

Tutorial Series

How to write

F – Logic - Programs

covering OntoBroker® Version 5.x

April 2007

 –

F-Logic Tutorial

ontoprise GmbH

Document Version: Tutorial_Flogic_2007_04_27_en

OntoEdit®, OntoBroker®, OntoAnnotate®, OntoCollect®, OntoMap®, OntoVison®, OntoStudio®,
SemanticMiner®, The RDF Company®, The OWL Company®, OntoWare® and ontoprise® are registered
marks of ontoprise GmbH. Parts of the technology used in OntoEdit®, OntoBroker®, OntoAnnotate®,
OntoCollect®, OntoMap® and SemanticMiner® are patent pending or patented.

page 2 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

How to Write F-Logic Programs

A Tutorial for the Language F-Logic1 covers OntoBroker® Version 5.x 2

1. Introduction...5
2. A First Example ..6
3. Objects and their Properties ...8

3.1. Object Names and Variable Names...8
3.1.1. Methods...8
3.1.2. Class Membership and Subclass Relationship10

3.2. Expressing Information about an Object ..11
3.3. Signatures..11
3.4. F-molecules without any Properties ...13

4. Predicate Symbols..14
5. Lists ..15
6. Built-in Features ...17

6.1. Numbers, Comparisons and Arithmetics..17
6.2. String handling ...18
6.3. Type conversion...19
6.4. Aggregations..19
6.5. Index Server integration...20
6.6. Access to databases..20

6.6.1. DBAccess ..20
6.6.2. SQLExecute ..21

6.7. Other built-ins...22
7. Rules and Queries..23

7.1. Rules..23
7.2. Queries...24
7.3. Range Restriction...24
7.4. Quantifier Scoping..25

8. Namespaces in F-Logic..27
8.1. Declaring Namespaces..27
8.2. Using Namespaces in F-Logic Expressions.......................................27
8.3. Querying for Namespaces ...28
8.4. The Default Namespace ..29

9. Modules ..30
10. Appendix A: List of Built-ins..32
11. Appendix B: Namespace Declaration Syntax (deprecated)......................38

1 This tutorial refers to the syntactic and semantic capabilities of F-Logic as
implemented by ontoprise GmbH (OntoBroker Version 5.x).

2 OntoBroker® is worldwide copyrighted by Ontoprise GmbH. Parts of the technology
are patented or filed for patent. OntoEdit®, OntoBroker®, SemanticMiner®,
OntoAnnotate®, OntoMap® and OntoCollect® are trademarks of ontoprise GmbH.

page 3 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

12. Imprint...39
13. References ...40

page 4 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

1. Introduction

F-Logic [KLW95] is a deductive, object oriented database language which
combines the declarative semantics and expressiveness of deductive
database languages with the rich data modeling capabilities supported by the
object oriented data model.

The theoretical foundations of F-Logic have been described in the F-Logic
report [KLW95]. For this tutorial parts of the F-Logic tutorial of the Florid
project at the university of Freiburg have been used (http://www.informatik.uni-
freiburg.de/~dbis/florid). The present tutorial describes how to apply F-Logic in
the OntoBroker system. Therefore, this tutorial explains the various features of
F-Logic by example and shows how to use them for typical problems. Section
2 gives a taste of how F-Logic programs look like. The same simple model
world taken from the Old Testament also serves as a background database
throughout the tutorial. The following Sections 3 to 7 focus on data modeling
and present the language concepts of F-Logic. In section 8 it is described how
F-Logic is used within the OntoBroker system.

We assume that the reader of this tutorial is familiar with the basic concepts of
deductive databases, e.g., Datalog [AHV95, CGT90, Ull89], and the principles
of object oriented database systems [ABD + 89].

This covers the features of the ontoprise OntoBroker version V5.x. The F-
Logic variant of Ontoprise differs from the versions in [KLW95] and [FHK] in
using a slightly different syntax (e.g. <- is used instead of :-) and in providing
a lot of extensions (like built-ins, name spaces etc.). In this version additionally
any logical formula may occur in the bodies of rules.

page 5 April 2007

http://www.informatik.uni-freiburg.de/%7Edbis/florid
http://www.informatik.uni-freiburg.de/%7Edbis/florid

 –

F-Logic Tutorial

ontoprise GmbH

2. A First Example

Before explaining the syntax and semantics in detail, we give a first
impression of F-Logic. The following F-Logic program models biblical persons
and their relationships:

/* schema facts */
man::person.
woman:person.
person[hasHasFather=>man].
person[hasHasMother=>woman].
person[hasSon=>>man].
person[hasDaughter=>>woman].

/* facts */
abraham:man.
sarah:woman.
isaac:man[hasHasFather->abraham; hasHasMother->sarah].
ishmael:man[hasHasFather->abraham;
 hasHasMother->hagar:woman].
jacob:man[hasHasFather->isaac; hasMother->rebekah:woman].
esau:man[hasHasFather->isaac; hasMother->rebekah].

/* rules consisting of a rule head and a rule body */
FORALL X,Y X[hasSon->>Y] <- Y:man[hasHasFather->X].
FORALL X,Y X[hasSon->>Y] <- Y:man[hasMother->X].
FORALL X,Y X[hasDaughter->>Y] <- Y:woman[hasHasFather->X].
FORALL X,Y X[hasDaughter->>Y] <- Y:woman[hasMother->X].

/* query */
FORALL X,Y <- X:woman[hasSon->>Y[hasHasFather->abraham]].

(Example 2.1)

The first section of this example consists of a set of schema facts to indicate
that man and woman are subclasses of person and that every person can have
one hasHasFather and hasMother, which are men or women, respectively, and
that they can have sons and daughters, again, men or women, respectively.
The second section titled facts, describe that some people belong to the
classes man and woman and give information about the hasHasFather and
hasMother relationships among them. According to the object-oriented
paradigm, relationships between objects are modeled by method applications,
e.g., applying the method hasHasFather to the object isaac yields the result
object abraham. All these facts may be considered as the extensional
database of the F-Logic program. Hence, they form the framework of an object
base which is completed by some closure properties.

The rules in the third section of Example 2.1 derive new information from the
given object base. Evaluating these rules in a bottom-up way, new
relationships between the objects, denoted by the methods son and daughter,
are added to the object base as intentional information.

page 6 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

The final section of the example contains a query to the object base. The
query shows the ability of F-Logic to nest method applications. It asks about
all women and their sons, whose father is Abraham. The same query could be
written as a conjunction of simple sub-goals:

FORALL X,Y
<- X:woman AND X[hasSon->>Y] AND Y[hasHasFather->abraham].

Methods and classes also are objects, cf. Sections 3.1.1 and 3.1.2.

page 7 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

3. Objects and their Properties

As we have already seen in Example 2.1 objects are the basic constructs of F-
Logic. Objects model real world entities and are internally represented by
object identifiers which are independent of their properties. According to the
principles of object oriented systems these object identifiers are invisible to the
user. To access an object directly the user has to know its object name. Every
object name refers to exactly one object. Following the object oriented
paradigm, objects may be organized in classes. Furthermore, methods
represent relationships between objects. Such information about objects is
expressed by F-atoms.

3.1. Object Names and Variable Names

Object names and variable names are also called id-terms and are the basic
syntactical elements of F-Logic. To distinguish object names from variable
names, the later are always declared using logical quantifiers FORALL and
EXISTS.

After the first letter, object names and variable names may both contain
uppercase letters, lowercase letters, numerals or the underscore symbol "_" of
the ASCII character set. Examples for object names are abraham, man,
hasDaughter, for variable names are X, Method. There are two special types
of object names that carry additional information: integers and strings.

Every positive or negative integer may be used as an object name, e.g., +3, 3,
-3, and also every string enclosed by “quotation marks”. Id-terms can be
enclosed in a pair of single quotes in order to use otherwise illegal characters,
e.g. ‘Müller’ is a legal term while Müller is not.

Complex id-terms may be created by function symbols where other id-terms
may be used as arguments, e.g., couple(abraham, sarah), f(X). An id-term
that contains no variable is called a ground id-term.

3.1.1. Methods

In F-Logic, the application of a method to an object is expressed by data-F-
atoms which consist of a host object, a method and a result object, denoted by
id-terms. Any object may appear in any location: host object, result position, or
method position. Thus, in our Example 2.1 the method names hasHasFather
and hasSon are object names just like isaac and abraham.

Variables may also be used at all positions of a data-F-atom, which allows
queries about method names like

FORALL X,Y <- isaac[X->>Y].

page 8 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

Methods may either be single-valued (->), i.e. can have one value only or they
may be multi-valued (->>), i.e. can have more values. If more values are given
for multi-valued attributes the values must be enclosed in curly brackets:

jacob[hasSon->>{reuben, simeon, levi, judah,
 issachar, zebulun}].

