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ABSTRACT
We explore a bottom-up approach to revisit the problem of cash flow modeling in insurance business, and
propose a methodology to efficiently simulate the related tail quantities, namely the fixed-time and the finite-
horizon ruin probabilities. Our model builds upon the micro-level contract structure issued by the insurer,
and aims to capture the bankruptcy risk exhibited by the aggregation of policyholders. This distinguishes
from traditional risk theory that uses random-walk-type model, and also enhances risk evaluation in actuarial
pricing practice by incorporating the dynamic arrivals of policyholders in emerging cost analysis. The
simulation methodology relies on our model’s connection to infinite-server queues with non-homogeneous
cost under heavy traffic. We will construct a sequential importance sampler with provable efficiency, along
with large deviations asymptotics.

1 INTRODUCTION
This paper explores a bottom-up approach to revisit the problem of cash flow modeling in insurance
business, and proposes a methodology to simulate the related tail quantities efficiently. We set up our model
from both the perspectives of risk theory and actuarial pricing. In brief, given the types and structures of
insurance contracts issued, we formulate and compute ruin problems that evaluate the risk carried by the
insurer’s business.

Classical risk theory uses a random walk model to describe the probability of bankruptcy for an insurance
company. The most basic Cramer-Lundberg model assumes a constant rate of premium earned by the
insurance company i.e. the aggregate premium grows linearly with time. The claims, on the other hand,
follow a compound Poisson process, the arrival being the occurrence of claims and the summands being
the claim sizes. The aggregate net asset value of the insurance company is then the difference of claims
and premiums. Restricting to uniformly discretized observations, this is equivalent to a negatively drifted
random walk. The ruin probability of the insurance company is modeled as the probability that the negatively
drifted compound Poisson process, or random walk in discrete-time version, hits a high level that represents
the company’s initial surplus. This model has been extended and modified in many different directions,
such as Markov economic environment, generalization to Levy processes, combination with an independent
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investment process, incorporation of operational costs, among others (see, for example, Asmussen 2000).
Due to the celebrated Cramer-Lundberg asymptotic and large deviations theory, analytical approximations
of the ruin probability is available in many interesting examples, as well as the corresponding rare-event
simulation algorithms.

There is a related but nonetheless different way of looking at cash flow’s tail probability in an insurance
company, in the context of what is called emerging cost analysis. This is used by product teams in life
insurance companies to estimate the risk of particular insurance products. In this context, the payoff of the
product is well defined, and stochastic simulation is run to obtain the value-at-risk of the product. Usually
the important case is when the product involves financial risk, and when the product has sophisticated
payoff structure. The standard practice is to assume a single account entering the contract of the product
initially, then run a scenario to obtain a path sample. This is repeated thousands of times to calculate the
quantile. Stochastic simulation has become standard practice for risk management and capital calibration
in big insurance companies (see, for example, Hardy 2003).

Despite its simplicity, this practice may sometimes miscalculate the actual risk involved, because it
ignores the dynamic arrival of policyholders as the company signs new insurance contracts over time. The
goal of this paper is to explore this aspect of risk in the practice of emerging cost analysis. In particular, we
look at the dynamic aggregation of cash flow built up from these individual policyholder accounts over time.
This aggregate cash flow can also be viewed as the cash flow process from a risk theoretic viewpoint, but
instead of being a negatively drifted random walk, it is now a functional of all signed policies and statuses
of policyholders. Although it may sound infeasibly complicated, we will show that this new process is
readily analyzable. Indeed, we will derive a large deviations asymptotic and construct efficient algorithm
to calculate its tail probability. This includes fixed-time and finite-horizon level-crossing probabilities.

From the risk theoretic perspective, besides the bottom-up approach using micro-level policy accounts,
our work also distinguishes from traditional ruin problems by focusing on the risk effect of aggregation.
Our model aims to capture the characteristics of the large number of policyholders that large insurance
companies usually have in shaping their finite-horizon risk levels. This is in contrast to classical risk theory
which focuses on the eventual ruin probability i.e. risk involved over long time horizon, that is primarily
triggered by a deviation from the drift. The rationale behind our approach is that in product-level risk
analysis, the horizon in consideration by risk management personnel is in the same scale as the duration
of products, and their main concern is the risk exhibited by the payoff of the particular products in mass
sales. Nevertheless, it can be shown that a moderate twist in our model formulation by elongating the time
horizon and fixing the scaling would uncover a connection with classical ruin theory (Blanchet and Lam
2011a).

