
ACM Transaction on Embedded Computing System

 1

AIDA: Adaptive Application Independent Data Aggregation in Wireless Sensor Networks1
Tian He Brian M. Blum John A Stankovic Tarek Abdelzaher

Department of Computer Science
University of Virginia

{Tianhe,Bmb5v,Stankovic,Zaher@cs.virginia.edu

Abstract
Sensor networks, a novel paradigm in distributed wireless communication technology, have been proposed

for use in various applications including military surveillance and environmental monitoring. These systems
could deploy heterogeneous collections of sensors capable of observing and reporting on various dynamic
properties of their surroundings in a time sensitive manner. Such systems suffer bandwidth, energy, and
throughput constraints that limit the quantity of information transferred from end to end. These factors cou-
pled with unpredictable traffic patterns and dynamic network topologies make the task of designing optimal
protocols for such networks difficult. Mechanisms to perform data centric aggregation utilizing application
specific knowledge provide a means to augmenting throughput, but have limitations due to their lack of adap-
tation and reliance on application specific decisions. We therefore propose a novel aggregation scheme that
adaptively performs application independent data aggregation in a time sensitive manner. Our work isolates
aggregation decisions into a module that resides between the network and the data link layer and does not
require any modifications to the currently existing MAC and network layer protocols. We take advantage of
queuing delay and the broadcast nature of wireless communication to concatenate network units into an ag-
gregate using a novel adaptive feedback scheme to schedule the delivery of this aggregate to the MAC layer
for transmission. In our evaluation we show that end-to-end transmission delay is reduced by as much as 80%
under heavy traffic loads. Additionally, we show as much as a 50% reduction in transmission energy con-
sumption with an overall negative header overhead. Theoretical analysis, simulation, and a test-bed imple-
mentation on Berkeley’s MICA motes are provided to validate our claims.

1. Introduction

Wireless Sensor Networks have emerged as a new information-gathering paradigm based on the collabora-
tive effort of a large number of sensing nodes. In such networks, nodes deployed in a remote environment
must self-configure without any a priori information about the network topology or global view. Nodes will
act in response to environmental events and relay collected and possibly aggregated information through the
formed multi-hop wireless network in accordance with desired system functionality. The inherently dynamic
and distributed behavior of these networks, coupled with inherent physical limitations such as small instruction
and data memory, constrained energy resources, short communication radii, and a low bandwidth medium in
which to communicate, make developing communication protocols difficult.

Research on hardware for such devices has taken place at Berkeley [14][32][34] and various other research
institutions [26] throughout the world. Using such hardware as a basis for development, the software architec-
ture and communication stack residing on these devices are built taking into consideration the prolific research
in the areas of ad-hoc networking [10][15][17][20], data aggregation [16][21][28], cluster formation [27], dis-
tributed services [22], group formation [6], channel contention [3][5][7][19], and power conservation [4][12].
Work targeted to these devices include research in query processing (e.g. TinyDB [25]), and aggregation (e.g.
TAG [24]). Work on the utility of such innovative technologies has unearthed potential applications includ-
ing, event tracking [1], environmental monitoring, disaster relief, and search and rescue.

In this work, we address the problems of low bandwidth and energy limitations inherent to sensor devices.
These networks’ ever-changing and unpredictable state demands a self-configuring, adaptive solution. We

1 This work was supported in part by NSF grant CCR-0098269, the MURI award N00014-01-1-0576 from

ONR, and the DAPRPA IXO offices under the NEST project (grant number F336615-01-C-1905).

ACM Transaction on Embedded Computing System

 2

develop a novel adaptive application independent data aggregation (AIDA) component that fits seamlessly into
current sensor network communication stack. Our goal is to maximize utilization of the communication chan-
nel (single frequency) with energy savings coming as an ancillary benefit. With significant costs incurred
from channel contention, packet header overhead, and data padding for fixed sized packets, this work abates
such costs by employing varying degrees of data aggregation at forwarding nodes in accordance with current
local traffic patterns.

Data aggregation techniques have been extensively investigated in recent literature. Our work, as a novel
data aggregation approach, distinguishes itself from current state of the art solutions in three respects. First,
prior Application Dependent Data Aggregation (ADDA shown in Figure 1b) relies on application layer infor-
mation and must have a bi-directional interface, and therefore dependence with, the data centric routing
protocol implemented. AIDA isolates aggregation decisions from application specifics by performing adaptive
aggregation in an intermediate layer that resides between the traditional data-link and network layer protocols
(Figure 1.a). This component is generalized enough to be utilized over a wide range of applications (data types)
without incurring the costs of rewriting components to support application-specific logics. Second, no prior
work in data aggregation adapts itself to the traffic situation in a time sensitive manner. AIDA takes the timely
delivery of messages as well as protocol overhead into account to adaptively adjust aggregation strategies in
accordance with assessed traffic conditions and expected sensor network requirements. Simulation results
show that AIDA can adapt to varying traffic situations and dramatically reduce network congestion and trans-
mission energy consumption. Third, previous data aggregation schemes (e.g., data centric routing [16]) per-
form in-network processing to reduce the amount of application data transmitted. These in-network processes
(e.g. averaging) can achieve higher degrees of aggregation; however data are less available to the application
(e.g. standard deviation of the data set can not obtained from the average). In contrast, AIDA performs loss-
less aggregation allowing the upper layer to decide whether information compression is appropriate at the time.
Very important, our design enables AIDA to remain complementary to other data aggregation strategies
(Figure 1.c) while providing significant timesaving benefits in the lower layers of the communication stack.

Figure 1: Architectural Designs

This paper attempts to address the aforementioned problems through a novel adaptive time sensitive data
aggregation component. As an introduction to sensor networks, and to provide a more in depth discussion of
the type of research taking place within this field, we begin section 2 with a discussion of related and ongoing
work. Section 3 addresses the need for adaptation, data aggregation, and real-time data delivery. Section 4
then presents specific details about our protocol. Sections 5 and 6 describe our simulation environment, the
type of experiments run, and a discussion of the results we obtain in both simulation and in the Berkeley
MICA test-bed. Finally, we conclude in Section 7.

2. Leveraging Previous Work

Efforts to maximize channel utilization have been spread across various layers of the sensor network
communication stack. Starting at the MAC layer, these include attempts to minimize collisions through con-
tention-based mechanisms designed for a lossy wireless medium. Such work includes 802.11 [3], MACA [19],
MACAW [5], FAMA[7], S-MAC[31], and Multi-Hop Scheduling [18], to name a few. All of these solutions

ACM Transaction on Embedded Computing System

 3

reside within the data-link layer of the communication stack and, therefore, can coexist with the higher layer
aggregation component we provide.

Similar to the data link layer the network layer, and more specifically the routing component, has brought
about significant efforts to avoid congestion and maximize use of the communication medium. Such schemes
include distributing the traffic load to route around congestion [10] and using a minimal hop path to reduce the
total number of transmissions [29]. Beyond the routing layer the communication stack in sensor networks be-
comes more amorphous. Clustering [27], group formation [6], and other higher layer hierarchical components
serve to combine node responsibilities and come to consensus on what data to send. Often such information is
application specific and must rely on a general understanding of exactly what the network is tasked to do. Ad-
ditionally, the hierarchical and grouping components often utilize various forms of data aggregation through
consensus algorithms or other forms of local processing.

Basic schemes [16] for the aggregation of data include the Center at the Nearest Source (CNS), where data
is aggregated at the source nearest to the destination; Shortest Path Trees (SPT), where data is sent along the
shortest path from source to sink and aggregated at common intermediate hops along the way; and Greedy In-
cremental Trees (GIT), which builds an aggregation tree sequentially to merge paths and provide more aggre-
gation opportunities.

Expressing queries [25] and utilizing those queries for data aggregation [24] present opportunities for in
network data aggregation. An extremely popular data aggregation scheme for sensor networks, Directed Dif-
fusion [15][11], is a data-centric architecture where named (application specific) data gets propagated along
paths back to the requestor. Effective paths are reinforced as they are used to optimize communication from
point to point. Specifically designed for sensor networks, Directed Diffusion aggregates data along these rein-
forced paths to reduce the quantity of data transmitted across the network. Similarly Data Placement [28] is
designed for applications where multiple sinks coexist and use in-network caching to update and distribute
data to leaf nodes at the minimally requested rate. LEACH [12] is a high layer protocol that provides cluster-
ing and local processing to aggregate sensor data and reduce global communication. Many other data aggrega-
tion schemes exist that also provide network, transport, and application level mechanisms taking advantage of
application specific knowledge about the data in question. All of these schemes reside either at or above the
network layer and are orthogonal and can coexist with our work.