Methods with Parameters: Sometimes the result of the invocation of a method
on a host object depends on other objects, too. For example, Jacob's sons are
born by different women. To express this, the method son is extended by a
parameter denoting the corresponding mother of each of Jacob's sons. Like
methods, parameters are objects as well, denoted by id-terms. Syntactically a
parameter list is always included in parentheses and separated by "@" from the
method object.

jacob[hasSon@(leah)->>
 {reuben, simeon, levi, judah, issachar, zebulun};
 hasSon@(rachel)->>{joseph, benjamin};
 hasSon@(zilpah)->>{gad, asher};
 hasSon@(bilhah)->>{dan, naphtali}].

(Example 3.1)

The syntax extends straightforwardly to methods with more than one
parameter. If we additionally want to specify the order in which the sons of
Jacob were born, we need two parameters which are separated by commas:

jacob[hasSon@(leah,1)->>reuben;
 hasSon@(leah,2)->>simeon;
 hasSon@(leah,3)->>levi;
 hasSon@(leah,4)->>judah;
 hasSon@(bilhah,5)->>dan;
 hasSon@(bilhah,6)->>naphtali;
 hasSon@(zilpah,7)->>gad;
 hasSon@(zilpah,8)->>asher;
 hasSon@(leah,9)->>issachar;
 hasSon@(leah,10)->>zebulun;
 hasSon@(rachel,11)->>joseph;
 hasSon@(rachel,12)->>benjamin].

 (Example 3.2)

In Examples 3.1 and 3.2 the method son is used with a different number of
parameters. This so-called overloading (see also Section 3.3) is supported by
F-Logic. Given the object base described in Example 2.1, questioning the
sons of Isaac

FORALL X <- isaac[hasSon->>X].

yields all his known sons:
X = jacob
X = esau

Note that variables in a query may only be bound to individual objects, never
to sets of objects, i.e., the above query does not return X = {jacob, esau}.

page 9 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

In case of a query with a set of ground id-terms at the result position, however,
it is only checked whether all these results are true in the corresponding object
base; there may be additional result objects in the database. With the object
base above, all the following queries yield the answer true.

<- isaac[hasSon->>{jacob, esau}].
<- isaac[hasSon->>jacob].
<- isaac[hasSon->>esau].

If we want to know if a set of objects is the exact result of a multi-valued
method applied to a certain object, we have to use negation, see Example 7.2.

3.1.2. Class Membership and Subclass Relationship

Isa-F-atoms state that an object belongs to a class; subclass-F-atoms express
the subclass relationship between two classes. Class membership and the
subclass relation are denoted by a single colon and a double colon,
respectively. In the following example the first three isa-F-atoms express that
Abraham and Isaac are members of the class man, whereas Sarah is a
member of the class woman. Furthermore, two subclass-F-atoms state that
both classes man and woman are subclasses of the class person:

abraham:man.
isaac:man.
sarah:woman.

woman::person.
man::person.

(Example 3.3)

In isa-F-atoms and subclass-F-atoms, the objects and the classes are also
denoted by id- terms because classes are objects as well as methods are
objects. Hence, classes may have methods defined on them and may be
instances of other classes which serve as a kind of metaclass. Furthermore,
variables are permitted at all positions in an isa- or subclass-F- atom. In
contrast to other object oriented languages where every object is instance of
exactly one most specific class (e.g., ROL [Liu96]), F-Logic permits that an
object is an instance of several classes that are incomparable by the subclass
relationship. Analogously, a class may have several incomparable direct
superclasses.

Thus, the subclass relationship specifies a partial order on the set of classes,
so that the class hierarchy may be considered as a directed acyclic (but not
reflexive) graph with the classes as its nodes.

Note that in analogy to HiLog [CKW93] a class name does not denote the set
of objects that are instances of that class.

page 10 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

3.2. Expressing Information about an Object

Instead of giving several individual atoms, information about an object can be
collected in F-molecules. For example, the following F-molecule denotes that
Isaac is a man whose father is Abraham and whose sons are Jacob and Esau.

isaac:man[hasFather->abraham; hasSon->>{jacob,esau}].

(Example 3.4)

This F-molecule may be split into several F-atoms:
isaac:man.
isaac[hasFather->abraham].
isaac[hasSon->>jacob].
isaac[hasSon->>esau].

For F-molecules containing a multi-valued method, the set of result objects
can be divided into singleton sets (recall that our semantics is multi-valued,
not set-valued). For singleton sets, it is allowed to omit the curly braces
enclosing the result set, so that the three given in 3.4, 3.5 and 3.6 are
equivalent, which means that they yield the same object base:

isaac[hasSon->>{jacob,esau}].

(Example 3.5)
isaac[hasSon->>{jacob}].
isaac[hasSon->>{esau}].

(Example 3.6)
isaac[hasSon->>jacob].
isaac[hasSon->>esau].

(Example 3.7)

3.3. Signatures

Signature-F-atoms define which methods are applicable for instances of
certain classes. In particular, a signature-F-atom declares a method on a class
and gives type restrictions for parameters and results. These restrictions may
be viewed as typing constraints. Signature- F-atoms together with the class
hierarchy form the schema of an F-Logic database. To distinguish signature-F-
atoms from data-F-atoms, the arrow body consists of a double line instead of
a single line. Here are some examples for signature-F-atoms:

person[hasFather=>man].
person[hasDaughter=>>woman].
man[hasSon@(woman)=>>man].

The first one states that the single-valued method father is defined for
members of the class person and the corresponding result object has to
belong to the class man. The second one defines the multi-valued method
daughter for members of the class person restricting the result objects to the
class woman. Finally, the third signature-F-atom allows the application of the

page 11 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

multi-valued method son to objects belonging to the class man with parameter
objects that are members of the class woman. The result objects of such
method applications have to be instances of the class man. By using a list of
result classes enclosed by parentheses, several signature-F-atoms may be
combined in an F-molecule. This is equivalent to the conjunction of the atoms:
the result of the method is required to be in all of those classes:

person[hasFather=>{man, person}].

(Example 3.9)
person[hasFather=>man].
person[hasFather=>person].

(Example 3.10)

Both expressions in the Examples 3.9 and 3.10 are equivalent and express
that the result objects of the method father if applied to an instance of the
class person have to belong to both classes man and person.

Overloading F-Logic supports method overloading. This means that methods
denoted by the same object name may be applied to instances of different
classes. Methods may even be overloaded according to their arity, i.e.,
number of parameters. For example, the method son applicable to instances
of the class man is used as a method with one parameter in Example 3.11 and
as a method with two parameters in Example 3.12. The corresponding
signature-F-atoms look like this:

man[hasSon@(woman)=>>man].

(Example 3.11)
man[hasSon@(woman,integer)=>>man].

(Example 3.12)

Of course, the result of a signature may be enclosed in parentheses as well, if
it consists of just one object.

As already shown in Example 3.4, properties of an object may be expressed in
a single, complex F-molecule instead of several F-atoms. For that purpose, a
class membership or subclass relationship may follow after the host object.
Then, a specification list, a list of method applications (with or without
parameters) separated by semicolons, may be given. If a method yields more
than one result, those can be collected in curly braces, separated by commas;
if a signature contains more than one class, those can be collected in
parentheses, also separated by commas:

isaac[hasFather->abraham;
 hasMother->sarah].
jacob:man[hasFather->isaac;
 hasSon@(rachel)->>{joseph, benjamin}].
man::person[hasSon@(woman)=>>{man, person}].

(Example 3.13)

page 12 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

The following set of F-atoms is equivalent to the F-molecules in 3.13:
isaac[hasFather->abraham].
isaac[hasMother->sarah].
jacob:man.
jacob[hasFather->isaac].
jacob[hasSon@(rachel)->>joseph].
jacob[hasSon@(rachel)->>benjamin].
man::person.
man[hasSon@(woman)=>> man].
man[hasSon@(woman)=>>person].

(Example 3.14)

Besides collecting the properties of the host object, the properties of other
objects appearing in an F-molecule, e.g., method objects or result objects may
be inserted, too. Thus, a molecule may not only represent the properties of
one single object but can also include nested information about different
objects, even recursively:

isaac[hasFather->abraham:man[hasSon@(hagar:woman)->>ishmael];
 hasMother->sarah:woman].
jacob:(man::person).
jacob[(hasFather:method)->isaac].

(Example 3.15)

 The equivalent set of F-atoms is:
isaac[hasFather->abraham].
abraham:man.
abraham[hasSon@(hagar)->>ishmael].
hagar:woman.
isaac[hasMother>>sarah].
sarah:woman.
man::person.
jacob:man.
jacob[hasFather->isaac].
hasFather:method.

