Ensuring Data Storage Security in Cloud Computing

Cong Wang, Qian Wang, and Kui Ren Wenjing Lou
Department of ECE Department of ECE
lllinois Institute of Technology Worcester Polytechnic Institute
Email: {cwang, qwang, kref@ece.iit.edu Email: wjlou@ece.wpi.edu

Abstract—Cloud Computing has been envisioned as the next- number of reasons. Firstly, traditional cryptographicmtives
generation architecture of IT Enterprise. In contrast to tradi- for the purpose of data security protection can not be djrect
tional solutions, where the IT services are under proper phgical, adopted due to the users’ loss control of data under Cloud
logical and personnel controls, Cloud Computing moves the . .
application software and databases to the large data center Computlng. Therefore, Verlflcatlon_of COI’I’eC'F _data storage
where the management of the data and services may not bein the cloud must be conducted without explicit knowledge
fully trustworthy. This unique attribute, however, poses many of the whole data. Considering various kinds of data for
new security challenges which have not been well understood each user stored in the cloud and the demand of long term
In this article, we focus on cloud data storage security, widh continuous assurance of their data safety, the problem of

has always been an important aspect of quality of service. To o .
ensure the correctness of users’ data in the cloud, we propesan verifying correctness of data storage in the cloud becomes

effective and flexible distributed scheme with two salientdatures, €ven more challenging. Secondly, Cloud Computing is ndt jus
opposing to its predecessors. By utilizing the homomorphitoken a third party data warehouse. The data stored in the cloud

with distributed verification of erasure-coded data, our sheme may be frequently updated by the users, including insertion
achieves the integration of storage correctness insuran@nd data deletion, modification, appending, reordering, etc. Toueas

error localization, i.e., the identification of misbehavirg server(s). t t der d ic dat date is h f
Unlike most prior works, the new scheme further supports seare Storage correciness under dynamic data update I1s hence o

and efficient dynamic operations on data blocks, includingdata Paramount importance. However, this dynamic feature also
update, delete and append. Extensive security and perforrmce makes traditional integrity insurance techniques futited a

analysis shows that the proposed scheme is highly efficienhd entails new solutions. Last but not the least, the deplogmen
resilient against Byzantine falllure, malicious data modiftation of Cloud Computing is powered by data centers running in
attack, and even server colluding attacks. . T S
a simultaneous, cooperated and distributed manner. theivi
|. INTRODUCTION user's data is redundantly stored in multiple physical {oca
Several trends are opening up the era of Cloud Computiriggns to further reduce the data integrity threats. Thesgfo
which is an Internet-based development and use of computkstributed protocols for storage correctness assurailbbev
technology. The ever cheaper and more powerful process@fmost importance in achieving a robust and secure cloual dat
together with the software as a service (SaaS) computitig-arcstorage system in the real world. However, such importaed ar
tecture, are transforming data centers into pools of coimgut remains to be fully explored in the literature.
service on a huge scale. The increasing network bandwidth an Recently, the importance of ensuring the remote data
reliable yet flexible network connections make it even galssi integrity has been highlighted by the following research
that users can now subscribe high quality services from davarks [3]-[7]. These techniques, while can be useful to emsu
and software that reside solely on remote data centers. the storage correctness without having users possessiag da
Moving data into the cloud offers great convenience toan not address all the security threats in cloud data storag
users since they don't have to care about the complexitiggce they are all focusing on single server scenario and
of direct hardware management. The pioneer of Cloud Commost of them do not consider dynamic data operations. As
puting vendors, Amazon Simple Storage Service (S3) and complementary approach, researchers have also proposed
Amazon Elastic Compute Cloud (EC2) [1] are both welllistributed protocols [8]-[10] for ensuring storage cotre
known examples. While these internet-based online sesvigeess across multiple servers or peers. Again, none of these
do provide huge amounts of storage space and customizatidributed schemes is aware of dynamic data operations.
computing resources, this computing platform shift, hosvev As a result, their applicability in cloud data storage can be
is eliminating the responsibility of local machines for alatdrastically limited.
maintenance at the same time. As a result, users are at thi this paper, we propose an effective and flexible distatut
mercy of their cloud service providers for the availabiltiyd scheme with explicit dynamic data support to ensure the
integrity of their data. Recent downtime of Amazon’s S3 isorrectness of users’ data in the cloud. We rely on erasure-
such an example [2]. correcting code in the file distribution preparation to pdev
From the perspective of data security, which has alwaysdundancies and guarantee the data dependability. This co
been an important aspect of quality of service, Cloud Corstruction drastically reduces the communication and g®ra
puting inevitably poses new challenging security threats foverhead as compared to the traditional replication-b&sed

distribution techniques. By utilizing the homomorphic ¢ok ! <o

with distributed verification of erasure-coded data, olnesce S “Tfigsf'ilwx

achieves the storage correctness insurance as well as data ‘;;;eqépmnmmpaﬂyAudi.oq

error localization: whenever data corruption has beenctiede $

during the storage correctness verification, our scheme can &

almost guarantee the simultaneous localization of datasrr oors

i.e., the identification of the misbehaving server(s). € R
Our work is among the first few ones in this field to consider D Lo

distributed data storage in Cloud Computing. Our contiiut

can be summarized as the following three aspects: Fig. 1: Cloud data storage architecture

1) Compared to many of its predecessors, which only provide

binary results about the storage state across the distdbut

servers, the challenge-response protocol in our work éurtithese operations we are considering are block update edelet
provides the localization of data error. insert and append.

