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Part 3

Incompleteness and Undecidability





CHAPTER 7

An Informal Introduction to Decidability
Problems

0. Introduction

The material in this part grows out of Gödel’s famous Incompleteness Theorem
of 1931. It states that the usual Peano axioms for +, · on the natural numbers are
not sufficient to derive all true first-order sentences of arithmetic on the natural
numbers. More generally it states that there is no way to “effectively” give a
complete set of axioms for arithmetic on the natural numbers. As a consequence
there is no way to “effectively” decide whether or not a first-order sentence is true
on the natural numbers.

In this chapter we present an informal notion of “effectiveness” and use it in dis-
cussing problems concerning decidability. We then derive Gödel’s Incompleteness
Theorem assuming a major lemma on definability of decidable relations. An essen-
tial tool is the device of “Gödel-numbering,” which enables us to treat formulas,
derivations, etc., as natural numbers.

In the next chapter we give a formal treatment of effectiveness in terms of
recursive functions. This enables us to prove the lemma mentioned above. We can
then also derive various improvements, extensions, and generalizations of Gödel’s
original result, due to Rosser, Church, Tarski, et al.

1. Effective Procedures and Decidability

Recall from sentential logic that the method of truth tables gave an effective
procedure to decide whether an arbitrary sentence of sentential logic is a tautology.
In Section 2.2 we raised the natural question of whether there is such an effective
procedure for deciding logical validity in first-order logic. Note that neither the
definition of validity nor the Completeness Theorem provides such a procedure.

More generally, given any theory T of a language L one can ask whether or not
there is an effective procedure which decides, for each sentence σ of L, whether or
not T |= σ (equivalently, whether σ ∈ T ). To make this question precise we need
to define what we mean by an “effective procedure.”

First of all, note that an “effective procedure” is supposed to define a function
on some given domain D—in the example above of sentential logic, the domain is
the set of all sentences of sentential logic and the function takes the values “yes” or
“no” according to whehter the sentence is a tautology or not. Secondly, an “effective
procedure” should not just define the values of a function but should give a means
to calculate (at least in theory) the value of the function for any element in the
domain. Thus, in the example, one could (in a finite number of steps) actually write
down and check the truth table of any given sentence of sentential logic. On the
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4 7. AN INFORMAL INTRODUCTION TO DECIDABILITY PROBLEMS

other hand, one cannot check each of the infinitely many structures for a first-order
language L to see whether or not a given sentence σ of L is true on the structure.

We are thus led to the following, still informal, definition:

Definition 1.1. Let f be a function defined on D. An effective procedure
to calculate f is a finite list of instructions (in, say, English) such that given any
d ∈ D they can be applied to d and executed so that after finitely many discrete
steps (each performable in a finite amount of time) the process halts and produces
the value f(d).

Finally, a function f is (effectively) computable if and only if there is some
effective procedure to calculate it. Note that the same function can be defined in
many different ways, not all of which give an effective procedure to calculate it.

Let us look at several examples:

(1) D = ω; f(n) = n+1. Certainly this f must be effectively computable, but
coming up with an effective procedure to calculate it requires us to decide
what exactly the elements of ω are, and what exactly “adding one” does
to them. The set-theoretic definitions just lead us into more difficulties
(what is a set?), so we take the more formalistic point of view that the
number n is a 0 followed by n 1s. Thus the effective procedure is to place
one more 1 at the end of the sequence. Even this assumes some material
about finite sequences, but this seems to be an unavoidable starting point.
From now on we will not worry about what the elements of ω “really are,”
and also we will freely use elementary manipulations with finite sequences.

(2) D = ω× ω; f(〈m,n〉) = m+ n. The effective procedure here says to start
with m and add 1 n times.

(3) D = ω × ω; f(〈m,n〉) = 0 if m ≤ n; f(〈m,n〉) = 1 otherwise. We leave it
to the reader to come up with an effective procedure.

(4) D = ω × ω; f(〈m,n〉) = 0 if m | n; f(〈m,n〉) = 1 otherwise. Here too we
leave the formulation of an effective procedure to the reader.

(5) D = ω; f(n) = 0 if n is prime; f(n) = 1 otherwise. In outline, the effective
procedure here is to check each m < n,m 6= 1, to see whether or not m | n.
If such an m is found, f(n) = 0; otherwise f(n) = 1.

(6) D = ω; f(n) = 0 if n ≤ 2; f(n) = 1 otherwise. Certainly this f is
effectively computable using the result in example (3).

(7) D = ω; f(n) = 0 if and only if there are positive integers a, b, c such that
an+bn = cn; f(n) = 1 otherwise. It is not obvious whether this function is
effectively computable—certainly this definition does not give an effective
procedure to calculate it. But this f may still be effectively computable—
in fact it may be the same function as the function in example (6).

We will continue with some examples involving expressions of a first-order lan-
guage L. We assume we have come to some agreement as to what the symbols of L
really “are” (like vns). More importantly, we assume that for each symbol of L we
can effectively decide what sort of a symbol it is, as “a function symbol of 2 places,”
etc. Under these basic assumptions, we can consider the following examples:

(8) D = all expressions of L; f(d) = 0 if d is a term; f(d) = 1 otherwise. In
outline, an effective procedure to compute f involves trying to “read” d
as a term—since there are only finitely many ways this could happen, you
can check each one in turn and see if it does indeed work for d.
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(9) D = all expressions of L; f(d) = 0 if d is a formula of L; f(d) = 1
otherwise. This function is similarly seen to be effectively computable.

(10) D = all formulas of L; f(d) = 0 if d is a logical axiom; f(d) = 1 otherwise.
The reader can verify that this is also effectively computable.

(11) D = all finite sequences of formulas of L; f(d) = 0 if d is a formal
deduction (from Λ); f(d) = 1 otherwise. Here the definition of formal
deduction gives us an effective procedure to compute f , given the result
of example (10).

(12) D = FmL; f(φ) = 0 if ` φ; f(φ) = 1 otherwise. There is no obvious
effective procedure to compute f , since there are infinitely many formal
deductions which would have to be checked.

We emphasize that an effective procedure does not have to be practical in
all cases—the finite number of steps involved might be too large to be actually
performable. For example, one could actually be given a sentence of sentential
logic involving 100 different sentence letters; the truth table for this sentence would
have 2100 lines—which is way beyond our capacity to check. Thus, once one knows
that a function is effectively computable there still remains the question of how
efficient a procedure there is to compute it.

Concepts of computability apply to sets by considering characteristic functions.

Definition 1.2. Given D and X ⊆ D, the characteristic function of X is the
function KX : D → {0, 1} defined by

KX(d) =

{
0 if d ∈ X
1 if d ∈ D −X

Actually, KX depends also on D, which is usually clear from the context.

Definition 1.3. Fix D, and let X ⊆ D.

(a) X is decidable (as a subset of D) if and only if KX is effectively compu-
atable.

(b) X 6= ∅ is listable if and only if there is an effectively computable function
f : ω → X which maps onto X, i.e., such that X = {f(n) : n ∈ ω}.

The preceding examples then show, for example, that the set of prime numbers
is decidable (as a subset of ω), the set of tautologies is decidable (as a subset of the
set of all sentences of sentential logic), and the set of formulas of L is decidable (as
a subset of the set of all expressions of L).

One can show (see the next section) that {n ∈ ω : an+bn = cn for some positive
a, b, c ∈ ω} is listable, but this does not tell us whether or not this set is decidable.
The same holds for {φ ∈ FmL : ` φ}.

We will normally suppress reference to the domain D when talking about the
decidability of X—usually it will be clear what D is, and some ambiguity will be
harmless due to the following easy lemma.

Lemma 1.1. Let X ⊆ D1 ⊆ D2. Assume that D1 is decidable (as a subset of
D2). Then X is decidable as a subset of D1 if and only if X is decidable as a subset
of D2.

Thus, we can say simply that “the set of logical axioms of L is decidable,” and
the meaning is independent of whether we mean “as a subset of FmL” or “as a
subset of the set of expressions of L.”

Roughly speaking, decidable implies listable. More precisely, we have:
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Proposition 1.2. Assume D is listable and X ⊆ D is decidable (as a subset
of D). Then X is listable.

Proof. The idea is to list the elements of D but only retain the ones belonging
to X. We may suppose X 6= ∅. Let f : ω → D be effectively computable and list
D. We define g : ω → X to list X as follows: Let n0 be the first n ∈ ω such that
KX(f(n)) = 0 (i.e., such that f(n) ∈ X); define g(0) = f(n0). Next define

g(1) =

{
f(n0 + 1) if f(n0 + 1) ∈ X
f(n0) otherwise

Similarly for g(2), g(3), . . . . Then g is effectively computable and lists X. �

One other general fact of immense importance should be mentioned here.

Proposition 1.3. Fix D. There are only countably many effectively com-
putable functions whose domain is D. Hence D has only countably many decidable
(or listable) subsets.

Proof. There are just countably many finite sequences which could possibly
be instructions in English for effectively computing a function of domain D (or
ω). �

Thus for any infinite D, “most” subsets of D are not decidable, or even listable.
In our new terminology, the question we began with is whether or not CnL(∅) =

{σ ∈ SnL : |= σ} is decidable. More generally, for a theory T of L, is T =
CnL(T ) decidable? Since there are uncountably many different theories T (even of
the language L of pure identity theory), we know that “most” theories T are not
decidable.

The question, then, is which are decidable (particularly among specific, math-
ematically natural, theories)?

The question answered by Gödel’s Incompleteness Theorem is not quite of this
nature, but it can be precisely formulated in terms of decidability.

The question Gödel answered is the following: is there a decidable set Σ of
axioms for T = Th((ω,+, ·, <, 0, s))? Of course, if T were decidable we could take
Σ = T . Gödel showed that T has no decidable set of axioms, in particular, then,
that T is not decidable. (Remember, to say a set of sentences is decidable means
as a subset of SnL, or FmL, or expressions of L.)

2. Gödel Numbers

The decidable and listable sets in which we are interested may be sets of finite
sequences of natural numbers, or sets of expressions of L, or sets of finite sequences
of expressions of L, etc. It is important to know that we can replace any such set
by a set of natural numbers, and that this replacement is “effective.” Thus, our
domain D could always be taken to be ω, in contexts of computability.

Definition 2.1. Let n0, . . . , nk ∈ ω. The sequence number of the sequence
(n0, . . . , nk) is the number 〈n0, . . . , nk〉 = 2n0+1 · 3n1+1 · 5n2+1 · · · · · pnk+1

k , where

p0 = 2 and pi = the ith odd prime (i > 0).

By the uniqueness of prime power decomposition we see that if 〈n0, . . . , nk〉 =
〈n′0, . . . , n′k′〉 then k = k′ and ni = n′i for all i = 0, . . . , k, hence (n0, . . . , nk) =
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(n′0, . . . , n
′
k). Furthermore the function taking finite sequences (n0, . . . , nk) of natu-

ral numbers to their sequence numbers is effectively computable, as is its “inverse,”
the decoding function defined as:

d(m) =

{
(m0, . . . ,mk) if m = 〈m0, . . . ,mk〉
0 otherwise

From now on, 〈n0, . . . , nk〉 is always the sequence number, while (n0, . . . , nk) is
the sequence. We will also occasionally use the empty sequence ( ), whose length is
0 and whose sequence number is 〈 〉 = 1.

We see that the set of all finite sequences of natural numbers is (effectively)
listable, and every decidable set of finite sequences of natural numbers is listable.

Most importantly, as Gödel was the first to appreciate, if you assign natural
numbers to the symbols of a language L then all expressions of L (= finite sequences
of symbols of L) are assigned natural numbers via sequence numbers. Further
all finite sequences of expressions of L (such as formal deductions) are assigned
numbers. Thus, properties of formulas, etc., can be (effectively) translated into
properties of natural numbers. This process is the so-called “arithmetization of
syntax.”

The original assignment of numbers to symbols must be effective, which may
not be possible in some languages with infinitely many non-logical symbols.

To begin with, we assume L is a first-order language with just finitely many
non-logical symbols s1, . . . , sn. We define the Gödel-numbering function g mapping
the symbols of L one-to-one into ω as follows:

g(vn) = 2n for all n ∈ ω
g(¬) = 1
g(→) = 3
g(∀) = 5
g( ( ) = 7
g( ) ) = 9
g(≡) = 11
g(s1) = 13
...
g(sn) = 11 + 2n

(Obviously, this depends on fixing the order of the non-logical symbols, but
precisely how they are ordered is not significant.)

Given an expression ε0 . . . εn of L (thus each εi is a symbol of L) we define the
Gödel number of ε0 . . . εn as pε0 . . . εnq = 〈g(ε0), . . . , g(εn)〉. If (α0, α1 . . . , αn) is a
sequence of expressions of L then the Gödel number of the sequence is pα0, . . . , αnq =
〈pα0q, . . . , pαnq〉.

This assignment of Gödel numbers to expressions and to sequences of expres-
sions is effective; further any natural number is the Gödel number of at most one
expression and at most one sequence of expressions; finally the “decoding” functions
are also effectively computable.

For example, p≡ v0v1q = 212 · 3 · 53, and p(≡ v0v1 →≡ v1v0)q = 28 · 312 ·
5 · 73 · 114 · 1312 · 173 · 19 · 2310 and p≡ v0v1, (≡ v0v1 →≡ v1v0)q = 2p≡v0v1q+1 ·
3p(≡v0v1→≡v1v0)q+1.

Some points to notice:
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(a) The same number may be both the Gödel number of an expression and of
a sequence of expressions (and also the number assigned to some symbol).
For example, n0 = 255 ·325 = pv27v12q, but also 55 = 2·33 +1 = pv0v1q+1
and 25 = 23·3+1 = pv1v0q, so n0 = pv0v1, v1v0q; further n0 = 2(254·325 =
g(v254·325). This ambiguity is harmless.

(b) One must be careful to distinguish between a symbol and the sequence of
length 1 consisting only of that symbol. For example, v0 is not the same as
the one-place sequence which, unfortunately, we also write as v0—writing
(v0) would confuse it with the three-place sequence (, v0, ). Our notation
for Gödel-numbering is chosen to distinguish these two uses, however.
Thus g(v0) = 0, since g is just defined on symbols, and pv0q = 〈g(v0)〉 = 2,
since p q is defined just on sequences. In particular since terms are always
sequences, the term v0 is different from the symbol v0.

Similarly, the expression α must be distinguished from the sequence consisting
just of α. In particular, since formal deductions are sequences of formulas, the
formal deduction consisting just of φ where φ is a logical axiom is different from
the formula φ, and they will have different Gödel numbers.

One can now see that the sets {ptq : t ∈ TmL}, {pφq : φ ∈ FmL}, {pσq : σ ∈
SnL}, {pφ0, . . . , φnq : φ0, . . . , φn ∈ FmL}, {pφ0, . . . , φnq : φ0, . . . , φn is a deduction
from ∅} are all decidable subsets of ω, and hence are also listable.

More generally, we see that a set X of expressions is decidable if and only if
{pαq : α ∈ X} is decidable. In particular a set Σ of sentences is decidable if and
only if {pσq : σ ∈ X} is decidable. Thus, if Σ is a decidable set of sentences then
{(φ0, . . . , φn) : φ0, . . . , φn is a deduction from Σ} and {pφ0, . . . , φnq : φ0, . . . , φn is a
deduction from Σ} are both decidable, and thus listable.

The following is of utmost importance:

Proposition 2.1. Assume the theory T has a decidable set of axioms. Then
T is listable.

Proof. Let Σ be a decidable set of axioms for T , so T = {σ : Σ ` σ}. As
pointed out above, the set of deductions from Σ is listable. Since the function taking
a finite sequence of formulas to the last formula in the sequence is computable, it
follows that Y = {φ ∈ FmL : Σ ` φ} is listable. Since one can decide whether or
not a formula is a sentence it follows that T = {φ ∈ Y : φ ∈ SnL} is decidable as a
subset of Y , hence T is listable by Proposition 1.2 �

WARNING: In the above proof Y is not necessarily decidable (as a subset of
FmL), hence we do not have T decidable as a subset of FmL (or SnL).

We will eventually see that the converse to Proposition 2.1 also holds. In the
case of complete theories we can do better.

Proposition 2.2. Let T be a complete theory. Then T is decidable if and only
if T has a decidable set of axioms.

Proof. If T is decidable then, as was already pointed out, T is itself a decidable
set of axioms for T . Conversely, suppose T has a decidable set of axioms. Then
by Proposition 2.1 T is listable, so T = {f(n) : n ∈ ω} for some computable f . We
need to define an effectively computable g on SnL such that

g(σ) =

{
0 if σ ∈ T
1 if σ /∈ T
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Since T is complete we know that for any σ ∈ SnL either σ ∈ T or ¬σ ∈ T , so there
is some n0 ∈ ω such that f(n0) = σ or f(n0) = ¬σ. Our effective procedure to
compute g is then as follows: evaluate f(0), f(1), . . . , until you find this n0; then
g(σ) = 0 if f(n0) = σ, and g(σ) = 1 if f(n0) = ¬σ. �

We point out here that when, in the next chapter, we introduce our formal,
precise definition of computable, the above proofs will have to be reviewed to see
that they can be carried out for the formal concept. This will, of course, be the case
since otherwise the formal concept would not correspond to the intuitive concept.
But it would be begging the question to assume in advance that the formal concept
is as desired.

Everything can be done for languages L with infinitely many non-logical sym-
bols provided L has an admissible Gödel-numbering g; that is, a Gödel-numbering
g which is as on page 7 for logical symbols and such that for every n we can decide
whether n = g(S) for a non-logical symbol and precisely what sort of non-logical
symbol S is (as, k-ary function symbol, etc.).

3. Gödel’s Incompleteness Theorem

If f : ω → ω is a computable function then, in particular, the effective procedure
for computing f gives an (English) definition of f . Similarly if X is a decidable
subset of ω then the effective procedure for computing KX yields an (English)
definition of X as a subset of ω. Gödel’s most important technical lemma for his
Incompleteness Theorem states that a decidable subset of ω is in fact first-order
definable in the usual structure for arithmetic on ω.

The language for arithmetic on ω has as non-logical symbols +, ·, <, 0, s. The
“standard model” for arithmetic is N = (ω,+, ·, <, 0, s). Here s is a unary function
symbol whose interpretation in N is the immediate successor function, s(n) = n+1.
We use 1, 2, 3, . . ., to stand for the closed terms s0, ss0, . . ., which are interpreted
in N by the elements 1, 2, 3, . . . . Note of course that every element of the universe
of N is the interpretation of some one of the terms n.

Gödel’s essential technical lemma can be stated as follows. (In the next chapter
we will actually prove a stronger result, but this will suffice for now.)

3.1. Definability Lemma. Let R ⊆ ωn be a decidable n-ary relation on ω. Then
there is some formula φ(x0, . . . , xn−1) of the language of arithmetic such that for
any k0, . . . , kn−1 ∈ ω R(k0, . . . , kn−1) holds if and only if N |= φ(k0, . . . , kn−1).

We will not be able to prove this rather surprising result until we have a formal
definition of computable function in the next chapter. We give here two examples
of decidable relations on ω for which the existence of such a defining formula is
highly non-obvious:

(1) Let R = {(k, 2k) : k ∈ ω}. R ⊆ ω×ω is clearly decidable, but not obviously
definable in N since exponentiation 2x is not a function in the language.

(2) let R = {(k, n) : k 6= 0, ln(k) ≤ n}. Since we can calculate the natural
log of any positive integer k to any required degree of accuracy (and it
is non-integral for k > 1), R is a decidable subset of ω × ω. Since ln(k)
is not even an integer for k > 1, it is not easy to see even how to start
defining R.
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In the rest of this section we will assume the Definability Lemma and use it to
prove Gödel’s original incompleteness result.

3.2. Incompleteness Theorem (Gödel 1931). There is no decidable set of
axioms for Th(N)

We will in fact give two proofs of this result in this section. The first (and
easiest) is a proof by contradiction. The second is a direct proof and yields a little
more information.

Proof Number 1. Suppose Th(N) does have some decidable set of axioms.
Then, by Proposition 2.2, Th(N) is decidable, hence one can decide whether or not
N |= σ. Define the following binary relation R on ω:

(∗)
{
R(k, l) holds if and only if k = pφq for

some formula φ(v0) and N |= φ(l).

Then R is decidable, and hence by the Definability Lemma R is defined in N by
some formula θ(x, y). Let φ(v0) be ¬θ(v0, v0), let k = pφq, and let σ be φ(k). The
following are then equivalent:

N |= σ
R(k, k) holds (by (*))

N |= θ(k, k) (by definition of θ)
N |= ¬σ (by definition of σ)

This contradiction shows that Th(N) has no decidable set of axioms. �

Our second proof follows the same general outline but actually shows us how
to define a sentence independent of any given decidable set of sentences satisfied
by N.

Proof Number 2. Let Σ be a decidable set of sentences such that N |= Σ.
We show that Th(N) 6= Cn(Σ) by defining a sentence σ such that N |= σ but Σ 0 σ.

We first define a ternary relation S on ω as follows:
S(k, l,m) holds if and only if k = pφq for some
formula φ(v0) and m = pψ0, . . . , ψnq, where

ψ0, . . . , ψn is a deduction from Σ of φ(l).

Then S is decidable, since Σ is decidable, hence by the Definability Lemma S is
definable in N by some χ(x, y, z). Now let R(k, l) hold if and only if k = pφq for
some formula φ(v0) and Σ ` φ(l). Then R(k, l) holds if and only if S(k, l,m) holds
for some m ∈ ω. Therefore R is defined in N by θ(x, y) = ∃zχ(x, y, z). As in the
first proof, let φ(v0) = ¬θ(v0, v0), let k = pφq, and let σ = φ(k). Then the following
are equivalent:

N |= σ

N |= ¬θ(k, k) (by definition of σ)
R(k, k) fails (by definition of θ)

Σ 0 φ(k) (by definition of R)
Σ 0 σ (by definition of σ)
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We claim that in fact N |= σ. If not, then by the above equivalences Σ ` σ. But
N |= Σ, so we must then have N |= σ. This contradiction shows that N |= σ and
Σ 0 σ, as desired. �

Because of the equivalences in this proof, σ is usually interpreted as saying of
itself that it is not provable from Σ. This is the “self-referential” aspect of the
result.

Gödel’s incompleteness result was especially surprising since it seems to have
been widely assumed that the “Peano axioms” were a set of acioms for Th(N) We
give these axioms here, but we first give a finite subset of them which we will use
extensively.

The set Q consists of the following nine sentences:

∀x(¬sx ≡ 0)
∀x∀y(sx ≡ sy → x ≡ y)
∀x(x+ 0 ≡ x)
∀x∀y(x+ sy ≡ s(x+ y))
∀x(x · 0 ≡ 0)
∀x∀y(x · sy ≡ x · y + x)
∀x(¬x < 0)
∀x∀y(x < sy ↔ (x < y ∨ x ≡ y))
∀x∀y(x < y ∨ x ≡ y ∨ y < x)

The set P of Peano axioms consists of Q together with all “induction axioms,”
that is, all sentences ∀y0 . . . ∀yn−1[φ(0, ~y) ∧ ∀x(φ(x, ~y)→ φ(sx, ~y))→ ∀xφ(x, ~y)] as
φ(x, ~y) varies over formulas of L.

Clearly N |= P , and both P and Q are decidable. Finding sentences true on N
not provable from P is essentially as difficult as the general result.