Aggregation scheme comparison studies have demonstrated the effect of network parameters and the util-
ity of aggregation mechanisms in a wide variety of applications [16][21]. These studies discuss potential sav-
ings that aggregation can provide and are noted to explicate the potential for such work to improve network
throughput.

To date, very few sensor network papers have addressed the need for incorporating adaptive behavior into
their protocols. Sensor networks exhibit complex distributed behavior rendering static pre-configuration ut-
terly useless as network traffic, often initiated by environmental events of interest, transitions from one ex-
treme to another. Several protocols have taken a first stab at addressing the need for adaptive behavior in such
dynamic networks. RAP [23] and SPEED [10] utilize locally available information to adjust priority levels or
make more informed routing decisions in response to network congestion and changing traffic patterns. SPIN
[13] makes adaptive decisions to participate in data dissemination based on current energy levels and the cost
of communication. In [32], A. Woo uses adaptive rate control at the data-link layer to fine tune contention pa-
rameters in response to local traffic conditions. GAF [30] monitors network connectivity and turns nodes
on/off to adapt network density for energy-conservation. While many more examples of online adaptation
exist, these solutions provide relevant examples of how adaptation is beneficial in dynamic and unpredictable
sensor networks and serve as a starting point to introduce adaptive behavior into these complex systems.

In addition to maximizing channel utilization and adapting to dynamic network conditions, energy conser-
vation has become a central focus in sensor network research. Similar to data aggregation, work in energy
conservation for sensor networks has been considered at various levels of the communication stack. Aside
from minimizing power consumption at the hardware level [26], MAC layer protocols developed for energy
savings mostly take advantage of overhearing and scheduling to allow nodes to sleep while they are not trans-
mitting or receiving messages [8][12][29]. At the network and routing layers, schemes work to minimize
power along the transmission path [28], set routes according to the energy remaining at nodes along that path

ACM Transaction on Embedded Computing System

 4

[33], and use mechanisms to save power through the distribution of messages among various paths from
source to destination [10]. Finally, higher layer protocols that often incorporate routing semantics exist to
form groups and rotate leadership responsibilities allowing non-leader nodes to sleep and conserve their en-
ergy [4]. Again all of these protocols involve layered decisions that should adhere to strict modular program-
ming interfaces allowing our work to coexist with them.

3. Analysis of the Problem

Various studies of throughput and channel utilization for wireless ad hoc networks have identified the lim-
its of sensor networks due to asymmetric channels, multi-hop interference, high traffic density, and unpredict-
able communication patterns. To minimize such problems, mechanisms for contention have been introduced to
notify neighbors of a node’s intention to send a message. While such mechanisms have proven effective in
minimizing collisions and, therefore, make better use of the channel, the overhead involved in sending control
messages remains significant. Aside from control overhead incurred during handshake, additional idle time is
spent listening to the channel and backing off to determine when it is appropriate to initiate channel contention.
Such properties create ample opportunity for improvement.

If it is possible to reduce the number of control messages sent while still distributing information about a
node’s communication intentions, it would save significant time and energy by reducing the total number of
messages and time spent contending for the channel. One mechanism for achieving such a feat is through ap-
plication dependent data aggregation (ADDA). The merging of data that maintain common properties (seman-
tics) and are destined for the same node has been a common approach to reducing traffic. While such
mechanisms have proven effective in reducing traffic and easing congestion, several issues that limit the extent
to which they are evolvable provide us with insight into developing an application independent aggregation
(AIDA) mechanism.

 Due to the nature of application specific aggregation, such mechanisms require the appropriate naming
of data and require that lower level protocols performing such aggregation have knowledge and logic
to support these naming semantics. As a result, in an application specific aggregation scheme, the
logic of the components will need to be changed every time the operation or task changes. For exam-
ple, different aggregation logic may be needed for mapping, counting, averaging, standard deviation,
etc. The more operations the applications have the more specific the aggregation logic needs to be,
leading to time consuming modifications and a cumbersome design. AIDA seeks a solution without
such cross-layer dependencies in order to be utilized over a wide range of data types and applications
without incurring the costs of rewriting components. This reduction of inter-layer dependencies leads
to a lower cost to system evolvability.

 Pervious aggregation schemes combine application specific data through consensus algorithms, aver-

aging functions, or by some other mathematical manipulation of data, resulting in a loss of information.
Because such schemes bind algorithms to the application and make it difficult to control the degree of
information loss we seek a solution that performs lossless aggregation in a more general context.

 The sensor networks we envision will be multi-purpose systems. These systems should therefore sup-
port aggregation across different data types. An ADDA scheme will be limited and somewhat ineffec-
tual as it is hard to aggregate temperature readings with light readings in an application specific way.
We desire a solution that allows us to aggregate traffic originating at various application protocols
without any knowledge of the application that generated this data.

 To properly aggregate named data from a common source, one must associate both location and time
to that data to ensure that information is not lost or inappropriately merged. For example, reports on
temperature from the northeast corner of a network should not be combined with temperature reports
from the southwest corner just because they share a common type. Any aggregation performed must
therefore be time and direction sensitive to ensure that data received at the requester remains meaning-
ful.

ACM Transaction on Embedded Computing System

 5

 Current aggregation schemes assume that more aggregation is always better. As sensor network traf-
fic changes, there exist times when varying degrees of aggregation are necessary to optimize commu-
nication and augment throughput. However at other times aggregation simply acts to delay data
transmission. AIDA utilizes feedback control based on network traffic conditions when making ag-
gregation decisions to adaptively optimize bandwidth while minimizing system energy consumption,
which is underexploited by pervious schemes [16][21][24][25][28]

Application dependent data aggregation (ADDA) schemes have proven to be effective solutions for sensor

networks. Given the research issues underexploited by such schemes, we seek a value-added solution that
adapts to changing network conditions, improves the networks use of bandwidth, is simple and fast, has lim-
ited overhead, performs aggregation without loss of information, and considers the timeliness of end-to-end
traffic. In addition, we require a solution that performs aggregation transparent to other components. This will
allow AIDA to work with, or exist independently of, other communication protocols so that AIDA can lever-
age the performance and maintain the benefit inherent to existing ADDA schemes.

4. Protocol Design

Our solution is an aggregation layer module that resides between the data-link and networking layer to ag-
gregate packets through network unit concatenation. The aggregation component combines network units into
a single outgoing AIDA payload to reduce the overhead incurred during channel contention and acknowledg-
ment. No semantics of the data in the network units are used. Aggregation decisions are made in accordance
with an adaptive feedback-based packet-scheduling scheme that dynamically controls the degree of aggrega-
tion in accordance with changing traffic conditions.

4.1. AIDA Architecture Design
The basic design of AIDA is shown in Figure 2. We separate AIDA functionality into two components.

One is the functional unit that aggregates and de-aggregates network packets (units). The other is the AIDA
Aggregation Control Unit, employed to adaptively control timer settings and fine-tune the desired degree of
aggregation.

Figure 2: AIDA Components

The protocol works as follows: Packets from the network layer are placed into an aggregation pool. Ac-
cording to the number of packets to be concatenated in one aggregate and the next-hop destinations of those
packets, AIDA’s Aggregation Function Unit chooses one of four AIDA packet formats (Described in depth in
section 4.3) to build an aggregate and passes this aggregate down to the MAC layer for transmission. The de-
cision of how many packets to aggregate and when to invoke such aggregation is left up to the AIDA Aggre-

ACM Transaction on Embedded Computing System

 6

gation Control Unit, a feedback based adaptive component which makes on-line decisions based on local cur-
rent network conditions.

Similar to outgoing traffic, incoming traffic is received at the MAC layer and passed up to AIDA. Within
AIDA the incoming aggregates are re-fragmented into their original network units of which each piece of the
aggregate is passed up to the network layer for re-routing or application de-multiplexing and delivery. Al-
though we acknowledge that many aggregates may be bound for the same ultimate destination (it could be
more efficient not to de-aggregate and re-aggregate at every intermediate node), we perform such de-
aggregation to ensure the modularity of layers and allow the networking component to determinate routes in-
dependently for each network unit.