A salient feature of our new model is its connection to infinite-server queue. The rich literature in
the study of such objects allows us to obtain analytical and computational results with little effort. This
connection can be briefly seen as follows. The entrance of policyholders into insurance contracts can be
represented by customer arrivals in a queue. Once a policyholder signs into a contract, he has to pay the
premium accordingly, and in return he receives benefit claims during accident or death. After the accident
happens, the insurance contract typically ends automatically. This is analogous to the end of service in a
queue. Since there is no “server”, the “insurance system” is an infinite-server queue with a time-changing
cost function imposed on the service. Moreover, a typical insurance company has hundreds of thousands
of policyholders, so it is plausible to invoke approximation in heavy-traffic theory.

Another driver of our bottom-up approach is the ease in incorporating various extensions and practical
considerations, as we will discuss in Section 6. We hope that the model could ultimately be useful in a
real-life framework. Despite such ambition, we acknowledge that our model is still far from perfection,
since it certainly oversimplifies many important operational and investment issues. We will briefly discuss
these future directions also in Section 6.

The organization of the paper is as follows. In Section 2 we describe our model and state the assumptions.
In Section 3 we derive a large deviations result for a fixed-time tail probability of our model. Then, in
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Section 4, we will construct an efficient algorithm for calculating the fixed-time tail probability, while in
Section 5 we will generalize to finite-horizon framework and also show a finite-horizon asymptotic result.
Section 6 is devoted to several extensions of the algorithm. Finally, we close the paper with some numerical
results in Section 7.

2 MODEL ASSUMPTIONS
2.1 Insurance Contract
In this section we introduce our model and notations. First let us describe the insurance contract structure.
For ease of computation and also due to practical data collection considerations, we use a discrete time
formulation i.e. we focus on time t = 0, 1, . . .. The time increment represented is typically a week or
month. When a policyholder enters a contract with the insurance company, he pays a premium p(t) at each
time t = 0, 1, . . .. This lasts until the casualty happens, when instead he is paid a benefit of b(T ), where
T is the time of casualty.

This framework can be used for, say, life and disability accidents. These insurances share the feature
that claim is a one-time event i.e. after a claim is made, the contract ceases automatically. In health and
property insurance, the contract usually lasts until the stated period ends, and many claims can occur during
the covered period. While our framework can potentially be applied in such contexts, we shall not discuss
this here and will leave it to future research. For convenience, from now on we will focus on life insurance
(with notations easily translatable to the case of disability and similar insurance types).

We assume a constant compound interest rate δ, and let d = e−δ be the discount factor. We assume
policyholders all follow the same mortality distribution at the time of arrival, and their mortalities are
independent. Let T be the random time between arrival and death, and f(t), F (t) and F̄ (t) be its
probability mass, distribution and survival functions respectively. We assume that T has support on
1, . . . ,M i.e. f(t) > 0 if and only if t = 1, . . . ,M . For simplicity we assume no operational cost. All
these assumptions will be relaxed in Section 6 when we discuss the extensions.

We now introduce a few actuarial notations. We let a(t) =
∑t−1

i=0 p(i)d
i be the annuity immediate.

This quantity captures the accumulated premium paid from time 0 to t, discounted at time 0. Also, we let
A(t) = b(t)dt be the discounted benefit. For example, in the case of whole life insurance with constant
premium rate, we have p(t) = p and b(t) = b for constants p and b. Then a(t) = p(1− dt)/(1− d) and
b(t) = bdt.

2.2 Arrival Process
We now discuss the arrival process of policyholders, a feature that distinguishes our work from the prevailing
actuarial literature. This also connects our work to infinite-server queueing system and allows us to draw
upon established results in the area.

To begin, we assume the number of new arrivals at each time t to be i.i.d. following the distribution
generated by the random variable N s. The number s is a scale parameter that we assume to be large (to
denote the large number of arrivals). We assumeN s has exponential moment i.e. ψsN (θ) := logEeθN

s
<∞

for all θ ∈ R. Moreover, we assume the scaling s is such that

lim
s→∞

1

s
ψsN (θ) = ψN (θ) (1)

We also assume that ψN (·) is steep (i.e. its derivative ψ′
N (·) has range (0,∞)), differentiable and strictly

convex. These conditions hold, for example, for Poisson random variable with rate λs. In this case,
ψN (θ) = λ(eθ − 1).