4. Some Positive Decidability Results

Proposition 2.2 can be used to show that many complete theories are decidable.
For example Th((Q,≤)) and Th((ω,≤)) are both finitely axiomatizable, hence de-
cidable. The theories Th((R,+, ·,≤, 0, 1)) and Th((C,+, ·, 0, 1)) can each be shown
to have decidable (but infinite) sets of axioms, hence are decidable.

The primary question we started with—whether {σ ∈ SnL : |= σ} is decidable—
was answered in general by Church in 1936. Previous to that some positive results
were obtained by restricting the classes of sentences considered. In the remainder
of this section we briefly present some of these results.

Throughout this section we assume L has just finitely many non-logical sym-
bols, but they hold for languages with an admissable Gödel-numbering.

These positive results all follow using this lemma:

Lemma 4.1. Assume that S is a decidable subset of SnL such that for every
σ ∈ S, |= σ if and only if A |= σ for every finite A. Then {σ ∈ S : |= σ} is
decidable.

Proof. First note that, since L is finite, there are for each n ∈ ω just finitely
many non-isomorphic L-structures A with |A| = n. Further, for any σ ∈ SnL
and any given finite A we can effectively decide whether or not A |= σ (because
A |= ∀xφ(x) is equivalent to AA |= φ(a1) ∧ . . . ∧ φ(ak), where A = {a1, . . . , ak},
etc.). Thus, for each n we can effectively decide whether or not A |= σ for every A
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with |A| = n. Further, we know we can effectively list all σ ∈ SnL such that |= σ.
Thus our effective procedure to decide, given σ0 ∈ S, whether or not |= σ0 is as
follows: we simultaneously begin listing all σ such that |= σ and begin deciding, for
each n ∈ ω − {0}, whether or not A |= σ0 for every A with |A| = n. We will, after
some finite number of steps, either find σ0 in our list of validities or find some n
such that A 6|= σ0 for some A such that |A| = n (by our assumption on S that if
6|= σ then A 6|= σ for some finite A). Since S is a decidable subset of SnL this in
fact shows that {σ ∈ S : |= σ} is decidable as a subset of SnL. �

The above procedure is not very efficient, and it turns out that, in each case
below in which it is used, lookiing closely at the proof one can obtain a more efficient
procedure.

Definition 4.1. A formula is a ∀-formula (universal formula) provided it has
the form ∀y0 . . . ∀yk−1α, where α is open.

Definition 4.2. A formula is an ∀∃-formula provided it has the form ∀y0 . . .
∀yk−1∃z0 . . . ∃zl−1α, where α is open.

Our first result concerns the valid ∀∃-sentences in languages without function
symbols.

Proposition 4.2. Assume L has no function symbols. Then {σ : |= σ, σ is
an ∀∃-sentence of L} is decidable.

Proof. It suffices to show that for any ∀∃-sentence σ, if 6|= σ then A |= ¬σ
for some finite A. So suppose B |= ¬σ. We find a finite A ⊆ B such that A |= ¬σ.
If B |= ¬σ, where σ is ∀~y ∃~zα(~y, ~z), then B |= ∃y0 . . . ∃yk−1∀z0 . . . ∀zl−1¬α(~y, ~z), so
BB0 |= ∀z0 . . . ∀zl−1¬α(b0, . . . ,
bk−1, ~z) for some b0, . . . , bk−1 ∈ B, with B0 = {b0, . . . , bk−1}. Let A ⊆ B be
such that B0 ⊆ A and A is finite—this is possible since L has no function sym-
bols and just finitely many constant symbols. One then easily sees that AB0

|=
∀z0 . . . ∀zl−1¬α(b0, . . . , bk−1, ~z) since ¬α has no quantifiers. Thus A |= ¬σ as de-
sired. �

Note that this proof in fact enables us to effectively compute, given an ∀∃-
sentence σ of L, an integer n0 ∈ ω such that if 6|= σ then in fact A |= ¬σ for some
A with |A| ≤ n0. We can thus decide whether or not |= σ by just checking whether
A |= σ for all A with |A| ≤ n0. This is much more efficient than the procedure
given by Lemma 4.1.

If L has function symbols the best we can do is the following:

Proposition 4.3. {σ : |= σ, σ is a ∀-sentence} is decidable.

Once again, you need to show that if B |= ¬σ for some B then A |= ¬σ for
some finite A. Here, one cannot necessarily find A ⊆ B but the A can be obtained
from B. Details are left to the reader.

If we do not restrict the form of the sentence then we must severely restrict the
language.

Proposition 4.4. Assume the only non-logical symbols of L are unary predi-
cates and individual constants. Then {σ ∈ SnL : |= σ} is decidable.

Here again, given some B |= ¬σ you must find a finite A ⊆ B such that
A |= ¬σ.
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5. Exercises

(1) Assume that X and Y are both listable.
(a) Prove that (X ∪ Y ) is listable.
(b) Prove that (X ∩ Y ) is listable.

(2) Let X be an infinite subset of ω. Prove that X is decidable iff X is the range
of some f : ω → X which is computable and strictly increasing (i.e. if k < l
then f(k) < f(l)).

(3) Let X ⊆ ω. Assume that both X and (ω r X) are listable. Prove that X is
decidable.

(4) Let Lnl = {+, ·, <, x, 0}, and let N = (ω,+, ·, <, s, 0). Give a formula ϕ(x) of
L which defines the set of sequence numbers in N.





CHAPTER 8

Recursive Functions, Representability, and
Incompleteness

0. Introduction

In this chapter we give a precise, formal, mathematical definition of computable
function to replace the informal concept of the preceding chapter. Because of Gödel-
numbering, we can restrict our attention to functions on the natural numbers. Our
mathematical definition of computable is recursive. The recursive functions are
defined in Section 1, and numerous (intuitively) computable functions (including
many concerning Gödel numbers of formulas, etc.) are shown to be recursive. In
Section 3 we prove the representability of recursive functions in Q, a stronger version
of the Definability Lemma from Section 3. An essential tool is the β-function defined
in Section 2. Finally, in Section 4, we can prove Gödel’s Incompleteness Theorem,
essentially as in Section 3.

Of course, for this development to be convincing, one must accept the identifi-
cation of the intuitive concept of “computable” with “recursive.” This identification
is called Church’s Thesis, and some arguments for it are given in Section 5.

1. Recursive Functions and Relations

The set of recursive functions on ω is defined by recursion. That is, we are
given some set of starting functions and some rules for forming new functions from
given functions. A function then is said to be recursive if and only if it is obtained
from the starting functions after some (finite) number of applications of the rules.
A relation is recursive if and only if its characteristic function is recursive, where:

Definition 1.1. Let R ⊆ ωn The characteristic function of R is the function
KR : ωn → {0, 1} such that

KR(k1, . . . , kn) =

{
0 if R(k1, . . . , kn) holds,
1 otherwise.

Definition 1.2. For all 1 ≤ i ≤ n the projection function Pni : ωn → ω is
defined by Pni (k1, . . . , kn) = ki.

Definition 1.3. The set S of starting functions is the set {s,+, ·, K<} ∪
{Pni : 1 ≤ i ≤ n ∈ ω}.

We have three rules for forming new functions:

R1 (Composition). From functionsG(x1, . . . , xk), H1(y1, . . . , ym), . . ., Hk(y1, . . . , ym)
form F (y1, . . . , ym) = G(H1(~y), . . . , Hk(~y)).

15
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R2 (Primitive Recursion). From functionsG(y1, . . . , ym) andH(w, x, y1, . . . , ym)
form F (x, y1, . . . , ym) defined by{

F (0, y1, . . . , ym) = G(y1, . . . , ym),
F (x+ 1, y1, . . . , ym) = H(F (x, ~y), x, ~y).

R3 (µ-Recursion). From a function G(y1, . . . , ym, x) satisfying the condition that
for all y1, . . . , ym ∈ ω there exists x ∈ ω such that G(y1, . . . , ym, x) = 0 form the
function F (y1, . . . , ym) defined by F (y1, . . . , ym) = the smallest x ∈ ω such that
G(~y, x) = 0. Our notation is: F (~y) = µx[G(~y, x) = 0].

Definition 1.4. The class R of recursive functions is the closure of S under
R1, R2, R3; that is, a function is in R if and only if it is obtained from functions in
S by (finitely many) applications of R1, R2, R3.

Two smaller classes of functions are also of interest.

Definition 1.5.

(a) The class P of primitive recursive functions is the closure of S under
R1, R2.

(b) The classR′ of strictly recursive functions is the closure of S under R1, R3.

Clearly P,R′ ⊆ R, but the relation between R′ and P is not clear, nor is it
obvious whether or not the inclusions are proper.

Definition 1.6. A relation R on ω is recursive (or primitive recursive, or
strictly recursive) if KR is.

Note that the functions in S are all effectively computable. Further, if the
given functions are computable, so is the function F produced by each of our
rules R1, R2, R3—if F is obtained by R2 we compute F (k, ~y) by using the defining
equations to successively compute F (0, ~y), F (1, ~y), . . . , F (k − 1, ~y), F (k, ~y); if F is
obtained by R3 we compute F (~y) by successively computing G(~y, 0), G(~y, 1), G(~y, 2)
until we find a k with G(~y, k) = 0, the first such being the value of F . Thus, by
induction, we conclude that all recursive functions are computable, hence that all
recursive relations are decidable.

From R1, R2, R3 follow corresponding rules for relations:

R1′. FromR(x1, . . . , xk) and functionsHi(~y), . . . , hk(~y) form S(~y)⇔ R(Hi(~y), . . . , hk(~y)).

R2′. From R(~y) and Q(w, x, ~y) form S(x, ~y) defined by{
S(0, ~y)⇔ R(~y),
S(x+ 1, ~y)⇔ Q(KS(x, ~y), x, ~y).

R3′. FromR(~y, x) which satisfies the condition that ∀y1, . . . , ym ∈ ω ∃x ∈ ωR(~y, x)
holds, form F (~y) = µxR(~y, x).

Then the S or F obtained will be recursive provided the given relations and
functions are.

Since all the functions and relations we are considering are on ω, we will often
not explicitly say so; similarly, the variables we use in writing them down all vary
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over elements of ω, which will be tacitly assumed. Also, of course, the functions we
consider are all total, that is, defined on all of ωn.

We now begin to list a large number of facts about recursive functions and
relations. These will state that many common functions and relations are recursive
and will give further closure properties of R, and also P and R′. We will sometimes
say a relation R belongs to R (or P or R′) when strictly we mean KR does.

Fact 1. The constant functions are in (P ∩R′). That is, for every m,n ∈ ω with
m 6= 0 the function Fmn : ωn → ω defined by Fmn (x1, . . . , xm) = n for all x1, . . . , xm
is in (P ∩R′).

Proof. Fixing m, we show Fmn ∈ (P ∩ R′) by induction on n. The inductive
step is clear, since Fmn+1(~x) = s(Fmn (~x)) is obtained by R1 from s, Fmn . To show
Fm0 ∈ (P ∩ R′), note that K<(x1, s(x1)) = 0 for all x1. We can therefore define
Fm0 by

Fm0 (x1, . . . , xm) = K<(Pm1 (x1, . . . , xm), s(Pm1 (x1, . . . , xm))),

thus obtaining Fm0 by two uses of R1. �

Note that simply writing Fm0 (x1, . . . , xm) = K<(x1, s(x1)) is not a correct use
of R1—we need the projection functions so that each function put into K<( , ) is a
function of m arguments.

At this point we should emphasize that functions and relations do not come
with any particular variables attached—

K<(Pm1 (x1, . . . , xm), s(Pm1 (x1, . . . , xm)))

is the same function as

K<(Pm1 (y1, . . . , ym), s(Pm1 (y1, . . . , ym))),

or
K<(Pm1 (y, x1, . . . , xm−1), s(Pm1 (y, x1, . . . , xm−1))).

Also, be careful not to think of relations as formulas. They are simply subsets of
some ωn, although we will sometimes define them by some mathematical formula.

We will (perhaps confusingly) use logical notations in defining relations.

Definition 1.7. Given a relation R(~x), ¬R(~x) is the relation (on ω) which
holds if and only if R fails. Similarly, given relations R(~x), S(~x) we understand the
relations (R ∧ S), (R ∨ S), (R→ S) in the obvious way. Given R(x, ~y),∃xR(x, ~y) is
the relation S(~y) which holds if and only if R(x, ~y) holds for some x. The relation
∀xR(x, ~y) is similar.

Fact 2. Assume R,S are both in R(orPorR′). Then so are ¬R, (R∧S), (R∨S),
(R→ S).

Proof. Given R(~x),K¬R(~x) = 0 if KR(~x) = 1 and K¬R(~x) = 1 if KR(~x) = 0.
Thus K¬R(~x) = K<(Fm0 (~x),KR(~x)), where Fm0 is constantly 0. Since K(R∨S)(~x) =
0 if and only if at least one of KR(~x),KS(~x) = 0 we can define K(R∨S)(~x) =
KR(~x) ·KS(~x). The results (R ∧ S), (R→ S) follow from these. �

Fact 3. The relations <,>,≤,≥,= are in (P ∩R′).
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Proof. K< is in S, so < is in (P ∩ R′). K>(x, y) = 0 if y < x, 1 if not.
Therefore K>(x, y) = K<(P 2

2 (x, y), P 2
1 , (x, y)). The others now follow by using

Fact 2. �

In general, there is no reason for ∃yR to be recursive just because R is recursive.
But bounded quantification does preserve recursiveness.

Definition 1.8.

(a) (∃x)<yR(x, y, ~z)⇔ ∃x[x < y ∧R(x, y, ~z)].
(b) (∀x)<yR(x, y, ~z)⇔ ∀x[x < y → R(x, y, ~z)].
(c) (µx)<yR(x, y, ~z) = (µx)[(x < y ∧R(x, y, ~z)) ∨ x = y].

Fact 4. If R is in R (or P or R′) then so are (µx)<yR, (∃x)<yR, (∀x)<yR.

Proof. If R is in R (or R′) then so is (x < y ∧ R(x, y, ~z)) ∨ x = y, by
Facts 2 and 3, hence R3 yields (µx)<yR in the same class. If R is in P a different
argument, using R2, must be used. We leave this to the reader. We now have
(∃x)<yR⇔ (µx)<yR < y, hence this relation is in R (or R′ or P) if R is. Similarly
for (∀x)<yR. �

The reader should note that we are suppressing use of the projection functions.
We need to have “x < y” and “x = y” as relations in x, y, ~z, just like R, in order to
combine them with R. We will continue to be inexact in this matter in the future.

The way we have written the preceding material, it seems as if the argument
“quantified out” in (∃x)<yR, etc., must be the first argument in R. Obviously,
of course, this is irrelevant, and we will apply these results and notations to any
argument. The reader should be able to prove that if a function or relation is
in R (or P or R′) then it remains in that collection for any permutation of the
arguments.

Definition 1.9.

x .− y =

{
x− y if y ≤ x,
0 otherwise.

Fact 5. .− is in (P ∩R′).

Proof. x .− y = (µz)<x(y + z ≥ z). �

Of course, the function x− y can’t be in R since it is not total with values in
ω.

Fact 5 (Definition by Cases). Let G1(~y), . . . , Gk(~y) be functions and R1(~y), Rk(~y)
be relations which are all in R (or P or R′). Assume that for all ~y (from ω) exactly
one of R1(~y), . . . , Rk(~y) holds. Let F (~y) = Gi(~y) provided Ri(~y) holds. Then F is
also in R (or P or R′).

Proof. F (~y) = G1(~y) ·K¬R1
(~y) + · · · + Gk(~y) ·K¬Rk

(~y) establishes the con-
clusion. �

We next want to see that various operations on sequence numbers are recursive.
This is the first step to being able to work with Gödel numbers recursively. It turns
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out that we need rule R2 to make these definitions, so it is not clear if the functions
are in R′.

Fact 7. xy is in P.

Proof. The equations {
x0 = 1,
xy+1 = xy · x,

define xy by R2. �

Definition 1.10. p : ω → ω is defined by p(0) = 2, p(i) = the ith odd prime
for i 6= 0. We usually write pi in place of p(i).

Fact 8. p is in P.

Proof. First notice that the relation P (x), “x is prime,” is in P since it can
be defined using just bounded quantifiers. Thus the equations{

p(0) = 2,
p(i+ 1) = (µx)[P (x) ∧ p(i) < x],

define p with R2 and show that p is in R. Since we can bound x by p(i)!, and since
y! is in P, we in fact find that p is in P. �

Definition 1.11. Seq(n) ⇔ n is a sequence number , that is, n = 1 or n =
〈n0, . . . , nk〉 for some n0, . . . , nk, k ∈ ω.

Fact 9. Seq is in P.

Proof. Seq(n) holds if and only if n 6= 0 and (∀i)<n(pi+1|n→ pi|n), and x|y
is easily seen to be in P, by bounded quantification. �

Definition 1.12. If n = 〈n0, . . . , nk〉 is a sequence number then lh(n) = k+ 1,
the length of the sequence (number); lh(〈 〉) = 0.

Fact 10. lh is in P.

NOTE: As defined lh is not total, hence can’t be in P. What we mean here is
that there is some function lh′ in P (hence total) which agrees with lh on sequence
numbers. Since we don’t care about the values of this function for numbers which
are not sequence numbers, we simply use lh to also refer to this total extension lh′

Proof. lh(n) = (µx)<n(px - n). �

Definition 1.13. C(n, i) = ni if n = 〈n0, . . . , nk〉, i ≤ k, is the coordinate
function. We usually write (n)i for the value of C(n, i), the ith coordinate.

Fact 11. C is in P.

Proof. We can define C on all pairs n, i by

C(n, i) = (µx)<n[(pi)
x+2 - n].
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�

Note that we have the following:

Seq(n)⇔ n = 〈(n)0, (n)1, . . . , (n)lh(n)
.−1〉.

1.1. Definition (Concatenation). If n = 〈n0, . . . , nk〉 and m = 〈m0, . . . ,ml〉
then the concatenation of n and m is the sequence number

n ∗m = 〈n0, . . . , nk,m0, . . . ,ml〉.

Fact 12. ∗ is in P.

Proof. n ∗ m = (µx)[Seq(x) ∧ lh(x) = lh(n) + lh(m) ∧ (∀i)<lh(n) [(x)i =
(n)i] ∧ (∀i)<lh(m)[(m)i = (x)i+lh(n)]]. This shows ∗ is recursive—note that there
always is an x with these properties, even if n,m are not sequence numbers. To get
∗ in P we must bound x, which we leave to the reader. �

Definition 1.14. If n = 〈n0, . . . , nl−1〉 is a sequence number of length l, then
for any i ≤ l the initial segment of n of length i is In(n, i) = 〈n0, . . . , ni−1〉.

Fact 13. In is in P.

Proof. The equations{
In(n, 0) = 1,

In(n, i+ 1) = In(n, i) · p(n)i+1
i ,

define In via R2. �

Definition 1.15. Given F (y, ~x) the course of valuescourse of values function
function F (y, ~x) is defined by

F (y, ~x) = 〈F (0, ~x), F (1, ~x), . . . , F (y − 1, ~x)〉.

Fact 14. F is in R (or P) if and only if F is.

Proof. From right to left is easy and left to the reader. We show how to get F
from F in a recursive way. Clearly F (y, ~x) = (µz)[Seq(z)∧ lh(z) = y∧ (∀i)<y(z)i =

F (i, ~x)]. Once again, to get F in P if F is we need appropriately bound z. �

We next introduce a stronger form of primitive recursion (R2). This corre-
sponds to so-called “strong” induction. That is, we define the value of F at k not
just in terms of the value of F at k − 1, but in terms of the entire sequence of
previous values of F . In the relational form, it enables one to use whether or not k
is in a set S for each k < n in defining whether or not n should belong to S. This
is exactly the sort of definition one has for the set of terms, of formulas, etc.

Fact 14 (Course-of-Values Recursion).

(a) If G(w, y, ~x) is in R (or P) then so is the function F (y, ~x) defined by

F (y, ~x) = G(F (y, ~x), y, ~x).



1. RECURSIVE FUNCTIONS AND RELATIONS 21

(b) If S(w, x, ~x) is in R (or P) then so is the relation R(y, ~x) defined by

R(y, ~x)⇔ S(KR(y, ~x), y, ~x).

Proof. We just prove (a), from which (b) immediately follows. Given G we
first define H(y, ~x) by

H(y, ~x) = (µz)[Seq(z) ∧ lh(z) = y ∧ (∀i)<y(z)i = G(In(z, i), ~x)].

One can see that H(y, ~x) = F (y, ~x), so F (and hence F ) is in R if G is. We leave
to the reader the task of showing that H is in P if G is. �

Since we know that the standard operations with sequence numbers are re-
cursive, we are now in a position to prove that most of the standard syntactical
concepts are recursive—when expressed in terms of Gödel numbers.

We continue our assumption that L has just finitely many non-logical symbols.
For purposes of examples, we take L to be the language of arithmetic, and so
g(+) = 13, g(·) = 15, g(<) = 17, g(s) = 19, g(0) = 21.

Definition 1.16.

(a) Tm(n)⇔ n = ptq for some t ∈ TmL.

(b) Fm(n)⇔ n = pφq for some φ ∈ FmL.

(c) Free(k, n) ⇔ k = pviq for some i and n = pφq for some φ ∈ FmL and
vi ∈ Fr(φ).

(d) Num(k) = pkq.

(e) Neg(k) = p¬φq, if k = pφq for some φ ∈ FmL.

(f) Sn(n)⇔ n = pσq for some σ ∈ SnL.

(g) Sub(n, k,m) = pφvit q, provided n = pφq, k = pviq, and m = ptq.

(h) Fm0(n)⇔ n = pφq for some formula φ(v0).

Fact 16. Everything in the preceding definition is in P.

Proof. We simply show Tm is in P and leave the rest to the diligent student.
We see that Tm can be defined as follows:

Tm(n) ⇔ (∃x)<n(n = 22x+1) ∨ n = 2g(0)+1∨
(∃x)<n(Tm(x) ∧ n = 2g(s)+1 ∗ x)∨
(∃x)<n(∃y)<n[Tm(x) ∧ Tm(y) ∧ n = 2g(+)+1 ∗ x ∗ y]∨
(∃x)<n(∃y)<n[Tm(x) ∧ Tm(y) ∧ n = 2g(·)+1 ∗ x ∗ y].

This definition is justified by Fact 14b, course-of-values recursion for relations,
since the right-hand side just involves Tm(x),Tm(y) for x, y < n. �

Definition 1.17. LAx(n)⇔ n = pφq for some logical axiom φ.

Fact 17. LAx is in P.
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We will say that a set Σ of sentences is recursive if {pσq : σ ∈ Σ} is recursive.

Definition 1.18.

(a) PrfΣ(n)⇔ n = pφ0, . . . , φkq for some deduction φ0, . . . , φk from Σ.
(b) PrvΣ(n,m) ⇔ n = pφ0, . . . , φkq for some deduction φ0, . . . , φk from Σ

and m = pφkq.

Fact 18. If Σ is recursive, so are PrfΣ and PrvΣ.

Definition 1.19. ThmΣ(m)⇔ m = pσq for some sentence σ such that Σ ` σ.

If T = Cn(Σ) then T is decidable if and only if ThmΣ is recursive. This is,
of course, not obviously guaranteed by Σ being recursive. It is useful to note the
following:

Lemma 1.2. T is decidable if and only if ∃zPrvΣ(z,m) is in R for some (or
any) Σ which axiomatizes T .

