
Compressing Provenance Graphs

Yulai Xie†‡, Kiran-Kumar Muniswamy-Reddy§, Darrell D. E. Long‡

Ahmed Amer¶, Dan Feng†, Zhipeng Tan†
†Huazhong University of Wuhan National Laboratory ‡University of California, §Harvard ¶Santa Clara
Science and Technology for Optoelectronics Santa Cruz University University

Abstract
The provenance community has built a number of sys-
tems to collect provenance, most of which assume that
provenance will be retained indefinitely. However, it is
not cost-effective to retain provenance information inef-
ficiently. Since provenance can be viewed as a graph, we
note the similarities to web graphs and draw upon tech-
niques from the web compression domain to provide our
own novel and improved graph compression solutions for
provenance graphs. Our preliminary results show that
adapting web compression techniques results in a com-
pression ratio of 2.12:1 to 2.71:1, which we can improve
upon to reach ratios of up to 3.31:1.

1 Introduction

Provenance, though extremely valuable, can take up sub-
stantial storage space. For instance, in the PReServ [9]
provenance store, the original data was 100 KB, while
the provenance reached 1 MB. For MiMI [10], an on-
line protein database, the provenance expands to 6 GB
while the base data is only 270 MB. Similar results are
observed in other systems [3, 11]. This makes prove-
nance data an increasing overhead on the storage subsys-
tem.

A provenance dataset can be represented as a prove-
nance graph [12]. Thus, efficient representation of prove-
nance graphs can fundamentally speed up provenance
queries. While, inefficient multi-GB provenance graphs
will not fit in limited memory and dramatically reduce
query efficiency.

We propose to adapt web compression algorithms to
compress provenance graphs. Our motivation comes
from our observation that provenance graphs and web
graphs have similar structure and some common essen-
tial characteristics, i.e., similarity, locality and consec-
utiveness. We have further discovered that provenance
graphs have their own special features, and we propose

two new techniques to improve the provenance graph
compression.

We test our hypothesis by compressing the provenance
graphs generated by the PASS [3] system. Our results
show that our web compression algorithms can compress
such graphs, and that our improved algorithms can fur-
ther raise the compression ratio up to 3.31:1.

2 Web & Provenance Graphs

A web graph is a directed graph where each URL is rep-
resented as a node, and the link from one page to the
other page is a directed edge. There are some key prop-
erties exploited by current web graph compression algo-
rithms:

• Locality: Few links would go across URL domain,
and therefore the vast majority tend to point to pages
nearby.

• Similarity: Pages that are not far from each other
have common neighbors with high probability.

• Consecutiveness: The node numbers of successors
of a page are in sequential order.

Provenance graphs also have a similar organizational
structure and characteristics as web graphs. Figure 1
shows the conversion from a snapshot of a NetBSD
provenance trace (generated in the PASS system [3]) to
an adjacency list that represents the provenance graph.
The notation “A INPUT[ANC] B” in the provenance
trace means that B is an ancestor of A, indicating that
there exists a directed edge from A pointing to B. In this
way, a provenance graph is also a directed graph and each
node (e.g., node 2 or 3) has a series of out-neighbors.

Provenance nodes 2 and 3 are similar, as they have
common successors in the form of nodes 4, 7, 9 and 14.
The reason for this is that many header files or library

1

……
2.0 NAME / bin/cp

2.1 INPUT [ANC] 4.0

2.1 INPUT [ANC] 5.0

2.1 INPUT [ANC] 6.0

2.1 INPUT [ANC] 7.0

2.1 INPUT [ANC] 8.0

2.1 INPUT [ANC] 9.0

2.1 INPUT [ANC] 10.0

2.1 INPUT [ANC] 11.0

2.1 INPUT [ANC] 12.0

2.1 INPUT [ANC] 13.0

2.1 INPUT [ANC] 14.0

2.1 INPUT [ANC] 15.0

…
3.0 NAME /disk/scripts/bulkbuild

3.1 INPUT [ANC] 4.0

3.1 INPUT [ANC] 7.0

3.1 INPUT [ANC] 9.0

3.1 INPUT [ANC] 14.0

3.1 INPUT [ANC] 17.0

3.1 INPUT [ANC] 18.0

3.1 INPUT [ANC] 19.0

3.1 INPUT [ANC] 20.0

3.1 INPUT [ANC] 21.0

...

6

8 10

5

4

2

7

19

9

12

14

11

17 3 21

18 20

Node Out-degree Successors

……
2

3

……

……
12

9

……

……
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

4, 7, 9, 14, 17, 18, 19, 20, 21

…….