3.4. F-molecules without any Properties

If we want to represent an object without giving any properties, we can attach
an empty specification list to the object name, e.g.

thing[].

In this example a class thing is considered that does not have any properties
(yet).

If we use a similar expression that consists solely of an object name (without
the empty pair of brackets, i.e. thing.), it is treated as a 0-ary predicate
symbol (see next section).

page 13 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

4. Predicate Symbols

In F-Logic, predicate symbols are used in the same way as in predicate logic,
e.g., in Datalog, thus preserving upward-compatibility from Datalog to F-Logic.
A predicate symbol followed by one or more id-terms separated by commas
and included in parentheses is called a P-atom to distinguish it from F-atoms.
Example 4.1 shows some P-atoms. The last P-atom consists solely of a 0-ary
predicate symbol. Those are always used without parentheses.

married(isaac,rebekah).
male(jacob).
sonof(isaac,rebekah,jacob).
true.

(Example 4.1)

Information expressed by P-atoms can usually also be represented by F-
atoms, thus obtaining a more natural style of modeling. For example, the
information given in the first three P- atoms in 4.1 could also be expressed as
follows:

isaac[marriedto->>rebekah].
jacob:man.
isaac[hasSon@(rebekah)->>jacob].

(Example 4.2)

Note that the expressions in the two examples above are alternative
representations. They cannot be used in a mixed manner, i.e. a query for
married(X,Y) does not retrieve any results for facts like isaac[marriedTo -
> rebekah].

page 14 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

5. Lists

A special kind or terms are lists. In F-Logic lists of terms can be represented
as in Prolog. A list containing the constants a to e looks like this:

[a, b, c, d, e]

Internally a list is represented by recursively nesting the binary function
symbol l_(). Its first argument represents the first element of the list and its
second argument represents the rest of the list (i.e. head and tail in Prolog-
speak, or car and cdr in Lisp-speak). The example list presented above looks
like this in its functional representation.

l_(a, l_(b, l_(c, l_(d, l_(e, nil_)))))

Note the 0-ary function symbol nil_ to represent the end of the list. This
symbol can be used to represent an empty list outside of l_() terms as well.
Due to the canonical mapping even open lists with no fixed length can be
represented, e.g.

[a, b, c, d | Tail]

The variable Tail represents the currently not bound list, following the fourth
element of this list. Note the “|”-symbol after d. This symbol separates the
remainder of the list of the lists firsts element. When replacing “|” by “,”
(yielding) represents a list of exactly five elements, whose first elements are
fixed and whose fifth element is not yet bound.

l_(a, l_(b, l_(c, l_(d, Tail))))

In this case Tail may even also represent a list, but then the two example
lists would still be different, since in this case the list Tail is the fifth element
not the cdr. Assume Tail to be [X, Y]. Then the two lists would be

[a, b, c, d| Tail] = l_(a,l_(b,l_(c,l_(d, Tail))))
 = l_(a,l_(b,l_(c,l_(d, l_(X,l_(Y,nil_))))))
[a, b, c, d, Tail] = l_(a,l_(b,l_(c,l_(d, l_(Tail, nil_)))))
 = l_(a,l_(b,l_(c,l_(d, l_(l_(X,l_(Y,nil_)),
 nil_)))))

In particular, these two lists do not unify.

Examples

For list operations you may use the built-in features concat and inlist (see
chapter “Built-in Features”).

Define a new list:
p([a,b,c])

Separate a list:

FORALL Head,Tail <- p([Head ⎢Tail]).

the result will be:

page 15 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

Head=a, Tail=[b,c]

All elements of the list:
FORALL X <- inlist(X,[a,b,c]).

the result will be:
X=a, X=b, X=c

Merge lists:
FORALL X <- concatlists([a,b],[c,d],X).

the result will be:
X=[a,b,c,d]

Add elements to a list:

FORALL L q([a ⎢L]) <- p(L).
FORALL X <- q(X).

the result will be:
X=[a,a,b,c]

An extended example calculating a graph using lists is this:
// the edges of a graph between two knots
edge(a,b).
edge(b,c).
edge(a,d).
edge(d,e).
edge(e,f).

// add each edge to a path containing two knots
FORALL X,Y path([Y,X]) <- edge(X,Y).

// add every new edge to the appropriate path
FORALL L,H1,H2,T path([H1|L]) <- path(L) and unify(L,[H2,T])
and edge(H2,H1).

This query outputs all paths of the graph:
FORALL L <- path(L).

page 16 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

6. Built-in Features

Our implementation of F-Logic provides some built-in features like the built-in
class number, several comparison predicates, the basic arithmetic operators,
predicates for string handling, and aggregate functions.

All available built-in features are listed at Appendix A below. Some selected
features will be explained now by short examples.

6.1. Numbers, Comparisons and Arithmetics

Objects denoting numbers or strings are different from other objects because
the usual comparison operators are defined for them, as well as several
arithmetic functions. Within a query or a rule body, relations between numbers
or strings may be tested with the comparison predicates less, lessorequal,
greater, greaterorequal. For example, the following query asks for the first
three sons of Jacob:

FORALL X,Y,Z <- jacob[hasSon@(X,Y)->>Z] AND less(Y,4).

(Example 6.1)

Comparison predicates are not allowed in rule heads.

The arithmetic operations addition +, subtraction -, multiplication * and division
/ are also implemented. Arithmetic expressions may be constructed in the
usual way, even complex expressions, e.g., 3 + 5 + 2 or 3 + 2 * 3 are possible.
By default, multiplication and division are prior to addition and subtraction. As
usual, the evaluation order may be changed by using parentheses, e.g., (3 +
2) * 3.

The following example contains the query whether Jacob has three sons born
consecutively by the same woman.

FORALL X,A,B,C,Z1,Z2,Z3 <-
 jacob[hasSon@(X,A)->>Z1;
 hasSon@(X,B)->>Z2;
 hasSon@(X,C)->>Z3] AND
 (B is A+1) AND
 (C is A+2).

Additionally the following mathematical functions are implemented:
sin,cos,tan,asin,acos,ceil,floor,exp,rint,sqrt,
round,max,min,pow

To test the equality of two terms the built-in equal(<term1>,<term2>) may
be used, if both terms are ground. To unify two terms
unify(<term1>,<term2>) may be used.

page 17 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

6.2. String handling

Analogously to numbers, there are several predefined operations for strings.
These are provided by the built-in predicates which all have a fixed arity.
Furthermore these predicates can only be used in rule bodies:

• isString(<arg>)

is true, if <arg> is a string.

• concat(<string 1 > , <string 2 > , <string 3 >)

succeeds if < string 3 > is the concatenation of < string 1 > and < string 2 >,
e.g.,
FORALL X <- concat("a","b",X).

returns the binding X = "ab" whereas
FORALL X <- concat("a",Y,"ab").

leads to Y = "b".

• cut(<string>,<n>,<variable>)

returns the <string> n characters shorter

• tokenize(<string>,<delimiters>,<variable>)

breaks string into tokens at the delimiters

• tokenizen(<string>,<n>,<delimiters>,<variable>)

breaks string into maximal n tokens at the delimiter

• tolower(<string>,<variable>)

transforms all characters into lower characters

• toupper(<string>,<variable>)

transforms all characters into upper characters

• Regular Expressions

Regular expressions may be used to search in strings. For that purpose a
regular expression predicate is available:
regexp(“<regular expression>”,<string1>,<string2>)

The first parameter defines the search string as regular expression.
Regular expressions are defined as PERL regular expressions. The second
parameter defines the string to search in, and the last parameter defines
the resulting string, i.e. the region that matched the pattern, e.g.
married(“peter”).
married(“tom”).
married(“mary”).

The query “search for all married people with a “p” or “t” in their name:

page 18 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

FORALL X <- married(X) and regexp(“[pt]”,X,Y).

delivers X = “peter”, Y = “p”, X = “peter”, Y = “t” and X = “tom”, Y=”t”

6.3. Type conversion

There are three different basic object types: numbers, strings and functional
expressions. Numbers are denoted by any kind of number, integers and
floating point numbers are not distinguished. Strings are enclosed in quotation
marks. There exist two built-ins to convert these basic types:

constant2string(<function>,<string>)

converts a function to a string and vice versa
string2number(<string>,<number>)

converts a string to a number and vice versa, e.g.,
FORALL X <- constant2string(f(3,a),X).

delivers “f(3,a)” as result

6.4. Aggregations

Aggregations are built-ins which have a set of values as a domain.
Aggregations must not occur in rule cycles and the tackled values must not
occur in the head of rules.