Proof. ThmΣ(m) ⇔ Sn(m) ∧ ∃zPrvΣ(z,m). Thus T is decidable provided
∃zPrvΣ(z,m) is in R for some Σ with T = Cn(Σ). For the other direction, note
that for formulas φ(v0, . . . , vn) we have Σ ` φ if and only if Σ ` ∀V0 . . . ∀vnφ. As an
exercise, define a primitive recursive function cl such that cl(pφq) = p∀v0 . . . ∀vnφq
for some closure ∀v0 . . . ∀vnφ of φ. Then

∃zPrvΣ(z,m)⇔ ThmΣ(cl(m))

shows that ∃zPrvΣ(z,m) is recursive provided T is decidable. �

2. Gödel’s β–Function

All that we need in order to carry out the (second) proof of the Incompleteness
Theorem in Chapter ?? is the Definability Lemma for recursive functions and pred-
icates. Clearly all the starting functions are definable in N. Also it is easy to see
that R1 and R3 preserve definability. Further, a relation is definable in N if and
only if its characteristic function is. Thus, by induction, we see that every strictly
recursive function and relation is definable in N.

The problem, then, is with R2, the rule of primitive recursion. The reason R2
is a problem is that the function F (x, ~y) obtained by use of the rule is not given an
explicit definition. Gödel showed how to give an explicit definition of an F obtained
in this way and how to turn it into a first-order definition in N if the given functions
G(~y), H(w, x, ~y) are first-order definable in N.

In fact, Gödel’s argument shows how to eliminate uses of R2 altogether, and
thus establishes the following result:

Theorem 2.1. R = R′.

This follows from the proposition asserting that R′ is closed under applications
of R2, that is:

Proposition 2.2. Assume G(y1, . . . , ym) and H(w, x, ~y) are both in R′. Then
so is the function F (x, ~y) defined by{

F (0, ~y) = G(~y),
F (x+ 1, ~y) = H(F (x, ~y), x, ~y).
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The idea behind the proof is to see that we can explicitly define F in terms of
sequences as follows:

F (x, ~y) = z if and only if there is a sequence s0, . . . , sx of length
x+1 such that s0 = G(~y), sx = z, and (∀i)<x[si+1 = H(si, i, ~y)].

Of course, our treatment of sequence numbers in the previous section uses R2,
so we can’t use them here. Gödel’s technical result was to define a function in R′
which enables one to code sequences.

Lemma 2.3. There is a function β(a, i) in R′ such that for all n ∈ ω and for
all a0, . . . , an there exists a such that (∀i)≤n[β(a, i) = ai].

Proof of Proposition from Lemma. The (English) explicit definition of
F above can be written using the β-function as: F (x, ~y) = β((µa)[β(a, 0) = G(~y)∧
(∀i)<xβ(a, i+ 1) = H(β(a, i), i, ~y)], x). �

Set-theoretically, a finite sequence (a0, . . . , an) is a set of ordered pairs {(0, a0), (1, a1), . . . , (n, an)}.
What we want to do is code such a set by a single number a in such a manner that
the uncoding function β is in R′. We will break this into two parts—first, code
ordered pairs of numbers by numbers; second, code finite sets of numbers by num-
bers.

Coding ordered pairs is very easy.

Definition 2.1. OP(a, b) = (a+ b)2 + a+ 1.

Fact 0. If OP(a, b) = OP(a′, b′) then a = a′ and b = b′.

Proof. If a + b < a′ + b′ then we have OP(a, b) ≤ (a + b + 1)2 < OP(a′, b′).
Hence OP(a, b) = OP(a′, b′) implies a+ b = a′ + b′, which then implies a = a′ and
thus b = b′. �

Fact 1. a, b < OP(a, b).

So our problem is reduced to coding finite sets of numbers. What we will
actually do is, for each number m, code sets of non-zero numbers less than m by a
number. Our code for a finite set will then be an ordered pair, the first coordinate
giving a number m bounding all numbers in the set and the second coordinate
giving the code of the set relative to the bound m.

We will use the following elementary fact:

Fact 2. Assume that ki, lj are relatively prime for all 0 ≤ i ≤ n, 0 ≤ j ≤ m. Then
∃c[(∀i)≤nki|c ∧ (∀j)≤m lj - c].

Proof. Take c = k0 · k1 · · · · · kn. �

Fact 3. There is a function ρ(x, y) in R′ such that for every m and for all i, j with
0 < i < j < m, ρ(m, i) and ρ(m, j) are relatively prime.

Proof. First note that (1 + iz) and (1 + jz) are relatively prime provided
0 < i < j and (j − i)|z. Thus we want z(m) to be divisible by every such (j − i),
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which can be guaranteed by defining

z(m) = (µw)[(∀k)<m[k 6= 0→ k|w] ∧ w 6= 0],

which is in R′. Finally then ρ(m, i) = 1 + i · z(m) works. �

Thus, given a set S ⊆ {x : x < m} we define the code of S relative to m as:

c =
∏
x∈S

ρ(m,x).

By Facts 2 and 3 we see that if x < m then x ∈ S if and only if ρ(m,x)|c. Next,
given any finite S ⊆ ω, a code of S is a number a = OP(m, c) where m is a number
larger than every number in S and c is the code of S relative to m. Therefore, x ∈ S
if and only if x < m and ρ(m,x)|c. If the set S we start with is a set of ordered
pairs of a finite sequence, that is, S = {OP(i, ai) : i ≤ n}, then the resulting a is
the code of the finite sequence. Finally, we see that decoding the number assigned
in this way to a finite sequence is done by β defined in the following manner:

Definition 2.2. β(a, i) = (µx)<a(∃m)<a(∃c)<a[a = OP(m, c)∧ρ(m,OP(i, x))|c].

This then completes the proof of Lemma 2.3 establishing the existence of the
β-function.

The careful reader will have noted that there was some redundancy in our
definition of recursive functions in the previous section, since + and · can be defined
from the starting functions using R2 (and R1 of course). We need them in our
starting set, however, if we don’t have R2, in particular to obtain the result of this
section.

3. Representability of Recursive Functions

As we pointed out previously, the result of the preceding section makes it almost
obvious that all recursive functions are definable in N. What we will prove in this
section is a stronger result, which will yield improvements in the Incompleteness
Theorem. Roughly speaking, we will prove that the recursive functions are definable
in every model of Q, and that this in fact characterizes the recursive functions.

In this section, all languages will include at least 0 and s, so that the numerals
n for n ∈ ω are all terms of the language. Our stronger notion of definability is
then as follows:

Definition 3.1.

(a) Let R ⊆ ωn. R is (strongly) representable in T by φ(x0, . . . , xn−1) if and
only if for all k0, . . . , kn−1 ∈ ω we have

R(k0, . . . , kn−1) holds ⇒ T ` φ(k0, . . . , kn−1),

and

R(k0, . . . , kn−1) fails ⇒ T ` ¬φ(k0, . . . , kn−1).

(b) Let F : ωn → ω. F is representable in T by φ(x0, . . . , xn−1, y) if and only
if for all k0, . . . , kn−1 ∈ ω we have T ` ∀y[φ(k0, . . . , kn−1, y)↔ y ≡ m] for
m = F (k0, . . . , kn−1).
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We will say that R (or F ) is representable in T to mean that R (or F ) is
representable in T by some formula of the language of T . Note that, unless T is
complete, the definition in (a) is stronger than the requirement that R(k0, . . . , kn−1)
holds if and only if T ` φ(k0, . . . , kn−1). The following lemma is easily established
and thus left to the reader:

Lemma 3.1.

(i) If R (or F ) is representable in T1 by φ and T1 ⊆ T2 then R (or F ) is also
representable by φ in T2.

(ii) Assume that T ` ¬0 ≡ 1. Then R is representable in T if and only if KR

is.
(iii) Assume that R is representable in T by φ. Let A |= T . Then for all

k0, . . . , kn−1 ∈ ω,R(k0, . . . , kn−1) holds if and only if A |= φ(k0, . . . , kn−1).

A statement analogous to (iii) for functions also holds. In addition, the converse
to (iii) holds. The reader should note that the (stronger) requirement in (a) is used
in establishing each part of the lemma. If T is inconsistent then every relation and
function is representable in T . Otherwise, of course, only countably many relations
and functions can be representable in T .

Our goal is to show that a function is recursive if and only if it is representable
in Q, and that Q could be replaced by any consistent recursively axiomatized T
such that Q ⊆ T (where T might possibly be in a larger language). To accomplish
this we must establish that a large number of sentences (true on N) are in fact
provable from Q. The following definition allows us to be precise in the description
of the sort of consequences of Q we will need.

Definition 3.2. The set of Σ-formulas of L is defined as follows:

(i) Every atomic and negated atomic formula is a Σ-formula.
(ii) If φ, ψ are Σ-formulas then so are (φ ∧ ψ), (φ ∨ ψ).
(iii) If φ is a Σ-formula then so are ∃xφ and ∀x(x < y → φ).

A Σ-sentence is then a Σ-formula with no free variables.

Theorem 3.2. Let σ be a Σ-sentence (of the language of N). Then N |= σ if
and only if Q ` σ.

We will prove the corresponding statement about Σ-formulas by induction.
The base case (atomic formulas) would be tedious done directly because of the
complexity of terms allowed. We call an atomic formula primitive if it has one of
the following forms: x ≡ 0, x ≡ y, x < y, sx ≡ y, x + y ≡ z, x · y ≡ z, where x, y, z
are variables.

Lemma 3.3. For any Σ-formula φ(x0, . . . , xn−1) there is a Σ-formula φ∗(x0, . . . , xn−1)
containing only primitive atomic formulas such that φ |==| φ∗.

The idea of the proof is to note, for example, that s(x+ y) ≡ z is equivalent to
∃u(x + y ≡ u ∧ su ≡ z). We leave the proof to the reader who, if unwilling to do
this, could just change the definition of Σ-formula so that all the atomic formulas
are primitive.

Proof of Theorem 3.2. We prove, by induction on the collection of Σ-formulas
built using only primitive atomic formulas, that for such φ(x0, . . . , xn−1) and any
k0, . . . , kn−1 ∈ ω, if N |= φ(k0, . . . , kn−1) then Q ` φ(k0, . . . , kn−1). [Note, of
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course, that Q ` σ implies N |= σ for any σ since N |= Q.] There are ten base cases
for x ≡ y, x < y, sx ≡ y, x+ y ≡ z, x · y ≡ 0 and their negations.

(i) If N |= k ≡ l then k = l hence k is l hence ` k ≡ l (since x ≡ x ∈ Λ).
(ii) If N |= ¬k ≡ l then k 6= l. Since ` (x ≡ y → y ≡ x) we may suppose

without loss of generality that k > l. We will prove by induction on l that
for every l and for every k, if k > l then Q ` ¬k ≡ l. Suppose l = 0.
Then k = n + 1 for some n, so k is sn. But Q ` ¬sn ≡ 0 by axiom 1 of
Q (page 11), i.e., Q ` ¬k ≡ l. Knowing the result for l, we prove it for
l+1. Once again, if k > l+1 then k = n+1 for some n > l. By inductive
hypothesis, Q ` ¬n ≡ l. But Q ` (sn ≡ sl → n ≡ l) by axiom 2, so
Q ` ¬sn ≡ sl, i.e., Q ` ¬k ≡ l as required.

(iii) If N |= sn ≡ l then n+ 1 = l so sn is l, so ` sn ≡ l.
(iv) If N |= ¬sn ≡ l then n+ 1 6= l so by (ii) Q ` ¬n+ 1 ≡ l, i.e., Q ` ¬sn ≡ l

since n+ 1 is sn.
(v)–(viii) The cases of x + y ≡ z,¬x + y ≡ z, x · y ≡ z,¬x · y ≡ z are left to the

reader. You will use induction for the atomic cases and axioms 3–6 of Q.
(ix)–(x) We show simultaneously by induction on l that for all k, l if k < l then

Q ` k < l and if k 6< l then Q ` ¬k < l. This uses axioms 7 and 8.

The inductive steps for ∧,∨, and ∃ are easy and left to the reader (note, of

course, that we use the fact that the universe of N is {kN : k ∈ ω} in ∃-step). The
step for bounded universal quantification is harder. Assume the inductive hypothe-
sis for φ(x, y, z1, . . . , zn) and let ψ(y, z) be ∀x(x < y → φ). Given k, k1, . . . , kn ∈ ω
suppose that N |= ψ(k, k1, . . . , kn). Then N |= φ(l, k, k1, . . . , kn) for every l < k,
hence by inductive hypothesis, Q ` φ(l, k, k1, . . . , kn) for every l < k. To conclude
that Q ` ∀x(x < k → φ(x, k, k1, . . . kn)) we need to establish that, for every k, we
have Q ` ∀x(x < k → x ≡ 0 ∨ x ≡ 1 ∨ · · · ∨ x ≡ k − 1). This is easily established
by induction on k, again using axioms 7 and 8 of Q. �

Finally, the representability result we are after is as follows:

Theorem 3.4. Let T be a consistent, recursively axiomatized theory containing
Q. Let F : ωn → ω be given. Then the following are equivalent:

(1) F is recursive.
(2) F is representable in Q by a Σ-formula.
(3) F is representable in T .

Proof. (1) ⇒ (2) By the results of the preceding section it suffices to show
that the functions in S are representable in Q by Σ-formulas and that R1 and
R3 preserve this property. We claim that K< is represented by (x0 < x1 ∧ y ≡
0) ∨ (¬x0 < x1 ∧ y ≡ 1), that s,+, · are represented by sx0 ≡ y, x0 + x1 ≡ y, and
x0 · x1 ≡ y, respectively, and that Pni is represented by xi ≡ y (considered as a
formula in x0, . . . , xn, y). The verifications are straightforward using Theorem 3.2—
note, however, that the directions Q ` ∀y[φ(k0, . . . , kn−1, y) → y ≡ m] use the
fact (not stated by a Σ-formula) that in each of the above, we in fact have that
∀x0 . . . ∀xn∀y∀y′[φ(~x, y) ∧ φ(~x, y′)→ y ≡ y′] is logically valid.

To show R1 preserves representability, suppose G is representable in Q by
φ(x1, . . . , xk, z) and Hi is representable in Q by ψi(y1, . . . , ym, xi) for each i =
1, . . . , k. We then claim that F (~y) = G(Hi(~y), . . . ,Hk(~y)) is representable in Q
by the formula χ(y1, . . . , ym, z) : ∃x1 . . . ∃xk[φ(~x, z) ∧ ψ1(~y, x1) ∧ . . . ∧ ψk(~y, xk)].
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Thus given k1, . . . , km ∈ ω let li = Hi(k1, . . . , km) and let n = G(l1, . . . , lk). Then
Q ` φ(l1, . . . lk, n) and Q ` ψi(k1, . . . km, li), hence Q ` χ(k1, . . . , km, n). Further,
Q ` χ(k1, . . . , km, z) → ψi(k1, . . . , km, li) and Q ` φ(l1, . . . , lk, z) → z ≡ n, hence
Q ` χ(k1, . . . , km, z)→ z ≡ n. Thus χ does represent F in Q, and χ is a Σ-formula
provided φ, ψ1, . . . , ψk are Σ-formulas.

Finally we need to prove that R3 preserves representability. Suppose G is
represented in Q by ψ(y1, . . . , ym, x, z), and let F (~y) = (µx)[G(~y, x) = 0]. We
claim that F is represented in Q by φ(y1, . . . , ym, x) : ψ(y1, . . . , ym, x, 0) ∧ ∀u[u <
x → ∃v(¬v ≡ 0 ∧ ψ(y1, . . . , ym, u, v))]. First of all, if F (k1, . . . , km) = n then
Q ` φ(k1, . . . , km, n), since ψ represents G and since we know that Q ` ∀u(u < n→
u ≡ 0 ∨ . . . ∨ u ≡ n− 1). Now we need to establish that Q ` [φ(k1, . . . , km, x) →
x ≡ n] for n = F (k1, . . . , km). Here we finally use axiom 9 of Q, which yields
Q ` (x 6≡ n → x < n ∨ n < x). We have Q ` (x < n → ¬ψ(k1, . . . , km, x, 0)), and
Q ` n < x → ∃u(u < x ∧ ¬∃v[¬v ≡ 0 ∧ ψ(k1, . . . , km, u, v)]), so we can conclude
that φ represents F . And, of course, φ is a Σ-formula provided ψ is.

(2) ⇒ (3) is immediate by Lemma 3.1.
(3) ⇒ (1). Let T be consistent and be axiomatized by the recursive set Σ.

Suppose F is representable in T by φ(x0, . . . , xn−1, y). Then F (k0, . . . , kn−1) = l
if and only if Σ ` φ(k0, . . . , kn−1, l), since T is consistent. We therefore can
define F (k0, . . . , kn−1) as the least l such that Σ ` φ(k0, . . . , kn−1, l); we need
to see that this is recursive. Well, we have F (k1, . . . , kn) = ((µw)[PrvΣ((w)0,

pφ(k0, . . . , kn−1, (ω)1)q)])1, which is recursive since the functionG(k0, . . ., kn−1,m) =

pφ(k0, . . . , kn−1,m)q is recursive since it is obtained by (n + 1) iterations of the
function Sub defined in Definition 1.16. �

Note that for the direction (3) ⇒ (1) we do not need to assume Q ⊆ T , and T
might be in a larger language than Q; we do need T |= k 6≡ n if k 6= n.

As a consequence we also obtain the same equivalence for recursive relations,
using the lemma and the observation that R is representable by as Σ-formula pro-
vided KR is representable by a Σ-formula.

4. Gödel’s Incompleteness Theorem

We can now quickly derive Gödel’s Theorem following our proof number two
from Section 3.

4.1. Incompleteness Theorem (Gödel 1931). Assume that T is recursively
axiomatized and N |= T . Then there is a sentence σ, the negation of a Σ-sentence,
such that N |= σ but T 0 σ.

Proof. We may suppose that Q ⊆ T , since otherwise we could take as σ one
of the axioms of Q. Let Σ be a recursive set of axioms for T . The following relation
is then recursive:

PrvΣ(z,Sub(v0, pv0q,Num(v0))),

hence represented in Q (and also T ) by some Σ-formula θ(v0, z). Now let φ(v0)
be ¬∃zθ(v0, z), let k = pφq and let σ be φ(k). Note that σ is the negation of the
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Σ-sentence ∃zθ(k, z). And the following are equivalent:

N |= σ,

¬(∃nN |= θ(k, n)),
¬[∃nPrvΣ(n, Sub(k, pv0q,Num(k)))],

Σ 0 σ,
since pσq = Sub(pφq, pv0q,Num(pφq)). Since N |= Σ we must have Σ 0 σ, and
N |= σ, whence also T 0 σ. �

Corollary 4.2. Th(N) is not recursively axiomatizable.

This theorem should be contrasted with Theorem 3.2, which asserts that every
Σ-sentence true on N is a consequence of Q. In fact, even the set of Σ-sentences
true on N is more complicated than might be thought.

Corollary 4.3. {θ : N |= θ, θ is a Σ-sentence} is not recursive.

Proof. the set of all Σ-sentences is easily shown to be recursive, so if the above
mentioned set were recursive so would Σ0 = {θ : N |= ¬θ, θ is a Σ-sentence }, hence
also Σ∗ = {¬θ : θ ∈ Σ0}. But then T = Cn(Σ∗) would contradict the statement of
Gödel’s Theorem. �

The only place in the proof of Theorem 4.1 that we used the assumption that
N |= T was in concluding that Σ 0 σ. We can eliminate this assumption by using
the fact that ¬σ is (equivalent to) a Σ-sentence, hence (for T ⊇ Q) we must have
T ` ¬σ provided N |= ¬σ. We thus obtain:

Theorem 4.4. Assume that T is recursively axiomatized and consistent. Then
there is a sentence σ, the negation of a Σ-sentence, such that N |= σ but T 0 σ.

[Of course, we might have T ` ¬σ.]

5. Church’s Thesis

For our precise results of the previous section to have the full, intuitive force
of the statements in Chapter ??, we must accept that every intuitively effectively
computable function on ω is in fact recursive. This assertion is known as Church’s
Thesis, after the logician who first explicitly enunciated it.

Church’s Thesis can hardly be regarded as “obvious,” since our definition of
recursive is somewhat ad hoc. We spent enough effort showing that a relatively
small number of functions are recursive—why should we accept that all computable
functions are recursive?

On the other hand, Church’s Thesis can hardly be susceptible to formal proof,
since the intuitive concept of computable is necessarily informal and potentially
ambiguous. Nevertheless, we can adduce several reasons for accepting Church’s
Thesis.

First, of course, is the lack of a counterexample. No one has been able to come
up with a function on ω which is effectively computable but not recursive.

Second, and more important, is the fact that a number of other ways have been
introduced to formalize the notion of effective computability—Turing machines,
Markov algorithms, equationally derivable, etc. Although independently developed
using different points of departure, these have all turned out to yield the same
“computable” functions, namely the recursive functions.
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A third argument is as follows. Suppose you are given an effectively computable
function F : ω → ω. That is, you are given a finite list of instructions which can
be used to compute all the values of F . Surely this finite list of instructions must
be formalizable in set theory of some sort (where, after all, all mathematics is
carried out), and the axioms of some usual set theory must be strong enough to
imply that the instructions yield the correct value. That is, there must be some
formula φ(x, y) of set theory (allowing also s, 0) and some (recursive) set S∗ of set
theoretical axioms such that for every k ∈ ω, if m = F (k) then S∗ ` φ(k,m) and
S∗ ` ∀y[φ(k, y) → y ≡ m]. That is, F is representable in S∗ by φ, hence F is
recursive by Theorem 3.4 (remembering that the implication (3) ⇒ (1) does not
require the theory to contain the axioms of Q).

The presumption that the axioms of any reasonable set theory must be recursive
seems clear—in practice you could only be given an axiomatization by finitely many
schemas, which will end up being recursive.

In any case, henceforth we will accept Church’s Thesis. It can be used to elim-
inate formal proofs that a function is recursive in favor of intuitive descriptions of
a method to compute the function. Of course, there can be no essential applica-
tions of Church’s Thesis, and we will normally not use it unless the alternative is
horrendously complicated.

6. Primitive Recursive Functions

Functions of two arguments can be viewed as indexed families of functions of
one argument analogously to relations. That is, given F : ω × ω → ω we define
Fk : ω → ω by Fk(x) = F (k, x) for all x, and we think of F as {Fk}k∈ω.

Our main goal in this section is to prove that there is a recursive function U of
two arguments which “lists all primitive recursive functions of one argument”—that
is, a function F of one argument is primitive recursive if and only if there is some
k such that F = Uk.

Once we have such U we can define F : ω → ω by F (n) = U(n, n) + 1 for all n.
Then F is recursive but F 6= Uk for all k, hence F is not primitive recursive. Thus
we have established P ( R.

To accomplish this we consider how we define primitive recursive functions.
A sequence of steps showing exactly how some primitive recursive function F is
obtained from the starting functions using R1 and R2 is called a primitive recur-
sive definition of F . Of course the same primitive recursive function will have
many different primitive recursive definitions, but each primitive recursive defini-
tion determines a unique function and gives complete instructions for computing
its values.

We show how to code each primitive recursive definition by a sequence number
in such a way that we can effectively obtain the values of a primitive recursive
function from its code. This will enable us to obtain the desired recursive function
U .

