∈
{1, . . . , n}), using a PRFf(·), a PRPφ(·), a challenge key
kchal and a master permutation keyKPRP . To generate the
ith token for serverj, the user acts as follows:

1) Derive a random challenge valueαi of GF (2p) by αi =

fkchal
(i) and a permutation keyk(i)

prp based onKPRP .
2) Compute the set ofr randomly-chosen indices:

{Iq ∈ [1, ..., l]|1 ≤ q ≤ r}, whereIq = φ
k
(i)
prp

(q).

3) Calculate the token as:

v
(j)
i =

r∑

q=1

αq
i ∗G(j)[Iq ], whereG(j)[Iq] = g

(j)
Iq

.

Note thatv(j)
i , which is an element ofGF (2p) with small

size, is the response the user expects to receive from serverj
when he challenges it on the specified data blocks.

After token generation, the user has the choice of either
keeping the pre-computed tokens locally or storing them in
encrypted form on the cloud servers. In our case here, the

Algorithm 2 Correctness Verification and Error Localization
1: procedure CHALLENGE(i)
2: Recomputeαi = fkchal

(i) andk
(i)
prp from KPRP ;

3: Send{αi, k
(i)
prp} to all the cloud servers;

4: Receive from servers:
{R

(j)
i =

∑r

q=1 αq
i ∗G(j)[φ

k
(i)
prp

(q)]|1 ≤ j ≤ n}

5: for (j ← m + 1, n) do
6: R(j) ← R(j)−

∑r

q=1 fkj
(sIq ,j)·α

q
i , Iq = φ

k
(i)
prp

(q)

7: end for
8: if ((R

(1)
i , . . . , R

(m)
i ) ·P==(R

(m+1)
i , . . . , R

(n)
i )) then

9: Accept and ready for the next challenge.
10: else
11: for (j ← 1, n) do
12: if (R

(j)
i ! =v

(j)
i ) then

13: return serverj is misbehaving.
14: end if
15: end for
16: end if
17: end procedure

user stores them locally to obviate the need for encryption
and lower the bandwidth overhead during dynamic data op-
eration which will be discussed shortly. The details of token
generation are shown in Algorithm 1.

Once all tokens are computed, the final step before
file distribution is to blind each parity blockg(j)

i in
(G(m+1), . . . , G(n)) by

g
(j)
i ← g

(j)
i + fkj

(sij), i ∈ {1, . . . , l},

wherekj is the secret key for parity vectorG(j) (j ∈ {m +
1, . . . , n}). This is for protection of the secret matrixP. We
will discuss the necessity of using blinded parities in detail
in Section V. After blinding the parity information, the user
disperses all then encoded vectorsG(j) (j ∈ {1, . . . , n})
across the cloud serversS1, S2, . . . , Sn.

C. Correctness Verification and Error Localization

Error localization is a key prerequisite for eliminating errors
in storage systems. However, many previous schemes do not
explicitly consider the problem of data error localization,
thus only provide binary results for the storage verification.
Our scheme outperforms those by integrating the correctness
verification and error localization in our challenge-response
protocol: the response values from servers for each challenge
not only determine the correctness of the distributed storage,
but also contain information to locate potential data error(s).

Specifically, the procedure of thei-th challenge-response for
a cross-check over then servers is described as follows:

1) The user reveals theαi as well as thei-th permutation
key k

(i)
prp to each servers.

2) The server storing vectorG(j) aggregates thoser rows
specified by indexk(i)

prp into a linear combination

R
(j)
i =

r∑

q=1

αq
i ∗G(j)[φ

k
(i)
prp

(q)].



3) Upon receivingR(j)
i s from all the servers, the user takes

away blind values inR(j) (j ∈ {m + 1, . . . , n}) by

R
(j)
i ← R

(j)
i −

r∑

q=1

fkj
(sIq ,j) ·α

q
i , whereIq = φ

k
(i)
prp

(q).

4) Then the user verifies whether the received values re-
main a valid codeword determined by secret matrixP:

(R
(1)
i , . . . , R

(m)
i ) ·P

?
= (R

(m+1)
i , . . . , R

(n)
i ).

Because all the servers operate over the same subset of
indices, the linear aggregation of theser specified rows
(R

(1)
i , . . . , R

(n)
i ) has to be a codeword in the encoded file

matrix. If the above equation holds, the challenge is passed.
Otherwise, it indicates that among those specified rows, there
exist file block corruptions.