• count(<key>,<value>,<number>)

Counts the values grouped to each key. E.g.:
p(a,1).
p(a,5).
p(b,3).
FORALL X,Z <- EXISTS Y p(X,Y) and count(X,Y,Z).

Delivers the answers
X = a
Z = 2
X = b
Z = 1

• list(<key>,<value>,<list>)

Creates lists of values grouped to each key.

• minimum(<key>,<value>,<minimum>)

Determines the minimum of a set of numbers.

• maximum(<key>,<value>,<maximum>)

Determines the maximum of a set of numbers.

page 19 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

6.5. Index Server integration

The built-in msindex(<searchexpression>,<var1>,<var2>,<catalog>)
allows to access Microsoft’s index server. SearchExpression specifies a
search expression (look at the index server documentation) and the paths of
documents satisfying the search expression are bound to the variable var1.
Additionally a description of the contents of the files is delivered (if this feature
is switched on for MS index server). Catalog specifies the index server
catalog:

FORALL X,Y <-
 msindex("@Contents \"car\" and \"motor\"",X,Y,System)

delivers the paths of all files containing “car” and “motor”.

6.6. Access to databases

There are two different ways to access external databases. Both of them will
be described in the following chapters.

6.6.1. DBAccess

OntoBroker is able to access a lot of relational databases. This access may be
used in F-Logic via the built-in:

dbaccess(<tablename>, <access>, <dbtype>,
 <dbname>, <dbhost>)

<dbtype> specifies the type of the database. At the moment there exist
connectors to MSSQL and ORACLE.

<access> specifies the tables and the columns to access. It has the form
F(columnname, <variable>|<string>,…,
 columnname, <variable>|<string>)

If a string is given it is used for selection, a variable is instantiated with the
corresponding value, e.g.

dbaccess(person,F(lastname, "peters",
 firstname, X),
 "mssql","db","localhost")

returns the first name of “peters” from the table “person” in MSSQL database
“db” on localhost.

dbaccessuser(<tablename>, <access>,
 <dbtype>, <dbname>, <dbhost>,
 <login>, <passwd>)

In addition to dbaccess, dbaccessuser allows to specify login name and
password.

page 20 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

6.6.2. SQLExecute

Description for the built-in SQLExecute

The functionality of this built-in is to allow a user to directly formulate SQL
statements and to use the result for further modeling. This may help to tune
performance in projects as special restrictions on the queries can be used that
otherwise would be evaluated during the inferencing process.

Predicate = "sqlexecute"
Arity = 7
Parameters = "SQL statement", "list of variables",
 "db server type", "name of database",
 "host and port", "username", "password"

• "SQL statement"

o the SQL statement has to contain a valid SQL statement and the
number of values selected has to be equal to the number of
variables given in the list

o example: SELECT ID, NAME FROM PERSON
• list of variables

o the list of variables has to contain the variables in which the result
of the query is expected

o example: [X, Y]
• db server type

o the server type is one of the supported database types
o oracle or mssqlserver2000 or db

• name of database
o specifies the name of the database that has to be accessed
o example: pubs

• host and port
o specifies the host and the port where the database is running
o example: localhost:1433

• username
o gives a user id to be used for access
o example: demo

• password
o gives the password for the user that is known to the db
o example: demo

A complete rule would be for example:

FORALL X,Y
 X:Person[hasName->>Y]
<-
 sqlexecute(“SELECT ID, NAME FROM PERSON”, [X,Y],
 “mssqlserver2000”, “pubs”, “localhost:1433”,
 “demo”, “demo”).

page 21 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

Or, using a restriction:

FORALL X,Y
 X:Adult[hasName->>Y]
<-
 sqlexecute(“SELECT ID, NAME FROM PERSON WHERE AGE > 18”,
[X,Y],
 “mssqlserver2000”, “pubs”, “localhost:1433”,
 “demo”, “demo”).

In the second case the execution would be more performant as the selection
is done in the database. This is currently not possible with dbaccessuserdata
as only the equal restriction can be taken into account there. A major
restriction of this built-in is at the current stage of development that bindings
for the variables cannot be taken into account. This will be changed in future
releases.

6.7. Other built-ins

There is often the need to query direct sub- or super-concepts of a given
concept. Instead of defining this in a logical sense, i.e. give me the maximal
subconcept a pseudo built-in directsub_ is available. Thus a fact A::B leads
to an instance directsub_(A,B). No facts should be added to directsub_
because this has no influence on the is-a relation of concepts.

page 22 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

7. Rules and Queries

7.1. Rules

Based upon a given object base (which can be considered as a set a facts),
rules offer the possibility to derive new information, i.e. to extend the object
base intensionally. Rules encode generic information of the form: Whenever
the precondition is satisfied, the conclusion also is. The precondition is called
rule body and is formed by an arbitrary logical formula consisting of P-Atoms
or F-molecules, which are combined by OR, NOT, AND, <-, -> and <->. A -> B
in the body is an abbreviation for NOT A OR B, A <- B is an abbreviation for
NOT B OR A and <-> is an abbreviation for (A->B) AND (B<-A). Variables in
the rule body may be quantified either existentially or universally. The
conclusion, the rule head, is a conjunction of P-Atoms and F-molecules.
Syntactically, the rule head is separated from the rule body by the symbol <-
and every rule ends with a dot. Non-ground rules use variables for passing
information between sub-goals and to the head. Every variable in the head of
the rule must also occur in a positive F- or P-Atom in the body of the rule.
Assume an object base defining the methods hasFather and hasMother for
some persons, e.g., the set of facts given in Example 2.1. The rules in
Example 7.1 compute the transitive closure of these methods and define a
new method hasAncestor:

FORALL X,Y X[hasAncestor ->>Y] <- X[hasFather->Y].
FORALL X,Y X[hasAncestor ->>Y] <- X[hasMother->Y].
FORALL X,Y,Z X[hasAncestor ->>Y] <-
 X[hasFather->Z] AND Z[hasAncestor ->>Y].
FORALL X,Y,Z X[hasAncestor ->>Y] <-
 X[hasMother->Z] AND Z[hasAncestor ->>Y].
man::person.
woman::person.

(Example 7.1)

Partial logical formulae in the rule body may be negated. E.g. the following
rule computes for every person X all persons Y not related to X:

FORALL X,Y
 X[notrelated->>Y] <-
 X:person AND
 Y:person AND
 NOT X[hasAncestor ->>Y] AND
 NOT Y[hasAncestor ->>X].

(Example 7.2)

The following rule computes all persons X for whom an ancestor is known:
FORALL X personWithAncestors(X) <-
 EXISTS Y X:person[hasAncestor ->>Y].

page 23 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

Rules can also be identified by rule names, e.g. ancestorFather in the
following rule:

RULE ancestorhasFather:
FORALL X,Y X[hasAncestor ->>Y] <- X[hasFather->Y].

7.2. Queries

A query can be considered as a special kind of rule with an empty head. The
following query asks about all female ancestors of Jacob:

FORALL Y <- jacob[hasAncestor ->> Y:woman].

(Example 7.3)

The answer to a query consists of all variable bindings such that the
corresponding ground instance of the rule body is true in the object base.
Considering the object base described by the facts of Example 2.1 and the
rules in 7.1, the query 7.3 yields the following variable bindings:

Y = rebekah
Y = sarah

The following query computes the maximum value X for which p(X) holds. The
rule body expresses that all Y for which p(Y) holds must be less or equal to
the searched X.

p(1).
p(2).
p(3).
FORALL X <- p(X) AND FORALL Y (p(Y) -> lessorequal(Y,X)).

(Example 7.4)

The result will be:
X = 3.0

7.3. Range Restriction

All variables in a rule or a query must be range restricted, i.e. for each variable
one or more of the following conditions must hold:

1. The variable occurs in a positive (not negated) body literal which is not a
built-in-literal (simple built-in, connector built-in, or aggregate).

2. The variable is bound top-down by constants in the query or in connected
rules.

3. A variable is bound by the output of a built-in-literal and all input-
arguments of the built-in are range-restricted or ground. Which arguments
are input and output of a built-in is defined by the signatures of the built-in.

page 24 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

Let us illustrate the above topics in examples. For the following rule the
variables all variables are bound and thus the query is range restricted.
Variables X and Y are bound because they occur in the positive literal p(X,Y)
(condition 1). Built-in add has the signature {number,number,variable} which
means the first two (input) arguments must be bound to numbers and the third
can be a variable and is thus an output parameter. Thus variable Z is bound
because it is the output variable of built-in add and all input variables of add
are bound (condition 3).

FORALL X,Y,Z <- p(X,Y) AND add(X,Y,Z).