The aggregation of multiple network units into a single AIDA aggregate for transmission reduces the
overhead of channel contention (wait/backoff) and the transmission overhead of control packets (such as
RTS/CTS/ACK in 802.11 [3], RTS/CTS in MACAW [5], ACK in regular reliable MAC) so that these costs
are incurred once per aggregate. By increasing the number of network units combined into a single AIDA ag-
gregate (referred to as the degree of aggregation [DOA]), we are able to save [DOA – 1] * [contention time]
msec on each transmission.

While the aforementioned AIDA function unit is straightforward, it is an intricate research problem to de-
sign an adaptive AIDA control unit to set appropriate timing and DOA parameters online. As we show in our
evaluation section, different control schemes do have a huge impact on system performance. More detail on
these control schemes are provided and discussed in section 4.2.

Figure 3: AIDA Implementation Design

To keep AIDA transparent from other protocol layers, we use a delegation approach to intercept all func-
tion calls between the MAC and Network layer. The networking component assumes it is talking directly to
the MAC layer and vice versa. Using this method, our data aggregation layer imitates the interfaces exposed
by both the MAC and Networking layer. The stack resulting from this technique appears in Figure 3.

4.2. Aggregation Schemes in AIDA control Unit
To better understand the effect of aggregation and our success in building an adaptive solution, we design,

implement, test, and compare several versions of AIDA. Versions of our architecture include the FIX, On-
Demand and Dynamic Feedback schemes. These schemes range from aggregation decisions based on static
thresholds to our ultimate solution that incorporates a dynamic online feedback control mechanism into our
protocol. A baseline without aggregation is also provided for comparison. Details of these implementations
are provided in this section.

4.2.1. No Aggregation
With no aggregation (the baseline scheme), we simply employ the normal network stack without modifica-

tion passing packets directly from the network protocol to the MAC protocol and vice versa.

ACM Transaction on Embedded Computing System

 7

4.2.2. Fixed Scheme
In the fixed scheme (FIX), AIDA aggregates a fixed number of network units into each AIDA payload

(DOA = Nfixed). When this fixed number of network units has been aggregated, the AIDA payload is passed
down to the MAC layer for transmission. To ensure that network units don’t wait an indefinite amount of time
before being sent, we also incorporate a timeout value (Tfixed) into this scheme to ensure that aggregation is
performed, regardless of the number of network units, within some time threshold. The design of the FIX
scheme is shown in Figure 4.

MAC

AIDA

Network

Input
Queue

Input
 Queue

Aggregate
Pool

AggregatorDe-Aggregator

Network
Output Queue

Counter
&

Purge Timer

Select

Activate

Reach Limit
TimeOut

Activate

Prioritized
Output Queue

Figure 4: AIDA FIX scheme Figure 5: AIDA On-Demand scheme

4.2.3. On-Demand Scheme
To prevent unnecessary per hop delay, our On-Demand scheme monitors the AIDA output queue to ensure

that there is always an AIDA payload resident for MAC layer dequeing and transmission. When the MAC is
available for transmission, no network units will be held back by the AIDA layer in an attempt to achieve a
higher DOA (unless the maximum MAC unit size is reached). AIDA layer data aggregation only takes place
when time is available (the outbound message queue has built up or the medium is busy preventing the MAC
layer from accessing the channel). This scheme provides virtually transparent aggregation without incurring
message delay costs. The inner works of the On-Demand scheme is shown in Figure 5. It is worth noting that
the On-Demand Scheme is a reactive solution, where passive measures allow the DOA to dynamically change
with varying traffic patterns. When there is little traffic, the outbound message queue rarely builds up and no
aggregation is performed. As traffic increases, the length of the outbound message queue increases resulting
in a proportional increase in the DOA.

As shown in Figure 5, the On-Demand scheme only requires simple monitoring logic to test whether the
outbound queue is empty or not. This simplicity of code is preferable for a constrained sensor node. It should
be noted that by aggregating a train of network units with one MAC header per aggregate, ON-Demand
scheme can reduce the header overhead than the scheme that plainly flushes all packets out in the queue.

4.2.4. Dynamic Feedback Scheme (DYN)
Our ultimate solution, the Dynamic Feedback scheme (DYN), implements a combination of on-demand

and fixed aggregation where the DOA threshold (NDYN) is adjusted dynamically. As shown in Figure 6, the
scheme works by monitoring the AIDA output queue to determine its availability while also collecting data on
the queuing delay imposed on AIDA payloads awaiting transmission. Using this information and operating
under the basic premise of control theory, our aggregation mechanism dynamically adjusts the degree of ag-
gregation (DOA=NDYN) to converge MAC delay to a certain set point. This scheme begins with NDYN set to

ACM Transaction on Embedded Computing System

 8

one. In the case of low network traffic, DYN will default to the On-Demand mechanism delivering packets to
the MAC transmission queue as soon as they are ready. As network traffic builds up and the contention delays
transmission, our feedback loop adjusts our admission threshold (NDYN) to allow a greater degree of aggrega-
tion prior to sending.

Figure 6: AIDA Dynamic Feedback scheme

Feedback Control Design:
Intuitively, an algorithm based on heuristics rather than theoretical foundations can be used to adjust the

DOA values to affect the MAC layer delay a packet experiences. When the MAC delay increases, the DOA
threshold increases to lower the feeding rate to the MAC layer. As a result, fewer nodes participate in channel
contention leading to a lower MAC delay. However, since heuristic feedback control lacks knowledge of sys-
tem dynamics, it is subject to over or under reaction and cannot adapt to the system well. This warrants the
development of an analytical model to reveal the dynamics between DOA values and the MAC layer. Such a
model serves as a guide for developing an appropriate feedback controller.

It is common practice to use a time slotted approach (e.g. in ALHOA and CSMA) to analyze the perform-
ance of contention-based protocols and establish a system model. Here while our approach does not assume a
slotted MAC, we adopt this analysis technique to simplify problem formulation. The modeling process goes as
following:

A general form for calculating MAC delay can be defined as

 * Dks#collision DkD resloveminimummac)()(+= (1)

where Dmac(k) is the MAC delay packets experience during time period [k,k+1], Dminimum is the MAC delay
when no collision is experienced, and it is the performance set point that control loop wants to achieve.
#collisions(k) is the number of collisions a successful transmission will encounter at time interval [k,k+1],
and Dreslove is the collision delay plus the time to resolve a single collision, also considered to be a constant.
It should be noted that (1) establishes the model for the MAC layer. The wait delay to build an AIDA
packet is traffic-dependent and should not be considered in MAC modeling process.

Assume at a certain time interval N(k) packets from different sensor nodes are ready for transmission. Sta-

tistically, AIDA will pass down only an average of N(k)/DOA(k) packets to actively compete for the channel.
DOA(k) here is the average DOA values of the all nodes who compete for the channel. We denote the prob-
ability of a packet being transmitted at this time period by the symbol τ. This τ value is a function of the type

ACM Transaction on Embedded Computing System

 9

of MAC protocol. An outgoing packet encounters a collision when it overlaps with the transmission of at least
one other packet from the remaining N(k)/DOA(k)-1 packets. Accordingly, the average collision probability P
can be calculated as

1/)1(1 1)(/)(≥−−= − DOANp kDOAkNτ (2)

 Naturally, the average number of transmissions required for each successful transmission is

)1(

1
)1(#

p
collsionsE

−
=+

(3)

Substituting (2) into (3) gives us the expected number of collisions each successful transmission will en-
counter.

1/1
)1(

1
)(#

1)(/)(
≥−

−
= − DOANcollsionsE

kDOAkNτ

(4)

Combining (1) and (4) then gives us the approximate correlation between the DOA values and the MAC layer
delay

[])(

)(
1

)1()(kDOA

kN

resloveresloveminimummac D DD kD
−

−+−= τ
(5)

Since Dminium, Dreslove and τ are independent of DOA values, we calculate the differential of equation (5)

and get the small-signal model for the system:

)(
21

)(

1

22
1

)1(),1)(()1(*

)()()1(

)(
)(

)()1(

kN
reslove

kDOAmacmac

Ln(kNDwhere

kDOAkDOAkDOA

kDOA
kDOA

kDkD

−−=−−=








∆+=+

∆+=+

τλττλ

λλ

(6)

 Because 1λ and 2λ are independent of the DOA, they can be considered constant in the vicinity of a

small signal control model. Note that the goal of this approximate model (6) is not used to precisely calculate
MAC delay under different DOA settings, but is used to design our controller. A tailored model can be estab-
lished by deriving on the values of 1λ and 2λ based on particular properties of the chosen MAC protocol.
However, for the sake of MAC-independence, we design a general form for our controller in accordance with
equation (6) as follows.