2) Unlike most prior works for ensuring remote data intggrit AS Users no longer possess their data locally, it is of aitic
the new scheme supports secure and efficient dynamic opdf2Rortance to assure users that their data are being dgrrect

tions on data blocks, including: update, delete and appendstored and maintained. That is, users should be equippéd wit

3) Extensive security and performance analysis shows tﬁg{:unty means so that they can make continuous correctness

the proposed scheme is highly efficient and resilient agaiﬁalsssurance of their stored data even without the existence of

Byzantine failure, malicious data modification attack, amdn lt?r(r:zl ?ggé?;'” tln ocrafeesct)ﬁ?(t:elfssgsrr?c?ni?:rt t?]ZiCreij?;"ythhavi the
server colluding attacks. ' y ek

The rest of the paper is organized as follows. Section zﬁlegate the tasks to an optional trusted TPA of their raisgec

: . oices. In our model, we assume that the point-to-point
introduces the system model, adversary model, our desigin go o
, ; . o communication channels between each cloud server and the
and notations. Then we provide the detailed descriptioruof o :
user is authenticated and reliable, which can be achieved in

schem_e in Section 1Il and IV. Se_ctlon V gives the securit ractice with little overhead. Note that we don’t address th
analysis and performance evaluations, followed by Sedtfion :

which overviews the related work. Finally, Section VII giwe'ssue O.f data privacy in this paper, as in Cloud Computing,
: data privacy is orthogonal to the problem we study here.
the concluding remark of the whole paper.

Cloud
Storage
Servers

o

Cloud Service Provider

ll. PROBLEM STATEMENT B. Adversary Model

Security threats faced by cloud data storage can come

A. System Model from two different sources. On the one hand, a CSP can
A representative network architecture for cloud data gferabe self-interested, untrusted and possibly malicious. dtiby

is illustrated in Figure 1. Three different network enstiean does it desire to move data that has not been or is rarely

be identified as follows: accessed to a lower tier of storage than agreed for monetary

« User: users, who have data to be stored in the cloud a@#sons, but it may also attempt to hide a data loss incident
rely on the cloud for data computation, consist of botu€ to management errors, Byzantine failures and so on.
individual consumers and organizations. On the other hand, there may also exist an economically-

« Cloud Service Provider (CSP): a CSP, who has Signirfnotivated adversary, who has the capability to compromise
icant resources and expertise in building and managiﬁgnumber of cloud data storage servers in different time
distributed cloud storage servers, owns and operates lipéervals and subsequently is able to modify or delete users
Cloud Computing systems. data while remaining undetected by CSPs for a certain period

« Third Party Auditor (TPA): an optional TPA, who hasSpecifically, we consider two types of adversary with defer
expertise and capabilities that users may not have, Ifyels of capability in this paper:
trusted to assess and expose risk of cloud storage servidésak AdversaryThe adversary is interested in corrupting the
on behalf of the users upon request. user’s data files stored on individual servers. Once a sésver

In cloud data storage, a user stores his data through a Cgnprised, an adversary can pollute the original data fijes b
into a set of cloud servers, which are running in a simult&20difying or introducing its own fraudulent data to prevent
neous, cooperated and distributed manner. Data redundatit§/0riginal data from being retrieved by the user.
can be employed with technique of erasure-correcting co8&ong AdversaryThis is the worst case scenario, in which
to further tolerate faults or server crash as user's datagrowe assume that the adversary can compromise all the storage
in size and importance. Thereafter, for application puegos servers so that he can intentionally modify the data files as
the user interacts with the cloud servers via CSP to accesdang as they are internally consistent. In fact, this is ealeint
retrieve his data. In some cases, the user may need to perféonthe case where all servers are colluding together to hide a
block level operations on his data. The most general forms ddita loss or corruption incident.

C. Design Goals integrated with the verification of erasure-coded data 18] [

To ensure the security and dependability for cloud daHPsequently, it is also shown how to derive a challenge-
storage under the aforementioned adversary model, we dfgPonse protocol for verifying the storage correctnessells
to design efficient mechanisms for dynamic data verificatid identifying misbehaving servers. Finally, the procedor
and operation and achieve the following goals: (1) Storadjt¢ retrieval and error recovery based on erasure-comgcti
correctness: to ensure users that their data are indeestist&°de is outlined.
appropriately and kept intact all the time in the cloud. (
Fast localization of data error: to effectively locate thalm
functioning server when data corruption has been dete(@®d. It is well known that erasure-correcting code may be used
Dynamic data support: to maintain the same level of storatfetolerate multiple failures in distributed storage sysie In
correctness assurance even if users modify, delete or dppelud data storage, we rely on this technique to disperse the
their data files in the cloud. (4) Dependability: to enhanegad data fileF redundantly across a set of= m + k distributed
availability against Byzantine failures, malicious datadifi- ~servers. A(m + k, k) Reed-Solomon erasure-correcting code
cation and server colluding attacks, i.e. minimizing thieetf is used to creaté: redundancy parity vectors fromn data
brought by data errors or server failures. (5) Lightweigh¥ectors in such a way that the original data vectors can be
to enable users to perform storage correctness checks wWfgonstructed from anyn out of them + k data and parity

2)\. File Distribution Preparation

minimum overhead. vectors. By placing each of thes + k£ vectors on a different
) S server, the original data file can survive the failure of &nyf
D. Notation and Preliminaries them +k servers without any data loss, with a space overhead

« F —the data file to be stored. We assume fhatan be of k/m. For support of efficient sequential I/O to the original
denoted as a matrix ofi equal-sized data vectors, eacliile, our file layout is systematic, i.e., the unmodifieddata
consisting of blocks. Data blocks are all well representefile vectors together witlt parity vectors is distributed across
as elements in Galois Field@F'(27) for p = 8 or 16. m + k different servers.