13

15

Provenance trace Provenance graph Adjacency list

Figure 1: Mapping from the provenance trace to adjacency list that represents the provenance graph. The expression
“2.1 INPUT[ANC] 4.0” indicates that node 4 is an ancestor of node 2, resulting in a directed edge from node 2 pointing
to node 4. This figure also shows that provenance graph exhibits the similar characteristics (i.e., similarity, locality
and consecutiveness) as web graph.

files that are represented as nodes like 4, 7, 9 and 14 are
repeatedly used as input by many processes (e.g., nodes 2
and 3). Nodes 2 and 3 also exhibit locality. The succes-
sors of provenance node 2 are only between 4 and 15,
and the successors of node 3 are only between 4 and 21.
This is because many header files or library files (e.g.,
the successors of nodes 2 and 3) that are used as input
by a process are probably in the same directory, so the
ordering (and therefore assigned numbers) of these files
are usually close to each other. Consecutiveness is also
clear in the successors of nodes 2 and 3, from 4 to 15
and from 17 to 21 respectively. The existence of consec-
utiveness is because a process or file may be generated
by many files that do not belong to a PASS volume, and
such files are usually numbered sequentially.

3 Related Work

Barga et al. [1] presented a layered provenance model
for workflow systems that can efficiently reduce prove-
nance size by minimizing the repeated operation infor-
mation during provenance generation. This is similar to
our approach that exploits similarity between the neigh-
bors of different nodes representing the same manipula-
tion. Chapman et al. [4] proposed two classes of algo-
rithms to compress provenance graphs: provenance fac-
torization and provenance inheritance. The former aims
to find common subtrees between different nodes and the
latter focuses on find similarities between data items that
have ancestry relationships or belong to a particular type.
These algorithms achieve good compression ratios, but

can only be applied to a flat data model, i.e., where each
node has complete provenance, and therefore cannot be
used to compress provenance generated by a provenance
system such as PASS [3]. Our methods are more general
and are hence applicable to wider range of systems.

There has been considerable work [5, 6, 7, 8] in the
domain of web graph compression. Adler et al. [5] pro-
posed to utilize reference compression to compress web
graphs. Randall et al. [6] suggested a set of technolo-
gies such as delta codes and variable-length bit encoding
to compress a database providing fast access to web hy-
perlinks. The critical web graph compression framework
was presented by Boldi and Vigna [7]. They obtained
good compression performance by fully exploiting the
locality and similarity of web pages. The algorithm we
use is based on this framework.

There are also classical techniques like LZ-based com-
pression algorithms [2]. These techniques present an up-
per bound on the compression that is possible. However,
since they do not preserve the structure of the data, the re-
sulting compressed graph will not be amenable to query-
ing.

4 Compression Algorithms

Three critical ideas lie behind web compression algo-
rithms [7]: First, encoding the successor list of one node
by using the similar successors of another node as a ref-
erence, thus efficiently avoiding encoding the duplicate
data; Second, encoding consecutive numbers by only
recording the start number and length, reducing the num-

2

Node Out-degree Successors

15

16

5

7

3, 11, 13, 14, 17

11, 14, 19, 20, 21, 31, 33

Node Out-degree Bit list

15

16

5

7 01010

Extra nodes

3, 11, 13, 14, 17

19, 20, 21, 31, 33

Node Out-degree Bit list

15

16

5

7 01010

Left extreme

13

19

Length

2

3

3, 11, 17

31, 33

Residuals

Node Out-degree Bit list

15

16

5

7 01010

Left extreme

13

19

Length

2

3

-12, 8, 6

15, 2

Residuals

Reference compression

Find consecutive numbers

Encode gaps

Figure 2: An example on web compression algorithm

ber of successors to be encoded; and Third, encoding the
gap between the successors of a node rather than the suc-
cessors themselves, which typically requires fewer bits
to be encoded.

As we can see in Figure 1, a provenance graph can be
represented by a set of provenance nodes which have a
series of ancestors as their successors. The provenance
nodes are numbered from 0 to N − 1, in order, during
provenance generation. We use Out(x) to denote the suc-
cessor list of node x. The web compression algorithm to
encode this list is detailed as the follows:

1. Reference compression: Find the node with the
most similar successor list in the preceding W suc-
cessor lists. W is a window parameter. Let y be
such a reference node, Out(y) is its corresponding
successor list (called reference list). The encoding
of Out(x) can be divided into two parts: a bit list
to identify the common successors between Out(x)
and Out(y), and Extra nodes that identifies the rest
of the successors in Out(x).

2. Find consecutive numbers: Separate the consecu-
tive numbers from the Extra nodes, and then rep-
resent each set of consecutive numbers by using its
left extreme and its length.

3. Encode gaps: Let x1, x2, x3, ..., xk be the successors
of x that have not be encoded after the above step.
If x1≤x2≤...≤xk, then encode them as x1−x, x2−x1,
..., xk−xk−1.