))(()()(*)(

)(*)()(

min
2

imummacDOA DkDkekDOAPkGwhere

kekGkDOA

−==

=∆

(7)

 In equation (7), PDOA is an implementation parameter to set the gain between the changes of DOA and the
error in MAC delay control. Thus AIDA is essentially modeled as a first-order system and therefore the gain
G(k) in equation (7) does not need to be constant for stability analysis, as long as G(k) is bounded. The picto-
rial notation of this control loop is shown in Figure 7.

)(kDOAu ∆=
∑

Figure 7: The control loop for the DYN AIDA scheme

ACM Transaction on Embedded Computing System

 10

As we will show in the evaluation, the current adaptive controller works best under a wide range of traffic
scenarios under investigation. However, we acknowledge that the modeling portion of our work has room for
improvement to precisely reflect the nonlinear behavior of the MAC contention.

4.3. AIDA Function Unit
The AIDA Aggregation Function Unit (Figure 2) is responsible for the aggregation and de-aggregations of

network units. This component builds four different types of aggregates, namely Unicast, Manycast, Multicast
and Broadcast, in accordance with the set AIDA parameters and current state of the module.

• If there is only one network unit ready when the AIDA Control Unit is ready to aggregate (e.g. a
time out occurs), the AIDA Function Unit will use Unicast to send the waiting unit out to the
specified neighboring node. In this case, no aggregation is performed.

• If all network units to be aggregated are targeting the same next-hop node, AIDA sends out an ag-
gregate using Manycast with the target specified.

• When network units to be aggregated have different next-hop addresses, the slightly more com-
plex Multicast type is used to take advantage of the broadcast nature of wireless communication.
In this case, AIDA merges network units, regardless of which neighbor each network unit targets,
into a single aggregate and uses the MAC broadcast address as the destination. Every neighbor of
the sending node will receive and de-aggregate this Multicast packet to determine whether or not a
portion of the aggregated payload was destined to it.

• Finally, the Broadcast type of AIDA is used in the case where all aggregated network units are
Broadcast messages.

Although a single packet format (Multicast) is logically enough to support all of the aforementioned sce-

narios, we argue that tailored packet formats for each scenario can reduce the AIDA header size and save
bandwidth. These savings are beneficial in a resource constrained sensor network justifying the small amount
of complexity added through AIDA typing.

4.4. Packet Format Details
Like most communication stack layers, AIDA adds meta-information to a packet in the form of a header.

This header defines the aggregation format used for later de-aggregation, de-multiplexing, and seamless deliv-
ery to the appropriate network layer protocol. This header is placed in front of all aggregated network units
and is included in the AIDA data units passed down to the MAC layer for transmission. Upon delivery at a
node, the AIDA header can then be used to validate the specific aggregation mechanism used (in the case
where multiple aggregation options are provided), assess the structure of the AIDA payload for de-aggregation,
and potentially break apart, de-multiplex, and deliver each network unit to the appropriate network layer mod-
ule.

It should be noted that by aggregating the network payloads, AIDA reduces the number of packets sent at
the MAC layer, thus actually reduce overall header cost. The general form of the AIDA header is provided in
Figure 8. Some fields inside this general form are not used for certain AIDA payload types.

Figure 8: AIDA General Header format

ACM Transaction on Embedded Computing System

 11

4.4.1. FLAG for All Types
The first component of the AIDA header is an eight bit (1 byte) flag specifying information relevant to all

aggregated network units. The Flag is composed of a Type field (2 bits), a protocol field (2 bits), and the
number of Next Headers (4 bits).

• Type Field: The Type bits are used to specify whether the AIDA packet should be treated as a Uni-
cast, Manycast, Multicast, or Broadcast.

• Protocol Field: The Protocol field (2 bits) of the AIDA Flag denotes to which network layer AIDA
should de-multiplex network units.

• Num Receiver/Units: This filed (4 bits) denotes how many headers follow. For Unicast, Manycast
and Broadcast traffic, this field is set to the number of network units inside this aggregate. For Multi-
cast traffic this field will contain the number of neighbors receiving portions of this aggregate.

4.4.2. Receiver Field for Multicast Type
The Receiver Field is only used by Multicast AIDA packets. Each field contains an ID specifying the in-

tended recipient followed by the number of network units contained in this aggregate that are destined for the
specified neighbor. In the case of Unicast, Manycast or Broadcast AIDA payloads, there is no need to differ-
entiate between receiving nodes so this field is not used.

• ID Filed: The ID field (2 bytes) contains a locally unique identifier of the node receiving a specified
number of network units.

• Num Units For this ID Field: This field is an 8 bit (1 byte) field that identifies the number of aggre-
gate network units that are destined for the neighbor specified in the ID Field.

4.4.3. Unit Field
UNIT filed is used during de-aggregation for delimiting the boundaries between network units. It consists

of a 16 bit (2 byte) field that specifies the size of each network units. In the Unicast case there is no boundary
to be identified, so the UNIT field is not used.

4.5. AIDA Header Overhead Analysis
First, it should be reminded that though AIDA introduces a new header, it actually reduces overall header

overhead by aggregating several network units into one MAC payload; For example, in 802.11 the MAC
header length is 28 bytes. To send out N network units without AIDA, the total header overhead would be
28*N bytes. Using AIDA we reduce the total header overhead to 28+AIDAHeaderSize bytes. As long as the
value of N (the DOA) is greater than 1, AIDA effectively reduces the total packet overhead incurred during
transmission.

It is simple to assess the overhead incurred during the aggregation of network units according to the de-
scription in section 4.4. For comparison, the packet structure with and without AIDA is shown in Figure 9.

Figure 9: Format Comparison

 Unicast only uses the Flag field and therefore incurs a single byte of overhead.
 Besides the 1 byte flag, Manycast and Broadcast packets need to delimitate the boundaries of multiple

network units, thus incurring an average of (2+1/N) bytes overhead per network unit (where N is the
number of network units aggregated into an AIDA payload).

ACM Transaction on Embedded Computing System

 12

 Because multiple next-hop node addresses need to be differentiated, Multicast payloads have a slightly
larger overhead on the average (2+1/N+3/M) bytes per network unit (where N is the same as before
and M is the average number of network units for each next-hop node),

4.6. AIDA Savings Analysis

Adding header information to any transmission will intuitively increase transmission time for a single

packet. We therefore only see savings in per transmission overhead costs when aggregating multiple upper
layer payloads into a single transmission. By analyzing our AIDA header structure, we can see that savings
differ for Unicast, Manycast, and Multicast transmissions. To better understand the potential benefits of aggre-
gation, and to compare different levels of aggregation under different traffic patterns, we provide a theoretical
analysis to assess overhead with respect to transmission time. The analysis presented assumes optimal aggre-
gation to the specified DOA without incurring any additional cost waiting for network layer payloads. We
also assess savings without considering collisions and backoff, two factors that will ultimately increase the
utility of AIDA.