« A — The dispersal matrix used for Reed-Solomon coding.Let F = (Fy, Fy, ..., F,) and F; = (fui, fair- -+ fu)©

« G — The encoded file matrix, which includes a set ofi € {1,...,m}), wherel < 27 — 1. Note all these blocks
n = m + k vectors, each consisting éfblocks. are elements of7F(27). The systematic layout with parity

e frey(-) — pseudorandom function (PRF), which is definedectors is achieved with the information dispersal matix
asf:{0,1}* x key — GF(2P). derived from anm x (m + k) Vandermonde matrix [13]:

o Orey(-) — pseudorandom permutation (PRP), which is

defined asp : {0, 1}1°%2(D) x key — {0, 1}1082(D, ! ! T ! 1 o !

« ver —a version number bound with the index for individ- A Bo v P Pmir oo fn
ual blocks, which records the times the block has been : : : : : ’
modified. Initially we assumeer is O for all data blocks. 17%—1 ;n—l o.oprt Zfﬁ cooprt

o s¢" —the seed for PRF, which depends on the file name, o
block indexi, the server position as well as the optional Where 5; (7 € {1,...,n}) are distinct elements randomly
block version numbever. picked fromGF(27).

After a sequence of elementary row transformations, the
[1l. ENSURING CLOUD DATA STORAGE desired matrixA can be written as
In cloud data storage system, users store their data in 1 0 0 pu pio ... Pk
the cloud and no longer possess the data locally. Thus, the 0 1

Lo)) 0 pa1 p22 ... po
correctness and availability of the data files being storethe A = (I|P) = .. . i
distributed cloud servers must be guaranteed. One of the key o : : :

issues is to effectively detect any unauthorized data nmoadifi 00 ... 1 pm1 Pm2 - Dmk

tion and corruption, possibly due to server compromise@nd{,arer
random Byzantine failures. Besides, in the distributedecafaenert,mOn matrix with sizen x k. Note thatA is derived
when such inconsistencies are successfully detected, do iy, 4 Vandermonde matrix, thus it has the property that any
which server the data error lies in is also of great signitean ., .t of them + k columns form an invertible matrix.

since it can be the first step to fast recover the storageserrqr By multiplying F by A, the user obtains the encoded file:
To address these problems, our main scheme for ensuring

cloud data storage is presented in this section. The firsgpar G =F-A = (G, ¢? ... g™ g+ . Gm)

the section is devoted to a review of basic tools from coding = (F,F,...,Fp, G G,

theory that are needed in our scheme for file distributionser o ‘

cloud servers. Then, the homomorphic token is introducedhere GU) = (gg”,géj),...,gl(J))T (7 € {1,...,n}). As

The token computation function we are considering belongsticed, the multiplication reproduces the original date fi

to a family of universal hash function [11], chosen to prevectors ofF and the remaining patG(™+1 ... G™) are

serve the homomorphic properties, which can be perfecilyparity vectors generated based Ien

is am x m identity matrix andP is the secret parity

Algorithm 1 Token Pre-computation Algorithm 2 Correctness Verification and Error Localization

1: procedure 1: procedure CHALLENGE(7) ‘
2: Choose parametefsn and functionf, ¢; 2: Recomputey; = f,,.,, () and sz,?p from Kpgrp;
3. Choose the numberof tokens; 3 Send{a, ki) to all the cloud servers;
4 Choose the number of indices per verification; 4: Receive from servers:
5. Generate master kel{,,, and challengé.p:; {RY) = S al % GD[p (g)]]1 < j <n}
6: for vectorGY), j « 1, n do 5. for(j—m+1,n)do
7 for roundz‘<— 1,t do _ » 6: RU) — R(j)_zgzl fi; (81,.5)-ad, I, = ‘%“‘2 (q)
8: Derive o; = fk,,,, (i) andky,, from Kprp. 7. end for e
9 Computer”) = Y21, af x G99, (a)] g if (BRY,... R™).P==(R"™Y _ R™)) then
10: end for o Accept and ready for the next challenge.
11: end for 10: else
12: Store all thev;s locally. 11: for (j «+ 1, n) do
13: end procedure 12: it (RY1 =0 then
13: return serverj is misbehaving.
14: end if
B. Challenge Token Precomputation 15: end for

In order to achieve assurance of data storage correctnéfs end if

and data error localization simultaneously, our schemiesdnt 17: end procedure
relies on the pre-computed verification tokens. The maia ide

is as follows: before file distribution the user pre-compgude
certain number of short verification tokens on individuattee

user stores them locally to obviate the need for encryption

GO (i 1 ’ h tok ; d b ea[ndllower lthe pandwid_th overhead during dynamic data op-
(j € {1,...,n}), each token covering a random subs tion which will be discussed shortly. The details of toke

of data blocks. Later, when the user wants to make sure HE . .)
eration are shown in Algorithm 1.

storage correctness for the data in the cloud, he challen g .
g &8 nce all tokens are computed, the final step before

the cloud servers with a set of randomly generated blo%‘,r distributi i blind h v bl W
indices. Upon receiving challenge, each cloud server coespu'le _distribution is to blind each parity blocky;™ in

m—+1 n
a short “signature” over the specified blocks and returnmthe(G()G)) by
to the user. The values of these signatures should match the gz(j) — gf-j) + fr; (si5),1 € {1,...,1},
corresponding tokens pre-computed by the user. Meanwhile, _) G) (s
as all servers operate over the same subset of the indiees, there¥; is the secret key for parity vectd@") (j € {m +

requested response values for integrity check must also béa -:7})- This is for protection of the secret mati. We
valid codeword determined by secret matitx will discuss the necessity of using blinded parities in dleta

Suppose the user wants to challenge the cloud semver@ Section V. After blinding the parit)(/_)infqrmation, the use
times to ensure the correctness of data storage. Then,diRPerses all the encoded vectorsr” (j € {1,....n})
must pre-compute verification tokens for eacltz?) (j ¢ across the cloud serves, S, ..., Sn.