In the next query and rule the variable Y of the rule is bound top-down by the
constant 5 in the query (condition 2). Variable X is again bound by the positive
literal q(X) (condition 1) and thus Z is bound as an output parameter of the
add built-in (condition 3).

FORALL X,Y <- p(X,5).
FORALL X,Y,Z p(X,Y) <- q(X) AND add(X,Y,Z).

In the next rule there is a transitive dependency of variable bindings through
built-ins given. Thus also U is range-restricted (condition 1 and condition 3).

FORALL X,Y,Z,U p(X,Y) <-
 q(X,Y) AND add(X,Y,Z) and add(Z,Y,U).

The above mentioned conditions have the consequence that a rule or query is
not range restricted if a variable occurs in a negated literal only. Rules which
have variables occurring in the head only are obscure because these
variables must be bound top-down in every case for the rule to be range
restricted.

7.4. Quantifier Scoping

The quantifiers FORALL and EXISTS introduce variables in rules and queries.
Syntactically variables, like X or Y, do not differ to constant symbols in F-Logic,
thus, the requirement for explicit declaration with quantifiers. In the unusual
situation where there is a conflict between a used variable and an existing
constant, it is important to know the scope, i.e. the lifetime of variables. To
illustrate the notion of variable scopes we present an example formula where
all variables are underlined and all constants are not.

FORALL X,Y p(X,Y) <- r(U,Y) AND EXISTS U q(U,Y).
FORALL X,Y p(X,Y) <- EXISTS U q(U,Y) AND r(U,Y).
FORALL X,Y p(X,Y) <- (EXISTS U q(U,Y)) AND r(U,Y).

The rule-of-thumb is that each quantifiers binds variables till the end of the
complete formula. You can overwrite this pattern only by introducing
parenthesis and, thus, explicitly introducing a new scope for the quantifier.
Note: the semantics of the first and third formula above is equivalent (the U in

page 25 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

the r predicate is a constant), whereas formula two is different (here, the U in
the r predicate is bound by the EXISTS quantifier).

page 26 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

8. Namespaces in F-Logic

Without namespaces in F-Logic the names in different ontologies can not be
distinguished from each other. For instance, a concept named “person” in
ontology “car” is the same concept as the concept “person” in ontology
“finance”. Handling more than one ontology thus needs a mechanism to
distinguish these concepts. Thus, ontoprise introduced the notion of
namespaces to F-Logic, which enabled RDF-like identifiers for objects,
classes or properties.

8.1. Declaring Namespaces

The most recent OntoBroker Version 5.0 introduces a new syntax for declaring
namespace in F-Logic3. The F-Logic file can contain namespace declarations
that associate namespace URIs with aliases, that can be used to formulate
namespace terms in a more concise way.

:- prefix cars="http://www.cars-r-us.tv/".
:- prefix finance="http://www.financeWorld.tv/".
:- prefix xsd="http://www.w3.org/2001/XMLSchema#".
:- prefix ="http://www.myDomain.tv/private#".

(Example 8.1)

The code above declares four namespaces. It associates two of them with
shortcuts (or aliases) and the third is declared as the default-namespace.
Each namespace must represent a valid URI according to RFC 2396 and
must end with either “#”, “/” or “:”. This is essential since these characters
mark the separator between the namespace and the local part of an identifier.
Esp. when exporting to RDF/OWL or reading from these formats, this
convention is important.

8.2. Using Namespaces in F-Logic Expressions

In F-Logic expressions every concept, method, object, and function may be
qualified by a namespace. To separate the namespace from the name the “#”-
sign is used (as conventionally used in the RDF world and in HTML to locate
local links inside a web page). The following examples use the name space
declaration of 8.1:

cars#Car[cars#driver => cars#Person;
 cars#passenger =>> cars#Person;
 cars#seats => xsd#integer].

3 The former XML-like mechanism is still supported but is deprecated now, so,
please abstain from <ns> and use the prefix notation instead. Cf. The
appendix in Section 11 for a brief summary of the old namespace declaration.

page 27 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

cars#Person[cars#name => xsd#string;
 cars#age => xsd#integer;
 cars#drivingLicenseId => xsd#string].

finance#Bank[finance#customer => finance#Person;
 finance#location =>> finance#City].
finance#Person[cars#name => xsd#string;
 finance#monthlyIncome => xsd#integer].

FORALL X,Y Y[finance#hasBank ->> X] <-
 Y:finance#Person AND
 X:finance#Bank[finance#customer ->> Y].

#me:cars#Person[cars#age -> 28].
#myBank:finance#Bank[finance#location ->> karlsruhe].

 (Example 8.2)

The semantics of a namespace-qualified object is always a pair of strings, i.e.
each object is represented by a URI (its namespace) and a local name. Thus
finance#Person and cars#Person become clearly distinguishable. During
parsing of the F-Logic program the aliases are resolved, such that the
following pairs are constructed.

• finance#Person stands for ns_("http://www.financeWorld.tv/",
Person)

• cars#Person stands for ns_("http://www.cars-r-us.tv/",
Person)

In case no declared namespace URI is found for a used alias, the alias itself is
assumed to represent the namespace of an F-Logic object.

URIs can also be used directly in namespace terms, i.e. the use of aliases is
optional. Because the URI syntax greatly conflicts with the F-Logic grammar,
literal namespaces must be quoted, e.g.

• ”http://www.cars-r-us.tv/”#Person is equivalent to cars#Person

As described above, the ending character of namespaces is important for
compatibility with RDF and OWL. In case where the namespace does not end
with one of the characters “/”, “#” or “:” the F-Logic parser automatically adds a
“#” at the end of the namespace. This patch is applied to literal namespaces
as well as to the namespace declaration.

8.3. Querying for Namespaces

This mechanism enables users even to query for namespaces (URIs not
aliases) and to provide variables in namespaces. For instance, the following
query asks for all namespaces X that contain a concept Person.

page 28 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

 FORALL X <- X#Person[].

 (Example 8.3)

The following inference rules integrate knowledge from different ontologies
using the namespace mechanism (and a so called Skolem-function).

FORALL Name,Attr,Value
person(Name)[Attr -> Value] <- EXISTS X
 X:finance#Person[Attr -> Value; finance#name -> Name] OR
 X:cars#Person[Attr -> Value; cars#name -> Name].
FORALL Name,Attr,Value
person(Name)[Attr ->> Value] <- EXISTS X
 X:finance#Person[Attr ->> Value; finance#name -> Name] OR
 X:cars#Person[Attr ->> Value; cars#name -> Name].

 (Example 8.4)

8.4. The Default Namespace

Objects that start with a #-symbol (i.e. do not use a declared namespace alias)
refer to objects in the default namespace, in our example 8.1. the URI
http://www.myDomain.tv/private#. The default mechanism is used when
a large number of objects, concepts, or methods from the same namespace
are used, e.g.

• #me stands for ns_("http://www.myDomain.tv/private#", me)

Objects with an explicit reference to the current default namespace (i.e.
starting with a #) must be clearly distinguished from objects without the
leading #. The latter explicitly are defined to belong to no namespace, i.e. the
two terms #me and me do not unify.

page 29 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

9. Modules

In software engineering modules have been invented to reduce complexity.
Closely correlated and interwoven things are packaged in a common module,
while only loosely coupled things reside in different modules. The
communication between modules should be minimal. These principles have
been transferred to knowledge bases. Rules and facts describing a closely
related part of the domain reside in one module. Thus, an entire knowledge
base can be split up into different modules each containing closely related
statements about the domain. In some sense this concept is orthogonal to the
concept of namespaces. Identifiers with different namespaces may be
addressed in one and the same module. On the other hand identifiers are
global over all modules which means that an object with identifier x is the
same object in all modules. Thus, modules do not separate objects, but
statements about objects. Both, ground statements (statements without a
variable) like those mentioned in Section 3 as well as rules and queries as
mentioned in Section 7 are assigned to modules.

Each F-Logic file must contain ground statements from exactly one module.
The (default) module can be defined at the beginning of the file:

:- module = module1.

The name of a module can be an arbitrary ground term, i.e. a constant, a
functional term or a namespace term. In the example above we chose a
constant. When using a namespace term and an appropriate alias exists, it
can be used for the declaration of the module as well, e.g.

:- prefix a="http://www.exmple.org/sample#".
:- module =a#sample.

The (default) module is assumed to for all subsequent ground facts, esp. if
they do not declare the module explicitly. The notation for assigning a module
to a ground fact looks like this.

abraham:man@module1.
sarah:woman@module1.
isaac:man[hasFather->abraham; hasMother->sarah]@module1.

Since each file can contain only statements from one module the module
references can be omitted without changing the semantics.

Module references are more important with rules and queries. As well as
ground statements can be assigned to modules, rules can be assigned to
modules.