The cost of packet transmission in the simple single sender, single receiver scenario with no channel con-
tention and an arbitrary MAC layer is the time consumed by the MAC acquiring and setting up each transmis-
sion plus the time for sending the message, all multiplied by the number of individual transmissions. To
maintain MAC layer independence, we simply assign the variable M, to the time (in msec) for performing
MAC layer transmission preparation. For an 802.11 like MAC, this cost includes the channel sense, RTS,
CTS, ACK, and intermittent wait times between control packets. For network units of size S transmitted at R
bytes/second, the AIDA header overhead is O (in bytes), and DOA is the number of packets aggregated. The
cost CAIDA (in msec) can be calculated from equation (8):

RODOASMCAIDA *)*(++= (8)

In contrast, the cost of sending DOA number of packets without the aggregation scheme CNone is

DOARSMCNone *)*(+= (9)

Hence, the percentage saving in cost is calculated as following:

DOARSM

ROM

RSM

RS

C

CC
entageSavingPerc

None

AIDANone 1
*

*

*

*

*
1)(

+
+−





+
−=

−
=

(10)

From equation 10, we can see that the saving increases as the DOA increases when the cost at the MAC

layer (M) is non-negligible. To demonstrate the utility of AIDA, we graph theoretical savings for our scheme
under an 802.11 like MAC contention scheme for a 200 Kbps channel. The AIDA payload is passed down to
a simplified 802.11 MAC that performs idle listening, RTS/CTS handshaking, and follows up each DATA
packet with an acknowledgment. The control packet size for our theoretical MAC is 11 bytes. Contention
also includes 5 msec’s of idle listening and the DIFS and SIFS intervals are chosen at 10 and 5 msec’s respec-
tively in accordance with the current MICA specifications. We graph variable size network units to better un-
derstand the effect of packet size on potential savings.

Figure 10 demonstrates theoretical time savings as a percentage of the total time it would take to send the
number of packets without AIDA. These savings are calculated by comparing the time to send a single AIDA
aggregate, consisting of [DOA] network units with one MAC header, versus the time to send [DOA] separate
packets without any AIDA header information or data aggregation performed. From this chart we can see that
as the degree of aggregation increases, the percentage of savings in time increases drastically. We also note
that as payload size increases, the relative time saving decreases. This occurs when data transmission time
becomes a larger percentage of the total transmission time. Finally, we note that when AIDA fails to perform

ACM Transaction on Embedded Computing System

 13

any aggregation as shown in Figure 10 when DOA = 1, the cost incurred is a single byte of data, which
amounts to virtually no increase in transmission time.

-10

0

10

20

30

40

50

60

70

80

1 2 4 8

Degree of Aggregation (DOA)

 S
av

in
g

s(
%

)

60 byte payloads

120 byte payloads

180 byte payloads

240 byte payloads

Figure 10: AIDA Theoretical Savings

5. Evaluation
We simulate AIDA in GloMoSim, a scalable discrete-event simulator developed at UCLA. This software

provides a high fidelity simulation for wireless communication with detailed propagation, radio, MAC, and
network layer components. Table 1 describes the detailed setup for our simulator. For our experiments the
communication parameters are mostly chosen in accordance with Berkeley MICA mote specifications [34], the
popular hardware platform on which sensor network research systems are currently deployed for testing. The
current version of the MICA motes supports a 40kbps transmission rate and the next generation is expected to
provide higher than 1Mbps rates. Based on these considerations, we choose 40 ~ 200Kb/s as the effective
bandwidth for our evaluation (default 200Kbps unless otherwise specified). Finally, we choose 802.11 as our
MAC layer protocol, which has been implemented in a scaled down version on the MICA platform.

Routing GF
MAC Layer Simplified 802.11 DCF
Radio Layer RADIO-ACCNOISE
Propagation model TWO-RAY
Bandwidth 40 ~ 200Kb/s
Payload size 32 Byte
TERRAIN (200m, 200m)
Number of Motes 100
Node placement Uniform
Radio Range 40m

Table 1. Simulation settings

Since our work is the first we know of concerning data aggregation without utilizing application informa-
tion, we evaluate our work based on different aggregation schemes we provide and a normal stack without ag-
gregation support. In this evaluation we compare the performance of four schemes: No-aggregation, FIX, On-
Demand, and DYN as previously defined. We show that DYN feedback is the best solution with better per-
formance under all traffic scenarios tested.

In our evaluation, we analyze the following set of metrics: end-to-end delay, energy consumption, MAC
control packets, degree of aggregation (DOA) and AIDA control overhead. These metrics are investigated un-
der three sets of typical traffic patterns with a total of 72 different traffic loads, which allow us to access
AIDA’s adaptation capability under a wide range of traffic situations. Each plotted data point is the average of
10 runs generated from different random seed values. This ensured that 95% confidence intervals for our data
are within 2~5% of obtained means. For legibility reasons we do not plot these confidence intervals in this
paper. Full experimental data can be obtained from the authors upon request.

ACM Transaction on Embedded Computing System

 14

5.1. Work load Settings
We expect typical communication patterns inside a sensor network to be established based on request and

retrieval semantics for data delivery between sensor nodes and a querying entity. One-to-one, many-to-one and
many-to-many communication patterns are representative workloads in sensor networks. One-to-one commu-
nication happens when one sentry node detects some activity that needs to be reported to a remote entity. Al-
ternatively, a quering entity will require periodic reports from the whole sensor area, which take the form of
many-to-one communication. It is more common that multiple applications run simultaneously and the traffic
flows interleave with each other, which is a many-to-many cross-traffic pattern.

Figure 11: Traffic Load Settings

In our evaluation we focus on the aforementioned three representative communication patterns (Figure 11).
To test the one-to-one scenario, we have a single node randomly placed on the left lower corner of our terrain
send out a single CBR flow to the right upper corner of the terrain where the average route is approximately
6~7 hops. In the many-to-one scenario, 10 nodes on the left side of the terrain send out 10 CBR flows to the
center-right side of the terrain where we place a single querying node. In many-to-many scenario, 5 nodes on
the left side of the terrain send out 10 CBR flows (2 flows for each node) to the two querying nodes at the up-
per and lower right corner of the terrain, respectively. The sending rate of each CBR flow is incrementally in-
creased to test the performance of AIDA under different traffic loads.

5.2. End-To-End Delay

5.2.1. End-to-end delay under different schemes
A major goal of the AIDA protocol is to achieve energy savings without jeopardizing end-to-end delay.

AIDA not only doesn’t add to the end-to-end delay, but in the presence of high degrees of aggregation,
actually decreases end-to-end delay by reducing the number of control packets used at the MAC layer.

Figure 12, Figure 13 and Figure 14 graph end-to-end delay as a function of traffic loads under three traffic
scenarios. These graphs show that end-to-end delay for CBR without performing aggregation increases dra-
matically as the overall traffic increases gradually. This is the typical case for multi-hop wireless networks
where channel contention is much higher than in a single hop wireless LAN, As shown in figures, when traffic
is low (e.g. below 3 packets/per flow in Figure 13), all schemes except the FIX have very short end-to-end
delay (abut 70~100ms). The reason for additional delay in the FIX scheme is because the FIX scheme holds
packets despite an available channel in order to obtain its specified degree of aggregation. The lower the send-
ing rate is, the longer the FIX scheme needs to wait. In contrast, the On-Demand and DYN schemes send out
packets whenever possible, eliminating any additional end-to-end delay. On-Demand scheme performs well
because of its reactive adaptive mechanism. The DYN scheme performs the best in all scenarios because it
dynamically adjusts the required DOA according to the MAC delay that the outgoing packets experience. In
heavy traffic, it is beneficial to reduce number of node competing for the channel by reducing sending rate. In
the presence of extremely heavy traffic, we show that DYN scheme is capable of reducing the end-to-end de-
lay by as much as 80%, compared to non-aggregation case, when flow rate at 8.5 packets/second per flow (see
Figure 14).

ACM Transaction on Embedded Computing System

 15

0

200

400

600

800

1000

1200

1400

20 26 32 38 44 50

Traffic (#packet/second per CBR flow)

E
nd

-T
o-

E
nd

 D
el

ay
 (

m
s)

None

FIX

ONDEMAND

DYN

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.6 1.8 3 4.2 5.4 6.6

Traffic (#packet/second per CBR flow)

E
nd

-T
o-

E
nd

 D
el

ay
 (

m
s)

None

FIX

ONDEMAND

DYN

Figure 12: Avg E2E delay (one-to-one 200Kbps) Figure 13: Avg E2E delay (many-to-one 200 Kbps)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.5 2.1 3.7 5.3 6.9 8.5
Traffic (#packet/second per CBR flow)

E
nd

-T
o-

E
nd

 D
el

ay
 (

m
s)

None

FIX

ONDEMAND

DYN

Figure 14: Avg E2E delay (many-to-many 200Kps)

5.2.2. End-to-end delay under different available bandwidth settings
In this experiment, we investigate the end-to-end delay under the different bandwidth settings. The work-

loads are chosen differently for each bandwidth setting in order to compare the performance of each scheme
under from underutilized to saturated traffic situations.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 3 5 7 9 11
Traffic (#packet/second per CBR flow)

E
nd

-T
o-

E
nd

 D
el

ay
 (

m
s)

None

FIX

ONDEMAND

DYN

0

500

1000

1500

2000

2500

2 10 18 26 34 42
Traffic (#packet/second per CBR flow)

E
nd

-T
o-

E
nd

 D
el

ay
 (

m
s)

None

FIX

ONDEMAND

DYN

Figure 15: E2E delay (one-to-one under 40Kps) Figure 16: E2E delay (one-to-one under 100Kps)
The Figure 12, Figure 15 and Figure 16 demonstrate that DYN scheme out performances other schemes

regardless the available bandwidth settings. This is mainly because that DYN can more effectively aggregate
and schedule the packets according to the feedback of the currently traffic situations than other schemes. Base
on such an investigation, we conclude that the improvement made by DYN scheme over other schemes is or-
thogonal to the available bandwidth setting, though the absolute performance gain may vary.