{1,...,n}), using a PRFf(:), a PRP¢(-), a challenge key C. Correctness Verification and Error Localization

kchar @nd @ master permutation kéyprp. To generate the rror [ocalization is a key prerequisite for eliminatinges

i*" token for servej, the user acts as follows: in storage systems. However, many previous schemes do not
1) Derive a random challenge valug of GF'(27) by a; = explicitly consider the problem of data error localization
Sk, (1) @and a permutation key,g?,, based onKprp. thus only provide binary results for the storage verifigatio
2) Compute the set of randomly-chosen indices: Our scheme outperforms those by integrating the correstnes

verification and error localization in our challenge-resgp®

g €L, [l < g < v} wherel, = ¢k§?p (a)- protocol: the response values from servers for each clyglen

3) Calculate the token as: not only determine the correctness of the distributed gmra
i, but also contain information to locate potential data €g)pr
() _ 9 GO whereGW L] = ¢\@) Specifically, the procedure of theth challenge-response for
Vi ;al * [fa), [fa) 91 a cross-check over the servers is described as follows:
‘ 1) The user reveals the; as well as the-th permutation
Note thatvl@, which is an element of7F'(27) with small key sz,?p to each servers.
size, is the response the user expects to receive from sgrver 2) The server storing vecta®(?) aggregates those rows
when he challenges it on the specified data blocks. specified by index:'?, into a linear combination
After token generation, the user has the choice of either r
keeping the pre-computed tokens locally or storing them in jo) = Zag % G('j)[%;?p ().

encrypted form on the cloud servers. In our case here, the a=1

3) Upon receiving?'”’s from all the servers, the user takegigorithm 3 Error Recovery

away blind values il (j € {m+1,...,n}) by 1: procedure
- % Assume the block corruptions have been detected
RY — RY =" fi (s1,7) - of wherel, = ¢, (q). ~ 2mong
pTp

% the specified* rows;
% Assumes < k servers have been identified misbehaving
: Downloadr rows of blocks from servers;
3 Treats servers as erasures and recover the blocks.
4 Resend the recovered blocks to corresponding servers.
5. end procedure
Because all the servers operate over the same subset—of
indices, the linear aggregation of these specified rows

(Rz(l)_v -, B"V) has 1o be a codeword in the encoded filgnerations of update, delete and append to modify the data fil
matrix. If the above equation holds, the challenge is passggie maintaining the storage correctness assurance.
Ot_heryvise, it indicates_ that among those specified rowsethe ¢ straightforward and trivial way to support these opera-
exist file block corruptions. tions is for user to download all the data from the cloud serve
Once the inconsistency among the storage has been succgsg-re-compute the whole parity blocks as well as verificatio
fully detected, we can rely on the pre-computed verificatiqgkens. This would clearly be highly inefficient. In this e,
tokens to further determine where the potential data eyor(ye will show how our scheme can explicitly and efficiently
lies in. Note that each respon&g’ is computed exactly in the pangle dynamic data operations for cloud data storage.
same way as tokengj), thus the user can simply find which .
server is misbehaving by verifying the followingequations: A Update Operation
W7 G - In cloud data storage, sometimes the user may need to
R =wv;7je{l,...,n}. modify some data block(s) stored in the cloud, from its
Algorithm 2 gives the details of correctness verificatiord ancUment valuef;; to a new one.f;; + Af;;. We refer this
error localization. operation as data update. Due to the linear property of Reed-
Solomon code, a user can perform the update operation and
D. File Retrieval and Error Recovery generate the updated parity blocks by usiag ; only, without

Since our layout of file matrix is systematic, the user cdfvolving any other unchanged blocks. Specifically, theruse
reconstruct the original file by downloading the data vestofan construct a general update matik as

q=1

4) Then the user verifies whether the received values re;
main a valid codeword determined by secret maRix

(m+1) (n)
(RI™HD . R™).

2

(RW, ... R™).p <

K2

from the firstm servers, assuming that they return the correct Afii Afis oo Afim
response values. Notice that our verification scheme iscbase Afor Afoo oo Afom
on random spot-checking, so the storage correctness assura AF = i i .

is a probabilistic one. However, by choosing system param- : : : :
eters(e.g.,,1,t) appropriately and conducting enough times Afn Afiz .. Afim
of verification, we can guarantee the successful file redtiev = (AF,AF,...,AF,).