RULE ancestorHasFather@module1:
FORALL X,Y
 X[hasAncestor ->>Y] <- X[hasFather->Y].

page 30 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

expresses that the rule named ancestorHasFather resides in module1. This
implies that all body and head literals are also assumed to come from this
module (unless otherwise specified). The above rule, thus, is equivalent to:

RULE ancestorHasFather@module1:
FORALL X,Y
 X[hasAncestor ->>Y]@module1 <- X[hasFather->Y]@module1.

Each literal in a rule body and rule head can use its own module. For body
literals this means that the reasoner tries to search for the literal in the
mentioned module. For head literals this means, that the new fact is asserted
to hold true in its module. A complex example could be

RULE ancestorHasFather:
FORALL X,Y
 X[hasAncestor->>Y]@module2
<-
 X[hasFather->Y]@module1.

This rule expresses that module2 holds the (derived) fact that X has an
ancestor Y if it is true in module1 that the same X has the same Y as father.

Since module names are terms, it is even possible to use variables as module
names in rule bodies.

RULE ancestorhasFather:
FORALL X,Y,Z
 X[hasAncestor ->>Y] <- X[hasFather->Y]@Z.

This rule searches for statements about fathers of X in every module and
asserts that Y is an ancestor of X in the default module.

In our previous examples we used only constants for module names. In
addition to that complex module names, i.e. module names consisting of
functions are allowed too:

module(Arg1,...,Argn)

If Arg1, … Argn contain variables each binding leads to a separate module
name, e.g., module(a,f(b)).

It is good practice to use namespace terms as module names, and thus
creating a universally unique identifier for the modules, e.g. with a declaration
such as this:

:- prefix a="http://www.exmple.org/sample#".
:- module =a#sample.

page 31 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

10. Appendix A: List of Built-ins
Built-in feature Description Syntax Example
+ add two numbers +(<integer1>,<integer2>) FORALL X <- X is +(3,2).

FORALL X <- X is (3.0+2.0).
- sub two numbers -(<integer1>,<integer2>) FORALL X <- X is (3.0-2.0).
* multiplies two numbers *(<integer1>,<integer2>) FORALL X <- X is (3.0*2.0).
/ divides two numbers /(<integer1>,<integer2>) FORALL X <- X is (3.0/2.0).
% returns the rest of the

division of two numbers
%(<integer1>,<integer2>) FORALL X <- X is (3.0%2.0).

+ multiplies a number with
(1)

+(<integer>) FORALL X <- X is +(1).

- multiplies a number with
(-1)

-(<integer>) FORALL X <- X is -(1).

Abs returns the absolute
value of a value

abs(<integer>) FORALL X <- X is abs(-1).

Acos returns the arc cosine of
an angle

acos(<integer>) FORALL X <- X is acos(0.8).

Add add two numbers to a
third one

add(<integer1>,X,<integer2>)
add(<integer1>,<integer2>,<vari
able>)

FORALL X <- add (1,X,5).
FORALL X <- add (1,4,X).

Addvector add two vectors of
numbers

 FORALL X <-
addvector(v_(2.3,1.7,1.3),v_(3.7,
2.1,1.8),X).

Asin returns the arc sine of
an angle

asin(<integer>) FORALL X <- X is asin(0.8).

Between returns true, if X is
between A and B;
for <number> and
<string>

between(A,X,B) FORALL X <- equal(X,"true")
and between(3,4,5).

Ceil returns the smallest
value that is not less
than the argument and
is equal to a
mathematical integer

ceil(<integer>) FORALL X <- X is ceil(2.3).

Chemequal are two chemical
formulas equal?

chemequal(<formula>,<forumula
>)

FORALL X <- equal(X,"true")
and
chemequal("H2(NO)4","H2N4O4
").

Chemparser parses a chemical
formula like H2(NO)4

chemparse(<formula>) FORALL X <-
chemparse("H2(NO)4",X).

chemparser1 parses a chemical
formula like H2(NO)4

chemparse1(<formula>) FORALL X <-
chemparse1("H2(NO)4",X).

classify ->
set

learns a classifier for
vectors: first argument is
an id, second a feature
list, third the class,
fourth the resulting
classifier

classify(<grouping id>
<vector>, <class>, <classifier>)

see predict

Comparevecto
rs

returns indices where
vectors are different

comparevectors(<vector>,<vecto
r>,X)

FORALL X <-
comparevectors(v_(1,2,0,2),v_(1
,0,2,2),X).

Concat succeeds, if <variable>
is the concatenation of
<string1> and <string2>

concat(<string1>,<string2>,
<variable>)

FORALL X <- concat("a","b",X).
FORALL X <- concat("a",X,"ab").

concatlists merges two lists into a
third

concatlists(<list1>,<list2>,
<list3>)

FORALL X <- concatlists(
[a,b,1,"hello"],[3],X).

constant2str
ing

converts a function to a
string and vice versa

constant2string(<function>,<strin
g>)

FORALL X <-
constant2string(f(3,a),X).

Contains returns true, if <string2>
is contained in <string1>

contains(<string1>, <string2>) FORALL X <-
contains("xyyz","yz") AND
equal(X,"true").

Cos returns the trigonometric cos(<integer>) FORALL X <- X is cos(0).

page 32 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

cosine of an angle
Count Counts the values

grouped to each key.
count(<key>,<value>,
<number>)

needed facts: p(a,1).
 p(a,5).
 p(b,3).
FORALL X,Z <- EXISTS Y
p(X,Y) and count(X,Y,Z).

Cut returns the <string> n
characters shorter

cut(<string>,<n>, <variable>) FORALL X <- cut("xyz",2,X).

Datecompare computes the difference
in dates between two
dates

datecompare(<date>,<date>,<v
ariable>)

FORALL X <-
datecompare("23.08.2003","21.0
8.2003",X).

Dbaccess Specification to a
database access

dbaccess(<tablename>,
<access>, <dbtype>,
<dbname>, <dbhost>, <login>,
<passwd>)

FORALL VAR1 <- (
dbaccess("projects",F(project,V
AR1),"mssqlserver2000","ontopr
oject","bunsen:1433").

dbaccessuser In addition to dbaccess,
dbaccessuser allows to
specify login name and
password.

dbaccessuser(<tablename>,
<access>, <dbtype>,
<dbname>, <dbhost>, <login>,
<passwd>)

FORALL VAR1 <- (
dbaccessuser("projects",F(proje
ct,VAR1),"mssqlserver2000","on
toproject","bunsen:1433","zope",
"zope")).

Deriveacid substracts a H atom of
an acid formula

deriveacid(<acid formula>,X) FORALL X <-
deriveacid("H2SO4",X).

Diffvector subtracts vector2 from
vector1 if vector2-
vector1 is positive

diffvector(<vector1>,<vector2>,<
variable>)

FORALL X <-
diffvector(v_(2,2,2),v_(1,1,1),X).

directisa_ directisa_(X,Y) FORALL X,Y<-directisa_(X,Y).
directsetatt
type_

 directsetatttype_(X,Y) FORALL X,Y <-
directsetatttype_(X,Y).

directsub_ shows direct sub- or
superconcept-relations

directsub_(X,Y). FORALL X,Y <-directsub_(X,Y).

Documentvect
or

creates a wordvector of
a document

docvector(<url>,<variable>). FORALL X <-
docvector(“http://www.ontoprise.
de”,X).

Dotproduct calculates the scalar/dot
procuct of 2 vectors

dotprod(<vector1>,<vector2>,<v
ariable>)

FORALL X <-
dotprod(v_(3,2,1),v_(1,2,3),X).

Durationcomp
are

computes the overlap of
two time periods

overlaps(<date>,<date>,<date>,
<date>,X)

FORALL X <-
overlaps("13.08.2003","15.08.20
03","14.08.2003","16.08.2003",X
).

Equal returns true, if X = Y equal(X,Y) FORALL X <- equal(3,3) AND(X
is 1).

Escape escapes characters in a
string

escape(<string>,<variable>) FORALL X <- escape("hello",X).

Exp returns euler´s number
raised to the power of a
value

exp(<integer>) FORALL X <- X is exp(1).

Fill fills a string at the front
with given letters to the
given length

fill(<string>,<letter>,<length>,<v
ariable>)

FORALL X <- fill("xy","a",4,X).

Floor returns the largest value
that is not greater than
the argument and is
equal to a mathematical
integer

floor(<integer>) FORALL X <- X is floor(2.5).

Getvalue value of ith component
of a vector

getvalue(<vector>,<index>,<vari
able>)

FORALL X <-
getvalue(v_(1,0,2),2,X).

ggt largest common divisor ggt(<integer1>,<integer2>,<varia
ble>)

FORALL X <- ggt(10,15,X).