ACM Transaction on Embedded Computing System

 16

5.2.3. End-to-end delay under different DOA setting for the FIX scheme
In this experiment, we measure end-to-end delay for various traffic loads under different DOA settings in

the FIX scheme. Figure 17 reveals the disadvantage of the FIX scheme and explains why dynamic adaptability
is desired for such system. From Figure 17, we can see that there is no single DOA value that works well for
every traffic pattern.

0

2000

4000

6000

8000

10000

12000

0.5 2.5 4.5 6.5 8.5 10.5
Traffic (#packet/second per CBR flow)

E
nd

-T
o-

E
nd

 D
el

ay
 (

m
s)

DOA=1

DOA=2

DOA=3

DOA=4

0

1000

2000

3000

4000

5000

6000

7000

0.004 0.006 0.008 0.01 0.012

Energy Per Packet Deliv ered (mWh)

A
vg

 E
2E

 D
el

ay
 (

m
s)

1

2.5

3

3.5

4

5

6

Figure 17: Avg E2E delay (many-to-one) Figure 18 E2E Delay vs. Energy (many to one)

On one hand, a high DOA value in the FIX scheme doesn’t perform well under low traffic loads. For ex-
ample, when the DOA is higher than 1, additional delay is incurred when the traffic load is 0.5 packets/second
per flow or lower. The higher DOA settings tend to reduce congestion, but increase delay in the AIDA compo-
nent for packets waiting to be sent. On the other hand, low DOA value settings don’t perform well under
heavy traffic. For example, shown in Figure 17, the FIX scheme with DOA = 1 has nearly double the end-to-
end delay as that with DOA=2 when the traffic is about 10 packet/second per flow or higher.

In addition, Figure 18 demonstrates the performance penalty due to the lack of adaptability in the FIX
scheme. We plot the relationship between average end-to-end delay and average energy consumption per
packet delivered under different CBR rates form one to six packets/second. Under the light traffic (e.g. one
packets/per second per CBR), the FIX scheme needs to hold back packets in order to reduce energy consump-
tion. Under heavy traffic, (e.g. six packets/per second per CBR), the FIX scheme would cause an increase in
both delay and energy consumption by choosing a fixed DOA value that doesn’t reflect the traffic load.

The FIX scheme is insensitive to the traffic situations. To optimize for both light and heavy traffic, online
adaptation is provided in On-Demand and DYN schemes, which can passively and proactively change the
DOA value in accordance with these traffic patterns, respectively. Therefore, they exhibit a better overall per-
formance as shown in Figure 12, Figure 13 and Figure 14.

5.3. Energy Consumption
In this section, Energy consumption, in transmission energy, is adopted as another revealing metric to

evaluate the AIDA performance. Since transmission energy increases proportionally with the number of bits
sent out, it can adequately summarize and reflect the performance of other related metrics such as total header
overhead, number of collision, total number of bit transmitted bytes.

5.3.1. Energy consumption under different schemes
With limited power resources, it is vital for sensor nodes to minimize energy consumption during radio

communication to extend the lifetime of the sensor network. AIDA achieves such energy savings via several
approaches. First, AIDA reduces MAC channel contention costs by distributing these costs across multiple
network units. Second, by using less MAC control packets, AIDA dampens congestion and reduces the num-
ber of collisions resulting in fewer retransmissions. Finally, networking protocols designed for sensor net-
works usually adopt fixed packet sizes (e.g. TinyOS networking [14]), which leads to unnecessary padding
costs. In our simulation with variable size support, AIDA takes advantage of the first two approaches.

ACM Transaction on Embedded Computing System

 17

0

0.002

0.004

0.006

0.008

0.01

0.012

20 26 32 38 44 50

Traffic (#packet/second CBR flow)

E
ne

rg
y

 p
er

 p
ac

ke
t d

el
iv

er
ed

(m

W
h)

None

FIX

ONDEMAND

DYN

0

0.002

0.004

0.006

0.008

0.01

0.012

0.6 1.8 3 4.2 5.4 6.6
Traffic (#packet/second CBR flow)

E
ne

rg
y

 p
er

 p
ac

ke
t d

el
iv

er
ed

(m

W
h)

None

FIX

ONDEMAND

DYN

Figure 19: Energy per unit delivered (one-to-one). Figure 20: Energy per unit delivered (many-to-one)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.5 2.1 3.7 5.3 6.9 8.5
Traffic (#packet/second CBR flow)

E
ne

rg
y

 p
er

 p
ac

ke
t d

el
iv

er
ed

(m

W
h)

None

FIX

ONDEMAND

DYN

0

0.002

0.004

0.006

0.008

0.01

0.012

0.5 2.5 4.5 6.5 8.5 10.5
Traffic (#packet/second CBR flow)

E
ne

rg
y

 p
er

 p
ac

ke
t d

el
iv

er
ed

(m

W
h)

DOA=1
DOA=2
DOA=3
DOA=4

Figure 21: Energy per unit delivered (many-to-many) Figure 22: Energy per unit delivered (FIX scheme)

In this experiment, we measure average transmission energy per delivered packet under 24 increasing traf-
fic loads for three traffic patterns. In, Figure 19, Figure 20 and Figure 21, our energy metrics show that the
scheme without AIDA (None) demonstrates the worst performance. For example, None consumes double the
energy as the DYN scheme when traffic load is about 6 packets/second per flow in Figure 21. The FIX scheme
always aggregates 2 packets before sending which leads to nearly constant energy saving in both the low and
high traffic situation. However, in the FIX scheme, the DOA values are set and congestion levels are not taken
into account resulting in worse performance than in DYN and On-Demand schemes under heavy traffic condi-
tions. For example, shown in Figure 21, in DYN scheme, nodes consumes about 20% less energy per packet
delivered as in the FIX scheme, when traffic load is about 8 packets/second per flow.

5.3.2. Energy consumption under different DOA for the FIX scheme
Figure 22 shows energy consumption per packet delivered for varying DOA’s under the FIX scheme. This

graph shows that for the FIX scheme, AIDA can achieve a higher percentage of energy savings by using
higher DOA values. However, as we have shown in section 5.2, a higher DOA leads to additional delay when
the network is lightly loaded, therefore taking end-to-end delay into account, it is not always beneficial to in-
crease the DOA value.

5.4. MAC control packets
Even though our AIDA design is independent of any MAC layer protocol, it can reduce MAC overhead by

sending longer, but less numerous payloads to the MAC layer for transmission. This reduces the number of
channel access operations performed by the MAC. This section identifies the savings incurred through AIDA
aggregation at the MAC layer. The data collected here are for the 802.11 MAC protocol although we would
expect very similar results from other MAC protocols.

Figure 23, Figure 24 and Figure 25 graph the number of control packets sent over various traffic loads. As
shown in these graphs, the FIX scheme reduces the number of MAC control packets by approximately 50%

ACM Transaction on Embedded Computing System

 18

when the DOA parameter is set to 2. On-Demand and DYN vary their DOA and therefore incrementally re-
duce MAC overhead as network congestion levels increase. For example shown in Figure 25, when per flow
rate exceeds 9 packets/second, DYN only used about 20% of the control packets compared to the none-
aggregation case. This dramatically reduces congestion and energy consumption as shown in other evaluations.