\év(;tr?uhlt?:negoégzl(l:'ga ?Eetgin?tg?{sgﬁg?’ ﬁhig;vedtggf Kilote that we use zero elementsAiF to denote the unchanged
ptior ' P P P! .. __blocks. To maintain the corresponding parity vectors a$ agel
and received response values can guarantee the identificafl

: . L . " . be consistent with the original file layout, the user can iplylt
Of. m|sbehavmg server(s), again with high probability, efhi AF by A and thus generate the update information for both
will be discussed shortly. Therefore, the user can alwa}/s .)
. . the data vectors and parity vectors as follows:
ask servers to send back blocks of theows specified in
the challenge and regenerate the correct blocks by erasurefF - A = (AGWY,... AG™) AGD . AG™)
correction, shown in Algorithm 3, as long as there are at most = (AF,...,AF,, AGM™H . AG™)
k misbehaving servers are identified. The newly recovered ‘ Y ’ Y ’
blocks can then be redistributed to the misbehaving servétgere AGY) (j € {m + 1,...,n}) denotes the update

to maintain the correctness of storage. information for the parity vecto(7).
Because the data update operation inevitably affects some

IV. PROVIDING DYNAMIC DATA OPERATIONSUPPORT o g|| of the remaining verification tokens, after preparatof

So far, we assumed thd& represents static or archivedupdate information, the user has to amend those unusedstoken
data. This model may fit some application scenarios, sufdr each vectoGU) to maintain the same storage correctness
as libraries and scientific datasets. However, in cloud daasurance. In other words, for all the unused tokens, the use
storage, there are many potential scenarios where datdstareeds to exclude every occurrence of the old data block and
in the cloud is dynamic, like electronic documents, photws, replace it with the new one. Thanks to the homomorphic
log files etc. Therefore, it is crucial to consider the dynamiconstruction of our verification token, the user can perform
case, where a user may wish to perform various block-lewbke token update efficiently. To give more details, suppose a

block G)[I,], which is covered by the specific tokef'(), has To support block append operation, we need a slight modi-
been changed t6&:7)[I,] + AGY)[I,], wherel, = ¢, (s). fication to our token pre-computation. Specifically, we riegju

. the user to expect the maximum size in blocks, denoted as
lmaz, for each of his data vector. The idea of supporting

block append, which is similar as adopted in [7], relies on

To maintain the usability of tokengj), it is not hard to verify
that the user can simply update it by

o 0@ 4 af « AGUL), the initial budget for the maximum anticipated data dize,
. o . . in each encoded data vector as well as the system parameter
without retrieving any other — 1 blocks required in the pre-
i f%) Tmaz = |7 * (Imaz/l)] for each pre-computed challenge-
computation ofv;™ . response token. The pre-computation of thth token on

After the amendment to the affected tokkrthe user needs
to blind the update informatioAgl(J) for each parity block in
AGD AG™) to hide the secret matri® b iy ,
(R) i i® by vi=Y alxGU1,],
Aggj) <_A9§J)+fkj(8pq)’ie {1,....1}. 9=1

)

serverj is modified as follows:

Here we use a new seef}” for the PRF. The version numberwhere

ver functions like a counter which helps the user to keep ‘ GDp,) (q)] ,[o.0 (@] <1
track of the blind information on the specific parity blocks. G(J)[Iq] = {O kprp Forp _l
After blinding, the user sends update information to theidlo ' wk% ()] >

servers, which perform the update operation as This formula guarantees that on average, there wil inelices
GV — GU £ AGY), (je{1,...,n}). falling into the range of existing blocks. Because the cloud
servers and the user have the agreement on the number of
B. Delete Operation existing blocks in each vectd¥?), servers will follow exactly
Sometimes, after being stored in the cloud, certain dafze above procedure when re-computing the token values upon
blocks may need to be deleted. The delete operation we ageeiving user’s challenge request.
considering is a general one, in which user replaces the dat&Now when the user is ready to append new blocks, i.e.,
block with zero or some special reserved data symbol. Frdmth the file blocks and the corresponding parity blocks are
this point of view, the delete operation is actually a spemae generated, the total length of each vetét) will be increased
of the data update operation, where the original data blocksd fall into the rangd, l,,,..]. Therefore, the user will update
can be replaced with zeros or some predetermined spetiise affected tokens by adding * GV [I,] to the oldv;
blocks. Therefore, we can rely on the update procedure wiheneverGU)[I,] # 0 for I, > I, wherel, = ¢, (s). The
support delete operation, i.e., by settidgf;; in AF to be parity blinding is similar as introduced in update openatio
—Af;;. Also, all the affected tokens have to be modified anghus is omitted here.
the updated parity information has to be blinded using the)
same method specified in update operation. D. Insert Operation
. An insert operation to the data file refers to an append
C. Append Operation : . : .) o
operation at the desired index position while maintainimg t
In some cases, the user may want to increase the sizesgfne data block structure for the whole data file, i.e., tispr
his stored data by adding blocks at the end of the data filg,block F[j] corresponds to shifting all blocks starting with
which we refer as data append. We anticipate that the m@gdex j + 1 by one slot. An insert operation may affect many
frequent append operation in cloud data storage is bulkrhperows in the logical data file matrig, and a substantial number
in which the user needs to upload a large number of blocks computations are required to renumber all the subsequent
(not a single block) at one time. blocks as well as re-compute the challenge-response tokens

ration, appending blocks towards the end of a data file i§d thus we leave it for our future work.

equivalent to concatenate corresponding rows at the bottom

of the matrix layout for fileF. In the beginning, there areV. SECURITY ANALYSIS AND PERFORMANCEEVALUATION

only / rows in the file matrix. To simplify the presentation, |n this section, we analyze our proposed scheme in terms
we suppose the user wants to appemdlocks at the end of of security and efficiency. Our security analysis focuses on
file F, denoted ag fi+1,1, fi+1,2: - fi+1,m) (We can always the adversary model defined in Section Il. We also evaluate
use zero-padding to make a row of elements.). With the the efficiency of our scheme via implementation of both file

secret matrixP, the user can directly calculate the appengistribution preparation and verification token precoragioh.
blocks for each parity server as