A sequence number coding a primitive recursive definition will be called a
primitive recursive index , and we will use IPr for the set of all primitive recursive
indices. Our definition will be such that the following hold for f ∈ IPr:

(f)1 is the number of arguments of the function whose definition
is coded by f ;
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(f)0 = 0 if the coded definition just specifies some starting func-
tion;
(f)0 = 1 if the last rule applied in the definition is R1;
(f)0 = 2 if the last rule applied in the definition is R2;
if (f)0 = 0 then the numbers (f)i for i > 1 specify which starting
function;
if (f)0 = 1 or 2 then the numbers (f)i for i > 1 are indices for
the functions to which the last rule is applied.

The indices could be virtually anything “reasonable” (i.e., effective) satisfying
the above guidelines. For the sake of definiteness we make the following choices:

the index of s is 〈0, 1, 0〉,
the index of + is 〈0, 2, 1〉,
the index of · is 〈0, 2, 2〉,
the index of K< is 〈0, 2, 3〉,
the index of Pni for any 1 ≤ i ≤ n is 〈0, n, 4, i〉.

If g, h1, . . . , hk ∈ IPr, corresponding to functions G,H1, . . . ,Hk respectively,
and if F is defined using R1 as

F (~y) = G(H1(~y), . . . ,Hk(~y))

then the primitive recursive index f of this definition of F is 〈1, n, g, h1, . . . , hk〉
where n is the number of arguments of F (i.e., of each Hi). Note that R1 can
actually be applied to G and H1, . . . ,Hk to yield F (and so f actually is a primitive
recursive index) if and only if (g)1 = k and for all i = 1, . . . , k (hi)1 = (f)1.

If g, h ∈ IPr correspond to G and H, and if F is defined from them by R2,
that is {

F (0, ~y) = G(~y),
F (x+ 1, ~y) = H(F (x, ~y), x, ~y),

then this definition of F has index f = 〈2, n+1, g, h〉, where n = (g)1. Furthermore,
R2 can actually be applied, and so f is really an index if and only if (h)1 = (g)1+2 =
h+ 2.

The reader should check that the preceding paragraphs can be rewritten (with-
out reference to the actual functions F,G,H, etc.) to yield a definition of IPr by
course-of-values recursion, and thus IPr is primitive recursive.

Next define the “evaluation” relation E ⊆ ω× ω× ω by E(f,m, l) holds if and
only if f ∈ IPr, lh(m) = (f)1, and F ((m)0, . . . , (m)n−1) = l, where n = (f)1 and
F is the function defined by the primitive recursive definition with index f .

E is certainly intuitively computable, since f codes the entire history of F and
thus gives complete instructions for computing its values. The reader should check
that we can easily give a formal definition showing that E is recursive.

Finally the function U which we are after can be defined by U(k, x) = (µz)([k ∈
IPr ∧ (k)1 = 1 ∧ E(k, 〈x〉, z)] ∨ k /∈ IPr ∨ (k)1 6= 1). Thus Uk is the identically 0
function whenever k is not a primitive recursive index defining a function of one
argument.

With U we can define other interesting recursive but not primitive recursive
functions, for example, G : ω → ω with the property that whenever H : ω → ω is
primitive recursive then there is some k0 ∈ ω such that G(x) > H(x) for all x > k0.

Recursive but not primitive recursive functions can also be defined in a more
mathematically “natural” fashion, but the proofs of non-primitive recursivity are
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not easy. One such function is K : ω × ω → ω determined by

K(n, 0) = n+ 1,
K(0,m+ 1) = K(1,m),
K(n+ 1,m+ 1) = K(K(n,m+ 1),m).

What happens if we try to mimic this process for recursive functions? Well
a recursive definition allows use of R3, and thus we will need indices f = 〈3, . . .〉
to reflect this. But the corresponding E can’t be recursive, else we would have a
contradiction. The reader should figure out what precisely goes wrong.

7. Exercises

(1) Assume that X and Y are each the range of some recursive function on ω into
ω. Prove that (X ∩ Y ) is either empty or the range of some recursive function
on ω.

(2) Let X ⊆ ω. Assume that both X and (ω r X) are each the range of some
recursive function on ω. Prove that X is recursive.

(3) Let R ⊆ ω × ω be primitive recursive. Define F : ω × ω → ω by F (k, l) =
(µn)<l[R(k, n) holds]. Prove that F is primitive recursive.

(4) Let R ⊆ ω × ω be recursive. Define

A = {k ∈ ω : R(k, l) holds for some l ∈ ω}.
(a) Assume that A is non-empty. Prove that A is the image of some recursive

function f : ω → ω.
(b) Assume that A is infinite. Prove that A is the image of some 1−1 recursive

function f : ω → ω.





CHAPTER 9

Undecidability and Further Developments

0. Introduction

This chapter continues the development of the techniques used to prove Gödel’s
Incompleteness Theorem. In Section 1 we present some generalizations and related
results obtained in the mid-1930s by Rosser, Church, and Tarski. In Section 2,
following the approach of Tarski, Mostowski, and R.M. Robinson, we finally obtain
methods of showing the undecidability of theories which do not contain Q. In
particular, we finally derive Church’s celebrated solution to the decision problem
for pure logic. In Section 3 we pause to present some of the fundamental properties
of r.e. relations, in particular proving that they are precisely the relations definable
in N by Σ-formulas. In Section 4 we discuss the solution to Hilbert’s tenth problem.
The “technical” lemma needed for its solution states that in fact every r.e. relation
is definable in N by an existential formula. In Section 5 we give a “fixed point”
theorem which is lurking behind the Incompleteness Theorem. We use this result
to discuss Gödel’s second Incompleteness Theorem which states that no consistent
extension of P can prove its own consistency.

1. The Theorems of Church and Tarski

Recall that a theory T is decidable if and only if ThmT = {pσq : σ ∈ SnL, T ` σ}
is recursive. Gödel’s Incompleteness Theorem implies that Th(N) is not decidable.
A considerable strengthening of this, due essentially to Church, states that no
consistent extension of Q is decidable.

The following notation will be helpful:

Definition 1.1. For any R ⊆ ω × ω and any k ∈ ω, Rk = {n : R(k, n) holds}.

We will frequently think of a binary relation R on ω as an indexed family of
sets Rk, as defined above. Similarly, of course, an (n + 1)-ary relation could be
considered as an indexed family of n-ary relations.

The following, trivial lemma is the main component of a surprising number of
sophisticated arguments:

1.1. Lemma (Diagonalization). Given a binary relation R on ω, define Q by
Q(x)⇔ ¬R(x, x). Then Q 6= Rk for every k.

Proof. If Q = Rk0 then Q(k0) holds if and only if ¬R(k0, k0) holds if and
only if Rk0(k0) fails, a contradiction. �

1.2. Church’s Theorem. Assume T is consistent and Q ⊆ T . Then T is not
decidable.

33
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Proof. Suppose T were decidable, so ThmT is recursive. Define R by

R(k, n)⇔ ThmT (Sub(k, pv0q,Num(n))),

that is, R(k, n) holds if and only if k = pφq for some formula φ(v0) and T ` φ(n).
Then R is recursive, by our supposition.

Since T ⊇ Q we know that every recursive set is representable in T , that is, if
X ⊆ ω is recursive then there is some φ(v0) such that X = {n ∈ ω : T ` φ(n)}.
This means that every recursive X ⊆ ω is Rk for some k.

Finally define Q by Q(x) ⇔ ¬R(x, x). Then Q is recursive, since R is. But
Q 6= Rk for all k by diagonalization, which contradicts the result of the previous
paragraph. �

To derive (Rosser’s improvement of) Gödel’s Incompleteness Theorem from
Church’s result, we need to know that a complete recursively axiomatized theory
is decidable. We gave an informal argument for this in Chapter ??, but can now
give a very neat, formal proof.

The following definition introduces one of the fundamental concepts of recursion
theory:

Definition 1.2. R ⊆ ωn is recursively enumberable (r.e.) if and only if there
is some recursive Q ⊆ ωn+1 such that R(~x)⇔ ∃y Q(~x, y).

Clearly, a recursive relation is r.e., and we will soon see that the converse fails.
The next important fact gives us one way of showing that an r.e. relation is in fact
recursive.

Proposition 1.3. R is recursive if and only if R and ¬R are both r.e.

Proof. We need just show the implication from right to left. Suppose R and
¬R are both r.e. Then there are recursive relations Q, S such that

R(~x)⇔ ∃y Q(~x, y)

and
¬R(~x)⇔ ∃y S(~x, y).

Since for any ~x either R(~x) or ¬R(~x) must hold, we see that

(µy)[Q(~x, y) ∨ S(~x, y)]

is a recursive function. Since R(~x) and ¬R(~x) can’t both hold we see that

R(~x)⇔ Q(~x, (µy)[Q(~x, y) ∨ S(~x, y)]),

hence R is recursive. �

Using the above result, the proof of the result on complete recursively axiom-
atizable theories is easy.

Theorem 1.4. Assume T is complete and recursively axiomatizble. Then T is
decidable.

Proof. Let Σ be a recursive set of axioms for T . Then ThmT is r.e. since

ThmT (x)⇔ ∃z[PrvΣ(z, x) ∧ Sn(x)].

But ¬ThmT is also r.e., because T = Cn(Σ) is complete, and so

¬ThmT (x)⇔ ∃z[PrvΣ(z,Neg(x)) ∨ ¬Sn(x)].

Thus T is decidable. �
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Thus, Church’s undecidability theorem yields as a consequence the following
improvement, due to Rosser, of the Incompleteness Theorem:

Theorem 1.5. No recursively axiomatizable theory T with Q ⊆ T is complete.

Analyzing the proof of Church’s Theorem we see that the only use of the as-
sumption that T is decidable is to conclude that ThmT is representable in T (since
the functions representable in T are closed under composition—cf. page 26). Us-
ing this observation we are able to derive Tarski’s well-known result about the
undefinability of truth. The details are left to the reader.

1.6. Theorem (Tarski). Let A |= Q. Then there is no formula θ(x) such that for
every sentence σ we have A |= σ if and only if A |= θ(pσq).

A variant of this states:

Theorem 1.7. Let T be consistent, Q ⊆ T . Then there is no formula θ(x)
such that for every sentence σ we have T ` [σ ↔ θ(pσq)].

Finally, the following result graphically illustrates the way in which complete-
ness fails:

Theorem 1.8. Let T be a consistent, recursively axiomatized theory, T ⊇ Q.
Then there is some θ(y), a negation of a Σ-formula, such that T ` θ(k) for every
k ∈ ω but T 6` ∀y θ(y).

Proof. We know there is some r.e. set X which is not recursive. Then there
is some recursive R such that X = {n : ∃y R(n, y) holds}. R is represented in T by
some φ(x, y). Therefore, n ∈ X implies T ` ∃y φ(n, y). Since X is not recursive,
there is some n0 /∈ X such that T 6` ¬∃y φ(n0, y) even though T ` ¬φ(n0, k) for
every k. Thus, we can take θ(y) = ¬φ(n0, y). �

If N |= T , then the above yields incompleteness.

2. Undecidable Theories

We now know that every consistent extension of Q is undecidable. In this
section we present some general methods (due to Tarski, Mostowski, and R.M.
Robinson) to show that theories, not containing the axioms of Q, are undecidable.
In particular, we will derive Church’s negative solution to the decision problem,
that is, that pure logic, CnL(∅), is undecidable provided L contains at least a
binary predicate symbol.

The methods we develop could be called “relative undecidability” results, since
they will say that a theory T2 is undecidable provided it is related in a certain way
to a theory T1 known to be undecidable. Repeated application of these methods,
beginning with the particular theory Q, will enable us to conclude, for example,
that the theory of fields, the theory of groups, and Th((Q,+, ·)) are all undecidable,
in addition to Church’s result about pure logic mentioned above.

The theory Q has a stronger property that will enter into our considerations.

Definition 2.1. A consistent theory T of L is essentially undecidable (EU) if
and only if every consistent extension of T (in L) is undecidable.



36 9. UNDECIDABILITY AND FURTHER DEVELOPMENTS

Examples show that an undecidable theory need not be essentially undecidable,
but clearly any consistent extension of an essentially undecidable theory (in the
same language) is again essentially undecidable.

Our first relative undecidability results concern the following sorts of extensions:

Definition 2.2. Let Ti be a theory of Li, i = 1, 2.

(a) T2 is a finite extension of T1 if and only if L1 = L2 and T2 = Cn(T1 ∪ Σ)
for some finite set Σ of sentences.

(b) T2 is a conservative extension of T1 if and only if L1 ⊆ L2 and T1 =
(T2 ∩ SnL1).

In particular, note that if Σ is a set of sentences of L1 and L1 ⊆ L2, then
CnL2

(Σ) is a conservative extension of CnL1
(Σ).

Theorem 2.1. Given theories Ti of Li, i = 1, 2:

(a) If T2 is a finite extension of T1 and T2 is undecidable, then T1 is undecid-
able.

(b) If T2 is a conservative extension of T1 and T1 is undecidable, then T2 is
undecidable.

(c) If T2 is a conservative extension of T1 and T1 is EU, then T2 is EU.

Proof. (a) Let T2 = Cn(T1 ∪Σ), where L1 = L2 and Σ is finite. Let σ be the
conjunction of all the sentences in Σ. Then T2 |= θ if and only if T1 |= (σ → θ), so
we have ThmT2(x) ↔ ThmT1(p(σ →q ∗ x ∗ p)q), thus ThmT2 is recursive provided
ThmT1 is.

(b) We immediately conclude that ThmT1
is recursive if ThmT2

is, since SnL1

is recursive.
(c) Given a consistent extension T ′2 of T2, in L2, let T ′1 = (T ′2 ∩ SnL1

). Then
T ′1 is undecidable since T1 is EU, and T ′2 is a conservative extension of T ′1, hence
undecidable by (b). �

Corollary 2.2. If the theory T of L is EU, then for every L′ ⊇ L and every
consistent theory T ′ ⊇ T of L′, T ′ is undecidable (in fact, EU).

The finite axiomatizability of Q also enters into our development in an essential
way.

Theorem 2.3. Assume T is a finitely axiomatizable EU theory of L. Let T ′ be
any theory of any L′ ⊇ L such that (T ∪ T ′) is consistent. Then T ′ is undecidable.

Proof. CnL′(T∪T ′) is undecidable by Corrolary 2.2, and it is a finite extension
of T ′, since T is finitely axiomatizable, hence T ′ is undecidable by Theorem 2.1. �

Corollary 2.4. If there is some finitely axiomatizable EU theory of L, then
for every L′ ⊇ L, CnL′(∅) is undecidable. Hence CnL′(∅) is undecidable whenever
L′ ⊇ {+, ·, <, s, 0 }.

We will find it more convenient to work with structures rather than theories.
The sort of structures we are interested in are given in the following definition:

Definition 2.3. An L-structure A is strongly undecidable if and only if there
is some finitely axiomatizable EU theory T0 of L such that A |= T0.

Thus, N is strongly undecidable. Theorem 2.3 immediately yields the following
fact:
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Corollary 2.5. Assume A is strongly undecidable. Let T be any theory of L
(the language of A) such that A |= T . Then T is undecidable.

Our goal is to establish certain “transfer” results for the property of strong un-
decidability. We will then use these results, beginning with the strongly undecidable
structure N, to conclude that a number of theories of interest are undecidable.

We begin with a simple lemma.

Lemma 2.6. Let A = B � L1 where B is an L2-structure.

(a) If A is strongly undecidable, so is B.
(b) If L2 −L1 = {c0, . . . , cn} consists just of individual constants and if B is

strongly undecidable, then so is A.

Proof. (a) This is clear from Theorem 2.1.
(b) Let T2 be a finitely axiomatizable EU theory of L2 such that B |= T2. Let

Σ be a finite set of axioms for T2 and let σ be the conjunction of the sentences
in Σ. Then σ = φ(c0, . . . , cn) for some formula φ(x0, . . . , xn) of L1. Let T1 =
CnL1({∃x0 . . . ∃xn φ}). Then A |= T1. We show that T1 is EU. Let T be a consistent
L1 theory, T1 ⊆ T . Let T ∗ = CnL2

(T ). Then, for an arbitrary sentence θ of L2 we
know that θ = ψ(c0, . . . , cn) for some ψ(x0, . . . , xn) of L1 and can conclude that
T ∗ |= θ if and only if T |= ∀x0 . . . ∀xnψ. Thus T is undecidable provided T ∗ is. But
T ∗ ∪ T2 is consistent (since T |= ∃~xφ), hence T ∗ is undecidable by Theorem 2.3.
Thus T1 is EU. �

Our main results concern the following two relations between structures:

Definition 2.4. Let A be an L1-structure and let B be an L2-structure, where
L1 ⊆ L2.

(a) B is an expansion by definitions of A if and only if A = B � L1 and
for every R (F , c) ∈ L2 − L1, RB (FB, {cB}) is definable in A by an
L1-formula (therefore also in B).

(b) A is definable in B if and only if A = B � L1 and A is definable in B (by
an L2-formula).

Our main transfer results are contained in the next theorem.

Theorem 2.7. Assume that B is strongly undecidable and that either B is an
expansion by definitions of A or B is definable in A. Then A is strongly undecidable.

We prove this result via a sequence of lemmas. For the first part of the theorem
we assume that L1 ⊆ L2, B is a strongly undecidable L2-structure, A = B � L1

and B is an expansion by definitions of A. For each R (or F or c) ∈ L2 − L1 we
fix an L1-formula φR (or φF or φc) defining RB (FB, {cB}) in A. we let

∆ = {∀~x[R~x↔ φR(~x)] : R ∈ L2 − L1}
∪ {∀~x ∀y[F~x ≡ y ↔ φF (~x, y)] : F ∈ L2 − L1}
∪ {∀x[x ≡ c↔ φc(x)] : c ∈ L2 − L1}.

We further define Γ to be

{∀~x ∃!yφF (~x, y) : F ∈ L2 − L1} ∪ {∃!xφc(x) : c ∈ L2 − L1}.
Notice that Γ is a set of sentences of L1, A |= Γ, and B |= ∆. For each L2-formula
φ(~x) we let φ∗(~x) be the L1-formula obtained from φ by replacing all symbols of
L2 − L1 by their L1-definitions.
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If L2−L1 consists only of relations, φ∗ has a straightforward recursive definition.
In the general case, φ must first be rewritten so that functions and constants of
L2−L1 occur only in contexts of F~x ≡ y and x ≡ c. We leave further details to the
reader. The basic properties of this translation are given in the following lemma:

Lemma 2.8.

(1) ∆ |= [φ↔ φ∗] for all φ ∈ FmL2
.

(2) If A′ is any L1-structure then A′ |= Γ if and only if A′ = B′ � L1 for some
B′ |= ∆.

(3) If Σ ⊆ SnL2
, let Σ∗ = {σ∗ : σ ∈ Σ}, then ∆ ∪ Σ has a model if and only

if Γ ∪ Σ∗ has a model.

Proof. (1) and (2) are left to the reader.
(3) By compactness it suffices to consider the case where Σ is finite. Since

(φ ∧ ψ)∗ = (φ∗ ∧ ψ∗) it suffices to consider the case Σ = {σ}. By (2), Γ ∪ {σ∗} has
a model if and only if ∆ ∪ {σ∗} has a model, and by (1), ∆ ∪ {σ∗} has a model if
and only if ∆ ∪ {σ} has a model, so (3) holds. �

Since B is strongly undecidable we know B |= T2 where T2 = CnL2
(Σ) is EU

and Σ is finite. We define T1 = CnL1
(Σ∗ ∪ Γ). Then A |= T1, by Lemma 2.8, and

T1 is finitely axiomatizable. (Note we are using here our blanket assumption in
decidability contexts that all languages are finite.) Thus to show that A is strongly
undecidable it suffices to show that T1 is EU.

Let T be a consistent L1-theory, T1 ⊆ T . Let T ∗ = CnL2
(T ∪∆). We establish:

Lemma 2.9.

(3) For every sentence σ of L2, T ∗ |= σ if and only if T |= σ∗.
(4) T2 ⊆ T ∗.
(5) T is undecidable.

Proof. (3) From right to left is immediate by Lemma 2.8 (1). The other
implication (in its contrapositive form) is immediate from Lemma 2.8 (3), since
(¬σ)∗ is ¬σ∗.

(4) If σ ∈ T2 then Σ |= σ hence T1 |= σ∗ by Lemma 2.8 (3), and so T ∗ |= σ∗,
and therefore T ∗ |= σ by Lemma 2.8 (1).

(5) By (3), T ∗ is consistent, and so by (4) T ∗ is undecidable, hence by (3) again
T is also undecidable (since the function sending φ to φ∗ is recursive). �

Thus the first part of Theorem 2.7 holds.
For the second part of Theorem 2.7 we assume that L1 ⊆ L2, B is an L1-

structure which is strongly undecidable and definable in the L2-structure A. We
first note that we may assume that B = PA, where P is some 1-ary predicate
symbol in L2 − L1 (since otherwise we could replace L2 by L2 ∪ {P} and expand
A to A′ by defining PA = B = φA for some φ; by the first part of Theorem 2.7 the
strong undecidability of A′ implies the strong undecidability of A).

We next define:
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Definition 2.5. For arbitrary L1-formulas φ, the relativization φ(P ) of φ to
P is given by the following recursion:

φ(P ) = φ if φ is atomic,
(¬φ)(P ) = ¬φ(P ),

(φ→ ψ)(P ) = (φ(P ) → ψ(P )),
(∀xφ)(P ) = ∀x[Px→ φ].

We let Γ be the following finite set of L2-sentences:

{∃xPx} ∪ {Pc : c ∈ L1}∪
{∀x1 . . . ∀xn(Px1 ∧ . . . ∧ Pxn → PFx1, . . . , xn) : F ∈ L1}.

The following results can then be established as for the first part of Theorem 2.7:

Lemma 2.10.

(1) For any L2-structure A′, A′ |= Γ if and only if there is some B′ ⊆ A′ � L1

with B′ = PA′ .
(2) Given A′, B′ as in (1), for any L1-sentence σ we have B′ |= σ if and

only if A |= σ(P ).
(3) If Σ ⊆ SnL2

let Σ∗ = {σ : σ(P ) ∈ Σ}. Then Σ∗ has a model if and only if
(Σ ∪ Γ) has a model.

Now let T1 be a finitely axiomatizable EU theory such that B |= T1, say
T1 = Cn(Σ) where Σ is finite. We define

T2 = CnL2
(Σ(P ) ∪ Γ).

Then T2 is finitely axiomatizable and A |= T2, by Lemma 2.10 (1) and (2). To show
T2 is EU, let T be a consistent L2-theory, T2 ⊆ T . Define

T ∗ = CnL1
({σ ∈ SnL1

: σ(P ) ∈ T}).
We then have, as before, the following:

Lemma 2.11.

(3) For any θ ∈ SnL1
, T ∗ |= θ if and only if T |= θ(P ).

(4) T1 ⊆ T ∗.
(5) T is undecidable.

Further details are left to the reader.
We list some of the consequences of Theorem 2.7:

Fact 4. (ω,+, ·) is strongly undecidable, hence CnL(∅) is undecidable whenever L
contains at least two 2-ary function symbols.

Fact 5. (Z,+, ·) is strongly undecidable, hence the elementary theory of rings (i.e.,
the consequences of the ring axioms in this language, or in the language adding 0
or also 1) is undecidable.

Fact 6. (Q,+, ·) is strongly undecidable, hence the elementary theory of fields is
undecidable.