Once the inconsistency among the storage has been success-
fully detected, we can rely on the pre-computed verification
tokens to further determine where the potential data error(s)
lies in. Note that each responseR

(j)
i is computed exactly in the

same way as tokenv(j)
i , thus the user can simply find which

server is misbehaving by verifying the followingn equations:

R
(j)
i

?
= v

(j)
i , j ∈ {1, . . . , n}.

Algorithm 2 gives the details of correctness verification and
error localization.

D. File Retrieval and Error Recovery

Since our layout of file matrix is systematic, the user can
reconstruct the original file by downloading the data vectors
from the firstm servers, assuming that they return the correct
response values. Notice that our verification scheme is based
on random spot-checking, so the storage correctness assurance
is a probabilistic one. However, by choosing system param-
eters(e.g., r, l, t) appropriately and conducting enough times
of verification, we can guarantee the successful file retrieval
with high probability. On the other hand, whenever the data
corruption is detected, the comparison of pre-computed tokens
and received response values can guarantee the identification
of misbehaving server(s), again with high probability, which
will be discussed shortly. Therefore, the user can always
ask servers to send back blocks of ther rows specified in
the challenge and regenerate the correct blocks by erasure
correction, shown in Algorithm 3, as long as there are at most
k misbehaving servers are identified. The newly recovered
blocks can then be redistributed to the misbehaving servers
to maintain the correctness of storage.

IV. PROVIDING DYNAMIC DATA OPERATION SUPPORT

So far, we assumed thatF represents static or archived
data. This model may fit some application scenarios, such
as libraries and scientific datasets. However, in cloud data
storage, there are many potential scenarios where data stored
in the cloud is dynamic, like electronic documents, photos,or
log files etc. Therefore, it is crucial to consider the dynamic
case, where a user may wish to perform various block-level

Algorithm 3 Error Recovery
1: procedure

% Assume the block corruptions have been detected
among
% the specifiedr rows;
% Assumes ≤ k servers have been identified misbehaving

2: Downloadr rows of blocks from servers;
3: Treats servers as erasures and recover the blocks.
4: Resend the recovered blocks to corresponding servers.
5: end procedure

operations of update, delete and append to modify the data file
while maintaining the storage correctness assurance.

The straightforward and trivial way to support these opera-
tions is for user to download all the data from the cloud servers
and re-compute the whole parity blocks as well as verification
tokens. This would clearly be highly inefficient. In this section,
we will show how our scheme can explicitly and efficiently
handle dynamic data operations for cloud data storage.

A. Update Operation

In cloud data storage, sometimes the user may need to
modify some data block(s) stored in the cloud, from its
current valuefij to a new one,fij + ∆fij . We refer this
operation as data update. Due to the linear property of Reed-
Solomon code, a user can perform the update operation and
generate the updated parity blocks by using∆fij only, without
involving any other unchanged blocks. Specifically, the user
can construct a general update matrix∆F as

∆F =





∆f11 ∆f12 . . . ∆f1m

∆f21 ∆f22 . . . ∆f2m

...
...

. ..
...

∆fl1 ∆fl2 . . . ∆flm





= (∆F1, ∆F2, . . . , ∆Fm).

Note that we use zero elements in∆F to denote the unchanged
blocks. To maintain the corresponding parity vectors as well as
be consistent with the original file layout, the user can multiply
∆F by A and thus generate the update information for both
the data vectors and parity vectors as follows:

∆F ·A = (∆G(1), . . . , ∆G(m), ∆G(m+1), . . . , ∆G(n))

= (∆F1, . . . , ∆Fm, ∆G(m+1), . . . , ∆G(n)),

where ∆G(j) (j ∈ {m + 1, . . . , n}) denotes the update
information for the parity vectorG(j).

Because the data update operation inevitably affects some
or all of the remaining verification tokens, after preparation of
update information, the user has to amend those unused tokens
for each vectorG(j) to maintain the same storage correctness
assurance. In other words, for all the unused tokens, the user
needs to exclude every occurrence of the old data block and
replace it with the new one. Thanks to the homomorphic
construction of our verification token, the user can perform
the token update efficiently. To give more details, suppose a



blockG(j)[Is], which is covered by the specific tokenv
(j)
i , has

been changed toG(j)[Is] + ∆G(j)[Is], whereIs = φ
k
(i)
prp

(s).