-P = (mt1) gy, . . . L
(fis1,15 5 fre1,m) (G101 s 9ip1) 1) Detection Probability against data modificatioin our
1in practice, it is possible that only a fraction of tokens cheenendment, scheme, servers are _r?qu.'red to operate on _SpeCIerd rows in
since the updated blocks may not be covered by all the tokens. each correctness verification for the calculation of retpees

A. Security Strength Against Weak Adversary

30001

2500 2500
2000

NN E T\
A NNNE TN AN

2000 2000

7
g
7
i/

(total number of rows)
g g
8 8
/ :

| (total number of rows)
0.1

(

L % s 5\0 & L L \ |
1000 \04\€] 1000 w0001 & \:\Q .7 05—]
500 \03\ 04— | 500} 500} e e S 06— 3
01 02 03— | N z% 4 0506
R — tin] ‘ e e
o 1 2 4 5 6 7 O 9 10 o 05 1 15 2 2 3 35 4 45 5 o 02 04 06 08 1 12 14 16 18
r (number of queried rows) (as a percentage of I) r (number of queried rows) (as a percentage of I) r (number of queried rows) (as a percentage of I)

Fig. 2: The detection probability’; against data modification. We shal; as a function of (the number of blocks on each
cloud storage server) and(the number of rows queried by the user, shown as a percenfador three values ot (the
number of rows modified by the adversary). lefty: 1% of I; middle) = = 5% of [; right) z = 10% of /. Note that all graphs
are plotted undep = 8, n. = 10 andk = 5 and each graph has a different scale.

token. We will show that this “sampling” strategy on selecte Based on above discussion, it follows that the probability
rows instead of all can greatly reduce the computational data modification detection across all storage servers is
overhead on the server, while maintaining the detectiomef t . .

data corruption with high probability. Py =Py, - (1= Pf).

Supposen. servers are misbehaving due to the possible Figure 2 plotsP;, for different values of, r, 2 while we set
compromise or Byzantine failure. In the following analysisp = 8,n. = 10 andk = 5. 2 From the figure we can see that
we do not limit the value ofi., i.e.,, n. < n. Assume the if more than a fraction of the data file is corrupted, then it
adversary modifies the data blockszimows out of thel rows suffices to challenge for a small constant number of rows in
in the encoded file matrix. Let be the number of different order to achieve detection with high probability. For exéenp
rows for which the user asks for check in a challenge. Xet if 2 = 1% of [, every token only needs to cover 460 indices
be a discrete random variable that is defined to be the numbreorder to achieve the detection probability of at least 99%
of rows chosen by the user that matches the rows modified by2) Identification Probability for Misbehaving Serversve
the adversary. We first analyze the matching probability thhave shown that, if the adversary modifies the data blocks
at least one of the rows picked by the user matches one of #mong any of the data storage servers, our sampling checking

rows modified by the adversary: scheme can successfully detect the attack with high prébabi
ity. As long as the data modification is caught, the user will
P, = 1-P{X=0} further determine which server is malfunctioning. This can
r—1 . . be achieved by comparing the response vaIBé@ with the
= 1= H(l - mm{m’ 1}) pre-stored tokensfj), wherej € {1,...,n}. The probability
=0 for error localization or identifying misbehaving sen@r(
> 11— (l _l Z)T, can be computed in a similar way. It is the product of the

matching probability for sampling check and the probapit

Note that if none of the specifiedrows in thei-th verification complementary event for the false negative result. ObWous
process are deleted or modified, the adversary avoids the matching probability i, = 1—[]/=)(1—min{;%;,1}),
detection. wherez < z. . N)
Next, we study the probability of a false negative result tha Next, we consider the false negative probability that) =
the data blocks in those specifiedows has been modified, v;”’ when at least one of blocks is modified. According to
but the checking equation still holds. Consider the respsndroposition 1 of [14], tokens calculated @F'(27) for two

RM. ... R™ returned from the data storage servers for thdifferent data vectors collide with probabilify = 277. Thus,
i-th challenge, each response valﬁ’é” calculated within the identification probability for misbehaving server(s) i
GF(27), is based on blocks on serverj. The number of P,=P - (1- 13;).

responseR(™+1) ... R("™ from parity servers ig = n—m. . o g o

Thus, according to the proposition 2 of our previous worRlong with the analysis in detection probability, if = 1%

in [14], the false negative probability is of [and each token covers 460 indices, the identification

probability for misbehaving servers is at least 99%.

P}::PT1+P7’2, 2 . ..
Note thatn. andk only affect the false negative probabilify’”. However

in our scheme, since = 8 almost dominates the negligibility d?f; the value

—P\nc _
where Pry = % and Pry = (1 — Pr;)(27P)F, of n. andk have little effect in the plot of?;.

B. Security Strength Against Strong Adversary setl | m=4 m=6 m=8 m=10

. . . k=2 | 567.45s 484.55s 437.22s 414.22

In this section, we analyze the security strength of our
schemes against server colluding attack and explain whgbli setll k=1 k=2 k=3 k=4
ing the parity blocks can help improve the security strength m=8 || 358.90s 437.22s 584.55s 7333¢s

of our propose_d scheme. o _ TABLE I: The cost of parity generation in seconds for an 8GB
Recall that in the file distribution preparation, the redurtata file. For set I, the number of parity servéris fixed; for

dancy parity vectors are calculated via multiplying the filget ||, the number of data servers is constant.
matrix F by P, where P is the secret parity generation

matrix we later rely on for storage correctness assurance.