Each of these new arrivals then follow i.i.d. mortality distribution given by the random variable T
described in the previous subsection. To facilitate our discussion, we let Nk be the number of policyholders
who arrive at time k (i.e. Nk is each distributed as i.i.d. N s), and Nk(i) be the number of policyholders
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who arrive at time k and die i time units after k. Note that we have suppressed the superscripts s in Nk

and Nk(i) for notational convenience. It is then easy to see that given Nk, Nk(i), i = 1, . . . ,M follows a
multinomial distribution with probability f(i).

2.3 Regularity Conditions
For convenience we will assume there are no policyholders before time 0, and the first batch of policyholders
isN0. On the other hand, we assume the insurance company holds an initial surplus of xs for some constant
x > 0. This surplus grows at an accumulation rate δ (so the time-0 discounted value of surplus at any
future time is always xs). The scaling assumption means that the insurance company holds a surplus in
proportion to the expected basis of its business.

Regarding the insurance contract, we impose the following regularity conditions:
Assumption 1 (feasibility) There exists i in {1, . . . ,M} such that A(i)− a(i) > 0.

This implies that there is a positive chance the contract will induce loss to the insurance company. For
many popular insurance contracts, A(t) − a(t) is non-increasing in t and A(1)− a(1) = b(1)d− p > 0,
which implies Assumption 1. Examples of monotonic-payoff contracts include whole life insurance, term
life insurance, endowment, etc. The principle is that longevity is desirable to the insurance company.
Nevertheless, if Assumption 1 is violated, then no rational individual has an incentive to enter the contract
since this would cause loss to him with probability one. We will see in the next section that Assumption
1 guarantees a steepness condition for our Gartner-Ellis limit.
Assumption 2 (profitability) It holds that Ea(T ) > EA(T ).

This assumption states that the actuarial present value of premium is larger than that of the benefit
paid for an individual contract. This ensures in the long run the insurance business is profitable. On the
contrary, if this does not hold, the company is doomed to go bankrupt eventually since an average contract
leads to loss. Note that the standard Equivalence Principle in actuarial literature (Bowers et al. 1997) states
that Ea(T ) = EA(T ) i.e. the net profit to the insurance company is zero. While this holds in a perfectly
competitive market, insurance companies often charge a premium loading, among other extra income to
make lucrative business in practice. These loadings are built into the premium p(t) in our formulation.

In the case of whole life insurance with constant premium rate, for example, Assumption 2 states that
p(1− EdT )/(1− d) > bEdT .

3 LARGE DEVIATIONS FOR FIXED-TIME PROBABILITY
We first look at the net asset of the insurance company at a fixed time t. For a policyholder who arrives at
time k < t and has death time T , his contribution to the net asset is described as follows. For convenience
we focus on the accumulated cash outflow, discounted at time 0, from the insurance company up to time t.
This is the negative of net asset. For succinctness we merely say “cash outflow” to refer to this quantity.
Also, we let t ≥ min{i : A(i) − a(i) > 0} where the minimum exists by Assumption 1. Any t smaller
than this minimum will not be interesting since the probability of positive C(t) is 0.

1. If k + T > t, then the policyholder is still alive at time t. In this case, benefit paid is 0 and
accumulated premium up to time t is a(t− k)dk. So the cash outflow is −a(t− k)dk.

2. If k+T ≤ t, then the policyholder deceases before or at t. The discounted benefit paid is A(T )dk,
whereas the accumulated premium up to k+T is a(T )dk. So the cash outflow is (A(T )−a(T ))dk.

Now denote C(t) as the cash outflow at time t. Recall that we assume no policyholders initially. For
notational convenience, denote

hu(i) =

{
A(i)− a(i) for i ≤ u
−a(u) for i > u
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Then

C(t) =

t∑
k=0

M∧(t−k)∑
i=1

Nk(i)(A(i)− a(i))dk −
M∑

i=t−k+1

Nk(i)a(t− k)dkI(M > t− k)


=

t∑
k=0

M∑
i=1

Nk(i)ht−k(i)d
k (2)

We want to study the probability P (C(t) > xs) i.e. the probability that the cash outflow exceeds the
(cumulated) initial surplus. To do so, we find the large deviations rate using Gartner-Ellis theorem (Dembo
and Zeitouni 1998). First, the logarithmic moment generating function of C(t) is

