Math 417 — Sections 53 & 54 Solutions

1. To find the Maclaurin Series for f(z) = z cosh(2?), we start with the Maclaurin Series for cosh z on p.
187:
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Substituting z with 22, we have:
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Multiplying by z, we have the Maclaurin Series for f(z):
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3. For the function:
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we know that the Maclaurin Series converges for
4
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Using the geometric series expansion, we have:
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6. To find the Maclaurin Series for f(z) = sin(2?), we start with the Maclaurin Series of sin z:
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sinz =z — 30 + 5
and replace z with 22
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n(z)=2_2 4 2 _Z_
sin(z*) = z 3 + ] o +

Note that the Maclaurin Series does not contain terms with odd powers, even powers that are multiples
of 4, and the constant term. Therefore,

fU0)y=0 and  fEHNO)=0 (n=0,1,2,..)



