L. Vandenberghe EE236A (Fall 2013-14)

Lecture 10
FIR filter design

e linear phase filter design
e magnitude filter design

e equalizer design
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Finite impulse response (FIR) filter

y(®) =S hout — 7)
7=0

e u:Z — Risinputsignal; ¥y : Z — R is output signal

e h; € R are filter coefficients; n is filter order or length

frequency response: a function H : R — C defined as

EIOU) — h@'+'h16_jw_+_...4_}%%_1e—j0v—1yu (Wﬁthj ::\/:TI)
n—1 n—1
— Z hi costw — ] Z hy sin tw
=0 t=0

periodic and conjugate symmetric; we only need to consider w € [0, 7]

design problem: choose h; so that H satisfies/optimizes specifications
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Example: lowpass FIR filter

impulse response (order n = 21)
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Linear-phase filters

suppose n = 2N + 1 is odd and impulse response is symmetric about hy:

ht:hn—l—ta t:O,,n—l

frequency response

H(Cd) = ho -+ hle_j“’ —+ -+ hn_le—j(n—l)w
= e V9 (2hgcos Nw + 2h; cos(N—1D)w + - - - + hy)
= NG (w)
o term e V¥ represents N-sample delay

e GG(w) is real-valued and |H (w)| = |G(w)|

e ‘linear phase’: /H(w) is linear except for jumps of £

FIR filter design 10-4



Lowpass filter specifications

01
1/5,

Wp  Ws 7'('
W

e maximum passband ripple (£201log;,d1 in dB):

1/61 < |H(w)| <61 for w € [0, wy]

e minimum stopband attenuation (—20log;, 2 in dB):

|H(w)| <6y forw € |wg, 7]
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Linear-phase lowpass filter design

e sample the frequency axis: wy = kn/K, k=0,..., K —1

e assume without loss of generality that G(0) > 0, so ripple spec. is

1/61 < G(w) < 01

maximum stopband attenuation (for given passband ripple ;)

minimize 0o
subject to  1/61 < G(wg) < 91 for wy, € [0, wy]
—02 < G(wg) < 99 for wy, € |wg, 7]
e a linear program in variables h;, 0

e known and used since 1960's

e can add other constraints, e.g.,

hZ‘SO{
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Example

e linear-phase filter of order n = 31
e passband [0,0.127]; stopband [0.247, 7|
e maximum ripple ; = 1.059 (40.5dB)
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Variations

minimize passband ripple (variables 41, h)
minimize 01
subject to  1/61 < G(wg) < &1 for wi € [0, wy]
—0o < G(wg) < 9o for wy € |wg, 7]
minimize transition bandwidth (variables wg, h)

minimize  Wws
subject to  1/61 < G(wg) < &1 for wi € [0, wyp]
—0o < G(wg) < 9o for wy € [wg, 7]

minimize filter order (variables N, h)
minimize N
subject to 1/01 < G(wg) < 61 for wy, € [0, wy)]
—Jo < G(wg) < 0o for wy € [ws, 7]

not LPs, but can be solved by bisection/LP feasibility problems
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Outline

e linear phase filter design
e magnitude filter design

e equalizer design



Filter magnitude specifications

magnitude specification: a constraint

Lw) < |Hw)| <Uw)  VYw

L,U : R — R, are given and

n—1 n—1
H(w) = Z htcostw — j Z hy sin tw
t=0 t=0

e arises in many applications, e.qg., audio, spectrum shaping

e not equivalent to linear inequalities in h; (linear inequalities can not
express the lower bound on absolute value)

e can change variables and convert to set of linear inequalities
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Autocorrelation coefficients

definition: autocorrelation coefficients of h = (hg,...,h,1) € R"

n—1—t

ry = Z hThT—I—t (Wlth hk =0 fOr k < 0 or k’ Z n)
7=0

rs = 1_ and r;, = 0 for |t| > n; hence suffices to specify r = (7, ..

Fourier transform of autocorrelation coefficients:

n—1

R(w) = Z e e =g+ Z 2ry coswt = |H(w)|?
T t=1

magnitude specifications are linear inequalities in coefficients r;:

L(w)? < R(w) < U(w)? forw € [0, 7]

FIR filter design
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Spectral factorization

when is 7 € R" the vector of autocorrelation coefficients of some h € R™?

spectral factorization theorem: if and only if R(w) > 0 for all w

e condition is an infinite set of linear inequalities in r

e many algorithms for spectral factorization (find h s.t. R(w) = |H (w)|?)

consequence: to cast magnitude design problem as an LP,

e use r = (rg,...,Tn,—1) as variable instead of h = (hqg,..., hp_1)
e add spectral factorization condition as constraint: R(w) > 0 for all w
e discretize the frequency axis

e optimize over r and use spectral factorization to recover h
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Magnitude lowpass filter design

maximum stopband attenuation design (with variables r)

minimize s

subject to 1/ < R(w) <71 for w € [0, wp)
R(w) <7y forw € |wg, 7|
R(w) >0 forw €0, 7]

; corresponds to §? in original problem
Y i

discretization: impose constraints at finite set of frequencies wy

minimize s

subject to 1/ < R(wg) <1 for wi € [0, wy]
R(wg) < 2 for wy € [ws, 7]
R(wk) >0 for wg € [0, 7]

this is a linear program in r, s
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Outline

e linear phase filter design
e magnitude filter design

e equalizer design



Equalizer design

— g(t) — h(t) —

(time-domain) equalization

e given g (unequalized impulse response), g4es (desired impulse response)

e design FIR equalizer h so that convolution g = h x g approximates gqes

example
® (es is pure delay D: gqes(t) = { (1) z;g

e find equalizer h by solving

L "
minimize Itr;léagc\g()\

subject to g(D) =1
this can be cast as an LP in the coefficients h;
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Example

unequalized system (10th order FIR)

e impulse response
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time-domain equalization (30th order FIR, D = 10)

L "
minimize ]gr;g%dg( )|

e equalized system impulse response
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Magnitude equalizer design

—» H(w) > G(w) -

problem

e given system frequency response G : [0, 7] — C

e design FIR equalizer H so that |G(w)H (w)| ~ 1:

minimize max | |G(w)H(w)* — 1|
we[0,r]

LP formulation: use autocorrelation coefficients as variables
minimize «
subject to | [G(w)*R(w) —1| < a forw € [0,
R(w) >0 forw € [0,n]

after discretizing the frequency axis, we obtain an LP in r and «

FIR filter design
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Multi-system magnitude equalization

problem

e we are given M frequency responses Gy, : [0, 7] — C

e design FIR equalizer H so that |Gy(w)H (w)| ~ constant:

Co Q H 2 _
minimize k:r{{.an wrél[%?;:r] } |Gr(w)H (w)] Yk ’

subjectto vy, >1, k=1,....M

LP formulation: use autocorrelation coefficients as variables

minimize «

subject to | |Gr(w)*R(w) — v | <a forwe(0,7], k=1,...

R(w) >0 forw € [0, 7]
’)%Zl, ]CZl,...,M

after discretizing the frequency axis, we obtain an LP in v, r, o

FIR filter design
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Example

e VM = 2 systems, equalizer of order n = 25

e unequalized and equalized frequency responses
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