Figure 2 shows an example on these three steps. In
this example, node 15 is the reference for node 16 and
has no reference itself. The case in Figure 1 is simpler.
The successor list of Node 2 can be encoded using step
2. The successor list of node 3 can be encoded using step
1 and 2, with node 2 serving as the reference list for node
3.

Node Name Successors

…
15

16

17

18

19

20

21

22

23

24

25

...

…
/bin/cp

/bin/bash

/bin/su

/usr/bin

/bin/hostname

/sbin/consoletype

/meminfo

/usr/bin/id

/usr/bin

/bin/sed

/usr/bin

...

…
19, 21, 32

4, 9, 13, 17

19, 20, 23

3, 11, 13, 14, 17

3, 10, 13, 17

4, 8, 9, 11

4, 8, 11, 15

5, 7, 11, 12

3, 11, 13, 14, 18

4, 6

3, 11, 13, 14, 19

...

 W=3

 W=3

Figure 3: Name-identified reference list

Our Improved Approach

We now describe two improvements beyond existing
web compression algorithms. These are motivated by
the observed properties of datasets generated by the
PASS [3] system.
(a) Name-identified Reference list:

Web compression algorithms find the most similar
reference list in the preceding W nodes. The greater
the similarity, the better the compression performance
achieved. However, sometimes, it’s hard to find a very
similar reference list with a small W , and while a larger
W value would produce a better compression ratio be-
cause it enlarges the scope of the possible reference lists,
this would be at the expense of slower compression and
decompression.

We have found that many provenance datasets record
the name of provenance nodes. The nodes with same
name usually have a large set of common successors. For
instance, in PASS provenance traces, a process that is
represented as a provenance node would be scheduled to
execute many times, and each time it is scheduled, it will
use many of the same header files or library files as input,
which are actually the common successors between the
process nodes with same name. So we propose to use
name as an indicator to help find similar reference lists.

Figure 3 describes how this technology functions in an
example. When node 18 with name /usr/bin first appears,
the algorithm finds reference list in the preceding W (if
W = 3) nodes. But when node 23 with name /usr/bin ap-
pears the second time, we take the successor list of node
18 as reference list rather than using W . In this algorithm,
we need only use a hash table to identify the nodes with
same name. So each time we encode the successor list of
a node, we just have to confirm whether it is in the hash
table, but we need not go backwards through the window
list (especially beneficial when W is larger). This would
incur only a minimal time overhead on compression and
decompression.

3

Table 2: Performance of web compression algorithm and improved algorithms that incorporate two new technologies
with respect to different W for various trace workloads

W NetBSD am-utils blast-lite
web web-name web-gap web web-name web-gap web web-name web-gap

1 2.00 2.62 2.27 1.60 2.57 1.86 1.66 1.98 1.80
5 2.14 2.62 2.31 1.73 2.57 2.02 1.96 1.98 2.16

10 2.32 2.63 2.69 1.87 2.57 2.23 2.03 2.02 2.25
100 2.71 2.63 3.23 2.58 2.58 3.31 2.12 2.08 2.38

Node Outd. Successors

…
155

156

157

158

159

…
1

0

1

2

1

…
1325

1326

1329, 1331

1333

Node Outd. Successors

…
155

156

157

158

159

…
1

0

1

2

1

…
1325

1326

1171, 2

1333

Node Outd. Successors

…
155

156

157

158

159

…
1

0

1

2

1

…

…

2, 1

1171, 2

2, 7

we
b c
om
pre
ssi
on

Node-crossing

Figure 4: Node-crossing gap

Table 1: The properties of provenance traces
Trace n Size

NetBSD 140146 60.2MB
am-utils 46100 24.9MB
blast-lite 240 68kB

(b) Node-crossing gap: Current web compression algo-
rithms exploit graph locality by encoding the gaps be-
tween the successors of a node to improve compression
ratio. However, in PASS provenance traces, we find
that many provenance nodes have only one successor,
and these successors cannot be encoded with the current
web compression technology. So we propose to exploit
gaps between the successors of different nodes. Figure 4
compares the results of using the approach to gap en-
coding used in current web compression algorithms and
with our node-crossing gap encoding approach. Current
encodings can only encode the successors of node 158
(1329−158 = 1171, 1331−1329 = 2), while our node-
crossing approach can further encode the successors of
node 157 (157− 155 = 2, 1326− 1325 = 1) and node
159 (159−157 = 2, 1333−1326 = 7).

Note that the successor of node 155 is not encoded
as 1325− 155 = 1170 in the current web compression
algorithm, which mainly focuses on exploiting the local-
ity between the successors of a node in the usual sense,

while our improved approach further exploits the locality
between the successors of different nodes.

5 Evaluation

Our experimental datasets are generated by the PASS
system, drawn from different applications. They are:

1. NetBSD trace: Build of several components of
NetBSD.

2. Compilation workload trace: Compilation of am-
utils.

3. Scientific trace: A simple instance of the blast bio-
logical workload.

In Table 1, we summarize the number of nodes and the
size of these provenance traces.