ψsC,t(θ) := logEeθC(t) = logE

[
E

[
exp

{
θ

t∑
k=0

M∑
i=1

Nk(i)ht−k(i)d
k

}∣∣∣∣∣Nk, k = 0, . . . , t

]]

=

t∑
k=0

ψsN

(
log

(
M∑
i=0

f(i)eθht−k(i)d
k

))
Hence

ψC,t(θ) := lim
s→∞

1

s
ψsC,t(θ) =

t∑
k=0

ψN

(
log

(
M∑
i=0

f(i)eθht−k(i)d
k

))
=

t∑
k=0

ψN (log g(θ; t, k)) (3)

by (1), where for convenience we define

g(θ; t, k) =

M∑
i=0

f(i)eθht−k(i)d
k

(4)

Consider the equation
ψ′
C,t(θ) = x (5)

Note that

ψ′
C,t(θ) =

t∑
k=0

ψ′
N (log g(θ; t, k))×

∑M
i=1 f(i)ht−k(i)d

keθht−k(i)d
k

g(θ; t, k)
=

t∑
k=0

ψ′
N (log g(θ; t, k))×∑M∧(t−k)

i=1 f(i)(A(i)− a(i))dkeθ(A(i)−a(i))dk −
∑M

i=t−k+1 f(i)a(i)d
ke−θa(i)d

k

g(θ; t, k)
(6)

Since f(i) > 0 for all i = 1, . . . ,M and A(i)−a(i) > 0 for some i = 1, . . . ,M by Assumption 1, together
with the steepness assumption on ψN (·), we see that ψC,t(·) also has domain R and is steep. Moreover, by
Assumption 2 and that −a(w) ≤ A(w)− a(w) for any w ≥ 0, we have ψC,t(0) < 0. The strict convexity
of ψC,t(·) inherits from ψN (·). Therefore there is a unique positive solution to (5). Call it θt.

By Gartner-Ellis theorem (Dembo and Zeitouni 1998), we have

lim
s→∞

1

s
logP (C(t) > xs) = −It (7)

where It = θtx− ψC,t(θt).
Equation (7) is the starting point of our analysis. This in particular allows us to follow the scheme in

Szechtman and Glynn (2002), Blanchet et al. (2009) and Blanchet and Lam (2011) to tackle the finite-horizon
ruin problem.
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4 IMPORTANCE SAMPLING FOR FIXED-TIME PROBABILITY
We aim to construct an efficient importance sampling algorithm for P (C(t) > xs), using the criterion of
so-called asymptotic optimality in the rare-event literature. Suppose we want to simulate efficiently a rare
event probability P (As) where P (As)↘ 0 as s↗∞ using an importance sampler with likelihood ratio
L. We say that the importance sampler is asymptotically optimal, or logarithmically efficient, if

lim
s→∞

log ẼI(As)L
2

logP (As)
≥ 2 (8)

This criterion is standard and ensures that the relative error of the unbiased estimator (ratio of standard
deviations to probability of interest) does not grow exponentially as the event parametrized by s gets rarer.
We will use criterion (8) throughout the paper for evaluating algorithmic efficiency. For more discussion
on rare-event simulation via importance sampling, see Bucklew (2004) and Asmussen and Glynn (2007).

We first note that, as in the literature in rare-event simulation, a natural change of measure is the
optimal exponential tilting formed by the parameter in (5). This algorithm in theory would induce an
exponential reduction in variance, but is unfortunately not implementable because the distribution of C(t)
is not directly analyzable.

Instead, we follow the methodology in Szechtman and Glynn (2002), Blanchet et al. (2009) and Blanchet
and Lam (2011). The idea is to replace direct exponential tilting with sequential tilting such that the tilting
at each step becomes computable. The sequential tilting procedure is hinted by comparing (6) to the same
expression with θ = 0, which suggests that asymptotically the mean of the θ-tilted number of arrivals
at time k has mean sψ′

N (log g(θ; t, k)) and the mean of the corresponding death distribution has mean∑M
i=1 f(i)ht−k(i)d

keθht−k(i)d
k
/g(θ; t, k). The following tilting scheme possesses these properties. Define

the new measure P̃t such that for each k = 0, . . . , t,

P̃t(Nk = n) = e−sψN (log g(θt;t,k))g(θt; t, k)
nP (Nk = n) (9)

and for each arrival at time k,

P̃t(T = i) =
f(i)eθtht−k(i)d

k

g(θt; t, k)
(10)