To maintain the usability of tokenv(j)
i , it is not hard to verify

that the user can simply update it by

v
(j)
i ← v

(j)
i + αs

i ∗∆G(j)[Is],

without retrieving any otherr − 1 blocks required in the pre-
computation ofv(j)

i .
After the amendment to the affected tokens1, the user needs

to blind the update information∆g
(j)
i for each parity block in

(∆G(m+1), . . . , ∆G(n)) to hide the secret matrixP by

∆g
(j)
i ← ∆g

(j)
i + fkj

(sver
ij ), i ∈ {1, . . . , l}.

Here we use a new seedsver
ij for the PRF. The version number

ver functions like a counter which helps the user to keep
track of the blind information on the specific parity blocks.
After blinding, the user sends update information to the cloud
servers, which perform the update operation as

G(j) ← G(j) + ∆G(j), (j ∈ {1, . . . , n}).

B. Delete Operation

Sometimes, after being stored in the cloud, certain data
blocks may need to be deleted. The delete operation we are
considering is a general one, in which user replaces the data
block with zero or some special reserved data symbol. From
this point of view, the delete operation is actually a special case
of the data update operation, where the original data blocks
can be replaced with zeros or some predetermined special
blocks. Therefore, we can rely on the update procedure to
support delete operation, i.e., by setting∆fij in ∆F to be
−∆fij . Also, all the affected tokens have to be modified and
the updated parity information has to be blinded using the
same method specified in update operation.

C. Append Operation

In some cases, the user may want to increase the size of
his stored data by adding blocks at the end of the data file,
which we refer as data append. We anticipate that the most
frequent append operation in cloud data storage is bulk append,
in which the user needs to upload a large number of blocks
(not a single block) at one time.

Given the file matrixF illustrated in file distribution prepa-
ration, appending blocks towards the end of a data file is
equivalent to concatenate corresponding rows at the bottom
of the matrix layout for fileF. In the beginning, there are
only l rows in the file matrix. To simplify the presentation,
we suppose the user wants to appendm blocks at the end of
file F, denoted as(fl+1,1, fl+1,2, ..., fl+1,m) (We can always
use zero-padding to make a row ofm elements.). With the
secret matrixP, the user can directly calculate the append
blocks for each parity server as

(fl+1,1, ..., fl+1,m) ·P = (g
(m+1)
l+1 , ..., g

(n)
l+1).

1In practice, it is possible that only a fraction of tokens need amendment,
since the updated blocks may not be covered by all the tokens.

To support block append operation, we need a slight modi-
fication to our token pre-computation. Specifically, we require
the user to expect the maximum size in blocks, denoted as
lmax, for each of his data vector. The idea of supporting
block append, which is similar as adopted in [7], relies on
the initial budget for the maximum anticipated data sizelmax

in each encoded data vector as well as the system parameter
rmax = ⌈r ∗ (lmax/l)⌉ for each pre-computed challenge-
response token. The pre-computation of thei-th token on
serverj is modified as follows:

vi =

rmax∑

q=1

αq
i ∗G(j)[Iq],

where

G(j)[Iq ] =

{
G(j)[φ

k
(i)
prp

(q)] , [φ
k
(i)
prp

(q)] ≤ l

0 , [φ
k
(i)
prp

(q)] > l

This formula guarantees that on average, there will ber indices
falling into the range of existingl blocks. Because the cloud
servers and the user have the agreement on the number of
existing blocks in each vectorG(j), servers will follow exactly
the above procedure when re-computing the token values upon
receiving user’s challenge request.

Now when the user is ready to append new blocks, i.e.,
both the file blocks and the corresponding parity blocks are
generated, the total length of each vectorG(j) will be increased
and fall into the range[l, lmax]. Therefore, the user will update
those affected tokens by addingαs

i ∗ G(j)[Is] to the old vi

wheneverG(j)[Is] 6= 0 for Is > l, whereIs = φ
k
(i)
prp

(s). The
parity blinding is similar as introduced in update operation,
thus is omitted here.