We prove Fact 4 by noting that N = (ω,+, ·, <, s, 0) is an expansion by defini-
tions of (ω,+, ·). To prove Fact 5 we show that (ω,+, ·) is definable in (Z,+, ·)—this
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follows from the well-known number theoretic fact that if k ∈ Z then k ≥ 0 if and
only if there are n1, n2, n3, n4 ∈ Z such that k = n2

1 + n2
2 + n2

3 + n2
4. A less familiar

fact shows that (Z,+, ·) is definable in (Q,+, ·).
Our next goal is to show there is a strongly undecidable structure for the

language with just a 2-ary predicate. To do this we require the following:

Lemma 2.12. Assume that L2 = L1 ∪ {c1, . . . , cn} where c1, . . . , cn are indi-
vidual constants. Let B be an L2-structure and let A = B � L1. If B is strongly
undecidable then A is also strongly undecidable.

Proof. Assume that B |= T2 where T2 is EU and T2 = Cn(Σ) for finite Σ.
If σ is any sentence of L2 then σ is φ(c1, . . . , cn) for some formula φ(x1, . . . , xn) of
L1; we let σ∗ be the L1-sentence ∀x1 . . . ∀xnφ. Note that for any theory T of L1

and any σ ∈ SnL2 , T |= σ if and only if T |= σ∗—hence T is undecidable if (and
only if) T ′ = CnL2

(T ) is undecidable.
Now let θ(c1, . . . , cn) be the conjunction of the sentences in Σ, let θ# be the

L1-sentence ∃x1 . . . ∃xnθ(~x), and let T1 = CnL1
(θ#). Then A |= T1. We claim

that T1 is EU. Let T ⊇ T1 be any consistent L1-theory and let T ′ ⊆ CnL2(T ).
Then (T ′ ∪ T2) is consistent, hence T ′ is undecidable, by Theorem 2.3, and so T is
undecidable by the remark in the first paragraph of this proof. �

Theorem 2.13. There is a strongly undecidable L-structure where L is the
language whose only non-logical symbol is a 2-ary predicate R.

Proof. Given L as in the statement of the theorem we let L+ = L∪ {0, 1, u},
where 0, 1, u are individual constant symbols, and we let L++ = L+ ∪{+, ·}, where
+, · are 2-ary function symbols. We define an L++-structure A++ such that (ω,+, ·)
is definable in A++ and such that A++ is an expansion by definitions of A+ =
A++ � L+. It then follows, using Lemma 2.12 and Theorem 2.7, that A = A+ � L
is strongly undecidable.

We let A = ω∪ (ω×ω)∪{u}, where u /∈ ω∪ (ω×ω), and we define RA ⊆ A×A
as follows:

RA = {(u, k) : k ∈ ω}
∪ {(k, (k, n)) : k, n ∈ ω}
∪ {((k, n), n) : k, n ∈ ω}
∪ {((0, k), (n, k + n)) : k, n ∈ ω}
∪ {((1, k), (n, k · n)) : k, n ∈ ω}.

In A+ the constants 0, 1, u are interpreted by 0, 1, u, respectively. In A++ the
interpretation of + is defined by the following L+-formula:

[¬(Rux ∧Ruy) ∧ z ≡ u]∨
[Rux ∧Ruy ∧Ruz ∧ ∃v1v2(R0v1 ∧Rv1x ∧Ryv2 ∧Rv2z ∧Rv1v2)].

The interpretation of · in A++ is similarly defined, with 0 replaced by 1. The
assertions about A++ are then easily verified. �

We thus can conclude the following negative solution to the decision problem,
originally obtained by Church in 1936.

Corollary 2.14. CnL(∅) is undecidable provided L contains at least one n-
ary predicate or function symbol with n ≥ 2.
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If L contains only 1-ary predicate symbols and individual constants then CnL(∅)
is decidable, as was pointed out in Section 4. If L contains at least two 1-ary func-
tion symbols then CnL(∅) is undecidable. On the other hand, if L contains just a
single 1-ary function symbol then CnL(∅) is decidable.

Methods similar to the above can be used to show that there are strongly
undecidable partial orders and strongly undecidable groups. Hence the elementary
theory of partial orders and the elementary theory of groups are both undecidable.

3. Recursively Enumerable Relations

In the further development of recursion theory the r.e. sets and relations will
take on increased significance. In this section we begin developing the theory of r.e.
sets. In particular we characterize the r.e. relations as those weakly representable
in Q, which corresponds to the similar characterization of recursive relations. We
further show that the r.e. relations are precisely those definable in N by Σ-formulas
and that there are “universal” r.e. relations. These last two results have no ana-
logues for recursive relations and are an indication that the r.e. relations have a
“smoother” theory than the recursive relations.

Recall that we have shown that a relation R is recursive if and only if R and
¬R are both r.e. Further, we know (from the Incompleteness Theorem) that there
are r.e. sets which are not recursive, so the r.e. relations are not closed under
complement. Our first lemma gives some closure properties of the r.e. relations.

Lemma 3.1.

(a) Assume that R,S ⊆ ωn are both r.e. Then so are (R ∧ S), (R ∨ S).
(b) Assume R(~x, y, z) ⊆ ωn+2 is r.e. Then so are ∃yR and (∀y)<zR.
(c) Assume R ⊆ ωn is r.e. and Fi : ω

k → ω are recursive for all i = 1, . . . , n.
Then S ⊆ ωk defined by

S(~y)⇔ R(F1(~y), . . . , Fn(~y))

is r.e.

Proof. (a) Assume that R(~x)⇔ ∃yR∗(~x, y) and S(~x)⇔ ∃S∗(~x, y), where R∗

and S∗ are both recursive. Then we have

[R(~x) ∧ S(~x)]⇔ ∃w[R∗(~x, (w)0) ∧ S∗(~x, (w)1)],

so (R ∧ S) is r.e.
(b) Assume that R(~x, y, z)⇔ ∃uR∗(~x, y, z, u), where R∗ is recursive. Then we

have

(∀y)<zR⇔ (∀y)<z∃uR∗(~x, y, z, u)⇔ (∃w)(∀y)<zR
∗(~x, y, z, (w)y),

so this is also r.e.
The other parts are left to the reader. �

It is interesting to note that the r.e. sets are precisely the “listable” sets of
Chapter ??. The proof of this is left to the reader.

Theorem 3.2. Assume X ⊆ ω and X 6= ∅. Then X is r.e. if and only if
X = ran(F ) for some recursive function F : ω → ω.
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Definition 3.1. Let T be a theory of some language L ⊇ {s, 0}, let R ⊆ ωn,
and let φ(x1, . . . , xn) be an L-formula. Then R is weakly representable in T by φ
provided the following holds:

for every k1, . . . , kn ∈ ω,R(k1, . . . , kn) holds

if and only if T ` φ(k1, . . . , kn).

Note that if T is consistent and R is representable in T by φ then R is weakly
representable in T by φ. Conversely, if T is complete and R is weakly representable
in T by φ then R is representable in T by φ. Note however that it is not true
that if R is weakly representable in T1 by φ and T1 ⊆ T2, T2 consistent, then R is
weakly representable in T2 by φ. Our first theorem states that weak representability
corresponds exactly to recursive enumerability.

Theorem 3.3. Let T be a theory of L = {+, ·, <, s, 0} such that N |= T,Q ⊆ T ,
and T is recursively axiomatizable. Let R ⊆ ωn. The following are equivalent:

(1) R is r.e.
(2) R is weakly represented in T by a Σ-formula.
(3) R is weakly represented in T .

Proof. (2) ⇒ (0): Assume R is weakly represented in T by φ. Then for any
k1, . . . , kn ∈ ω we know thatR(k1, . . . , kn) holds if and only if ThmT (pφ(k1, . . . , kn)q).
Thus R is r.e. since ThmT is r.e. and the function F : ωn → ω defined by
F (k1, . . . , kn) = pφ(k1, . . . , kn)q is recursive.

(0) ⇒ (1): Since R is r.e. we know that R(k1, . . . , kn) holds if and only if there

exists l ∈ ω such that R∗(~k, l) holds, where R∗ is recursive. Thus we know R∗

is representable in T by some Σ-formula ψ(~x, y). We claim that the Σ-formula
φ(~x) = ∃yψ weakly represents R in T . It is clear that if R(k1, . . . , kn) holds then
T ` φ(k1, . . . , kn). Conversely, if T ` φ(k1, . . . , kn) then N |= φ(k1, . . . , kn), hence
N |= ψ(k1, . . . , kn, l) for some l ∈ ω. Since ψ is a Σ-formula we know that Q `
ψ(k1, . . . , kn, l) and so R∗(~k, l) holds, and thus R(~k) holds. �

Since Q ` φ(k1, . . . , kn) if and only if N |= φ(k1, . . . , kn) for Σ-formulas φ(~x)
we can immediately conclude:

Corollary 3.4. R ⊆ ωn is r.e. if and only if R is definable in N by a Σ-
formula.

As in Section 1 we use the following notation: if R ⊆ ωn+1 and k ∈ ω then

Rk = {(l1, . . . , ln) : R(k,~l ) holds}. We can thus think of R as the indexed family
{Rk}k∈ω of n-ary relations. The Diagonalization Lemma 1.1 then establishes that
there in no 2-ary recursive relation which indexes all recursive sets. On the other
hand there are r.e. relations which index all r.e. sets.

Theorem 3.5. For each positive integer n there is an r.e. relation Sn ⊆ ωn+1

such that {Snk : k ∈ ω} lists all the n-ary r.e. relations.

Proof. Let F : ωn+1 → ω be a recursive function such that whenever k = pφq
where φ(v0, . . . , vn−1) is a formula of L = {+, ·, <, s, 0} then F (k, l0, . . . , ln−1) =
pφ(l0, . . . , ln−1)q. Let Sn be defined by the following:

Sn(k, l0, . . . , ln−1) holds if and only if ThmQ(F (k, l0, . . . , ln−1)).

Then Sn is r.e. and, by Theorem 3.3, every n-ary r.e. relation is Snk for some
k ∈ ω. �
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If n = 1 we will normally omit the superscript. This result, giving the existence
of “universal” r.e. relations, is also known as the Enumeration Theorem.

We may similarly, given a function F : ωn+1 → ω, define functions Fk : ωn → ω

by Fk(l1, . . . , ln) = F (k,~l ) for all l1, . . . , ln ∈ ω and then think of F as indexing
the family {Fk}k∈ω of functions. It is easy to see that there is no 2-ary recursive
function F which indexes all 1-ary recursive functions. This is a clear defect—it
would be desirable to have such a universal recursive function. The question then
arises: is there some natural extension of the notion of computable function for
which there are such universal functions? In light of Theorem 3.5, it would seem
natural to consider “r.e.” functions, i.e., those whose graphs are r.e. Unfortunately
this does not get us anywhere.

Lemma 3.6. Let F : ωn → ω be a function whose graph is r.e. Then F is
recursive.

Proof. By hypothesis, there is some recursiveR ⊆ ωn+2 such that F (k1, . . . , kn) =

l⇔ ∃zR(~k, l, z). Then F (~k) = ((µw)R(~k, (w)0, (w)1))0, so F is recursive. �

4. Hilbert’s Tenth Problem

We know that every Σ-formula (in L = {+, ·, <, s, 0 }) defines an r.e. relation
on ω in N. More importantly we have the converse that every r.e. relation on ω is
definable in N by a Σ-formula. The presence of the bounded universal quantifiers
in Σ-formulas makes it difficult to interpret them in a mathematically “natural”
way. Surprisingly, it turns out that we don’t need bounded universal quantifiers to
define r.e. relations. As a consequence we see that all r.e. relations are definable
in terms of polynomial equalities, and this fact then enables us to solve Hilbert’s
Tenth Problem, on diophantine equations.

Definition 4.1. A formula φ(x0, . . . , xn−1) of L = {+, ·, <, s, 0} is an equa-
tional ∃-formula if and only if it has the form ∃y0 . . . ∃ym−1[t1(~x, ~y) ≡ t2(~x, ~y)],
where t1 and t2 are terms of L.

Theorem 4.1. For any Σ-formula φ(x0, . . . , xn−1) of L there is an equational
∃-formula φ∗(x0, . . . , xn−1) of L such that N |= ∀~x[φ↔ φ∗].

4.2. Corollary (Matijasevič). A relation on ω is r.e. if and only if it is definable
in N by an equational ∃-formula.

The proof of Theorem 4.1 is by induction on the definition of Σ-formulas. The
only hard case is that of the bounded universal quantifier, which uses some tricky
(but elementary) number theory. We will discuss the easy steps of the proof later
but will not attempt the bounded universal quantifier step.

Assuming this result for the present, we show how this leads to the solution of
Hilbert’s famous problem (from his 1900 address at the International Congress of
Mathematicians) on the solvability of diophantine equations in integers.

Definition 4.2.

(a) A diophantine equation is an equation of the form P (x1, . . . , xn) = 0 where
P (x1, . . . , xn) is a polynomial in the unknowns x1, . . . , xn with coefficients
from Z.
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(b) A solution to the equation P (x1, . . . , xn) = 0 is a tuple (k1, . . . , kn) of
numbers such that P (k1, . . . , kn) = 0. This is a solution in Z (or, simply,
in integers) provided k1, . . . , kn ∈ Z.

The connection between diophantine equations and equational ∃-formulas is as
follows:

Lemma 4.3. Let φ(y) be an equational ∃-formula of L. Then there is a dio-
phantine equation P (~x, y) = 0 such that for each k ∈ ω N |= φ(k) if and only if
P (~x, k) = 0 has a solution in Z.

Proof. Say φ(y) is ∃u0 . . . ∃um−1[t1(y, ~u) ≡ t2(y, ~u)] for terms t1 and t2 of L.
A polynomial with coefficients from Z is just a term in L ∪ {−}, so let Q(~u, y) be
the polynomial (t1 − t2). Then for any k ∈ ω N |= φ(k) if and only if Q(~u, k) = 0
has a solution in ω. To obtain the desired polynomial P (~x, y) we once again use
Lagrange’s theorem that an integer is non-negative if and only if it is the sum of
four squares of integers. So we let ~x be x0, . . . , xn−1, where n = 4m, and we let
P (~x, y) be obtained from Q(~u, y) by replacing each ui in Q by

x2
4i + x2

4i+1 + x2
4i+2 + x2

4i+3.

Then clearly P is as desired. �

Note here that P (~x, k) is also a polynomial, in the unknowns ~x, and thus that
P (~x, k) = 0 is a diophantine equation, for each fixed k.

We can now state Hilbert’s famous problem from his International Congress
address in 1900, concerning diophantine equations.

Hilbert’s Tenth Problem. Is there an effective procedure which, given any dio-
phantine equation P (~x) = 0, will decide whether or not it has a solution in integers?

Matijasevič showed (1970) that this problem has a negative solution. Assuming
his result from Corollary 4.2, we do the same.

Theorem 4.4. There is no effective procedure as asked for in Hilbert’s Tenth
Problem.

Proof. Let X ⊆ ω be r.e. but not recursive. So by Corollary 4.2 together with
Lemma 4.3 we know there is a polynomial P (~x, y) with coefficients from Z such that
for every k ∈ ω, k ∈ X if and only if the diophantine equation P (~x, k) = 0 has
a solution in Z. Suppose there were an effective procedure to decide, given any
diophantine equation P ′(~x) = 0, whether or not it has a solution in Z. Then in
particular this procedure would decide, given any k ∈ ω, whether or not P (~x, k) = 0
has a solution in Z, that is, whether or not k ∈ X. But X is not recursive, so there
is no such effective procedure. �

As another amazing consequence of Matijasevič’s general theorem we give the
following:

Theorem 4.5. Let X ⊆ ω be r.e., X 6= ∅. Then there is a polynomial Q(~u)
with coefficients from Z such that X = ran(Q) ∩ ω.

Proof. We know that there is a polynomial P (~x, y) such that k ∈ X if and
only if P (~x, k) = 0 for some ~x in Z. We define Q(~x, y) = y− (y+1) ·P (~x, y)2. Then
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Q is as desired since Q(~x, y) ≥ 0 if and only if y ≥ (y + 1) · P (~x, y)2 if and only if
y ≥ 0 and P (~x, y) = 0 if and only if y ≥ 0 and y ∈ X and Q(~x, y) = y. �

The reader who doubts that Theorem 4.5 is truly amazing should try to come
up with such a polynomial for, say, X equal to the set of primes.

So how is Theorem 4.1, which makes all of this possible, proved? We must
show that all atomic and negated atomic formulas of L are equivalent in N to
equational ∃-formulas, and we must show the equational ∃-formulas are closed (up
to equivalence in N) under ∧, ∨, ∃x and bounded universal quantification (∀x)<y.
All steps except the last are easy, and we give a few of them.

The atomic L-formula (t1(~x) < t2(~x)) is equivalent in N to the equational ∃-
formula ∃u[t1(~x) + su ≡ t2(~x)]. Its negation ¬(t1 < t2) is equivalent in N to (t1 ≡
t2∨t2 < t1), which will be fine once we see that the equational ∃-formulas are closed
under ∨. Suppose φ(~x) and ψ(~x) are equational ∃-formulas, say φ is ∃~y(t1 ≡ t2)
and ψ is ∃~w(t3 ≡ t4). The following are then equivalent in (Z,+, ·,−, s, 0):

(t1 ≡ t2 ∨ t3 ≡ t4),
(t1 − t2) ≡ 0 ∨ (t3 − t4) ≡ 0,
(t1 − t2) · (t3 − t4) ≡ 0,
t1 · t3 + t2 · t4 ≡ t1 · t4 + t2 + t3.

Thus, assuming ~w, ~y are disjoint lists of variables, we see that on N, (φ ∨ ψ) is
equivalent to

∃~y ∃~w[t1 · t3 + t2 · t4 ≡ t1 · t4 + t2 · t3].

The cases of (φ ∧ ψ) and ¬t1 ≡ t2 are similar and left to the reader.
We have thus reduced everything to the assertion that the equational ∃-formulas

are closed (up to equivalence in N) under bounded universal quantification, the
proof of which is long and involves elementary, but tricky, number theory.

5. Gödel’s Second Incompleteness Theorem

Gödel’s Second Incompleteness Theorem was even more philosophically dev-
astating than the first. It says that if T is a consistent, recursively axiomatized
extension of Peano arithmetic then there is no sentence—not even a logically false
sentence—whose unprovability in T is provable from T . We will not dwell on the
philosophical aspects, but it should be clear that this is surprising.

To begin with, we revisit the proof of Gödel’s First Incompleteness Theorem
and wrest from it the following theorem of independent interest:

5.1. Fixed Point Theorem. Let T be any theory extending Q. Then for any
formula ψ(y) there is some sentence σ such that T ` (σ ↔ ψ(pσq)).

Proof. Let χ(x, y) be a formula representing the recursive function Sub(x, pv0q,Num(x))
in T . Note that if k = pφq and l ≡ pφv0

k
q then

(∗) T ` ∀y[χ(k, y)↔ y ≡ l ].

Now let φ(v0) be ∃y[ψ(y) ∧ χ(v0, y)], let k = pφq and let σ = φ(k); that is, σ =
∃y[ψ(y) ∧ χ(k, y)].

But then T ` χ(k, l ), where l = pσq, and therefore by (*) we have

T ` ∃y[ψ(y) ∧ χ(k, y)]↔ ψ(l),
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that is, T ` (σ ↔ ψ(pσq)), as desired. �

Recall that for any recursively axiomatizable theory T , ThmT = {pσq : T ` σ, σ
is a sentence} is an r.e. set, and hence weakly representable in T by a Σ-formula
provided T ⊇ Q and N |= T . to make our subsequent discussion clearer we make
the convention that ThmT (y) is a Σ-formula which weakly represents ThmT in T .
In fact, we need only assume T is consistent, rather than N |= T , to get such a
formula, and we state our results under this weaker hypothesis.

The following lemma, together with the Fixed Point Theorem 5.1, has the (first)
Incompleteness Theorem as an immediate consequence:

Lemma 5.2. Let T be a consistent, recursively axiomatizable theory extending
Q. Let σ be any sentence such that T ` (σ ↔ ¬ThmT (pσq)). Then T 6` σ. If
further N |= T then N |= σ.

Proof. Suppose T ` σ. Then pσq ∈ ThmT hence T ` ThmT (pσq). But by
the choice of σ we also have T ` ¬ThmT (pσq), contradicting the consistency of T .

Thus T 6` σ, and so we must also have T 6` ThmT (pσq). If N |= T it follows
that N |= ¬ThmT (pσq), and so N |= σ by the choice of σ. �

Corollary 5.3. Let T be a consistent, recursively axiomatizable theory ex-
tending Q. Then there is a sentence σ such that T 6` σ but T 6` ¬ThmT (pσq).

One’s immediate reaction is that a sentence with the property in Corollary 5.3
is rather special, and that “usually” if pσq /∈ ThmT then this fact should be prov-
able from T , that is, T ` ¬ThmT (pσq). On the contrary, however, Gödel’s Sec-
ond Incompleteness Theorem states that there is no sentence σ such that T `
¬ThmT (pσq), for T a consistent and recursively axiomatizable extension of Peano
arithmetic. As we will discuss later, this does assume that the formula ThmT (y)
is appropriately chosen to have certain “natural” properties. We first state the
properties needed and prove the result using them.

D1. If T ` σ then T ` ThmT (pσq).

D2. T ` [ThmT (pσq)→ ThmT (pThmT (pσq)q)].

D3. T ` ([ThmT (pσq) ∧ ThmT (pσ → θq)]→ ThmT (pθq)).

Note that D1 certainly holds, just from the assumption that ThmT weakly
represents ThmT in T . D3 says that ThmT (y) provably satisfies Modus Ponens—
as one would reasonably expect. D2 is more mysterious, but we comment that the
implications are all true in N, since if N |= ThmT (pσq) then T ` ThmT (pσq) since

ThmT (y) is a Σ-formula and T ⊇ Q; thus N |= ThmT (pThmT (pσq)q)—and in fact
this sentence is provable in T .

Using these properties the Second Incompleteness Theorem is easily derived.

Theorem 5.4. Let T be a consistent theory extending Q which has a formula
ThmT (y) satisfying D1, D2, and D3. Then there is no sentence θ such that T `
¬ThmT (pθq).

Proof. Applying the Fixed Point Theorem 5.1 to ¬ThmT (y) we obtain a
sentence σ such that T ` (σ ↔ ¬ThmT (pσq)) and hence T 6` ¬ThmT (pσq). Our
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goal is to show that

T ` (ThmT (pσq)→ ThmT (pθq))

for every sentence θ, whence the conclusion follows.
Well, by the choice of σ we have

T ` (σ → ¬ThmT (pσq)),

and so by D1 we can conclude

T ` ThmT (pσ → ¬ThmT (pσq)q).

Using D3 we see

T ` ThmT (pσq)→ ThmT (p¬ThmT (pσq)q).

But also by D2 we have

T ` ThmT (pσq)→ ThmT (pThmT (pσq)q).

Let χ be ThmT (pσq). We then have

T ` χ→ Thm(pχq)

and

T ` χ→ ThmT (p¬χq).
Now T ` (χ → (¬χ → θ)) for any θ, and thus by D1 and D3 again we find

that

T ` ThmT (pχq)→ [ThmT (p¬χq)→ ThmT (pθq)],

and thus

T ` χ→ ThmT (pθq),

exactly what we needed. �

Let θ be some “obviously” false sentence, like 0 6≡ 0. Then we write ConT
for the sentence ¬ThmT (pθq), and we think of it as expressing the statement “T
is consistent.” Of course, under the hypothesis of Theorem 5.4 we then conclude
T 6` ConT , that is, “T cannot prove its own consistency.”