Note that for k = 0, . . . , t, we have

P (Nk = n)

P̃t(Nk = n)
= esψN (log g(θt;t,k))−n log g(θt;t,k) and

P (T = i)

P̃t(T = i)
= elog g(θt;t,k)−θtht−k(i)d

k

Hence under the new measure, with Nk = n and Nk(i) = ni, the sequential likelihood ratio at time k is

Lt,k(ni, i = 1, . . . ,M) =
P (Nk = n)

P̃t(Nk = n)
·
(

n
n1,...,nM

)∏M
i=1 P (T = i)ni(

n
n1,...,nM

)∏M
i=1 P̃t(T = i)ni

=
P (Nk = n)

P̃t(Nk = n)
·
M∏
i=1

(
P (T = i)

P̃t(T = i)

)ni

= esψN (log g(θt;t,k))−
∑M

i=1 niθtht−k(i)d
k

(11)

In particular, at time t, the likelihood ratio is

Lt,t(n) := esψN (θtp(0)dt)−θtn (12)

From (11), the overall likelihood ratio is

Lt =
t∏

k=1

Lt,k(Nk(i), i = 1, . . . ,M) = exp

{
s

t∑
k=1

ψN (log g(θt; t, k))− θt
t∑

k=1

M∑
i=1

Nk(i)ht−k(i)d
k

}
= esψC,t(θt)−θtC(t) (13)
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by (2) and (3).
We state our algorithm precisely. The following procedure generates one unbiased sample:

Algorithm 1

Step 1 Initialize L = 1, C = 0.
Step 2 For k = 1, . . . , t− 1, do:

1. Generate Nk according to (9).
2. Generate Nk(i), i = 1, . . . ,M according to a multinomial distribution with parameter being
the sampled Nk and the probability vector given by (10).

3. Update L ← L · Lt,k(Nk(i), i = 1, . . . ,M), where Lt,k(Nk(i), i = 1, . . . ,M) is given by
(11).

4. Update C ← C +
∑M

i=1Nk(i)ht−k(i)d
k.

Step 3 For k = t, do:
1. Generate Nt according to (9).
2. Update L← L · Lt,t(Nt), where Lt,t(Nt) is defined in (12).
3. Update C ← C +Ntp(0)d

t.
Step 4 Output I(C > xs)L.

This procedure leads to an asymptotically optimal estimator for P (C(t) > xs), by the following simple
argument. From (13), we have the second moment of our estimator

Ẽ[I(C(t) > xs)L2
t ] = e−2sItẼ[e2θt(xs−C(t));C(t) > xs] ≤ e−2sIt

This shows that (8) holds and Algorithm 1 is asymptotically optimal.

5 IMPORTANCE SAMPLING AND LARGE DEVIATIONS FOR FINITE-
HORIZON PROBLEM

Our goal in this section is to construct a rare-event simulation algorithm for the finite-horizon ruin probability,
namely P (maxt=1,...,T C(t) > xs). We follow the time-randomization method in Blanchet et al. (2009) and
Blanchet and Lam (2011), which also gives the finite-horizon large deviations result simultaneously. The
idea is to sample a random time, say R ∈ {1, . . . , T}, independent of the system, followed by Algorithm
1 putting t equal to the sampled R. The distribution of R is flexible in a finite-horizon problem. For
example, one can merely choose uniform distribution over [0, T ]. The sequential tilting can stop whenever
C(t) hits xs, possibly a time before the sampled R, since anything that happens after that does not affect
the occurrence of the rare event. Nevertheless, this stopping is not essential. We call this first passage time
τ .

An important feature of this algorithm is that one should view the sample {Nt(·), t = 1, . . . , τ ∧T} in
a pathwise and vector-valued sense i.e. we define the probability space on the sample path of Nt(·) and
the element in the likelihood ratio is a path of vectors. Let P̃ be the probability measure with the random
time R, under which the sample path of Nt(·) is generated. The likelihood ratio is then a mixture given by

L−1 :=
dP̃

dP
=

T∑
t=1

P (R = t)L′−1
t (14)

where L′
t =

∏t∧τ
k=1 Lt,k and Lt,k is defined in (11). Note that the elements in the individual likelihood

ratios L′
t depend on the configuration of Nt(·) at different times t, in contrast to Lt defined in (13) that

only acts on a single value of C(t).
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Note that we can write out L′
t as follows:

L′
t =

{
esψC,t(θt)−θtC(t) for t ≤ τ
exp {s

∑τ
k=0 ψN (log g(θt; t, k))− θtC[τ, t]} for t > τ

(15)

where C[u, t] is defined as the discounted cash outflow at time t contributed by the arrivals before or at
u, with u ≤ t i.e.