D. Insert Operation

An insert operation to the data file refers to an append
operation at the desired index position while maintaining the
same data block structure for the whole data file, i.e., inserting
a block F [j] corresponds to shifting all blocks starting with
index j + 1 by one slot. An insert operation may affect many
rows in the logical data file matrixF, and a substantial number
of computations are required to renumber all the subsequent
blocks as well as re-compute the challenge-response tokens.
Therefore, an efficient insert operation is difficult to support
and thus we leave it for our future work.

V. SECURITY ANALYSIS AND PERFORMANCEEVALUATION

In this section, we analyze our proposed scheme in terms
of security and efficiency. Our security analysis focuses on
the adversary model defined in Section II. We also evaluate
the efficiency of our scheme via implementation of both file
distribution preparation and verification token precomputation.

A. Security Strength Against Weak Adversary

1) Detection Probability against data modification:In our
scheme, servers are required to operate on specified rows in
each correctness verification for the calculation of requested



0.1
0.1

0.1

0.1
0.1 0.10.1

0.2

0.2

0.2

0.2
0.2

0.3

0.3

0.3

0.3
0.3

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.95

0.95

0.95

0.99

r (number of queried rows) (as a percentage of l)

l (
to

ta
l n

um
be

r 
of

 r
ow

s)

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.
1

0.1
0.1

0.1
0.1 0.1

0.2
0.2

0.2

0.2
0.2 0.2

0.
3

0.3

0.3

0.3
0.3 0.3

0.4
0.4

0.4

0.4

0.4
0.4

0.5

0.5

0.5

0.5
0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7
0.7

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

0.95

0.95

0.95

0.95

0.99

0.99

0.99

0.99

r (number of queried rows) (as a percentage of l)

l (
to

ta
l n

um
be

r 
of

 r
ow

s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.
1

0.
1

0.1

0.1
0.1 0.1

0.
2

0.2

0.2

0.2
0.2 0.2

0.
3

0.3

0.3

0.3

0.3
0.3

0.
4

0.4

0.4

0.4

0.4
0.4

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9
0.95

0.95

0.95

0.95
0.99

0.99

0.99

r (number of queried rows) (as a percentage of l)

l (
to

ta
l n

um
be

r 
of

 r
ow

s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fig. 2: The detection probabilityPd against data modification. We showPd as a function ofl (the number of blocks on each
cloud storage server) andr (the number of rows queried by the user, shown as a percentageof l) for three values ofz (the
number of rows modified by the adversary). left)z = 1% of l; middle)z = 5% of l; right) z = 10% of l. Note that all graphs
are plotted underp = 8, nc = 10 andk = 5 and each graph has a different scale.

token. We will show that this “sampling” strategy on selected
rows instead of all can greatly reduce the computational
overhead on the server, while maintaining the detection of the
data corruption with high probability.

Supposenc servers are misbehaving due to the possible
compromise or Byzantine failure. In the following analysis,
we do not limit the value ofnc, i.e., nc ≤ n. Assume the
adversary modifies the data blocks inz rows out of thel rows
in the encoded file matrix. Letr be the number of different
rows for which the user asks for check in a challenge. LetX
be a discrete random variable that is defined to be the number
of rows chosen by the user that matches the rows modified by
the adversary. We first analyze the matching probability that
at least one of the rows picked by the user matches one of the
rows modified by the adversary:

P r
m = 1− P{X = 0}

= 1−

r−1∏

i=0

(1−min{
z

l− i
, 1})

≥ 1− (
l − z

l
)r.

Note that if none of the specifiedr rows in thei-th verification
process are deleted or modified, the adversary avoids the
detection.

Next, we study the probability of a false negative result that
the data blocks in those specifiedr rows has been modified,
but the checking equation still holds. Consider the responses
R

(1)
i , . . . , R

(n)
i returned from the data storage servers for the

i-th challenge, each response valueR
(j)
i , calculated within

GF (2p), is based onr blocks on serverj. The number of
responsesR(m+1), . . . , R(n) from parity servers isk = n−m.
Thus, according to the proposition 2 of our previous work
in [14], the false negative probability is

P r
f = Pr1 + Pr2,

wherePr1 = (1+2−p)nc
−1

2nc−1 andPr2 = (1− Pr1)(2
−p)k.

Based on above discussion, it follows that the probability
of data modification detection across all storage servers is

Pd = P r
m · (1− P r

f ).