Greater returns true, if X > Y greater(X,Y) FORALL X <- greater(3,2) AND
(X is 1).

Greaterorequ
al

returns true, if X >= Y greaterorequal(X,Y) FORALL X <-
greaterorequal(3,3) AND
equal(X,”true”).
FORALL X <-
greaterorequal(3,2) AND

page 33 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

equal(X,”true”).
Indexinlist returns true, if index I of

element X is in list L
indexinlist(X,L,I) FORALL X <-

indexinlist(X,[3,1,"ontoprise",2],2
).

Inlist returns true, if X is in List
L

inlist(X,L) FORALL X <-
inlist(X,[2,1,"ontoprise",0]).

isa_ FORALL X,Y <- isa_(X,Y).
Isconstant returns true, if <arg> is a

constant
isconstant(<arg>) FORALL X <- equal(X,"true")

and isconstant(a).
Isint returns true, if <arg> is

an integer
isint(<arg>) FORALL X <- equal(X,"true")

and isint(6).
Isnumber returns true, if <arg> is a

number
isnumber(<arg>) FORALL X <- equal(X,"true")

and isnumber(6.1).
Isstring returns true, if <arg> is a

string
isstring(<arg>) FORALL X <- equal(X,"true")

and isstring("hello").
Length determines the length of

a string or vector
length(<vector>,<variable>) FORALL X <-

length(v_(1,2,3),X).
Less returns true, if X < Y less(X,Y) FORALL X <- equal(X,"true")

and less(2,3).
Lessolve solve linear equation

system
lessolve(<matrix>,<variable>) FORALL X <-

lessolve(m_(v_(1,2),v_(2,4)),X).
Lessorequal returns true, if X <= Y lessorequal(X,Y) FORALL X <- equal(X,"true")

and lessorequal(2,3).
FORALL X <- equal(X,"true")
and lessorequal(3,3).

List Creates lists of values
grouped to each key.

list(<key>,<value>,<list>) needed facts: see count
FORALL X,Z <- EXISTS Y
p(X,Y) and list(X,Y,Z).

Listsortbyin
dex

sorts a given list by
indexes given by
another list

listsort(<list1>,<list2>,<variable>
)

FORALL X <-
listsort([3,5,4],[36,112,45],X).

Log returns the natural
logarithm of a value

log(<integer>) FORALL X <- X is log(1).

Matrixbycolu
mns

creates a matrix of a list
of columns

matrixbycols(<list of
columns>,<variable>)

FORALL X <-
matrixbycols([v_(1,2,3),v_(2,1,3)
],X).

matrixbyrows creates a matrix out of a
list of rows

matrixbyrows(<list of
rows>,<variable>)

FORALL X <-
matrixbyrows([v_(1,2,3),v_(2,1,3
)],X).

Matrixt transpones a matrix matrixt(<matrix>,<variable>) FORALL X <-
matrixt(m_(v_(1,2),v_(3,4)),X).

Max returns the greater of
two values

max(<integer>,<integer>) FORALL X <- X is max(-1,2).

Maximum Determines the
maximum of a set of
numbers.

maximum(<key>,<value>,
<maximum>)

needed facts : see count
FORALL X,Z <- EXISTS Y
p(X,Y) and maximum(X,Y,Z).

Min returns the smaller of
two values

min(<integer>,<integer>) FORALL X <- X is min(-1,2).

Minimum Determines the
minimum of a set of
numbers.

minimum(<key>,<value>,
<minimum>)

needed facts :see count
FORALL X,Z <- EXISTS Y
p(X,Y) and minimum(X,Y,Z).

Multiply multiply(<number>,<number>,<v
ariable>)

FORALL X <- multiply(2,3,X).

multvector multiplies 2 vectors multvector(<vector1>,<vector2>,
<variable>)

FORALL X <-
multvector(v_(3,2,1),v_(1,2,3),X)
.

Multvectorma
trix

multiplies a vector with a
matrix

multvm(<vector>,<matrix>,<vari
able>)

FORALL X <-
multvm(v_(1,2),m_(v_(1,3),v_(2,
4)),X).

Near is number1 near
number2 with a

near(<integer>,<variable>) FORALL X <- near(3,3.01) and
equal(X,"true").

page 34 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

tolerance from 1% of
number2?

Nearest computes maximum of a
set of values

nearest(<grouping
id>,<value>,<nearest_to>,<varia
ble>)

needed facts: see count
FORALL X,Z <- EXISTS Y
p(X,Y) and nearest(X,Y,2,Z).

Newvector creates a vector v with n
values x

newvector(n,<value>,<variable>) FORALL X <- newvector(3,1,X).

number2roman converts numbers to
roman numbers

number2roman(<number>,<vari
able>)

FORALL X <-
number2roman(2.3,X).

partof_ returns all attribute of an
instance

partof_(<variable1>,<variable2>) FORALL X,Y <- partof_(X,Y).

Pow returns of value of the
first argument raised to
the power of the second
argument

pow(<integer>,<integer>) FORALL X <- X is pow(-1,2).

Power xy=z power(X,Y,Z) FORALL X <- power(2,3,X).
FORALL X <- power(2,X,8).
FORALL X <- power(X,3,8).

Predict predicts a class for given
feature vectors; first
argument is the feature
list, second the
classifier, third the
predicted class

predict(<feature vector>,
<classifier>, <class>)

needed facts: p([f(a,0),f(b,1)],A).
p([f(a,1),f(b,0)],B).
FORALL X,Z,Y classifier(X) <-
p(Y,Z) and classify(a,Y,Z,X).
query: FORALL X <- EXISTS C
classifier(C) and
predict([f(a,0),f(b,1)],C,X).

Quadratic solves the quadratic
equation X = -b +-
sqrt(b*b-4ac))/2a

quadratic(<variable>,a,b,c) FORALL X <- quadratic(X,1,-
5,4).

quadratic1 solves the quadratic
equation X = -b +
sqrt(b*b-4ac))/2a

quadratic(<variable>,a,b,c) FORALL X <- quadratic1(X,1,-
5,4).

Readurl reads a document and
creates a word vector

readurl(<url>,<variable>) FORALL X <-
readurl("http://www.ontoprise.de
",X).

regexp* regular expressions may
be used to search in
strings, <string2> is the
result of the operation
with <string1>

regexp(“<regular
expression>”,<string1>,
<string2>)

FORALL X,Y <- X is "xyz" and
regexp("yz",X,Y).

regexp1 regular expressions may
be used to search in
strings

regexp1(“<regular
expression>”,<string>)

FORALL X <- X is "xyz" and
regexp1("xy",X).

Replace replaces characters in a
string

replace(<input
string>,<regexp>,<replacedby>,
<variable>)

FORALL X <-
replace("Eddie","[d]","m",X).

Rint returns the value that is
closest to the argument
and is equal to a
mathematical integer

rint(<integer>) FORALL X <- X is rint(2.5).

Round returns the closest to the
argument

round(<integer>) FORALL X <- X is round(2.3).

Rounddigit rounds a double to the i-
th digit after the point

dround(<number>,<number of
digits>,<variable>)

FORALL X <-
dround(2.5275,3,X).

setatt_ setatt_(<variable1>,<variable2>,
<variable3>)

FORALL X,Y,Z <-setatt_(X,Y,Z).

setatttype_ setatttype_(<variable1>,<variabl
e2>,<variable3>)

FORALL X,Y,Z <-
setatttype_(X,Y,Z).

setdirect_ setdirect_(<variable1>,variable2
>)

FORALL X,Y<-setdirect_(X,Y).

page 35 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

Setvalue sets value at index I in
vector v to new value x

setvalue(<vector>,<value>,<inde
x>,<variable>)

FORALL X <-
setvalue(v_(1,1,1),2,0,X).

Signvector determines whether all
components are positive
or negative

signvector(<vector>,<variable>) FORALL X <-
signvector(v_(1,1,1),X).

Sin returns the trigonometric
sine of an angle

sin(<integer>) FORALL X <- X is sin(0).

Smultvector multiplies vector with a
number

smultvector(<vector>,<number>,
X)

FORALL X <-
smultvector(v_(1,2,3),2,X).

Split splits a string into tokens
based on a given regular
expression

split(<string to split>,<tokens>) FORALL SS <- split("Can you
please split this sentence?Into
its tokens?",SS).

Splitgen splits a string into tokens
based on a regular
expression to be
formulated.

splitgen(<string to split>,<regular
expression for
splitting>,<tokens>)

FORALL SS <- splitgen("Can
you please split this
sentence?Into its tokens?",
"[\\s|!|?|.]",SS).