C[u, t] =
u∑
k=0

M∑
i=1

Nk(i)ht−k(i)d
k

To implement the scheme, we first compute Nk(i) for every k = 1, . . . , T and i = 1, . . . ,M under
the new measure P̃r after sampling a realization R = r. Then we can compute C(t) for t = 1, . . . , T to
locate τ ∧ T and also to compute the likelihood ratio. Let us present our algorithm as follows:

Algorithm 2

Step 1 Sample R from uniform distribution on {1, . . . , T}. Call the realization R = r.
Step 2 Sample Nk(i) for k = 1, . . . , r, i = 1, . . . ,M under P̃r. If r < T , then sample Nk(i) for

k = r + 1, . . . , T , i = 1, . . . ,M under the original measure P .
Step 3 Compute C(t) for t = 1, . . . , T using (2).
Step 4 Find τ in {1, . . . , T} from the computed {C(t)}. If C(t) ≤ xs for all t ∈ {1, . . . , T}, then set

τ =∞.
Step 5 If τ ≤ T , output the likelihood ratio L from (14) and (15); otherwise output 0.

Note that this algorithm needs order TM space to implement. In Blanchet and Lam (2011a) we
will provide an alternate algorithm that can reduce the memory space to order 2M + T , using a Markov
representation to capture the dynamic evolution of C(t).

Our main result is the following:
Theorem 1 Algorithm 2 is asymptotically optimal.

Proof. Define I∗ = min{It : t = 1, . . . , T}. We show that the second moment of the estimator from
Algorithm 2 and 3 has an exponential decay rate faster than 2I∗. Note that

L =
1∑T

u=1 P (R = u)L−1
u

≤ P (R = τ)−1Lτ = T exp

{
τ∑
k=1

sψN (log g(θτ ; τ, k))− θτC(τ)

}
Then

Ẽ[L2; τ ≤ T ] ≤ TẼ

[
exp

{
τ∑
k=1

sψN (log g(θτ ; τ, k))− θτxs+ θτ (xs− C(τ))

}
; τ ≤ T

]
≤ Te−2sI∗Ẽ[eθτ (xs−C(τ)); τ ≤ T ] ≤ Te−2sI∗ (16)

which shows our claim.
On the other hand, we can see that I∗ is also the slowest decay rate that the probability P (τ ≤ T ) =

P (maxt=1,...,T C(t) > xs) can achieve, by noting that P (maxt=1,...,T C(t) > xs) ≥ P (C(t) > xs) for
any t = 1, . . . , T . From (7) we then get lim infs→∞(1/s) logP (maxt=1,...,T C(t) > xs) ≥ −It for any
t = 1, . . . , T . In particular, we take t = argmin It and get lim infs→∞(1/s) logP (maxt=1,...,T C(t) >
xs) ≥ −I∗. Coupled with (16) and Jensen’s inequality, we get

−2I∗ ≤ lim inf
s→∞

1

s
logP

(
max

t=1,...,T
C(t) > xs

)2

≤ lim sup
s→∞

1

s
log Ẽ[L2; τ ≤ T ] ≤ −2I∗
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This shows that Algorithm 2 is asymptotically optimal, and the probability P (maxt=1,...,T C(t) > xs)
satisfies a large deviations asymptotic lims→∞(1/s) logP (maxt=1,...,T C(t) > xs) = −I∗.

6 EXTENSIONS
The model that we introduce so far is very basic and ignores many practical complications. In this section
we discuss how we can improve the model in several directions.

6.1 Multiclass Policyholders
Suppose there are more than one type of policyholders. These types can be classified by age group,
sex, social-economic background, health condition, etc. Suppose that the arrivals of these types follow
independent random variables Nt,j , where t denotes the time and j denotes the type. Also suppose that the
types elicit different mortality random variables Tj . We let j be in the range 1, . . . , J . These assumptions
hold naturally for a Poisson arrival model with thinning probabilities.