Figure 2 plotsPd for different values ofl, r, z while we set
p = 8, nc = 10 andk = 5. 2 From the figure we can see that
if more than a fraction of the data file is corrupted, then it
suffices to challenge for a small constant number of rows in
order to achieve detection with high probability. For example,
if z = 1% of l, every token only needs to cover 460 indices
in order to achieve the detection probability of at least 99%.

2) Identification Probability for Misbehaving Servers:We
have shown that, if the adversary modifies the data blocks
among any of the data storage servers, our sampling checking
scheme can successfully detect the attack with high probabil-
ity. As long as the data modification is caught, the user will
further determine which server is malfunctioning. This can
be achieved by comparing the response valuesR

(j)
i with the

pre-stored tokensv(j)
i , wherej ∈ {1, . . . , n}. The probability

for error localization or identifying misbehaving server(s)
can be computed in a similar way. It is the product of the
matching probability for sampling check and the probability of
complementary event for the false negative result. Obviously,
the matching probability iŝP r

m = 1−
∏r−1

i=0 (1−min{ ẑ
l−i

, 1}),
whereẑ ≤ z.

Next, we consider the false negative probability thatR
(j)
i =

v
(j)
i when at least one of̂z blocks is modified. According to

proposition 1 of [14], tokens calculated inGF (2p) for two
different data vectors collide with probabilitŷP r

f = 2−p. Thus,
the identification probability for misbehaving server(s) is

P̂d = P̂ r
m · (1− P̂ r

f ).

Along with the analysis in detection probability, ifz = 1%
of l and each token covers 460 indices, the identification
probability for misbehaving servers is at least 99%.

2Note thatnc andk only affect the false negative probabilityP r
f

. However
in our scheme, sincep = 8 almost dominates the negligibility ofP r

f
, the value

of nc andk have little effect in the plot ofPd.



B. Security Strength Against Strong Adversary

In this section, we analyze the security strength of our
schemes against server colluding attack and explain why blind-
ing the parity blocks can help improve the security strength
of our proposed scheme.

Recall that in the file distribution preparation, the redun-
dancy parity vectors are calculated via multiplying the file
matrix F by P, where P is the secret parity generation
matrix we later rely on for storage correctness assurance.
If we disperse all the generated vectors directly after token
precomputation, i.e., without blinding, malicious servers that
collaborate can reconstruct the secretP matrix easily: they
can pick blocks from the same rows among the data and parity
vectors to establish a set ofm · k linear equations and solve
for the m · k entries of the parity generation matrixP. Once
they have the knowledge ofP, those malicious servers can
consequently modify any part of the data blocks and calculate
the corresponding parity blocks, and vice versa, making their
codeword relationship always consistent. Therefore, our stor-
age correctness challenge scheme would be undermined—even
if those modified blocks are covered by the specified rows, the
storage correctness check equation would always hold.

To prevent colluding servers from recoveringP and making
up consistently-related data and parity blocks, we utilizethe
technique of adding random perturbations to the encoded file
matrix and hence hide the secret matrixP. We make use
of a keyed pseudorandom functionfkj

(·) with key kj and
seed sver

ij , both of which has been introduced previously.
In order to maintain the systematic layout of data file, we
only blind the parity blocks with random perturbations. Our
purpose is to add “noise” to the set of linear equations and
make it computationally infeasible to solve for the correct
secret matrixP. By blinding each parity block with random
perturbation, the malicious servers no longer have all the
necessary information to build up the correct linear equation
groups and therefore cannot derive the secret matrixP.

C. Performance Evaluation

1) File Distribution Preparation:We implemented the gen-
eration of parity vectors for our scheme under fieldGF (28).
Our experiment is conducted using C on a system with an Intel
Core 2 processor running at 1.86 GHz, 2048 MB of RAM, and
a 7200 RPM Western Digital 250 GB Serial ATA drive with
an 8 MB buffer. We consider two sets of different parameters
for the(m+k, m) Reed-Solomon encoding. Table I shows the
average encoding cost over 10 trials for an 8 GB file. In the
table on the top, we set the number of parity vectors constant
at 2. In the one at the bottom, we keep the number of the data
vectors fixed at 8, and increase the number of parity vectors.
Note that asm increases, the lengthl of data vectors on each
server will decrease, which results in fewer calls to the Reed-
Solomon encoder. Thus the cost in the top table decreases
when more data vectors are involved. From Table I, it can
be shown that the performance of our scheme is comparable
to that of [10], even if our scheme supports dynamic data
operation while [10] is for static data only.

set I m = 4 m = 6 m = 8 m = 10

k = 2 567.45s 484.55s 437.22s 414.22s

set II k = 1 k = 2 k = 3 k = 4

m = 8 358.90s 437.22s 584.55s 733.34s

TABLE I: The cost of parity generation in seconds for an 8GB
data file. For set I, the number of parity serversk is fixed; for
set II, the number of data serversm is constant.