Table 2 shows the compression performance with re-
spect to different W for various trace workloads. “Web”
means to compress the provenance graph using current
web compression algorithm. “Web-name” means to
use web compression algorithm that incorporates name-
identified reference list technology. While “web-gap”
means to compress provenance graph using web com-
pression algorithm that incorporates node-crossing gap
technology.

For all three trace workloads, the web compression
algorithm achieves a better performance with increases
in W . This is because a bigger window would in-
crease the likelihood of finding similar reference lists.
We also find that for all workloads, the algorithm with
name-identified reference lists exhibits very stable per-
formance, e.g. 2.62–2.63 times for NetBSD trace. With
our name-identification approach, window size appears
to have limited impact. It results in performance con-
siderably better than basic web compression, requiring a
much larger window size for the latter in order to match
its performance.

When we consider the algorithm with node-crossing
gap encoding, we see it also outperforms web com-
pression, and even outperforms our name-identification
approach as window sizes are increased. E.g., when

4

W = 10, W = 100 for NetBSD trace, W = 100 for am-
utils and W = 5, W = 10, W = 100 for Blast-lite. We
also note that our node-crossing gap encoding approach
achieves the best compression ratios (when W = 100) for
all the cases.

6 Summary and Future Work

We successfully compressed provenance graphs by
adapting techniques from web graph compression,
achieving compression ratios of 2.12 to 2.71 times. We
also introduced two new techniques based on provenance
graph properties, and demonstrated both increased com-
pression ratios (by up to 28%) and computational effi-
ciency.

In the future, we intend to evaluate the impact of web
compression on provenance query performance. In addi-
tion, we plan on comparing our web compression algo-
rithms with LZ-based compression algorithms and a hy-
brid scheme involving LZ-based and web-compression
based schemes.

Acknowledgments

This work was supported in part by the National
Basic Research 973 Program of China under Grant
No. 2011CB302300, 863 project 2009AA01A401/2,
NSFC No. 61025008, 60933002, 60873028, Changjiang
innovative group of Education of China No. IRT0725.
This material is based upon work supported in part by:
the Department of Energy under Award Number DE-
FC02-10ER26017/DE-SC0005417, the Department of
Energy’s Petascale Data Storage Institute (PDSI) un-
der Award Number DE-FC02-06ER25768, and the Na-
tional Science Foundation under awards CCF-0937938
and IIP-0934401 (I/UCRC Center for Research in Intel-
ligent Storage).

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any in-
formation, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

References

[1] R. S. Barga and L. A. Digiampietri. Automatic capture
and efficient storage of escience experiment provenance.
In Concurrency and Computation: Practice and Experi-
ence, 2007

[2] J. Ziv and A. Lempel. A universal algorithm for sequen-
tial data compression. IEEE Trans. on Information The-
ory, 23(3):337-343, 1977.

[3] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. I. Seltzer. Provenance-aware storage systems. Proc.
USENIX Annual Tech. Conf., 2006.

[4] A. P. Chapman, H. V. Jagadish, P. Ramanan. Efficient
Provenance Storage. Proc. SIGMOD, 2008.

[5] M. Adler and M. Mitzenmacher. Towards Compressing
Web Graphs. Proc. IEEE Data Compression Conf., 2001.

[6] K. Randall, R. Wickremesinghe, and J. Wiener. The link
database: Fast access to graphs of the Web. Research Re-
port 175, Compaq Systems Research Center, Palo Alto,
CA, 2001.

[7] P. Boldi and S. Vigna. The webgraph framework I: Com-
pression techniques. Proc. 13th WWW, 2004.

[8] T. Suel and J. Yuan. Compressing the graph structure of
the web. Proc. IEEE Data Compression Conf., 2001.

[9] P. Groth, S. Miles, W. Fang, S. C. Wong, K. Zauner and
L. Moreau. Recording and using provenance in a protein
compressibility experiment. Proc. HPDC, 2005.

[10] M. Jayapandian, A. P. Chapman, V. G. Tarcea, C. Yu,
A. Elkiss, A. Ianni, B. Liu, A. Nandi, C. Santos, P. An-
drews, B. Athey, D. States, and H.V. jagadish. Michigan
Molecular Interactions (MiMI): Putting the jigsaw puzzle
together. Nucleic Acids Research, 2007.

[11] Y. Simmhan, B. Plale and D. Gannon. A framework
for collecting provenance in data-centric scientific work-
flows. Proc. ICWS, 2006.

[12] D. A. Holland, U. Braun, D. Maclean, K.-K.
Muniswamy-Reddy, M. I. Seltzer. Choosing a data
model and query language for provenance. Proc. 2nd
Int’l. Provenance and Annotation Workshop, 2008.

5