Hence we can treat the cash outflow contributed by each type, called Cj(t), as independent cash

outflow process. We are then interested in the probability P
(
maxt=1,...,T

∑J
j=1Cj(t) > xs

)
. Note that

the logarithmic moment generating function of
∑J

j=1Cj(t) is then ψC,t(θ) :=
∑J

j=1 ψC,t,j(θ), where
ψC,t,j(·) is the logarithmic moment generating function of Cj(t). We can solve for θt using this new ψC,t(·)
to get the rate function.

The algorithm for fixed-time and finite-horizon problem remains largely the same, but instead of tilting
one type of policyholders, we have to tilt the measure for all types of policyholders using the parameter
θt simultaneously over time. The time randomization method still holds for the finite-horizon problem.

We note that the same idea can be applied to a multi-product situation.

6.2 Time-Varying Model
Suppose that the interest rate, arrivals and death distribution all vary with time in a known fashion. We
introduce the notations dt, ψN,t(·) and ft(·) to denote the interest rate, the logarithmic moment generating
function of arrivals and the probability mass function of death time for an arrival at time t. Also define
Dl,k =

∏k
j=l dj .

The logarithmic moment generating function of C(t) is then

ψC,t(θ) =

t∑
k=0

ψN,k

(
log

(
M∑
i=1

fk(i)ht,k(i)D1,k

))

where

ht,k(i) =

{
At,k(i)− at,k(i) for i ≤ t− k
−at,k(t− k) for i > t− k

and At,k(i) = b(i)Dk+1,i and at,k(i) =
∑i−1

j=0 p(j)Dk+1,j .
The rest is the same as before. In particular, the large deviations asymptotic, fixed-time and finite-

horizon importance samplers remain. We can even use different policies at different times i.e. premium
pk(i) and bk(i) depends on the arrival time k.

6.3 Markov Economic Environment
Suppose now that there is an underlying finite state space Markov chain Yt ∈ S that controls the parameters
in the system i.e. interest rate, arrival and death time distribution at time t. This case can be reduced easily
to the time-varying scenario. More precisely, suppose we want to find the finite-horizon ruin probability.
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In running the simulation, we first sample the Markov states from time 0 to T . This realizes the values of
the parameters in the system. Now this time-varying system can be simulated using the same procedure as
above. It can be shown by similar argument as Theorem 1 that asymptotic optimality and large deviations
asymptotic still remains, now with the exponential decay rate I∗ := mint=1,...,T,y∈ST It,y, where It,y is the
rate function of the fixed-time probability given Y := {Yt}t=1,...,T = y ∈ ST . We further note that the
Markov assumption is not crucial, as other finite dimensional processes would work as well.

6.4 Operational Cost
There are a few ways to incorporate operational cost. If cost is incurred every time a contract is signed,
then we merely modify the first premium to be p(0)− c where c is the cost. If cost is incurred when an
accident occurs, then we modify benefit to b(i) + c.

Suppose that cost is incurred over time (e.g. for infrastructure, etc.). We can then modify the initial
surplus to change in time i.e. we have a decreasing x(t) as our first passage level. In this case, we can
solve ψC,t(θ) = x(t) to get θt. The rest remains similar as before.

6.5 Policy Withdrawal
When policyholders are allowed to elapse, the contract terminal distribution will be adjusted from only
death to include withdrawal, and the payoff structure at the decrement time for the two cases would be
different. We can calculate the new decrement distribution, say f̃(i), and given that decrement occurs at
i, we calculate the probabilities, say pd(i) and pe(i), that the policyholder deceases or elapses. The cash
outflow C(t) then becomes

C(t) =
t∑

k=0

[
M∧(t−k)∑
i=1

Nk(i)∑
j=1

[(A(i)− a(i))dkId(j) + (Ae(i)− a(i))dkIe(j)]

−
M∑

i=t−k+1

Nk(i)a(t− k)dkI(M > t− k)

]
where Id(j) and Ie(j) = 1− Id(j) are indicator variables to denote whether person j decrements due to
death or elapse, and Ae(i) denotes the withdrawal benefit at period i. The logarithmic moment generating
function of this new C(t) can be obtained similarly as before and the same analysis follows.

