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Abstract:
In this article we present a generalization of a Leibniz’s theorem in geometry and
an application of this.

Leibniz’s theorem. Let M be an arbitrary point in the plane of the triangle ABC,
1
then MA’+ MB* + MC* = §(a2 +b>+¢*)+3MG*, where Gis the centroid of the

triangle. We generalize this theorem:

Theorem. Let’s consider A,,A,,...,A, arbitrary points in space and G the centroid

of this points system; then for an arbitrary point M of the space is valid the following
equation:

D MA; -1 D AA+n-MG’.
i=1 Nicicj<n

Proof. First, we interpret the centroid of the n points system in a recurrent way.

If n=2 then is the midpoint of the segment.

If n =3, then it is the centroid of the triangle.

Suppose that we found the centroid of the n—1 points created system. Now we join
each of the n points with the centroid of the n—1 points created system; and we obtain
n bisectors of the sides. It is easy to show that these n medians are concurrent segments.
In this manner we obtain the centroid of the n points created system. We’ll denote G,
the centroid of the A,, k=1,2,...,i—1i+1,...,n points created system. It can be shown

that (n—1)AG = GG, . Now by induction we prove the theorem.
If n=2 the MA! + MA; = %AIAZZ +2MG’
or
MG = %(2 (MA} + MA?)),

where G 1is the midpoint of the segment A,A,. The above formula is the side bisector’s
formula in the triangle MA/A,. The proof can be done by Stewart’s theorem, cosines



theorem, generalized theorem of Pythagoras, or can be done vectorial. Suppose that the
assertion of the theorem is true for n =k . If A,A,,...,A, are arbitrary points in space, G,

is the centroid of this points system, then we have the following relation:
ZMA2 =— z AA’ +k MG .
1<1<]<k

Now we prove for n=k+1.

Let A,,, ¢ {AI,AZ,...,Ak,GO} be an arbitrary point in the space and let G be the
centroid of the A,A,,...,A,,A,,, points system. Taking into account that Gis on the
segment A,,,G, and k-A,,,G=GG,, we apply Stewart’s theorem to the points
M, G,, G, A,,,, from where:

MA1§+1 -GG, + MG; GA,, — MG* AnGy = GG, - GA, - ALG
: : . k
According to the previous observation A, ,,G = ﬁAk”GO
+
k

and GGO = mAkHGO .
Using these, the above relation becomes:
k
MA], +k-MG; = ﬁAkHGg +(k+1D)MG*.
+
From here

k
1
k-MGy =) MA}—— > AAl.
i=1 1<i<j<k

From the supposition of the induction, with M = A, ,, as substitution, we obtain

k
ZAiAf_— D> AA +k-ALG,
i=1 1<1</<k

and thus

k
mp‘wl R ZAA(H

Substituting this in the above relation we obtain that

k+1 ) 1 1 k s )
2 MA [k k(k+l)j > AA HgAAm(kH)MG =

i=1 I<i< j<k
1
- A +(k+1)MG?.
|(4‘11<i<zj<:k+1A1 j+( ’ )

With this we proved that our assertion is true for n=k+1. According to the
induction, it is true for every n > 2 natural numbers.

Kk + 1)1<z AR

i<j<k

Application 1. If the points A,,A,,...,A, are on the sphere with the center O and
radius R, then using in the theorem the substitution M = O we obtain the identity:

0G’ RZ—— > AA.

n I<i<j<n



. 1
In case of a triangle: OG* = R* — 5 a’+b’+¢’ )

1
In case of a tetrahedron: OG> = R* — E(a2 +b++d e+ [P )

Application 2. If the points A ,A,,...,A, are on the sphere with the center O and
radius R, then >  AA’ <n’R’.

I<i<j<n
The equality holds if and only if G =0 . In case of a triangle: a” +b*> +c¢> <9R*,
in case of a tetrahedron: a” +b”> +c> +d*> +e* + f> <16R>.