If we disperse all the generated vectors directly after tioke 2) Challenge Token Pre-computatiomAlthough in our
precomputation, i.e., without blinding, malicious ses/éhat scneme the number of verification tokeris a fixed priori
collaborate can reconstruct the secRtmatrix easily: they jetermined before file distribution, we can overcome this
can pick blocks from the same rows among the data and pafiy,e by choosing sufficient largein practice. For example,
vectors to establish a set of - k linear equations and solve\yhen ¢ is selected to be 1825 and 3650, the data file can
for the m - k entries of the parity generation matfix Once pe verified every day for the next 5 years and 10 years,
they have the knowledge d¥, those malicious servers canegpectively. Following the security analysis, we select a
consequently modify any part of the data blocks and Cale”'%ractical parameter = 460 for our token pre-computation
the corresponding parity blocks, and vice versa, making th¢see previous subsections), i.e., each token covers 4@@eit
codeword relationship always consistent. Therefore, @F s jygices. Other parameters are along with the file distriuti

age correctness challenge scheme would be undermined—eyRMaration. According to our implementation, the average
if those modified blocks are covered by the specified rows, thgen pre-computation cost far= 1825 is 51.97s per data

storage correctness check equation would always hold. yector, and fort = 3650 is 103.94s per data vector. This
To prevent colluding servers from recoveriRgind making g faster than the hash function based token pre-compatatio
up consistently-related data and parity blocks, we utitt® ¢-heme proposed in [7]. For a typical number of 8 servers,

technique of adding random perturbations to the encoded i total cost for token pre-computation is no more than 15
matrix and hence hide the secret matfix We make use minytes. Note that each token is only an element of field

of a keyed pseudorandom functigfy, (-) with key k; and p(98) the extra storage for those pre-computed tokens is
seed s{s", both of which has been introduced previouslyess than 1MB. and thus can be neglected.

17 !
In order to maintain the systematic layout of data file, we
only blind the parity blocks with random perturbations. Our VI. RELATED WORK
purpose is to add “noise” to the set of linear equations and) . _ _
make it computationally infeasible to solve for the correct JUels et al. [3] described a formal “proof of retrievability
secret matrixP. By blinding each parity block with random (POR) model for ensuring the remote data integrity. Their
perturbation, the malicious servers no longer have all ti§§heme combines spot-cheking and error-correcting code to

necessary information to build up the correct linear equati €nSure both possession and retrievability of files on aechiv

]

groups and therefore cannot derive the secret m&rix service systems. Shacham et al. [4] built on this model and
. constructed a random linear function based homomorphic
C. Performance Evaluation authenticator which enables unlimited number of queriat an

1) File Distribution Preparation:We implemented the gen-requires less communication overhead. Bowers et al. [5] pro
eration of parity vectors for our scheme under fi€ld'(2%). posed an improved framework for POR protocols that general-
Our experiment is conducted using C on a system with an Inteés both Juels and Shacham’s work. Later in their subsequen
Core 2 processor running at 1.86 GHz, 2048 MB of RAM, andork, Bowers et al. [10] extended POR model to distributed
a 7200 RPM Western Digital 250 GB Serial ATA drive withsystems. However, all these schemes are focusing on static
an 8 MB buffer. We consider two sets of different parameteesta. The effectiveness of their schemes rests primarihen
for the (m+k&, m) Reed-Solomon encoding. Table | shows thpreprocessing steps that the user conducts before ouitsgurc
average encoding cost over 10 trials for an 8 GB file. In ttbe data file 7. Any change to the contents of F, even
table on the top, we set the number of parity vectors constdetv bits, must propagate through the error-correcting code
at 2. In the one at the bottom, we keep the number of the d#ttais introducing significant computation and communicatio
vectors fixed at 8, and increase the number of parity vectoeesmplexity.

Note that asn increases, the lengthof data vectors on each Ateniese et al. [6] defined the “provable data possession”
server will decrease, which results in fewer calls to thedree(PDP) model for ensuring possession of file on untrusted
Solomon encoder. Thus the cost in the top table decreastmrages. Their scheme utilized public key based homonmwrph
when more data vectors are involved. From Table I, it cadags for auditing the data file, thus providing public verifia
be shown that the performance of our scheme is comparabiity. However, their scheme requires sufficient compotat

to that of [10], even if our scheme supports dynamic dateverhead that can be expensive for an entire file. In their
operation while [10] is for static data only. subsequent work, Ateniese et al. [7] described a PDP scheme

that uses only symmetric key cryptography. This method hasits infancy now, and many research problems are yet to be
lower-overhead than their previous scheme and allows fiolentified. We envision several possible directions foufat
block updates, deletions and appends to the stored filehwhiesearch on this area. The most promising one we believe
has also been supported in our work. However, their scheisea model in which public verifiability is enforced. Public
focuses on single server scenario and does not address swaifiability, supported in [6] [4] [17], allows TPA to audihe
data corruptions, leaving both the distributed scenarid anloud data storage without demanding users’ time, featsibil
data error recovery issue unexplored. Curtmola et al. [18} resources. An interesting question in this model is if we
aimed to ensure data possession of multiple replicas acroas construct a scheme to achieve both public verifiability
the distributed storage system. They extended the PDP schemd storage correctness assurance of dynamic data. Besides
to cover multiple replicas without encoding each replicp-sealong with our research on dynamic cloud data storage, we
arately, providing guarantee that multiple copies of data aalso plan to investigate the problem of fine-grained datererr

actually maintained. localization.
In other related work, Lillibridge et al. [9] presented a P2P
backup scheme in which blocks of a data file are dispersed ACKNOWLEDGEMENT

acrossm-+k peers using atm-+ m)-erasure code. Peers.can This work was supported in part by the US National Science
request random blocks from their backup peers and verify tE%undation under grant CNS-0831963, CNS-0626601, CNS-
integrity using separate keyed cryptographic hasheshathc ' '

on each block. Their scheme can detect data loss from frge7-16306’ and CNS-0831628.