2) Challenge Token Pre-computation:Although in our
scheme the number of verification tokent is a fixed priori
determined before file distribution, we can overcome this
issue by choosing sufficient larget in practice. For example,
when t is selected to be 1825 and 3650, the data file can
be verified every day for the next 5 years and 10 years,
respectively. Following the security analysis, we select a
practical parameterr = 460 for our token pre-computation
(see previous subsections), i.e., each token covers 460 different
indices. Other parameters are along with the file distribution
preparation. According to our implementation, the average
token pre-computation cost fort = 1825 is 51.97s per data
vector, and fort = 3650 is 103.94s per data vector. This
is faster than the hash function based token pre-computation
scheme proposed in [7]. For a typical number of 8 servers,
the total cost for token pre-computation is no more than 15
minutes. Note that each token is only an element of field
GF (28), the extra storage for those pre-computed tokens is
less than 1MB, and thus can be neglected.

VI. RELATED WORK

Juels et al. [3] described a formal “proof of retrievability”
(POR) model for ensuring the remote data integrity. Their
scheme combines spot-cheking and error-correcting code to
ensure both possession and retrievability of files on archive
service systems. Shacham et al. [4] built on this model and
constructed a random linear function based homomorphic
authenticator which enables unlimited number of queries and
requires less communication overhead. Bowers et al. [5] pro-
posed an improved framework for POR protocols that general-
izes both Juels and Shacham’s work. Later in their subsequent
work, Bowers et al. [10] extended POR model to distributed
systems. However, all these schemes are focusing on static
data. The effectiveness of their schemes rests primarily onthe
preprocessing steps that the user conducts before outsourcing
the data file F . Any change to the contents of F, even
few bits, must propagate through the error-correcting code,
thus introducing significant computation and communication
complexity.

Ateniese et al. [6] defined the “provable data possession”
(PDP) model for ensuring possession of file on untrusted
storages. Their scheme utilized public key based homomorphic
tags for auditing the data file, thus providing public verifia-
bility. However, their scheme requires sufficient computation
overhead that can be expensive for an entire file. In their
subsequent work, Ateniese et al. [7] described a PDP scheme



that uses only symmetric key cryptography. This method has
lower-overhead than their previous scheme and allows for
block updates, deletions and appends to the stored file, which
has also been supported in our work. However, their scheme
focuses on single server scenario and does not address small
data corruptions, leaving both the distributed scenario and
data error recovery issue unexplored. Curtmola et al. [15]
aimed to ensure data possession of multiple replicas across
the distributed storage system. They extended the PDP scheme
to cover multiple replicas without encoding each replica sep-
arately, providing guarantee that multiple copies of data are
actually maintained.

In other related work, Lillibridge et al. [9] presented a P2P
backup scheme in which blocks of a data file are dispersed
acrossm+k peers using an(m+k, m)-erasure code. Peers can
request random blocks from their backup peers and verify the
integrity using separate keyed cryptographic hashes attached
on each block. Their scheme can detect data loss from free-
riding peers, but does not ensure all data is unchanged. Filho
et al. [16] proposed to verify data integrity using RSA-based
hash to demonstrate uncheatable data possession in peer-to-
peer file sharing networks. However, their proposal requires
exponentiation over the entire data file, which is clearly
impractical for the server whenever the file is large. Shah et
al. [17] proposed allowing a TPA to keep online storage honest
by first encrypting the data then sending a number of pre-
computed symmetric-keyed hashes over the encrypted data to
the auditor. However, their scheme only works for encrypted
files, and auditors must maintain long-term state. Schwarz
et al. [8] proposed to ensure file integrity across multiple
distributed servers, using erasure-coding and block-level file
integrity checks. However, their scheme only considers static
data files and do not explicitly study the problem of data error
localization, which we are considering in this work.