We finally need to argue that if T is any consistent, recursively axiomatizable
extension of Peano arithmetic then there is in fact a formula ThmT (y) satisfying
D1, D2, and D3.

We already noted that any formula weakly representing ThmT in T will satisfy
D1.

We next assert that any Σ-formula weakly representing ThmT in T will satisfy
D2. We do not give a proof of this since the details are quite involved, but we try
to indicate the idea. In Chapter ?? we proved that Σ-sentences true on N were
provable from any T extending Q. To be precise we established for Σ-formulas
φ(x0, . . . , xn−1) that for every k0, . . . , kn−1 ∈ ω if N |= φ(k0, . . . , kn−1) then T `
φ(k0, . . . , kn−1), or, in other words,

N |= φ(k0, . . . , kn−1)→ ThmT (pφ(k0, . . . , kn−1)q).

This argument used induction on the natural numbers. What we need to know is
that this argument can be formalized inside T , provided T ⊇ P , to yield

T ` φ(k0, . . . , kn−1)→ ThmT (pφ(k0, . . . , kn−1)q).
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D2 will then be a special case. The difficulty is that to follow the inductive argument
we need to establish a stronger result involving free variables, that is, something of
the form

T ` ∀x0 . . . ∀xn−1[φ(x0, . . . , xn−1)→ ψ(~x)],

where ψ “says” that “the sentence obtained from φ by replacing each xi by Num(xi)
is provable from T .”

Condition D3 is deceptively innocuous. This is a property one expects to hold
because Modus Ponens is our one rule of proof. Indeed, if ThmT (y) is the Σ-formula
we “naturally” get by translating the intuitive definitions into first-order formulas
then D3 is satisfied (but note that there is a long chain of definitions involved so the
verification is tedious!). Unfortunately it is not true that every Σ-formula weakly
representing ThmT has this property, as the following example shows.

Let T be any consistent, recursively axiomatizable theory extending Peano
arithmetic, and suppose that ThmT (y) is a Σ-formula satisfying D1, D2, and D3.
Let θ be some “clearly false” sentence like 0 6≡ 0, let m = pθq, and define Thm∗T (y)
to be (ThmT (y) ∧ y 6≡ m). Then Thm∗T (y) is a Σ-formula representing ThmT in
T (supposing ThmT did)—the point is that since T is consistent we have T 6` θ,
and so for every n we will have T ` ThmT (n) if and only if T ` Thm∗T (n). It thus
follows that D1 and D2 both hold. But obviously

T ` ¬Thm∗T (pσq).

This contradiction to Theorem 5.4 shows that D3 must fail. The reader should try
to establish the failure of D3 directly.

6. Exercises

(1)
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Recursion Theory





CHAPTER 10

Partial Recursive Functions

0. Introduction

In giving a recursive definition of some function, you will specify the finite
sequence of steps which show how the function is obtained starting with functions
in S and applying rules R1, R2, and R3. But can you decide whether an arbitrary
such sequence actually “works”? The difficulty, of course, is with R3—to apply R3
to a given G(~x, y) to obtain F (~x) = (µy)[G(~x, y) = 0] we need to first know that

for all ~k from ω there is some l ∈ ω such that G(~k, l) = 0. In general, one cannot
decide this, even for primitive recursive functions G. This is the real reason there
are no universal recursive functions or relations, as contrasted with r.e. relations.

Not knowing whether a list of instructions (an “algorithm”) really computes
something is a serious drawback to an adequate analysis of algorithms. The correct
approach is to broaden our idea of what we are computing from functions (defined
on all k1, . . . , kn ∈ ω) to partial functions (possibly defined on just a subset of
ωn). We can then apply R3 to any intuitively computable G as above to obtain a
computable F—except that F may be partial. In this way we will in fact be able
to say that all algorithms compute, but we will be unable to decide whether an
algorithm computes a total function.

1. Computability of Partial Functions

Definition 1.1. A partial function of n arguments is a function F : D → ω,

whereD ⊆ ωn. F is said to be total if and only ifD = ωn. For ~k = (k1, . . . , kn) ∈ ωn
we say that F converges at ~k, written F (~k) ↓, if and only if ~k ∈ D. If F does not

converge at ~k then F diverges at ~k, written F (~k) ↑.

If F , G are partial functions of n, m arguments, respectively, ~k ∈ ωn, ~l ∈ ωm,

then we write F (~k) = G(~l ) if and only if either F (~k) ↓ and G(~l ) ↓ and they have

the same value, or both F (~k) ↑ and G(~l ) ↑. We use F (~k) 6= G(~l ) to mean the

negation of F (~k) = G(~l ).
Note that it is now possible to have F (k) = F (k) + 1 for some F , k—this will

happen if and only if F (k) ↑.
We can adapt our intuitive definition of “computable” from Chapter ?? to

partial functions as follows: a partial function F of n arguments is computable if
and only if there is an algorithm (i.e., a finite list of instructions) such that for any

(k1, . . . , kn) ∈ ωn the instructions can be applied to ~k so that if F (~k) ↓ then after a

finite number of discrete steps the process terminates and yields the value of F (~k);

on the other hand if F (~k) ↑ then the process yields no result.
We emphasize that the computability of F does not mean that we can decide

whether or not F (~k) ↓.
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EXAMPLE: Let R ⊆ ω×ω be recursive. Define F on ω by F (x) = (µy)R(x, y),
that is, F (k) = the least l such that R(k, l) holds provided there is an l such that
R(k, l) holds, and F (k) is undefined otherwise.

Then F is computable—given k ∈ ω check each value of l = 0, 1, 2, . . . , in turn
to see if R(k, l) holds; once you find such an l, stop and output l as the value of
F . Note that if there is no such l, then the computation of F (k) never terminates.
Note also that the domain of F is some r.e. subset of ω, and that every r.e. subset
of ω can be obtained as the domain of some such F .

To see what more precise, formal properties computability should have we
make the following observations: it is an essential component of our definition that
a computation (according to a fixed algorithm) proceeds in discrete steps (indexed
by natural numbers) and that after any particular (finite) number of steps it can
be decided what value, if any, the computation to that point has produced. That
is, if I is a list of instructions for computing a partial function of n arguments (say,

FI) then we can define the relation RI of (n + 2) arguments by R(t,~k, l) holds if

and only if after ≤ t steps the algorithm I applied to input ~k has terminated and
produced the value l.

We thus see that RI is (intuitively) computable, hence recursive by Church’s

Thesis, and that FI(~k) converges to l if and only if ∃tRI(t,~k, l). That is, the graph
of FI , as a subset of ωn+1, is r.e.

But the converse of this observation is also clear—if S ⊆ ωn+2 is recursive, F

is a partial function of n arguments, and F (~k) = l ⇔ ∃wS(w,~k, l), then F (~k) =

((µm)S((m)0,~k, (m)1))1 is clearly computable.
We have thus derived, using just Church’s Thesis, the informal result that a

partial function is computable if and only if its graph is r.e. To conclude that
the formal notion of recursive that we are about to introduce coincides with our
intuitive concept it will thus suffice to show that it too leads to precisely the set of
parital functions with r.e. graphs.

Our (formal) definition of recursive for partial functions will exactly parallel
the definition of recursive for total functions; that is, it will be the closure of S
under the partial analogues of composition (R1) and µ-recursion (R3)—as with
total functions, primitive recursion is superfluous. We leave to the reader the task
of writing down (R1P ), composition of partial functions. We first define the result
of the µ-operator with partial functions.

Definition 1.2. Let G be a partial function of (n + 1) arguments. Then
F (~x) = (µy)[G(~x, y) = 0] is defined by:

F (~k) = l provided G(~k, l) = 0 and

(∀j < l)[G(~k, j) ↓ and G(~k, j) 6= 0].

The reader should see that F is computable provided G is—and that this

depends on the requirement that G(~k, j) ↓ for all j < l.
(R3P ) is thus the rule allowing one to derive (µy)[G(~x, y) = 0] from G.
RP = the class of recursive partial functions = the closure of the functions in

S under (R1P ) and (R3P ).
It is easily verified that we have:

Theorem 1.1. For any partial function F , F ∈ RP if and only if the graph of
F is r.e.
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We thus conclude that recursive corresponds exactly to computable, even for
partial functions.
RP has the same sorts of closure properties as R, which we will tacitly assume

and use without explicit comment. In the next section we will see some of the
properties that distinguish RP from R and which make it a “better-behaved” class
of functions to work with.

2. Universal Partial Recursive Functions

We use the existence of universal r.e. relations to prove the existence of universal
partial recursive functions.

A function, perhaps partial, of (n + 1) arguments can be thought of as an
indexed family of functions of n arguments in the following way:

Definition 2.1. Let F be a (partial) function of (n + 1) arguments where
n > 0. Then for each k ∈ ω we define the (partial) function Fk of n arguments by

Fk(x1, . . . , xn) = F (k, x1, . . . , xn).

Theorem 2.1. “There exist universal partial recursive functions.” For each
n > 0 there is some partial recursive function φn of (n + 1) arguments such that
for every partial recursive F of n arguments, F = (φn)k for some k ∈ ω—i.e.,
F (x1, . . . , xn) = φn(k, x1, . . . , xn) for all x1, . . . , xn.

Proof. Recall from Section 3 that there is a universal r.e. relation Sn+1 listing
all r.e. relations of (n+ 1) arguments. Thus there is some recursive R ⊆ ωn+3 such
that

Sn+1(z, x1, . . . , xn, y)⇔ ∃uR(u, z, ~x, y).

We define φn by

φn(z, x1, . . . , xn) = ((µw)R((w)0, z, ~x, (w)1))1.

Then φn is partial recursive, and whenever F is partial recursive of n arguments
then its graph is r.e., hence given by Sn+1

k for some k, and thus F is (φn)k. �

NOTATION: The eth partial recursive function (of n arguments) in the listing
given by Theorem 2.1 will be referred to either as φne or {e}n. Thus

φn(e, x1, . . . , xn) = φne (~x) = {e}n(~x).

The number e is an index of the function in question. By long-standing tradition
the letter e is invariably used for indices. When n = 1 we will omit the superscript.

We may use φn, or {–}n, freely in defining partial recursive functions—the
resulting (partial) functions are then understood as being defined using composition
and the appropriate universal partial recursive function. Thus the following are
all partial recursive functions of all the indicated variables, whenever f is partial
recursive:

f({x}(y)),
{f(x)}(y),
{x}(f(y)).

Note that if f(k) ↑ then φn(f(k), ~x) ↑ for all ~x, and hence {f(k)}n = ∅.
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Similarly the following relations are r.e. relations in all of the exhibited vari-
ables, including e:

{e}(x) = y,
{e}(x) ↓,

y ∈ ran({e}),
{e} 6= ∅.

If f is partial recursive the following relations are also r.e.:

{e}(x) = f(y),
{f(x)}y = z.

We essentially already know the following characterization of r.e. sets:

Proposition 2.2. Let X ⊆ ω. The following are equivalent:

(1) X is r.e.
(2) X = dom(f) for some partial recursive f .
(3) X = ran(f) for some partial recursive f .

Proof. We saw (0)⇒(1) in Section 1, and (1)⇒(0) and (2)⇒(0) are immediate
from Theorem 1.1. In Section 3 we stated that (0)⇒(2) where we can in fact take
f to be total recursive of one argument. �

We thus obtain an r.e. listing of all r.e. sets from our universal partial recursive
function.

Definition 2.2. We = dom({e}). So {We : e ∈ ω} lists all r.e. subsets of ω,
and the 2-ary relation k ∈ We is r.e. We also refer to e as an index of the r.e. set
We.

Clearly the relation (k ∈We) is not recursive, since there are non-recursive r.e.
sets. In fact we can do better.

Definition 2.3. K = {e ∈ ω : e ∈We}.
Lemma 2.3. K is r.e. but not recursive.

Proof. K is clearly r.e. If K were recursive then the following function f
would be partial recursive, and total, hence recursive:

f(k) =

{
{k}(k) + 1 if k ∈ K,
0 if k /∈ K.

But then f = {e} for some e, yielding f(e) = f(e) + 1, which is a contradiction
since f is total. �

In a similar way one can show, for example, that {e : We 6= ∅} is r.e. but not
recursive.

Let f be any partial recursive function of two arguments. Then for each k ∈ ω,
fk is a partial recursive function of one argument, so fk = {e} for some e, depending
on k. Perhaps surprisingly, there is a recursive function s which takes k to some
index e of fk.

2.4. Parameter Theorem. Let f be a partial recursive function of (n+ 1) argu-
ments, where n > 0. Then there is a total recursive s : ω → ω such that for every
k, fk = {s(k)}n—i.e.,

fk(~x) = {s(k)}n(~x) = φn(s(k), ~x).
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Proof. Since f is partial recursive, its graph f(z, ~x) = y is weakly represented
in Q by some formula ψ(z, ~x, y). It then follows that the formula ψ(k, ~x, y) weakly
represents the graph of fk in Q, for each k ∈ ω. The (total) function s : ω → ω
such that s(k) = pψ(k, ~x, y)q is then recursive. By the definition in Theorem 3.5
of our universal r.e. relation Sn+1 we see that Sn+1

s(k) is the graph of fk, and hence

that fk(~x) = φn(s(k), ~x) for all ~x, as desired. �

This result says that any partial recursive list of partial recursive functions can
be recursively mapped to a subfamily of our standard universal list {φe : e ∈ ω} of
all partial recursive functions. Note that our argument shows that the function s
can also be taken to be one-to-one.

As a simple application we show the following:

Lemma 2.5. Let X ⊆ ω be r.e. Then there is a total recursive s : ω → ω such
that for all k ∈ ω, k ∈ X if and only if Ws(k) 6= ∅.

Proof. X is the domain of some partial recursive function g of one argument.
We define the partial recursive function f of two arguments by f(k, x) = g(k), all
k, x. The Parameter Theorem 2.4 yields a total recursive s : ω → ω such that
fk = {s(k)} for all k ∈ ω. But k ∈ X implies g(k) ↓, hence fk(x) ↓ for all x ∈ ω,
thus {s(k)}(x) ↓ for all x, so in particular Ws(k) 6= ∅. On the other hand, if k /∈ X
then {s(k)}(x) ↑ for all x ∈ ω, so in particular Ws(k) = ∅. �

As we will consider in more detail later, Lemma 2.5 implies that any r.e. set can
be recursively “reduced” to {e : We 6= ∅} via the function s. We can conclude that
{e : We 6= ∅} is not recursive just by considering an r.e. X which is not recursive.

3. The Recursion Theorem

The following results give important “fixed-point” properties of our universal
listing of partial recursive functions.

3.1. Recursion Theorem.

(a) Let f be any total recursive function of one argument. Then there is some
e ∈ ω such that {e} = {f(e)}, that is, {e}(k) = {f(e)}(k) for all k ∈ ω.

(b) Let g be any partial recursive function of two arguments. Then there is
some e ∈ ω such that {e} = ge, that is {e}(k) = g(e, k) for all k ∈ ω.

Proof. (a) Given f , we first define the partial recursive function h by

h(x, y) = {f({x}(x))}(y).

Applying the Parameter Theorem 2.4 to h we obtain a total recursive function s
such that h(x, y) = {s(x)}(y), that is, {s(x)}(y) = {f({x}(x))}(y).

Now s is {m} for some m, and so setting x = m we see

{{m}(m)}(y) = {f({m}(m))}(y).

Finally, setting e = {m}(m), which is allowed since {m} = s is total, we have
{e}(y) = {f(e)}(y) for all y, as desired.

(b) Given g, we first apply the Parameter Theorem 2.4 to obtain a total re-
cursive function f of one argument such that {f(l)}(k) = g(l, k) for all l, k ∈ ω.
Applying (a) to f we obtain e ∈ ω such that {e} = {f(e)} = ge, as desired. �
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The “fixed points” e in the preceding result are not unique—in fact there nec-
essarily are infinitely many e ∈ ω with the property in each part of the Recursion
Theorem 3.1, as we leave the reader to verify. The same arguments show the ana-
logues of these results in which e, f(e) are considered as indices of partial functions
of n arguments, and in which g has (n+ 2) arguments.

As some examples of use of the second form of the Recursion Theorem we have:

EXAMPLE 1: There are (infinitely many) n ∈ ω such that {n}(x) = xn for all
x ∈ ω.

Proof. Consider g(n, x) = xn. �

EXAMPLE 2: There are (infinitely many) n ∈ ω such that Wn is the set whose
only element is n.

Proof. Consider

g(n, x) =

{
0 if x = n,
↑ otherwise.

�

It is easy to see that every partial recursive function has infinitely many different
indices. In fact the set of all indices for any given partial recursive function is not
even recursive. More generally we have the following fact:

3.2. Rice’s Theorem. Let F be any set of partial recursive functions of one ar-
gument, and let I = IF = {e : {e} ∈ F}. Assume that I is recursive. Then either
F = ∅ or F = the set of all partial recursive functions. Thus either I = ∅ or
I = ω.

Proof. Suppose not, and choose e0, e1 such that {e0} ∈ F , {e1} /∈ F . Define
f by

f(k) =

{
e1 if k ∈ I,
e0 if k /∈ I.

Then by assumption f is a total recursive function, so by the Recursion Theorem 3.1
there is some e such that {e} = {f(e)}.

Now {e} ∈ F if and only if e ∈ I if and only if f(e) /∈ I if and only if {f(e) /∈ F}.
This contradiction proves the theorem. �

The reader may well wonder how sensitive the above results are to the par-
ticular way in which we defined our universal partial recursive functions. That
is, is there a partial recursive function φ∗ of two arguments which is universal, so
every partial recursive f of one argument is φ∗e for some e ∈ ω, but such that our
other results fail when indices are taken with respect to φ∗? The answer is yes, such
“bad” enumerations do exist—but they are bad because the Parameter Theorem 2.4
(actually its generalization, the “s-m-n Theorem”) fails for them. That is, if we
are dealing with any universal partial recursive function which is also universal for
such enumerations, in the sense that the Parameter Theorem holds, then all of our
results will also hold for this enumeration. This is why we needed to refer to Gödel
numbers of weakly representing formulas in our proof of the Parameter Theorem
but not in subsequent results.
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4. Complete Recursively Enumerable Sets

In Section 2 we showed that for any r.e. set X there is a total recursive function
s such that k ∈ X if and only if s(k) ∈ {e : We 6= ∅}. We remarked that we could
conclude from this that {e : We 6= ∅} is not recursive. The following definitions
and lemma make explicit what we were referring to:

Definition 4.1.

(a) Let A,B ⊆ ω. Then A is many-one reducible to B, A ≤m B, if and only
if there is a total recursive function s such that

k ∈ A⇔ s(k) ∈ B.
(b) A and B are many-one equivalent , A ≡m B, if and only if A ≤m B and

B ≤m A.
(c) If B is r.e., then B is complete r.e., or m-complete r.e., if and only if

X ≤m B for every r.e. set X.

Lemma 4.1.

(a) If B is recursive and A ≤m B then A is recursive.
(b) If B is r.e. and A ≤m B then A is r.e.
(c) If B is a complete r.e. set then B is not recursive.

Proof. (a) and (b) are clear from the definitions, and (c) follows from (a) and
the existence of r.e. sets that are not recursive. �

As we have seen, {e : We 6= ∅} is a complete r.e. set; similarly K is complete
r.e., {pσq : Q ` σ} is complete r.e., etc.

In fact, the natural conjecture at this point would be that all non-recursive
r.e. sets are m-complete. We will decide this question after deciding two other,
apparently unrelated, questions.

Recall that a set A ⊆ ω is recursive provided A and B = (ω \ A) are both
r.e. A reasonable generalization of this would be to assert that whenever A and
B are both r.e. and (A ∩ B) = ∅, then there is some recursive C such that A ⊆
C, (B ∩ C) = ∅. Such A and B are recursively separable. Unfortunately, there are
recursively inseparable r.e. sets.

Proposition 4.2. There are r.e. sets A and B such that (A∩B) = ∅ but there
is no recursive C such that A ⊆ C, (B ∩ C) = ∅.

Proof. Let A = {e : {e}(e) = 1}, and let B = {e : {e}(e) = 0}. Suppose there
is a recursive C with A ⊆ C, B ∩ C = ∅. Then KC is recursive, and so there is
some e0 such that C = {k : {e0}(k) = 0}, where {e0} is total and {e0}(k) = 0, 1 for
all k. We then obtain a contradiction by considering {e0}(e0). �

A weakening of the preceding question would ask whether an r.e. set A whose
complement is infinite is contained in some recursive set C whose complement is
infinite. This also turns out to be false.

Proposition 4.3. There is a co-infinite r.e. set A such that (A ∩ B) 6= ∅ for
every infinite r.e. set.

Proof. First define a partial recursive function f such that f(k) ↓ if and only
if ∃l[l ∈Wk ∧ 2k < l], and whenever f(k) ↓ then f(k) is some such l. Now let A be
the range of f .
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Certainly A is r.e., and whenever B = We is infinite then f(e) ↓ and f(e) ∈
(A ∩We), so (A ∩B) 6= ∅.

To see that (ω \ A) is infinite note that whenever f(k) ↓ then f(k) > 2k; thus
if l ∈ A and l ≤ 2k then (∃i)<k[l = f(i)]—that is,

|{l ∈ A : l ≤ 2k}| ≤ k,
so |{l ≤ 2k : l /∈ A}| > k, which implies (ω \A) is infinite. �

Finally, the following result shows that no A as in the preceding result can be
m-complete.

Proposition 4.4. Let A be an m-complete r.e. set. Then (ω \A) contains an
infinite r.e. set.

Proof. Let B0, B1 be recursively inseparable r.e. sets. Since B0 ≤m A there is
some recursive f such that k ∈ B0 implies f(k) ∈ A and k ∈ B1 implies f(k) /∈ A.
Let A∗ = {f(k) : k ∈ B1}. Then A∗ is r.e., and (A ∩ A∗) = ∅. We show A∗ is
infinite.

Let C be {k : f(k) ∈ A∗}. Then C ≤m A∗ so C is recursive provided A∗ is
recursive (in particular, finite). But B1 ⊆ C and (B0 ∩ C) = ∅, so this would
contradict the recursive inseparability of B0 and B1. �

5. Exercises

(1)



CHAPTER 11

Relative Recursion and Turing Reducibility

0. Introduction

Since there are just countably many recursive functions, “almost all” of the
functions on ω are non-computable. However, we can still compare their relative
complexity, meaning their relative difficulty of computation.

As an example, let g : ω → ω be given and define f : ω → ω by f(k) = g(2k+1)
for all k ∈ ω. Then we can compute f relative to g—that is, there is an algorithm for
computing the values of f which asks for a value of g at finitely many places in each
computation. That is, we can compute f given a reliable source (an “oracle”) which
will provide values of g upon request. We write f ≤T g in these circumstances.
Note that for appropriately chosen g, we can have f recursive but g not recursive
and thus g ≤T f need not hold.

As another example, note that for any set A ⊆ ω we will have KA ≤T K(ω\A)

and K(ω\A) ≤T KA, and so these two characteristic functions have equal degrees
of complexity.

In Section 1 we give the formal definition of relative recursivity and some of
its elementary properties. In Sections 2 and 3 we develop the theory of recursion
relative to some fixed g following the outline of Chapter ??. In Section 4 we look
at the structure on P(ω) induced by ≤T applied to the characteristic functions of
the sets.