Application 3. Using the arithmetic and harmonic mean inequality, from the
previous application, it results the following inequality:

L (n-1)
2 AAJ?Z 4R?>

I<i<j<n

in case of a tetrahedron:

Application 4. Considering the Cauchy-Buniakowski-Schwarz inequality from
the Application 2, we obtain the following inequality:

I<i<j<n 2

In case of a triangle: a+ b+ ¢ <3V 3R , in case of a tetrahedron:
a+b+c+d+e+ f<4J6R.

Application 5. Using the arithmetic and harmonic mean inequality, from the
previous application we obtain the following inequality

z 1 (n 1)y/n(n-1
1<i<j<n AAz - ZR\/— )
1

) 1 3
In case of a triangle: —+ Z +—2> ? , in case of a tetrahedron:
a c

a b ¢ d e f R\N2

Application 6. Considering application 3, we obtain the following inequality:

1 1
: (n ) (k;m A j(l<§<n AAK ] <




(M +m)*n*(n-1) ¢ n(n—1)

1S even,
< 16M -m
- 22 12 _ _ 2 _
(M +m)’n“(n—-1)"—4(M —m) n(n—1) s odd
16M -m 2

where m = min JA,A} } and M = max A A} } In case of a triangle:

2M?* +5M -m+2m*
9< ak+bk+can’k+b’k+c’k)£ mrem ,
M- -m

in case of a tetrahedron:
(M + m)2
M-m

IA

36£(ak+bk+ck+dk+ek+ fk)(a‘k+b‘k+c‘k+d‘k+e‘k+ f‘k)

Application 7. Let A,A,,...,A, be the vertexes of the polygon inscribed in the
sphere with the center O and radius R. First we interpret the orthocenter of the
inscribable polygon A/A,...A, . For three arbitrary vertexes, corresponds one orthocenter.

Now we take four vertexes. In the obtained four orthocenters of the triangles we construct
the circles with radius R, which have one common point. This will be the orthocenter of
the inscribable quadrilateral. We continue in the same way. The circles with radius R
that we construct in the orthocenters of the n—1 sides inscribable polygons have one
common point. This will be the orthocenter of the n sides, inscribable polygon. It can be
shown that O, H, G are collinear and n-OG = OH . From the first application

OH? = n’R2 _IZ,: AN

and

GH?=(n-1)’'R (1—-} > AAL.

I<i<j<n

4
In case of a triangle OH”> =9R* —(a’ +b” + cz) and GH® = 4R° —g(a2 +b° + cz).

Application 8. In the case of an AA,..A, inscribable polygon > AA’ =n’R’

I<i<j<n
if and only if O=H =G . In case of a triangle this is equivalent with an equilateral
triangle.

Application 9. Now we compute the length of the midpoints created by the
AA,,...,A space points system. Let § = {1, 2,011+ 1,...,n} and G, be the centroid
of the A,, k €§, points system. By substituting M = A, in the theorem, for the length of
the midpoints we obtain the following relation:

AG} = ZA Al - > AAl

keS ) u,veSu#y



2([92 +c? )— a’

Application 10. In case of a triangle m’ = and its permutations.

From here:

m? +m; +m? :E(a2+b2+c2),

4

2
m’ +m, +m’ £—7R2,

4
m,+m, +m, SER.

1
. . 2 _ -~ 2 2 2\ 2 2 2
Application 11. In case of a tetrahedron m, = 5 (3(a +b" +c ) (d +e +f ))

and its permutations.
From here:

S =5 (Za).
, 64
Zma < 9 R,
16

m, <—R.
3

Application 12. Denote m, , the length of the segments, which join midpoint of

the a and f skew sides of the tetrahedron (bimedian). In the interpretation of the
application 9m_ , = i(b2 +cl+di+et—al - f 2) and its permutations.
From here
ey, = (),
mif + m,id + mie <4R?,

m, ,+m, ,+m,, < 2R\/§.
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