VII. C ONCLUSION

In this paper, we investigated the problem of data security
in cloud data storage, which is essentially a distributed storage
system. To ensure the correctness of users’ data in cloud
data storage, we proposed an effective and flexible distributed
scheme with explicit dynamic data support, including block
update, delete, and append. We rely on erasure-correcting code
in the file distribution preparation to provide redundancy parity
vectors and guarantee the data dependability. By utilizingthe
homomorphic token with distributed verification of erasure-
coded data, our scheme achieves the integration of storage cor-
rectness insurance and data error localization, i.e., whenever
data corruption has been detected during the storage correct-
ness verification across the distributed servers, we can almost
guarantee the simultaneous identification of the misbehaving
server(s). Through detailed security and performance analysis,
we show that our scheme is highly efficient and resilient to
Byzantine failure, malicious data modification attack, andeven
server colluding attacks.

We believe that data storage security in Cloud Computing,
an area full of challenges and of paramount importance, is still

in its infancy now, and many research problems are yet to be
identified. We envision several possible directions for future
research on this area. The most promising one we believe
is a model in which public verifiability is enforced. Public
verifiability, supported in [6] [4] [17], allows TPA to auditthe
cloud data storage without demanding users’ time, feasibility
or resources. An interesting question in this model is if we
can construct a scheme to achieve both public verifiability
and storage correctness assurance of dynamic data. Besides,
along with our research on dynamic cloud data storage, we
also plan to investigate the problem of fine-grained data error
localization.

ACKNOWLEDGEMENT

This work was supported in part by the US National Science
Foundation under grant CNS-0831963, CNS-0626601, CNS-
0716306, and CNS-0831628.

REFERENCES

[1] Amazon.com, “Amazon Web Services (AWS),” Online at http://aws.
amazon.com, 2008.

[2] N. Gohring, “Amazon’s S3 down for several hours,” Online
at http://www.pcworld.com/businesscenter/article/142549/amazonss3
down for severalhours.html, 2008.

[3] A. Juels and J. Burton S. Kaliski, “PORs: Proofs of Retrievability for
Large Files,”Proc. of CCS ’07, pp. 584–597, 2007.

[4] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc.
of Asiacrypt ’08, Dec. 2008.

[5] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability: Theory
and Implementation,” Cryptology ePrint Archive, Report 2008/175,
2008, http://eprint.iacr.org/.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable Data Possession at Untrusted Stores,” Proc. of
CCS ’07, pp. 598–609, 2007.

[7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
Efficient Provable Data Possession,”Proc. of SecureComm ’08, pp. 1–
10, 2008.

[8] T. S. J. Schwarz and E. L. Miller, “Store, Forget, and Check: Using
Algebraic Signatures to Check Remotely Administered Storage,” Proc.
of ICDCS ’06, pp. 12–12, 2006.

[9] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, andM. Isard,
“A Cooperative Internet Backup Scheme,”Proc. of the 2003 USENIX
Annual Technical Conference (General Track), pp. 29–41, 2003.

[10] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Availability and
Integrity Layer for Cloud Storage,” Cryptology ePrint Archive, Report
2008/489, 2008, http://eprint.iacr.org/.

[11] L. Carter and M. Wegman, “Universal Hash Functions,”Journal of
Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.

[12] J. Hendricks, G. Ganger, and M. Reiter, “Verifying Distributed Erasure-
coded Data,”Proc. 26th ACM Symposium on Principles of Distributed
Computing, pp. 139–146, 2007.

[13] J. S. Plank and Y. Ding, “Note: Correction to the 1997 Tutorial on
Reed-Solomon Coding,” University of Tennessee, Tech. Rep.CS-03-
504, 2003.

[14] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and Secure
Sensor Data Storage with Dynamic Integrity Assurance,”Proc. of IEEE
INFOCOM, 2009.

[15] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-
Replica Provable Data Possession,”Proc. of ICDCS ’08, pp. 411–420,
2008.

[16] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating Data Possession
and Uncheatable Data Transfer,” Cryptology ePrint Archive, Report
2006/150, 2006, http://eprint.iacr.org/.

[17] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, “Auditing to
Keep Online Storage Services Honest,”Proc. 11th USENIX Workshop
on Hot Topics in Operating Systems (HOTOS ’07), pp. 1–6, 2007.