0

5

10

15

20

25

30

20 26 32 38 44 50

Traffic (#packet/second per CBR flow)

#8
02

.1
1M

A
C

 C
on

tr
ol

P
ac

ke
ts

 (
T

ho
us

an
ds

)

None
FIX
ONDEMAND
DYN

0

5

10

15

20

25

30

0.6 1.8 3 4.2 5.4 6.6

Traffic (#packet/second per CBR flow)

#8
02

.1
1M

A
C

 C
on

tr
ol

P
ac

ke
ts

 (
T

ho
us

an
ds

)

None
FIX
ONDEMAND
DYN

Figure 23: MAC control Packets (one-to-one) Figure 24: MAC control Packets (many-to-one)

0

5

10

15

20

25

30

0.5 2.1 3.7 5.3 6.9 8.5
Traffic (#packet/second per CBR flow)

#8
02

.1
1M

A
C

 C
on

tr
ol

P
ac

ke
ts

(T

ho
us

an
ds

)

None
FIX
ONDEMAND
DYN

Figure 25: MAC control Packets (many-to-many)

5.5. Degree of Aggregation
As seen in the context of reducing the MAC overhead, the degree of aggregation is a major indicator re-

flecting AIDA’s ability to achieve energy savings and congestion dampening. Without aggregation, the DOA
always equals one (e.g. None case in Figure 26). In the FIX scheme where DOA is set to 2, we can see that a
constant value for the degree of aggregation is achieved. In the On-Demand scheme, the DOA naturally fol-
lows traffic congestion levels. In DYN, the DOA is controlled by a feedback loop embedded inside AIDA.

0

1

2

3

4

5

6

20 26 32 38 44 50

Traffic (#packet/second per CBR flow)

D
eg

re
e

of
 A

gg
re

ga
tio

n None

FIX

ONDEMAND

DYN

0

1

2

3

4

5

6

0.6 1.8 3 4.2 5.4 6.6
Traffic (#packet/second per CBR flow)

D
eg

re
e

of
 A

gg
re

ga
tio

n

None

FIX

ONDEMAND

DYN

Figure 26: DOA (one-to-one) Figure 27: DOA (many-to-one)

ACM Transaction on Embedded Computing System

 19

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 2.1 3.7 5.3 6.9 8.5
Traffic (#packet/second per CBR flow)

D
eg

re
e

of
 A

gg
re

ga
tio

n

None

FIX

ONDEMAND

DYN

Figure 28: DOA (many-to-many)

Figure 26 , Figure 27 and Figure 28 graph the achieved DOA under various traffic conditions for the tested
schemes. Figure 26 shows how DYN has roughly the same DOA value as the On-Demand scheme in the one-
to-one pattern situation. However, in the more congested situations (Figure 27 and Figure 28), DYN achieves
a higher DOA value than On-Demand resulting in more savings on channel bandwidth and energy consump-
tion.

5.6. AIDA overhead
As shown in AIDA Header Overhead Analysis (section 4.5), AIDA’s header overhead is about 3 bytes for

Multicast packets, 2 bytes for Manycast, and 1 byte for Unicast and Broadcast per network unit. Figure 29,
Figure 30 and Figure 31 graph per packet AIDA overhead under various traffic loads. As shown in Figure 30,
under many-to-one conditions, the FIX scheme will send out only Manycast packets with its DOA value set to
2. This leads to an average of 2 bytes of AIDA header overhead. When the flow rate is very low (shown by
the first two values for the FIX scheme in Figure 30), the FIX scheme times out before it can reach its aggrega-
tion level of 2. When this happens the FIX scheme sends Unicast packets resulting in a smaller average AIDA
overhead per network unit.

In one-to-one and many-to-one traffic patterns, AIDA uses Unicast when the network is not congested in
order to avoid additional delay and Manycast when congestion is apparent. This is shown in Figure 29 and
Figure 30 as congestion levels increase and the overhead approaches 2 bytes per header. In one-to-one and
many-to-one traffic patterns, no multicast packets are sent out, explaining why AIDA overhead never exceeds
2 bytes per network unit.

 On the contrary, in many-to-many situations, AIDA takes advantage of the broadcast nature of wireless
networks, uses multicast packets to address multiple next-hop nodes in a single aggregation, which require 3
bytes overhead for each multicast packet. This is shown in Figure 31 where AIDA overhead is somewhere be-
tween 2 and 3 bytes for the FIX scheme.

0

0.5

1

1.5

2

2.5

20 26 32 38 44 50

Traffic (#packet/second per CBR flow)

A
ID

A
 o

ve
rh

ea
d

pe
r

pa
ck

et
 d

el
iv

er
ed

(B

yt
e)

FIX

ONDEMAND

DYN

0

0.5

1

1.5

2

2.5

0.6 1.8 3 4.2 5.4 6.6
Traffic (#packet/second per CBR flow)

A
ID

A
 o

ve
rh

ea
d

pe
r

pa
ck

et
 d

el
iv

er
ed

(B

yt
e)

FIX

ONDEMAND

DYN

Figure 29: AIDA overhead (one-to-one) Figure 30: Aida overhead (many-to-one)

ACM Transaction on Embedded Computing System

 20

0

0.5

1

1.5

2

2.5

3

0.5 2.1 3.7 5.3 6.9 8.5

Traffic (#packet/second per CBR flow)

A
ID

A
 o

ve
rh

ea
d

pe
r

pa
ck

et
 d

el
iv

er
ed

(B

yt
e)

FIX

ONDEMAND

DYN

Figure 31: Aida overhead (many-to-many)

5.7. Comparisons and Summary
In summary, the FIX scheme does not take congestion into account and is not adaptable to changing traffic

loads. There is no single DOA value that works well for every traffic pattern. The feedback information util-
ized in the ON-DEMAND scheme is essential binary: either the MAC component is busy or free. This only
provides limited information to the controller. In comparison, DYN obtains delay information that directly
reflects the current traffic situation resulting in a better control model and, therefore, better performance.

6. Implementation on the Berkeley Mote Test Bed
We have implemented the AIDA protocol on the Berkeley motes platform with a code size of 3,840 bytes

(code is available at [9]). Three applications including data placement [28], target tracking [6], and CBR are
built and tested on top of AIDA. Due to the physical limitation on the motes, it is extremely difficult to per-
form as extensive evaluation as we did in the wireless simulator. As a result, we only present partial results
here as a study to better understand the effect of aggregation in developing a more complete adaptive solution.
More detailed evaluation on upgraded versions of motes is left as future work.

0

10

20

30

40

50

60

70

1 2 3 4 9 13 14 19 23 24

Node ID

P
ac

ke
t

S
en

t

None DOA=2

DOA=3 DOA=4

DOA=5

Figure 32: Packets Sent Under different DOA

In the experiment we use 25 motes to form a 5 by 5 grid. To evaluate the aggregation performance of
AIDA we send three CBR flows (5 bytes payload) from node 24 to node 0 (the requesting node). The experi-
ment collects the number of packets relayed by intermediate motes (1~23) and compares this with the results
obtained from a basic GF [20] protocol without AIDA. In some embedded designs, fixed packet sizes are sup-
ported for the sake of simplicity making padding costs large when sensor data payloads are small. AIDA takes
advantage of this and aggregates multiple payloads into one packet to minimize padding costs. The savings
achieved by AIDA are shown in Figure 32 graphing the number of packets sent at intermediate nodes under
various DOA settings. We demonstrate that the transmission cost (packets sent) is reduced as the DOA value

ACM Transaction on Embedded Computing System

 21

increases. For example, when the DOA value is 2, node 1 sends out nearly half as many packets as it did
without aggregation. It is worth noting that with a fixed size packet, when the DOA reaches a certain value
AIDA comes to a point where it cannot compact any more network units into the AIDA aggregate. For our
experiment and payload size this occurred when the DOA was 5. The latest version of TinyOS [14] supports
variable packet size during transmission. Under this, AIDA can achieve higher DOA values.

7. Conclusion
In this paper we introduce AIDA, an adaptive application independent data aggregation mechanism for

sensor networks. AIDA performs lossless aggregation by concatenating network units into larger payloads
that are sent to the MAC layer for transmission. Due to the highly dynamic and unpredictable nature of wire-
less communication in sensor networks, a novel feedback-based scheduling scheme is proposed to dynamically
adapt to changing traffic patterns and congestion levels. By isolating our work in a layer that sits between the
networking and data-link components of the communication stack, AIDA is able to perform such aggregation
without incurring the costs of rewriting components to upper or lower layer protocols. Moreover, very signifi-
cantly, AIDA is a value-added compatible solution that can complement and augment the gain of application
specific data aggregation (ADDA) schemes.