6.6 Actuarial Reserve
Actuarial reserve is the amount of back-up capital, required by statutory law and for risk control, to be set
aside by the insurance company to account for future benefit payment. This quantity is often calculated
on a contract basis, and the amount set aside for a particular contract is the expected future cost incurred
by the contract. Note that if a contract ends i.e. a policyholder deceases, nothing has to be backed up and
so the actuarial reserve is zero. However, if the policyholder still survives at time t since his arrival, then
the actuarial reserve is

Vt =

M∑
i=t+1

f(i)

F̄ (t)

b(i)di − i−1∑
j=t+1

p(j)djI(i > t+ 1)


Note that Vt can be positive or negative because of Assumption (2). Now, with the reserve requirement,
the net cash outflow of the insurance company becomes

C(t) =

t∑
k=0

M∑
i=1

Nk(i)[ht−k(i)d
k + Vt,kd

k]
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where

Vt,k =

{
Vt−k if k + i > t
0 if k + i ≤ t

We can then analyze the asymptotic and algorithmic efficiency as before.

6.7 Other Discussions
There are other important issues that are not addressed in our current model. One of them is the financial risk
involved when capital is invested. The interesting case is when the interest rate δ fluctuates in a scale close
to or larger than the fluctuation due to arrivals and deaths. Note that our Markov-modulated formulation
does not address this, since the effect of the Markov chain does not scale with s. Along the same line,
investment-linked insurance products, such as guaranteed minimum death benefit and accumulation benefit
schemes, are not tackled in our model.

Other issues include the applicability to insurance with multiple claims, a situation that arises in property
and casualty insurance as mentioned previously. There are other types of life products, such as pension and
retirement schemes, that are also subject to further investigation. Finally, an interesting future direction is
the case of correlated policyholders, for example in common shock decrements.

7 NUMERICAL EXAMPLE
We close this paper by a numerical example. Assume Poisson arrivals with rate λs and λ = 1. Also assume a
uniform mortality distribution over [1,M ]withM = 10. Set δ = 0.01 and so d = e−δ = 0.99. We use whole
life insurance with b(i) = 1 for all i = 1, . . . ,M and a uniform premium rate p(i) = p with a multiplicative
loading of 10% i.e. 0.9Ea(T ) = EA(T ). Note that in this case A(i) = di and a(i) = p(1− di)/(1− d).
Hence EA(T ) = bd(1− dM )/(M(1− d)) and Ea(T ) = p(1/(1− d)− d(1− dM )/(M(1− d)2)). The
solution is p = 0.20.

Note that Poisson arrival leads to ψN (θ) = λ(eθ − 1) and ψC,t(θ) =
∑t

k=0 λ(g(θ; t, k) − 1) with
g(θ; t, k) defined in (4). For importance sampling, the sequential exponential tilting on the arrivals leads
to a change in Poisson rate to λsg(θt; t, k) at time k ≤ t. The tilting on mortality distribution is given in
(10).

To test our algorithm, we compute the finite-horizon ruin probability P (C(t) > xs for some t =
1, . . . , T ). We set the time horizon T = 100 and the initial surplus parameter x = 0.05 (for comparison, the
expected gain to the insurance company per contract is 0.1Ea(T ) = 0.11). We run Algorithm 2 and compare
it to crude Monte Carlo. Specifically, for each s = 1, 5, 10, 15, 20, 30, 50, we run crude Monte Carlo and
Algorithm 2 each for one minute, then tabulate the estimate, relative error (ratio of empirical standard
deviation to mean), and 95% confidence interval. We can see that our importance sampler consistently
outperforms crude Monte Carlo with a smaller relative error. When s is 20 or above, crude Monte Carlo
fails to give an estimate while importance sampler still gives reasonable output.

Table 1: Results of Crude Monte Carlo Experiment

s Estimate R.E. C.I.
1 0.53 0.94 (0.45, 0.56)
5 0.074 3.53 (0.058, 0.090)
10 0.011 9.31 (0.0050, 0.018)
15 2.9× 10−3 18.6 (−3.8× 10−4, 6.1× 10−3)
20 0 N/A N/A
30 0 N/A N/A
50 0 N/A N/A
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Table 2: Results of Monte Carlo Experiment with Importance Sampling

s Estimate R.E. C.I.
1 0.49 0.62 (0.47, 0.51)
5 0.082 1.95 (0.071, 0.093)
10 0.0086 5.86 (0.0049, 0.012)
15 2.2× 10−3 6.38 (1.2× 10−3, 3.2× 10−3)
20 4.2× 10−4 9.35 (1.2× 10−4, 7.2× 10−4)
30 8.2× 10−6 11.5 (1.3× 10−6, 1.5× 10−5)
50 8.2× 10−9 17.8 (−2.5× 10−9, 1.9× 10−8)
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