1. Relative Recursivity

Let F be a set of total functions on ω. Then the (partial) functions which
are computable relative to F are precisely those which we obtain under the usual
procedures for generating partial recursive functions, allowing functions in F to be
used at will, without further justification. Thus, the formal definition is as follows:

Definition 1.1. RP (F) is the closure of (S ∪ F) under R1P and R3P . If
g ∈ RP (F) then we say that g is recursive in F or recursive relative to F . As
usual, a relation is recursive relative to F provided its characteristic function is.
R(F) is the set of total functions in RP (F).

RP (F) has the same closure properties as RP , and we will use these without
specific comment. Some further easy properties of RP (F) follow:

(1) If F0 ⊆ R(F1) then RP (F0) ⊆ RP (F1).
(2) If g ∈ RP (F) then there is some finite F0 ⊆ F such that g ∈ RP (F0).
(3) For any F there is S ⊆ P(ω), |S| = |F|, such that RP (F) = RP (S) =
RP ({KA : A ∈ S}).

Proof. For f ∈ F of n arguments let Af = {〈k1, . . . , kn, f(k1, . . . , kn)〉 :
k1, . . . , kn ∈ ω}. Then S = {Af : f ∈ F} is as desired. �

59
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(3) If F is finite then there is some h : ω → ω such that RP (F) = RP (h).

Proof. It suffices to consider F = {f1, f2} where each fi : ω → ω. In this case
we can take h = f1 ⊕ f2, where

h(k) =

{
f1(n) if k = 2n,
f2(n) if k = 2n+ 1.

�

If follows that for most purposes it suffices to look at RP (h) where h : ω → ω,
and in fact we could restrict to h : ω → 2, that is, h = KA for A ⊆ ω.

We can now define the ordering ≤T used in the introduction to this chapter.

Definition 1.2. Let f , g be total functions on ω. Then f is Turing reducible
to g, f ≤T g, if and only if f ∈ R(g). f and g are Turing equivalent , f ≡T g, if
and only if f ≤T g and g ≤T f .

If R, S are relations we will write R ≤T S, etc., to mean KR ≤T S, etc.
We have two different goals in the rest of this chapter. One is to study RP (f)

for fixed (total) f ; the other is to study the properties of ≤T on subsets of ω.
The study of the relations r.e. in some fixed f , and the definition of the “jump”

of a set, are central to both topics.

2. Representation and Enumeration Theorems

Essential to our development of the theory of partial recursive functions was
the observation that a partial function is recursive if and only if its graph is an
r.e. relation. A similar result, which in addition shows exactly how f is used, is
essential to our work on RP (f).

2.1. Representation Theorem. Fix f : ω → ω. Let g be a partial function of n
arguments. The following are equivalent:

(1) g ∈ RP (f).
(2) There is an r.e. relation R ⊆ ωn+2 such that g(~x) = y if and only if
∃sR(~x, y, f(s)).

(3) There is a recursive relation R ⊆ ωn+2 such that g(~x) = y if and only if
∃sR(~x, y, f(s)), where R satisfies the following conditions:
(i) R(~x, y, z)⇒ Seq(z).

(ii) R(~x, y, z)∧ “z is an initial segment of z′” ⇒ R(~x, y, z′).

Proof. (2) ⇒ (1) is obvious, and (1) ⇒ (0) is like the corresponding fact in
Chapter ??.

The proof of (0) ⇒ (2) is by induction on the length of the “derivation” of g.
That is, it suffices to show (2) holds for every g ∈ (S ∪ {f}) and that both of the
rules R1P and R3P preserve this property.

If g ∈ S then we can take R as [g(~x) = y ∧ Seq(z)]. If g is f then we can define
R to be

[Seq(z) ∧ lh(z) > x ∧ (z)x = y].

We leave R1P to the reader and check use of R3P .
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Suppose that g(~x, y) = u if and only if ∃sRg(~x, y, u, f(s)) where Rg is recursive
and satisfies (i) and (ii) above. Let h(~x) = (µy)[g(~x, y) = 0]. Then we see that
h(~x) = y if and only if

∃sRg(~x, y, 0, f(s)) ∧ (∀t)<y∃u∃s[Rg(~x, t, u, f(s)) ∧ u 6= 0].

Using property (ii) of Rg we see this is equivalent to

∃s(Rg(~x, y, 0, f(s)) ∧ (∀t)<y[Rg(~x, t, (s)t, f(s)) ∧ (s)t 6= 0]).

The point is, if (∀t)<y∃ut∃st[Rg(~x, t, ut, f(st) ∧ u 6= 0], and if ∃syRg(~x, y, 0, f(sy)),
then we can take as s in the final formula any s such that (s)t = ut for all t < y
and s ≥ st all t ≤ y. �

Using the existence of universal r.e. relations we obtain a universal way of
enumerating all partial functions (in a fixed number of arguments) recursive in
f . It is especially important to notice that the recursive relation R we obtain is
independent of f .

2.2. Enumeration Theorem. For each positive n ∈ ω there is a recursive R ⊆
ωn+3 such that for every total f : ω → ω and every partial g of n arguments the
following are equivalent:

(1) g ∈ RP (f).
(2) There is some e ∈ ω such that g(~x) = y if and only if ∃sR(e, ~x, y, f(s)).

Furthermore, R satisfies:

(i) R(e, ~x, y, z)⇒ Seq(z).
(ii) R(e, ~x, y, z) ∧ “z is an initial segment of z′” ⇒ R(e, ~x, y, z′).

(iii) ∀e∀~x ∀z∃≤1yR(e, ~x, y, z).

Proof. The Representation Theorem 2.1 and the existence of universal r.e.
relations yields a recursive S ⊆ ωn+4 such that if g has n arguments then g ∈ RP (f)
if and only if there is some e ∈ ω such that

g(~x) = y ⇔ ∃u∃sS(e, ~x, y, f(s), u).

We first define R∗(e, ~x, y, z) to be

Seq(z) ∧ (∃z′)<z(∃i)<z(∃u)<z[In(z, i) = z′ ∧ S(e, ~x, y, z′, u)]

and finally define the desired R by

R(e, ~x, y, z)⇔ R∗(e, ~x, y, z) ∧ (∀y′)<y¬R(u, x, y′, z).

�

Note that R as in the Enumeration Theorem 2.2 will be such that for every
f : ω → ω we have: ∀e∀~x ∃≤1y∃sR(e, ~x, y, f(s)). We thus obtain universal functions
Φf which are partial recursive in f .

Theorem 2.3. For any f : ω → ω and any positive n ∈ ω there is a partial
function Φf of (n + 1) arguments such that Φf ∈ RP (f) and for every partial
function g of n arguments g ∈ RP (f) if and only if there is some e ∈ ω such that
g(~x) = Φf (e, ~x) for all ~x ∈ ωn. Further, Φf (e, ~x) = y if and only if ∃sR(e, ~x, y, f(s))
holds, where R is the recursive relation in the Enumeration Theorem 2.2.
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NOTATION: Φf (e, ~x) = Φfe (~x) = {e}f (~x). We will write {e}A, etc., in place
of {e}KA for relations A.

Of course our notation is ambiguous since we suppress reference to n = lh(~x).
This is harmless, and we will continue to do so. Normally we will have n = 1 unless
explicitly stated to the contrary.

Definition 2.1. Given f : ω → ω and e, n, s ∈ ω, {e}fs is the partial function
of n arguments defined by

{e}fs (~x) = y if and only if R(e, ~x, y, f(s)) ∧ e, xi, y < s.

Then certainly {e}fs is partial recursive in f , but more can be said:

Lemma 2.4.

(1) The relation {e}fs (~x) = y is recursive in f (as an (n + 3)-ary relation in
e, s, ~x, y).

(2) {e}f (~x) = y if and only if ∃s{e}fs (~x) = y.

(3) If {e}fs (~x) = y and s < t then {e}ft (~x) = y.
(4) Assume that f, g : ω → ω are such that f � s = g � s. Assume that
{e}fs (~x) = y. Then also {e}gs(~x) = y, so in particular {e}f (~x) = {e}g(~x).

Finally, just as in Section 2, we obtain the Relativized Parameter Theorem.

Theorem 2.5. Let g(z, ~x) ∈ RP (f). Then there is a total recursive s : ω → ω
such that for every k ∈ ω, gk(~x) = g(k, ~x) = {s(k)}f (~x).

3. A-Recursively Enumerable Relations

The relativized notion of recursive enumerability is defined in the obvious way.

Definition 3.1. A relation R ⊆ ωn is r.e. in A, or A-r.e., if and only if there
is some S ⊆ ωn+1 which is recursive in A such that ∀k1, . . . , kn ∈ ω,

R(k1, . . . , kn) if and only if ∃lS(k1, . . . , kn, l).

The standard properties of r.e. relations go over into this setting. We mention
the following, without proof:

Lemma 3.1.

(1) R is recursive in A if and only if R and ¬R are both r.e. in A.
(2) A partial function g is recursive in A if and only if the graph of g is r.e.

in A.
(3) A set X ⊆ ω is A-r.e. if and only if X = dom(g) for some g ∈ RP (A).

Definition 3.2. WA
e = dom({e}A).

Thus {WA
e : e ∈ ω} is an A-r.e. listing of all subsets of ω which are A-r.e.

Recall that K = {e : e ∈ We} is an r.e. set which is not recursive and that
every r.e. set is m-reducible to K. The definition of K generalizes to the relativized
context to give a function yielding a canonical A-r.e. set which has the analogous
maximality property.

Definition 3.3. For any A ⊆ ω, the jump of A is A′ = {e : e ∈WA
e }.

Theorem 3.2. For any A,B,C ⊆ ω we have:
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(1) A′ is A-r.e.
(2) A′ �T A.
(3) B is A-r.e. if and only if B ≤m A′.
(4) If B is A-r.e. and A ≤T C then B is C-r.e.
(5) B ≤T A if and only if B′ ≤m A′.
(6) B ≡T A if and only if B′ ≡m A′.

Proof. (0), (1), and (2) are established just as the corresponding facts for K.
(3) is easily proved using Definition 3.1.
(5) follows from (4).
We prove (4). First assume B ≤T A. By (0), B′ is B-r.e. so by (3) we see B′

is A-r.e. and so B′ ≤m A′ by (2).
Next suppose B′ ≤m A′. Then in particular B ≤m A′ (since B ≤m B′ by (2))

so B is r.e. in A by (2). But we also have (ω \ B) ≤m B′ since (ω \ B) ≡T B,
and thus we also conclude that (ω \ B) is r.e. in A. Hence B is recursive in A by
Lemma 3.1, i.e., B ≤T A. �

Corollary 3.3. If B is A-r.e. then B ≤T A′; if B ≤T A then B′ ≤T A′.
WARNING: The converses of these implications do not hold.

Corollary 3.4. K ≡T ∅′.
NOTATION: ∅(n+1) = (∅(n))′.

We then have:

∅ <T ∅′ <T ∅′′ <T · · · <T ∅(n+1) <T · · · .
As remarked above, if B ≤T A′ it need not follow that B is A-r.e. We are,

however, able to characterize such Bs as the limits of A-recursive sequences. More
generally we characterize the (total) functions f such that f ≤T A′.

Definition 3.4. Let g : ω × ω → ω and f : ω → ω. We consider g as the
sequence {gn}n∈ω of 1-ary functions as usual, and we say that f is the limit of
{gn}n∈ω, written f = limn→∞ gn, if and only if for every k ∈ ω we have f(k) =
limn→∞ gn(k), meaning that there is some n0 such that gn(k) = f(k) for all n ≥ n0.
If lim gn = f then a modulus for the sequence is a function m : ω → ω such that
gn(k) = f(k) for all n ≥ m(k), for all k ∈ ω.

Theorem 3.5. For any A ⊆ ω and f : ω → ω, f ≤T A′ if and only if there is
an A-recursive sequence {gn}n∈ω (i.e., g ≤T A) such that f = limn→∞ gn.

We first prove a lemma on limits of A-recursive sequences.

Lemma 3.6. Assume that f, g : ω → ω, f ≤T g and g is the limit of an A-
recursive sequence. Then f is also the limit of an A-recursive sequence.

Proof. Let g = limn→∞Gn, with {Gn}n∈ω an A-recursive sequence. Since
f ≤T g we know f = {e}g for some e ∈ ω. That is, f(k) = l if and only if
R(e, k, l, g(t)) holds for some (and hence for all sufficiently large) t, where R is as in
the Enumeration Theorem 2.2. Since g = limn→∞Gn there is m : ω → ω such that
g(t) = Gn(t) for all n ≥ m(t). Thus, if R(e, k, l, g(t)) holds then R(e, k, l, Gn(t))
holds for all n ≥ m(t) and so also R(e, k, l, Gn(n)) holds for all n ≥ m(t), t. We
may thus define F (n, k) = (µy)<nR(e, k, y,Gn(n)). Then F ≤T G ≤T A and
f(k) = limn→∞ Fn(k) for all k, as desired. �
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Proof of Theorem 3.5. First, suppose f ≤T A′. By Lemma 3.6 it suffices
to show that KA′ is the limit of an A-recursive sequence. A′, being A-r.e., is the
domain of {e}A for some e ∈ ω. We can then define

G(s, x) =

{
0 if (∃y)<s{e}As (x) = y,
1 otherwise.

and see that G ≤T A and KA′ = lims→∞Gs as desired.
For the other direction, suppose f is the limit of the A-recursive sequence

{gn}n∈ω. Define the function m : ω → ω by

m(x) = (µk)(∀n)≥k[gn(x) = gk(x)].

Then m is a modulus function for the sequence, and so f(x) = gm(x)(x) for all
x ∈ ω. Since g ≤T A we can conclude f ≤T A′ once we show that m ≤T A′. Well,
we have

{(k, x) : (∀n)≥k[gn(x) = gk(x)]} ≡T {(k, x) : (∃n)≥kgn(x) 6= gk(x)},
and this last set is A-r.e. since g ≤T A. Thus these two sets are recursive in A′,
and so m is also recursive in A′. �

Corollary 3.7. B ≤T A′ if and only if there is an A-recursive sequence
{Cn}n∈ω of sets (which we can take to be finite) whose limit is B, that is k ∈ B if
and only if ∃n0(∀n)≥n0

[k ∈ Cn]. We will have Cn ⊆ B for all n if and only if B is
A-r.e.

4. Degrees

Sets A and B are Turing equivalent if and only if deciding membership in A is
precisely as difficult as deciding membership in B. In this case A and B are said to
have the same degree (of unsolvability). Degrees are thus equivalence classes under
≡T , and Turing reducibility induces a partial order on the degrees.

Definition 4.1.

(1) If A ⊆ ω then the (Turing) degree of A is [A]T = {B ⊆ ω : A ≡T B}.
(2) D = {[A]T : A ⊆ ω}.

NOTATION: Degrees are denoted by a, b, etc.
(3) If a,b ∈ D then a ≤ b if and only if A ≤T B for some (equivalently

every) A ∈ a, B ∈ b; a < b means that a ≤ b but a 6= b (equivalently,
A <T Bforsome, orevery,A ∈ a, B ∈ b).

(4) If a ∈ D then a′ = [A′]T for some (equivalently, every) A ∈ a.
(5) 0 = [∅]T ; 0(n) = [∅(n)]T .

Thus the degrees are a classification of all sets of natural numbers according to
computational complexity. One studies the structure of D with ≤ and ′ to better
understand the relative computational complexity of subsets of ω.

We first collect some elementary properties of the degrees in the following
proposition and then state without proof some more difficult results:

Proposition 4.1.

(i) ≤ is a partial order of D.
(ii) 0 ≤ a for every a ∈ D.

(iii) Any finite set of degrees has a least upper bound in D.
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(iv) |D| = 2ω.
(v) For any a ∈ D, |{b ∈ D : b ≤ a}| ≤ ω.

(vi) Any countable set of degrees has an upper bound in D.
(vii) For any a ∈ D, a < a′, and so there are no maximal degrees in the

ordering.
(viii) If a ≤ b then a′ ≤ b′.

(ix) D is not linearly ordered by ≤; in fact there are a,b < 0′ such that a � b
and b � a.

Proof. (i), (ii), (vii), and (viii) are immediate from properties of ≤T and the
jump.

To show (iii) it suffices to produce a least upper bound for any two degrees,
a,b. Choosing A ∈ a and B ∈ b, choose C ∈ ω so that KC = KA ⊕KB as defined
in Section 1. It is then easy to verify that c = [C]T is the desired least upper bound.

Just as there are only countably many recursive functions there are only count-
ably many functions recursive in any given A. Thus |{B ⊆ ω : B ≤T A}| = ω,
which establishes (v). In addition, since |P(ω)| = 2ω, (iv) follows.

We leave (vi) to the reader—note, however, that (v) implies that no uncountable
set of degrees has an upper bound.

If D were linearly ordered by ≤ then we would have |D| ≤ ω1 by (v), and so
2ω = ω1 by (iv). While not quite a contradiction this is surely suspicious. In the
next section we will establish (ix) by showing that there are incomparable degrees
< 0′. �

Thus (D,≤) forms what is called an upper semi-lattice with least element
((i),(ii),(iii)). (D,≤) fails to be a lattice since in general greatest lower bounds
of pairs of elements fail to exist.

Similarly, (vi) cannot be improved to yield least upper bounds for countably
infinite sets of degrees. In fact, if an < an+1 for all n ∈ ω then {an : n ∈ ω} has no
least upper bound. In particular {0(n) : n ∈ ω} has no least upper bound.

(D,≤) is about as complicated as possible. Every countable partial ordering
embeds isomorphically into (D,≤). But this partial ordering is far from homoge-
neous. Thus there are minimal degrees (that is, degrees a such that 0 < a but
there is no b ∈ D with 0 < b < a). But there also are degrees c > 0 such that
no degree a ≤ c is minimal—in fact there are degrees c > 0 such that {b : b < c}
is densely and linearly ordered. More generally, every contable upper semi-lattice
with least element is isomorphic to an initial segment of D (i.e., to M such that
a ∈M,b ≤ a implies b ∈M). Not surprisingly, Th((D,≤)) is undecidable.

One might hope that a more “familiar” set like D(≤ 0′) = {a ∈ D : a ≤ 0′}
might be simpler. But there are minimal degrees in D(≤ 0′), and every countable
partial order embeds isomorphically into D(≤ 0′).

5. Degree Constructions

In this section we present a general method of constructing sets whose degrees
have certain specified relations. We illustrate the method by showing that there
are incomparable degress less than 0′.

For our first approximation we ignore the requirement that we construct sets
with degrees less than 0′ and just see what is involved in constructing sets with
incomparable degrees. Thus, we wish to construct A,B ∈ ω such that A �T B
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and B �T A. This will be guaranteed provided A and B satisfy all of the following
requirements Re and Se for e ∈ ω:

Re : KA 6= {e}B ,
Se : KB 6= {e}A.

Of course, Re is satisfied by making sure there is some n ∈ ω withKA(n) 6= {e}B(n),
and similarly for Se. But while we are still performing the construction we don’t
yet know what B is—so how can we know the value {e}B(n)?

The solution to this difficulty is given by Lemma 2.4. {e}B(n) = l if and only
if ∃s{e}Bs (n) = l and in this case we will also have {e}C(n) = l for every C ⊆ ω
with (C ∩ S) = (B ∩ S). Thus the value l to which {e}B(n) converges (assuming
there is one) is determined by a sufficiently large finite piece of B—which we will
know at some stage in the construction.

With this introduction we can now plunge into the proof of the first version of
the theorem.

Theorem 5.1. There are degrees a and b such that a � b and b ≤ a.

Proof. We wish to define A,B ⊆ ω such that Re and Se above are satisfied

for all e ∈ ω. We define, by simultaneous recursion on ω, functions ft, gt ∈
ω`2

such that ft ⊆ ft+1 and gt ⊆ gt+1 for all t ∈ ω and such that
⋃
t∈ω ft = KA and⋃

t∈ω gt = KB yield the desired A,B.

To begin with, set f0 = g0 = ∅. Now, given ft, gt ∈
ω`2 we show how to define

ft+1 and gt+1.

Case 1: t = 2e.
We guarantee that Re will hold. Let n = dom(ft).

Subcase (i): There is G : ω → 2 such that gt ⊆ G and {e}G(n) ↓.
In this case choose some such G, choose some s ∈ ω such that {e}Gs (n) ↓ and

s ≥ dom(gt). Now define gt+1 = G � s and ft+1 = ft ∪ {(n, 1 .− {e}G(n))}. Then
no matter how the rest of the construction is carried out, in the end we will have
{e}B(n) = {e}G(n) 6= KA(n), thus guaranteeing Re.

Subcase (ii): There is no G : ω → 2 such that gt ⊆ G and {e}G(n) ↓.
In this case no matter how the rest of the construction is carried out we will

have {e}B(n) ↑ and so Re will necessarily hold. So we define gt+1 = gt and
ft+1 = ft ∪ {(n, 0)}.

Case 2: t = 2e+ 1.
In this case we proceed with the roles of ft, gt interchanged to guarantee that

Se holds.
Note that we have guaranteed that

⋃
t∈ω ft : ω → 2 and

⋃
t∈ω gt : ω → 2 so they

will be some KA, KB . �

Let’s examine this proof to see what is really going on and determine exactly
what needs to be done to find such A,B with A,B ≤T ∅′.

First of all, what we are doing is defining a function by an informal primitive
recursion whose value at t is the pair (ft, gt). To formalize this definition, the value
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of the function must be a natural number. We accomplish this by replacing finite

functions in
ω`ω by the sequence number of the sequence of their values.

Definition 5.1. Let h ∈
ω`ω and let n = dom(h). Then ĥ = 〈h(0), . . . , h(n−

1)〉 is the sequence number coding h.

In this context we will use σ, τ to stand for sequence numbers, and we write

σ ⊆ τ to mean σ is an initial segment of τ . Thus, if g, h ∈
ω`ω then g ⊆ h if and

only if ĝ ⊆ ĥ.
So, in the proof of this theorem we are defining a function H by primitive

recursion so taht H(t) = 〈f̂t, ĝt〉 with ft, gt as previously. Our goal is to ensure
that

⋃
t∈ω ft and

⋃
t∈ω gt are both ≤T ∅′. This will be guaranteed by having

H ≤T ∅′, Seq∗ = {ĥ : h ∈
ω`2}.

Now, to guarantee that H : ω → ω defined by primitive recursion is ≤T ∅′ it
suffices to show that the function which defines H(t+ 1) from t and H(t) is ≤T ∅′.
Thus we need to show that the division into cases and subcases, and the definitions

of f̂t+1 and ĝt+1 from f̂t and ĝt in each case, are all ≤T ∅′.
Finally, letR ⊆ ω4 be the recursive relation from the Enumeration Theorem 2.2.

We introduce the following notation:

Definition 5.2. {e}σ(x) = y if and only if R(e, x, y, σ) and e, x, y < lh(σ).

Lemma 5.2.

(1) {e}σ(x) = y is a recursive relation in the four (number) variables e, σ, x, y.
(2) {e}fs (x) = y if and only if {e}σ(x) = y, where σ = f(s).
(3) {e}σ(x) = y implies that {e}f (x) = y for every f : ω → ω with σ = f(s)

for s = lh(σ).

We can now indicate how to adapt the proof of Theorem 5.1 to obtain:

Theorem 5.3. There are degrees a,b with a ≤ 0′, b ≤ 0′, a � b, b � a.