Splitlocal splits namespace and
concept

splitlocal(<namespace#local>,<v
ariable>)

FORALL X <-
splitlocal("http://www.test.de#Pe
rson",X).

Sqlexecute sql(<table>,F(<column1>(X),…,<
column>(Y)),dbtype,dbname,dbh
ost, user, pwd)

FORALL X <- sql("SELECT
projects.project FROM projects",
[X],"mssqlserver2000","ontoproj
ect","bunsen:1433","zope","zope
").

Sqrt returns the correctly
rounded positive square
root of a value

sqrt(<integer>) FORALL X <- X is sqrt(4).

Square computes the square of
a number

square(<number>,<variable>) FORALL X <- square(2.3,X).

string2numbe
r

converts a string to a
number and vice versa

string2number(<string>,
<number>)

FORALL X,Y <-
string2number("1",Y) and X is
Y+1.0.

Sum summarizes values sum(<grouping
id>,<value>,<variable>)

FORALL X,Z <- EXISTS Y
p(X,Y) and sum(X,Y,Z).

Sumvector summarizes vectors sum(<grouping
id>,<vector>,<variable>)

needed facts: p(v_(1,2,3,4)).
p(v_(3,4,5,6)).
FORALL X,Y <- p(Y) and
sumvector(a,Y,X).

Tan returns the trigonometric
tangent of an angle

tan(<integer>) FORALL X <- X is tan(0).

Tokenize breaks string into tokens
at the delimiters

tokenize(<string>,
<delimiters>,<variable>)

FORALL X <-
tokenize("xyz","y",X).

Tokenizen breaks string into
maximal n tokens at the
delimiter

tokenizen(<string>,<n>,
<delimiters>,<variable>)

Tolower transforms all characters
into lower characters

tolower(<string>, <variable>) FORALL X <- tolower("I Love
Ontologies!",X).

Toupper transforms all characters
into upper characters

toupper(<string>, <variable>) FORALL X <- toupper("I Love
Ontologies",X).

Unify X unified with Y unify(X,Y)
unitconversi
on

converts value1 with
unit1 into value2 with
unit2, where value1,
unit1 and unit2 are given
values

convert(<value1>,<unit1>,<varia
ble>,<unit2>)

FORALL X <-
convert(100,"ml",X,"l").

urlCode encodes and decodes
an url represented as
string

urlCode (<string>,<encoded
string>)

FORALL EURL <-
urlCode("http://www.ontoprise.d
e/facts & things",EURL).

page 36 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

whichbuiltin returns the class names,
the flogic names and the
arities of all builtins

whichbuiltins FORALL A,B,C,D,F <-
whichbuiltins(A,B,C,D,F).

Wholenumbere
d

takes the first vector and
expands the elements
until all are whole
numbered

wholenumbered(<vector>,<varia
ble>)

FORALL X <-
wholenumbered(v_(1.2,1,3),X).

write1,
write2, ...,
write6

prints the parameters write1(X1), write2(X1, X2), …,
write6(X1, X2, X3, X4, X5, X6).

FORALL X,Y <- write(X,Y) and
X::Y.

page 37 April 2007

 –

F-Logic Tutorial

ontoprise GmbH

11. Appendix B: Namespace Declaration Syntax
(deprecated)

Note: this section is kept only for reference. Please use the current way
to declare namespaces (cf. Section 8).

The namespace mechanism of F-Logic is similar to that of XML. If you are
familiar with XML-namespaces you will find namespaces in F-Logic easy to
understand and use. You can introduce namespaces and associate aliases for
them anywhere where a rule or query is allowed. This namespace declaration
contains the XML-Element <ns> with a number of XML-attributes with the
prefix “ontons”. The scope of declared namespaces ends when the
corresponding end-element </ns> is reached in the program, e.g.

<ns ontons:cars="www.cars-r-us.tv"
 ontons:finance="www.financeWorld.tv"
 ontons="www.myDomain.tv/private">

 //Here the aliases “cars” and “finance” can be used.
 <ns . . .>
 // Here inner aliases can be used.
 // Outer aliases are also visible if not redefined.
 </ns>

</ns>

In our example three namespaces are declared. Each namespace must
represent a valid URI according to RFC 2396 and can optionally be associated
with an alias. The namespaces www.cars-r-us.tv and www.financeWorld.tv are
associated with the aliases “cars” and “finance”, respectively. The third
namespace is not associated with an alias and thus, represents the default
namespace.

As in XML these namespace declarations can be arbitrarily nested and aliases
may be temporarily associated with other URIs by inner namespace
declarations.

page 38 April 2007

http://www.cars-r-us.tv/
http://www.financeworld.tv/

 –

F-Logic Tutorial

ontoprise GmbH

12. Imprint

Editor

ontoprise GmbH
Amalienbadstraße 36
(Raumfabrik 29)
76227 Karlsruhe (Germany)
Telefon +49 (0) 721 / 509 809 10
Telefax +49 (0) 721 / 509 809 11
Email support@ontoprise.de
Internet http://www.ontoprise.de

© 2007 by ontoprise GmbH, all rights reserved

No part of this publication may be reproduced or transmitted in any form or for any
purpose without the express permission of ontoprise GmbH. The information
contained herein may be changed without prior notice.

These materials are subject to change without notice. These materials are provided by
ontoprise GmbH for informational purposes only, without representation or warranty of
any kind, and ontoprise GmbH shall not be liable for errors or omissions with respect
to the materials. The only warranties for ontoprise GmbH products and services are
those that are set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as constituting an
additional warranty.

Karlsruhe, April 2007

page 39 April 2007

mailto:support@ontoprise.de
http://www.ontoprise.de/

 –

F-Logic Tutorial

ontoprise GmbH

13. References

[ABD+ 89] Malcolm Atkinson, Francois Bancilhon, David DeWitt, Klaus
Dittrich, David Maier, and Stanley Zdonik. The object-oriented
database system manifesto. In Intl. Conference on Deductive and
Object-Oriented Databases (DOOD), pages 40-57. North-
Holland/Elsevier Science Publishers, 1989.

[AHV 95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison Wesley, 1995.

[CGT 90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and
Databases. Springer, 1990.

[CKW 93] W. Chen, M. Kifer, and D.S. Warren. HiLog: a foundation for higher-
order logic programming. Journal of Logic Programming, 15(3):187-
230, 1993.

[FLU 94] Jürgen Frohn, Georg Lausen, and Heinz Upho . Access to objects
by path expressions and rules. In Intl. Conference on Very Large Data
Bases (VLDB), pages 273-284, 1994.

[FHK] J. Frohn, R. Himmeröder, P. Kandzia, C. Schlepphorst. How to Write F-
logic Programs in FLORID - A Tutorial for the Database Language F-
logic. http://www.informatik.uni-freiburg.de/~dbis/florid/

[KLW 95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations
of object-oriented and frame-based languages. Journal of the ACM,
42(4):741-843, 1995.

[LHL+ 98] Bertram Ludäscher, Rainer Himmeroder, Georg Lausen, Wolfgang
May, and Christian Schlepphorst. Managing semistructured data with
orid: A deductive object-oriented perspective. Information Systems,
23(8):589-612, 1998.

[Liu 96] M. Liu. ROL: A typed deductive object base language. In Intl.
Conference on Database and Expert Systems Applications (DEXA),
1996.

[Ull 89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base
Systems, volume 2. Computer Science Press, New York, 1989.

page 40 April 2007

http://www.informatik.uni-freiburg.de/%7Edbis/florid/

	 How to Write F-Logic Programs
	A Tutorial for the Language F-Logic covers OntoBroker® Version 5.x
	Introduction
	2. A First Example
	3. Objects and their Properties
	3.1. Object Names and Variable Names
	3.1.1. Methods
	3.1.2. Class Membership and Subclass Relationship

	3.2. Expressing Information about an Object
	3.3. Signatures
	3.4. F-molecules without any Properties

	4. Predicate Symbols
	5. Lists
	6. Built-in Features
	6.1. Numbers, Comparisons and Arithmetics
	6.2. String handling
	6.3. Type conversion
	6.4. Aggregations
	6.5. Index Server integration
	6.6. Access to databases
	6.6.1. DBAccess
	6.6.2. SQLExecute

	6.7. Other built-ins

	7. Rules and Queries
	7.1. Rules
	7.2. Queries
	7.3. Range Restriction
	7.4. Quantifier Scoping

	8. Namespaces in F-Logic
	8.1. Declaring Namespaces
	8.2. Using Namespaces in F-Logic Expressions
	8.3. Querying for Namespaces
	8.4. The Default Namespace

	9. Modules
	10. Appendix A: List of Built-ins
	11. Appendix B: Namespace Declaration Syntax (deprecated)
	12. Imprint
	13. References