riding peers, but does not ensure all data is unchanged Filh

et al. [16] proposed to verify data integrity using RSA-lthse REFERENCES

hash to demonstrate uncheatable data possession in peerftp Amazon.com, “Amazon Web Services (AWS),” Online at Hitgws.

peer file sharing networks. However, their proposal reguire amazon.com, 2008. .

tiation over the entire data file, which is clearly? N Gofring. ‘Amazons S3 down for several hours” Online

gxpone_n o at http://www.pcworld.com/businesscenter/articleA4lamazonss3_

impractical for the server whenever the file is large. Shah et down for_severalhours.html, 2008.

al. [17] proposed allowing a TPA to keep online storage hbness] 'ﬁ- Jue'FS,Ia”S,’PJ- BUfgogCSS- %?"Sk"g§4°§§; Pzrggf; of Reésility for
. . . arge Files,"Proc. o pp. —597, .

by first encrypting .the data then sending a number of pr%&] H. Shacham and B. Waters, “Compact Proofs of Retrieitglil Proc.

computed symmetric-keyed hashes over the encrypted data to of Asiacrypt ‘08 Dec. 2008. o

the auditor. However, their scheme only works for encryptetp] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of Retriéligb Theory

. . . . and Implementation,” Cryptology ePrint Archive, ReportO80L75,
files, and auditors must maintain long-term state. Schwarz 2008, http://eprint.iacr.orgl.

et al. [8] proposed to ensure file integrity across multiplge] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissiz Peterson,

distributed servers, using erasure-coding and block-Ifee and D. Song, “Provable Data Possession at Untrusted Stétes;. of

. . : L CCS '07 pp. 598-609, 2007.
integrity checks. However, their scheme only considericsta [7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik ciable and

data files and do not explicitly study the problem of datarerro ~ Efficient Provable Data PossessioRfoc. of SecureComm '0p. 1—

localization, which we are considering in this work. 10, 2008. , _
[8] T. S.J. Schwarz and E. L. Miller, “Store, Forget, and Ghedsing
VII. CONCLUSION Algebraic Signatures to Check Remotely Administered $f@taProc.

of ICDCS '06 pp. 12-12, 2006.
In this paper, we investigated the prob|em of data Securitﬁ?] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, andM. Isard,

. L . b “A Cooperative Internet Backup Schemd?toc. of the 2003 USENIX
in cloud data storage, which is essentially a distributedagte Annual Technical Conference (General Tradip. 2941, 2003.

system. To ensure the correctness of users’ data in clquel K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-Avability and
data storage, we proposed an effective and flexible dis&ibu Integrity Layer for Cloud Storage,” Cryptology ePrint Aieb, Report

- - . . . 2008/489, 2008, http://eprint.iacr.org/.
scheme with explicit dynamic data support, including blo 1] L. Carter and M. Wegman, “Universal Hash Functionddurnal of

update, delete, and append. We rely on erasure-correcii® c Computer and System Sciencesl. 18, no. 2, pp. 143-154, 1979.
in the file distribution preparation to provide redundanayity [12] J. dHeg(giCtkS’;PG' G;Eﬂ?i& gr':/ld gl Reiter, “Verifxl;in_g Dilbtltedf EDr_atSl_Jt;eg .
e Ty coae: ata, Proc. ymposium on Principles o IStripute

vectors and _guarantee_the _datg dependa_\t_nhty. By utilitiveg Computing pp. 139146, 2007,
homomorphic token with distributed verification of erasurg13] J. S. Plank and Y. Ding, “Note: Correction to the 1997 GFial on
coded data, our scheme achieves the integration of stocage ¢ ?Sfdgﬁg'g’m"” Coding,” University of Tennessee, Tech. REp:03-
rectness insurance and data error localization, i.e., @8N 1141 o \wang, K. Ren, W. Lou, and Y. Zhang, “Dependable andugec
data corruption has been detected during the storage torrec” Sensor Data Storage with Dynamic Integrity AssuranBegc. of IEEE
ness verification across the distributed servers, we cansilm[ls] g\”:CO(r:tOMi 2%)9kh - 4G Ateniese. “MR_PBRti

. : g) . . . curtmola, O. an, R. burns, an . Ateniese, -F ple-
guarantee the S|multan_eous |den_t|f|cat|0n of the mlsbe_igaw Replica Provable Data PossessioRfoc. of ICDCS 08 pp. 411-420,
server(s). Through detailed security and performanceysisal 2008.
we show that our scheme is highly efficient and resilient {46] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating Baossession

. . . . — and Uncheatable Data Transfer,” Cryptology ePrint ArchiReport
Byzantine failure, malicious data modification attack, amdn 2006/150, 2006, http://eprint.iacr.org/.

server colluding attacks. [17] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, dAing to
We believe that data storage security in Cloud Computing, Keep Online Storage Services Honestjoc. 11th USENIX Workshop
. o Hot Topics in Operating Syst HOTOS ;G3). 1-6, 2007.
an area full of challenges and of paramount importanceilis st~ °" 10t Topics in Operating Systems (o