In our experiments we evaluate the performance gain achieved by AIDA. We show that by adaptively con-
figuring our aggregation parameter (DOA), AIDA only introduces a small header overhead (around 2 bytes per
network unit / negative overall header overhead) while reducing end-to-end delay by as much as 80% and
transmission energy by 30~50% in heavy traffic conditions. As shown in our evaluation, AIDA running in the
DYN (fully adaptive) scheme provides the best overall solution. The DYN feedback control loop dynamically
tunes our DOA threshold and sending rate to optimize aggregation performance under varying traffic condi-
tions by monitoring queuing delay to perform data aggregation without sacrificing end-to-end delay. The
MAC control overhead is also reduced to allow for more efficient channel scheduling.

A physical implementation of AIDA on the Berkeley test bed provides initial evidence of the savings ob-
tainable by an application independent aggregation scheme and pave the path for future implementations of
our adaptive control based protocol.

8. References
[1] T. Abdelazaher, B. Blum, et. al. “EnviroTrack: An Environmental Programming Model for Tracking Applications in Distributed Sensor Net-

works”. Technical Report CS-2003-02, University of Virginia 2003.

[2] M. Adamou, S. Khanna, I. Lee, I. Shin, S. Zhou, “Fair Real-time Traffic Scheduling over A Wireless LAN”, In Proceedings of the 22nd IEEE

RTSS 2001, London, UK, December 3-6, 2001

[3] ANSI/IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” ANSI/IEEE Std 802.11, 1999 Edition.

[4] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, Robert Morris “Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance

in Ad Hoc Wireless Networks”. In Proc. of the 6th ACM MOBICOM Conf., Rome, Italy, July 2001.

[5] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang. “MACAW: A Media Access Protocol For Wireless LAN’s”. In Proceed-

ings of the SIGCOMM ’94 Conference on Communications Architectures, Protocols and Applications, pages 212-225, August 1994.

[6] Brian Blum, Prashant Nagaraddi, Anthony Wood, Tarek Abdelzaher, Sang Son, John Stankovic, “An Entity Maintenance and Connection Service

for Sensor Networks,'' The First International Conference on Mobile Systems, Applications, and Services (MobiSys), San Francisco, CA, May 2003

[7] C. Fullmer and J.J. Garcia-Luna-Aceves, “Floor Acquisition Multiple Access (FAMA) for packet radio networks”, Computer Communication

Review, vol. 25, (no. 4), ACM, Oct. 1995.

[8] C. Guo, L. C. Zhong and J. M. Rabaey, "Low Power Distributed MAC for Ad Hoc Sensor Radio Networks", In Proceedings of IEEE GlobeCom

2001, San Antonio, November 25-29, 2001

[9] T. He, L. Gu, B.Blum, Jun Xie “Nest Project Source Code Base” at http://sourceforge.net/projects/vert/ Univeristy of Virginia

[10] Tian He, John A. Stankovic, Chenyang Lu, and Tarek F. Abdelzaher, “SPEED: A Stateless Protocol for Real-Time Communication in Sensor

Networks”, In International Conference on Distributed Computing Systems (ICDCS 2003), Providence, RI, May 2003.

[11] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan. “Building Efficient Wireless Sensor Networks with Low-

Level Naming,” In Proceedings of the Symposium on Operating Systems Principles, Lake Louise, Banff, Canada, October, 2001.

ACM Transaction on Embedded Computing System

 22

[12] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-Efficient Communication Protocol for Wireless Microsensor Networks”, In

HICSS '00, January 2000.

[13] W.R. Heinzelman, J. Kulik and H. Balakrishnan, “Adaptive protocols for information dissemination in wireless sensor networks”, In MOBICOM,

1999, Seattle, 174-185.

[14] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “ System architecture directions for network sensors,” in ASPLOS 2000.

[15] C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks,” the

Sixth Annual International Conference on Mobile Computing and Networks (MobiCOM 2000), August 2000, Boston, Massachusetts.

[16] C. Intanagonwiwat, D. Estrin, R. Govindan, and J Heidemann. “Impact of Network Density on Data Aggregation in Wireless Sensor Networks”,

In Proceedings of the 22nd International Conference on Distributed Computing Systems, Vienna, Austria, IEEE. July, 2002.

[17] David B. Johnson and David A. Maltz. “Dynamic Source Routing in Ad Hoc Wireless Networks”. In Mobile Computing, Chapter 5, pages 153-

181, Kluwer Academic Publishers, 1996.

[18] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. W.Knightly, “Distributed Multi-Hop Scheduling and Medium Access with Delay and

Throughput Constraints”, In IEEE MobiCOM 2001, Rome, Italy, July 2001.

[19] Phil Karn. “MACA – A New Channel Access Method for Packet Radio”. In ARRL/CRRL Amateur Radio 9th Computer Networking Conference,

pages 134-140, September 1990.

[20] Karp, B., “Geographic Routing for Wireless Networks”, Ph.D. Dissertation, Harvard University, Cambridge, MA, October, 2000.

[21] B. Krishnamachari, Deborah Estrin, and Stephen Wicker. “Impact of data aggregation in wireless sensor networks”. In International Workshop on

Distributed Event-Based Systems, Vienna, Austria, July 2002.

[22] Alvin Lim, "Distributed Services for Information Dissemination in Self-Organizing Sensor Networks," the Special Issue on Distributed Sensor

Networks for Real-Time Systems with Adaptive Reconfiguration, Journal of Franklin Institute, 2001.

[23] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He, “RAP: A Real-Time Communication Architecture for Large-Scale Wireless

Sensor Networks”, In IEEE RTAS 2002, San Jose, CA, September 2002

[24] S. R. Madden, M. J. Hellerstein, and W. Hong. “TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks”, In Proceedings of the ACM

Symposium on Operating System Design and Implementation (OSDI), Dec. 2002.

[25] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “The Design of an Acquisitional Query Processor for Sensor Networks.”, SIGMOD,

June 2003

[26] Rex Min, Manish Bhardwaj, Seong-Hwan Cho, Amit Sinha, Eugene Shih, Alice Wang, and Anantha Chandrakasan, “An Architecture for a

Power-Aware Distributed Microsensor Node”, 2000 IEEE Workshop on Signal Processing Systems (SiPS '00), October 2000

[27] Radhika Nagpal and Daniel Coore, “An Algorithm for Group Formation in an Amorphous Computer”, In Proceedings of the 10th International

Conference on Parallel and Distributed Computing Systems (PDCS'98), Nevada, Oct 1998.

[28] Sagnik Bhattacharya, Hyung Kim, Shashi Prabh, Tarek Abdelzaher , “Energy-Conserving Data Placement and Asynchronous Multicast in Wire-

less Sensor Networks,” The First International Conference on Mobile Systems, Applications, and Services (MobiSys), San Francisco, CA, May 2003.

[29] H.Takagi and L.Kleinrock. “Optimal Transmission Ranges For Randomly Distributed Packet Radio Terminals”. IEEE Trans. on Communication,

32(3):246-257, March 1984

[30] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed Energy Conservation for Ad Hoc Routing,” ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom 2001), Rome, Italy, July 2001.

[31] Wei Ye, John Heidemann and Deborah Estrin, “An Energy-Efficient MAC Protocol for Wireless Sensor Networks”. In Proceedings of the 21st

International Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), New York, NY, USA, June, 2002.

[32] A. Woo and D. Culler. “A Transmission Control Scheme for Media Access in Sensor Networks,” ACM/IEEE International Conference on Mobile

Computing and Networks (MobiCOM 2001), Rome, Italy, July 2001.

[33] Yuan Xue, Baochun Li. , “A Location-aided Power-aware Routing Protocol in Mobile Ad Hoc Networks”, in Proceedings of IEEE Globecom

2001, Vol. 5, pp. 2837-2841, San Antonio, Texas, November 25-29, 2001

[34] http://www.xbow.com/Products/Product_pdf_files/MICA%20data%20sheet.pdf