Proof. As indicated above, it suffices to consider the way in which 〈f̂t+1, ĝt+1〉
is obtained from 〈f̂t, ĝt〉. the division into Case 1 and Case 2 is recursive. By
Lemma 5.2, Subcase (i) holds if and only if

∃σ(Seq∗(σ) ∧ ĝt ⊆ σ ∧ ∃y[{e}σ(n) = y]),

and this condition is r.e., hence ≤T ∅′. Similarly, of course, Subcase (ii)—being
the negation of Subcase (i)—is co-r.e., hence ≤T ∅′.

In Subcase (i) we define

ĝt+1 = ((µw)[Seq∗((w)0) ∧ ĝt ⊆ (w)0 ∧ {e}(w)0(n) = (w)1])0.

In other words, we look for the least pair 〈σ, l〉 where Seq∗(σ)∧ ĝt ⊆ σ∧{e}σ(n) = l

and use σ for ĝt+1. This choice of ĝt+1 is, of course, recursive, and f̂t+1 is recursively
defined from it as in the proof of Theorem 5.1.

Subcase (ii) is even easier, of course, and Case 2 is analogous to Case 1. Thus

the function given 〈f̂t+1, ĝt+1〉 in terms of t and 〈f̂t, ĝt〉 is ≤T ∅ as required, com-
pleting the proof. �
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6. Exercises

(1)



CHAPTER 12

The Arithmetic Hierarchy

0. Introduction

In this chapter we study the subsets of ω which are first-order definable in the
structure N. We define a hierarchy on these sets, roughly speaking by the quantifier
complexity of the defining formula. The recursive sets are at the lowest level of the
hierarchy, followed by the r.e. sets (which are definable using one quantifier in front
of a recursive relation), etc. The most important result in this chapter is Post’s
Theorem 2.1, which ties this hierarchy to Turing reducibility.

1. Arithmetic Relations and the Hierarchy

Recall that N is the “standard” structure on ω for the language L = {+, ·, <
, 0, s}.

Definition 1.1. A relation R ⊆ ωn is arithmetic if and only if R is definable
in N by some L-formula.

We define, by recursion on n, an indexed family of sets of relations on ω, which
include precisely the arithmetic relations.

Definition 1.2.

(a) The collections Σn, Πn are defined simultaneously via:
Σ0 = Π0 = the set of all recursive relations;
R ∈ Σn+1 if and only if there is some S ∈ Πn such that R(~x)↔
∃yS(~x, y);
R ∈ Πn+1 if and only if there is some S ∈ Σn such that R(~x)↔
∀yS(~x, y).

(b) ∆n = (Σn ∩Πn).

The following lemma summarizes most of the elementary properties of this
hierarchy:

Lemma 1.1.

i R ∈ Σn if and only if ¬R ∈ Πn.
ii (Σn ∪Πn) ⊆ ∆n+1.

iii Σn is closed under ∧, ∨, ∃y, (∀y)<x, for all n > 0.
iv Πn is closed under ∧, ∨, ∀y, (∃y)<x, for all n > 0.
v Given R ⊆ ωk define

R∗ = {〈m1, . . . ,mk〉 : R(m1, . . . ,mk) holds}.
Then R∗ ⊆ ω and R∗ ∈ Σn (or Πn or ∆n) if and only if R ∈ Σn (or Πn

or ∆n).
vi R is arithmetic if and only if R ∈ Σn for some n ∈ ω.

69
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vii A ∈ Σn, B ≤m A⇒ B ∈ Σn; same for Πn.

Note that R ∈ Σ1 if and only if R is r.e., and thus R ∈ ∆1 if and only if R is
recursive. Thus ∅′ ∈ (Σ1 \Π1).

EXAMPLES:

(1) TOT = {e : We = ω} ∈ Π2, since e ∈ TOT if and only if ∀x{e}(x) ↓ and
we know {e}(x) ↓ is r.e., i.e., Σ1.

(2) FIN = {e : We is finite} ∈ Σ2, since e ∈ FIN if and only if ∃x∀y[x < y →
{e}(y) ↑].

(3) COF = {e : We is cofinite} ∈ Σ3.

In each case, we have found the lowest level of the arithmetic hierarchy to
which the set in question belongs. This follows from showing the set in question is
m-complete, and Post’s Theorem 2.1.

Definition 1.3. A is Σn-complete if and only if A ∈ Σn and B ≤m A whenever
B ∈ Σn. Πn-complete is defined analogously.

Proposition 1.2. TOT is Π2-complete.

Proof. Let B ∈ Π2 so there is some recursive R ⊆ ω3 such that

k ∈ B if and only if ∀x∃yR(x, y, k).

We can then define a partial recursive function g by

g(k, x) =

{
0 if ∃yR(x, y, k),
↑ otherwise.

Applying the Parameter Theorem 2.4 we obtain a total recursive s such that
{s(k)}(x) = g(k, x) for all k, x. In particular, if k ∈ B then s(k) ∈ TOT, and
if k /∈ B then s(k) /∈ TOT. �

As a consequence note that TOT /∈ Σ2 provided (Π2 \ Σ2) 6= ∅.

2. Post’s Theorem

The following fundamental result relates the definability hierarchy just intro-
duced to the jump hierarchy introduced in Section 3.

2.1. Post’s Theorem.

(1) B ∈ Σn+1 if and only if B is r.e. in some Πn set (equivalently, in some
Σn set).

(2) ∅(n) is Σn-complete for all n > 0.
(3) B ∈ Σn+1 if and only if B is r.e. in ∅(n).
(4) B ∈ ∆n+1 if and only if B ≤T ∅(n).

Proof. (0) First note that since A ≡T (ω \ A) for all A we see that B is r.e.
in A if and only if B is r.e. in (ω \ A), and so B is r.e. in some Πn set if and only
if B is r.e. in some Σn set.

The implication from left to right in (0) is clear from the definitions. To show
the other direction, suppose B is r.e. in A, where A ∈ Πn. Then there is some S
which is recursive in A such that

k ∈ B ↔ ∃yS(k, y).
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By the Representation Theorem 2.1 there is some recursive relation R such that

S(k, y)↔ ∃sR(k, y,KA(s)).

Expanding on what KA(s) is we see that k ∈ B if and only if

∃y∃w[Seq(w)∧R(k, y, w)∧(∀i)<lh(w)([(w)i = 0∧(w)i ∈ A]∨ [(w)i = 1∧(w)i /∈ A])].

(w)i ∈ A is Πn, and (w)i /∈ A is Σn, hence they are both Σn+1, so the entire
right-hand side is Σn+1, and thus B ∈ Σn+1.

(1) We proceed by induction on n. We already know the case n = 1, so we can
assume ∅(n) is Σn-complete, some n > 0, and prove that ∅(n+1) is Σn+1-complete.
First of all, ∅(n+1) is r.e. in ∅(n) and ∅(n) ∈ Σn so ∅(n+1) ∈ Σn+1 by part (0) of
this theorem. Now let B ∈ Σn+1. Then, also by part (0), B is r.e. in some Σn set,
hence in ∅(n) by inductive hypothesis, and thus B ≤m ∅(n+1) by properties of the
jump.

(2) follows immediately from (0) and (1).
(3) follows from (2). �

We collect some consequences of Theorem 2.1:

i ∅(n+1) ∈ (Σn+1 \Πn+1), all n.
ii A is arithmetic if and only if A ≤T ∅(n) for some n.
iii If A is Σn+1-complete then A /∈ Πn+1.
iv (Σn ∪Πn) ( ∆n+1 for all n > 0.
v If A is arithmetic and B ≤T A then B is arithmetic.

vi There is no arithmetic A such that B ≤T A for all arithmetic B.
vii {pσq : σ ∈ SnL,N |= σ} is not arithmetic.

viii If A is Σn-complete or Πn-complete then A ≡T ∅(n).

3. Exercises

(1)
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Appendix A: Set Theory

The natural numbers (that is, non-negative integers) are used in two very dif-
ferent ways. The first way is to count the number of elements in a (finite) set. The
second way is to order the elements in a set–in this way one can prove things about
all the elements in the set by induction. These two roles of natural numbers both
are generalized to infinite numbers, but these are split into two groups according to
the function they perform: cardinal numbers (to count) and ordinal numbers (to
order). The basic facts and concepts are surveyed in this Appendix.

1. Cardinals and Counting

It was noted as long ago as Galileo that (some) infinite sets can be put into one-
to-one correspondence with proper subsets of themselves, and thus, for example,
that the set of integers may be considered as having the same “size” as the set
of even integers. However no serious investigation into the “sizes” of infinite sets,
on comparing them, was undertaken until Cantor, in the second half of the 19th

century, created set theory, including both cardinal and ordinal numbers.
The basic definitions about comparing the sizes of sets (including finite) are as

follows:

Definition 1.1. (i) X ∼ Y (X and Y are equivalent, or have the “same
number” of elements) iff there is some function mapping X one-to-one onto Y .
(ii) X � Y (X has “at most as many” elements as Y ) iff there is some function
mapping X one-to-one into Y . (iii) X ≺ Y (X has strictly “fewer” elements than
Y ) iff X � Y but not X ∼ Y .

The following proposition is certainly essential if one is to think of � as some
sort of ordering on sets. It was not proved, however, until the end of the 19th

century.

Proposition 1.1. If X � Y and Y � X then X ∼ Y .

All the basic facts about size comparisons could be expressed by the above
notation but this would be quite clumsy. Instead certain sets, called cardinal num-
bers, are picked out so that for every set X there is exactly one cardinal number κ
such that X ∼ κ. We then call κ the cardinality of X and write |X| = κ. |X| ≤ |Y |
means X � Y and |X| < |Y | means X ≺ Y . Notice that |κ| = κ if, and only if, κ
is a cardinal number.

The first cardinal numbers are defined as follows:
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0 = ∅,
1 = {0},
2 = 1 ∪ {1},
...

n+ 1 = n ∪ {n+ 1}
...

ω = {0, 1, . . . , n, . . .} is defined as the smallest set containing 0 and such that
if x ∈ ω then x ∪ {x} ∈ ω.

Notice that ω+1 = ω∪{ω} cannot also be a cardinal number since ω ∼ ω∪{ω}.

Definition 1.2. (a) X is finite iff X ∼ n for some n ∈ ω (|X| ∈ ω). (b) X is
countable iff X � ω (i.e. |X| ≤ ω).

Lemma 1.2. (i) X is finite iff |X| < ω. (ii) X is countable and infinite iff
|X| = ω.

[The essential content of this lemma is that all cardinals less than ω in fact
belong to ω].

One of Cantor’s fundamental discoveries is that there are infinite sets which
are not equivalent, and in fact that there can be no biggest cardinal number.

Definition 1.3. The power set of X, is defined by P(X) = {Y | Y ⊆ X}.

Theorem 1.3. For ever X, X ≺ P(X).

Proof. Obviously, X � P(X). Suppose that X ∼ P(X), say that h maps
X bijectively onto P(X). Let D = {x ∈ X| x /∈ h(x)}. Then D = h(d) for some
d ∈ X. But d ∈ D iff d /∈ h(d) = D, which is a contradiction. �

Thus, there must be cardinals κ such that ω < κ. We must put off defining
them, however, until after we introduce ordinal numbers–we also should admit that
we will need the Axiom of Choice (AC) to define cardinal numbers in general.
Recall that AC states that if X is a set of non-empty sets, then there is a function
f defined on X such that f(x) ∈ x for every x ∈ X.

It is important to know that many set-theoretic operations lead from countable
sets to countable sets.

Definition 1.4. (a) YX is the set of all functions f with domain Y and range

a subset of X. (b)
ω
^X =

⋃
n∈ω nX is the set of all finite sequences of elements

of X (thinking of a sequence of length n as a function defined on n); an alternate
notation is ω>X.

Theorem 1.4. If X is countable then so is
ω
^X.

Proof. It suffices to show that
ω
^ω � ω, which follows by using the one-to-one

map which sends (k0, . . . , kn−1) to 2k0+1 ·3k1+1 · · · · pkn−1+1
n−1 where pj is the jth odd

prime. �

Corollary 1.5. If X,Y are countable so are X ∪ Y and X × Y .
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Theorem 1.6. (AC) If Xn is countable for every n ∈ ω then
⋃
n∈ωXn is also

countable.

ω is, in fact, the the smallest infinite cardinal, although the proof requires the
axiom of choice.

Proposition 1.7. (AC) If X is infinite then ω � X.

The analogues of + and · trivialize on infinite cardinals because of the preceding
corollary, but exponentiation is important.

Notation 1. If κ, λ are cardinal numbers then κλ is the cardinal |λκ|.

Lemma 1.8. For any X, P(X) ∼ X2.

Hence from Cantor’s Theorem we see the following corollary.

Corollary 1.9. If |X| = κ then |P(X)| = 2κ, and so κ < 2κ for every cardinal
κ.

However, increasing the base does not yield still larger cardinals.

Lemma 1.10. 2ω = nω = ωω = (2ω)ω, any n ∈ ω.

Proof. It suffices to show (2ω)ω ≤ 2ω, which follows since

ω(ω2) ∼ (ω × ω)2 ∼ ω2.

�

Without proof we list some facts about (uncountable) cardinalities, all depend-
ing on AC.

(1) If X is infinite then |X| = |
ω
^X|.

(2) If X,Y are infinite then |X ∪ Y | = |X × Y | = max(|X|, |Y |).
(3) If |I| ≤ κ and |Xi| ≤ κ for all i ∈ I, then |

⋃
i∈I Xi| ≤ κ,

for κ ≥ ω.
(4) (µκ)λ = µmax(κ,λ), for κ, λ ≥ ω, µ ≥ 2.
(5) For any cardinal κ there is a unique next cardinal called κ+, but

there is no set X such that κ � X � κ+.
(6) If X is a non-empty set of cardinal numbers, then

⋃
X is a

cardinal number and it is the first cardinal ≤ all cardinals in X.
(7) (κ+)λ = max(κλ, κ+) for κ, λ ≥ ω.
(8) For any sets X,Y either X � Y or Y � X, hence for any

cardinals κ, λ either κ ≤ λ or λ ≤ κ.
Some notation, based on (5), is the following which we will extend in the next

section: ω1 = ω+, ωn+1 = ω+
n , ωω =

⋃
n∈ω ωn–writing also ω0 = ω. An alternate

notation is to use the Hebrew letter “aleph”–thus ℵ0,ℵ1, . . . ,ℵω, . . ..
Note that ω1 ≤ 2ω and, in general, κ+ ≤ 2κ for each κ ≥ ω. It is natural to

enquire about whether equality holds or not.

Conjecture 1.1. Continuum Hypothesis (CH): 2ω = ω1

Conjecture 1.2. Generalized Continuum Hypothesis (GCH): For every
infinite cardinal κ, 2κ = κ+.
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CH and GCH are consistent with, but independent of, the usual axiioms of set
theory. In fact, each of the following is consistent with the usual axioms:

2ω = ω1, 2
ω = ω2, 2

ω = ωn for anyn ∈ ω
2ω = ωω)+, 2ω = (ωω)++, . . .

We can, however, prove that 2ω 6= ωω since we have (ωω)ω > ωω.
Some further facts about cardinals will be presented at the end of the next

section.

2. Ordinals and Induction

The principles of proof by induction and definition by recursion on the natural
numbers are consequences just of the fact that ω is well-ordered by the usual order.

Definition 2.1. (X,≤) is a well-ordering iff ≤ is a linear order of X and every
non-empty subset Y ⊆ X contains a least element, i.e. there is some a0 ∈ Y such
that a0 ≤ a for all a ∈ Y .

Theorem 2.1. (Proof by Induction) Let (X,≤) be a well-ordering. Let A ⊆ X
have the property that for every a ∈ X, if b ∈ A for all b < a then a ∈ A. Then
A = X.

Proof. If not, consider Y = X−A and obtain a contradiction to the definition.
�

The way this is used if one wants to prove that all elements of X have property
P is to let A be the set of all elements of X having property P .

In a similar vein, we see:

Theorem 2.2. (Definition by Recursion) Let (X,≤) be a well-ordering. Let Y
be any non-empty set and let g be a function from P(Y ) into Y . Then there is a
unique function f from X into Y such that for every a ∈ X,

f(a) = g({f(x)| x ∈ X,x < a}).

[Less formally, this just says that f(a) is defined in terms of the f(x)’s for
x < a.]

As in the previous section, we wish to pick out particular well-orderings, called
ordinal numbers, such that each well-ordering is isomorphic to exactly one ordinal
number. We do this so that the well order ≤ of the ordinal is as natural as possible–
that is, is give by ∈. The precise definition we obtain is as follows:

Definition 2.2. A set X is an ordinal number iff (i) x ∈ y ∈ X ⇒ x ∈ X
(equivalently, y ∈ X ⇒ y ⊆ X), and (ii) X is well-ordered by the relation ≤ defined
by: a ≤ b iff a ∈ b or a = b.

Condition (i) is frequently expressed by saying “X is transitive” and condition
(ii) is loosely expressed by saying “∈ well-orders X.” Note that technically X is
not a well-ordering, but (X,≤) is–however condition (ii) determines ≤ completely
from X. Notice, of course, that most sets aren’t even linearly ordered by ∈–
in fact, one of the usual (but somewhat technical) axioms of set theory implies
that if X is linearly ordered by ∈, then in fact it is well-ordered by ∈. Thus the
conditions in (ii) could be expanded to read: (ii)∗: x ∈ y, y ∈ z, z ∈ X ⇒ x ∈ z,
x, y ∈ X ⇒ x = y ∨ x ∈ y ∨ y ∈ x. (x /∈ x) follows by the usual axioms.
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Notice that the finite cardinal numbers and ω, as defined in the previous section,
are also ordinal numbers. The following lemma gives some of the basic properties
of ordinals. By convention, we normally use Greek letters α, β, . . . to stand for
ordinals.

Lemma 2.3. (1) If α is an ordinal and x ∈ α then x is an ordinal. (2) If α, β
are ordinals then either α ∈ β or α = β or β ∈ α. (3) If α is an ordinal then
α+ 1 = α∪{α} is an ordinal. (4) If X is a set of ordinals then

⋃
X is an ordinal.

Notation 2. If α, β are ordinals we write α < β for α ∈ β. Part (1) of the
lemma states that if α is an ordinal then α = {β| β is an ordinal, β < α}. The
ordinal α + 1 is the immediate successor of α–that is, α < α + 1 and there is no
ordinal β such that α < β < α+ 1. Similarly,

⋃
X is the least upper bound of the

set X of ordinals.

The class of all ordinals is not a set, but we can still think of it as well-ordered
by ≤. Further, we can prove things about the class of all ordinals by induction,
and define functions on ordinals by recursion.

Finally we note that ordinals do have the property for which we introduced
them.

Theorem 2.4. Let (X,≤) be a well-ordering. Then there is exactly one ordinal
α such that (X,≤) ∼= (α,≤).

We distinguish between two types of non-zero ordinals as follows:

Definition 2.3. α is a successor ordinal iff α = β + 1 for some ordinal β; α is
a limit ordinal iff α 6= 0 and α is not a successor ordinal.

Note that α is a limit ordinal iff α 6= 0 and
⋃
α = α. If X is any non-empty

set of ordinals not containing a largest ordinal, then
⋃
X is a limit ordinal.

It is frequently more convenient to break proofs by induction, or definitions
by recursion, into cases according to whether an ordinal is a successor or a limit
ordinal. For example, the recursive definition of ordinal addition is as follows:

if β = 0 then α+ β = α,
if β = γ + 1 then α+ β = (α+ γ) + 1,
if β is a limit then α+ β =

⋃
{α+ γ| γ < β}.

While most linear orderings (X,≤) are not well-orderings, there is no restriction
on the sets X in well-orderings, by the next theorem. This means that proof by
induction can (in principle) be applied to any set.

Theorem 2.5. (AC) For every set X there is some ≤ which well-orders X.

As an immediate consequence of the two preceeding theorems we have:

Corollary 2.6. (AC) For every set X there is some ordinal α such that
X ∼ α.

The ordinal α is not unique unless α < ω, since if ω ≤ α then α ∼ α + 1, but
the least such ordinal will be the cardinality of X.

Definition 2.4. κ is a cardinal number iff κ is an ordinal number and for every
α < κ we have α ≺ κ (equivalently, for every ordinal α such that α ∼ κ we have
κ ≤ α).
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This fills the lacuna in the preceding section. Note that the cardinal numbers
are well-ordered by ≤, and < is ∈ on cardinal numbers.

The way we will customarily use proof by induction on an arbitrary set X is
as follows: let |X| = κ so there is some one-to-one function h mapping κ onto X.
Write xα for h(α). Then X = {xα| α < κ} and we prove what we want about xα
by induction on α < κ. Note that for each α < κ we have |{xβ | β < α}| = α < κ.

The class of infinite cardinals can be indexed by the class of ordinals by using
the following definition by recursion:

ω(0) = ω,
ω(γ + 1) = (ω(γ))+,
β a limit ⇒ ω(β) =

⋃
{ω(γ)| γ < β}.

We normally write ωγ instead of ω(γ).
We finally need to introduce the concept of cofinality in order to make the

important distinction between regular and singular cardinals.

Definition 2.5. Let α, β be limit ordinals. Then α is cofinal in β iff there is
a strictly increasing function f ∈ αβ such that

⋃
{f(γ)| γ < α} = β.

Certainly β is confinal in β. ω is cofinal in every countable limit ordinal, but
ω is not cofinal in ω1.

Definition 2.6. Let β be a limit ordinal. Then the cofinality of β is cf(β)
equals the least α such that α is confinal in β.

Lemma 2.7. For any limit ordinal β, cf(β) ≤ β and cf(β) is a cardinal.

Definition 2.7. Let κ be an infinite cardinal. Then κ is regular iff κ = cf(κ).
κ is singular iff cf(κ) < κ.

Definition 2.8. κ is a successor cardinal iff κ = λ+ for some cardinal λ, i.e.
κ = ωβ+1 for some β.

Definition 2.9. κ is a limit cardinal iff κ ≥ ω and κ is not a successor cardinal,
i.e., κ = ωα for some limit ordinal α.

The division of infinite cardinals into regular and singular is almost the same
as the division into successor and limit.

Theorem 2.8. (1) Every successor cardinal is regular. (2) if κ = ωα is a limit
cardinal, then cf(κ) = cf(α)–hence if κ is regular then κ = ωκ.

Regular limit cardinals are called inaccessible cardinals–their existence cannot
be proved from the usual axioms of set theory.

With cofinalities we can state a few more laws of cardinal computation, con-
tinuing the list from the previous section.

(9) κcf(κ) > κ for every cardinal κ ≥ ω.
(10) Assume that |I| < cf(κ) and for every i ∈ I, |Xi| < κ.

Then |
⋃
i∈I Xi| < κ.

It is frequently tempting to assume GCH because it simplifies many computa-
tions, e.g.: Assuming GCH we have, for any cardinals κ, λ ≥ ω, κλ = κ if λ < cf(κ),
κλ = κ+ if cf(κ) ≤ λ ≤ κ, κλ = λ+ if κ ≤ λ.
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Appendix B: Notes on Validities and Logical
Consequence

1. Some Useful Validities of Sentential Logic

1) Excluded Middle
|= φ ∨ ¬φ
|= ¬(φ ∧ ¬φ)

2) Modus Ponens
φ, φ→ ψ |= ψ

3) Conjunction
φ, ψ |= φ ∧ ψ

4) Transitivity of Implication
φ→ ψ,ψ → θ |= φ→ θ

5) Plain Ol’ True as Day
φ ∧ ψ |= φ
φ |= φ ∨ ψ
φ→ (ψ → θ), φ→ ψ |= φ→ θ
φ |= ψ → φ
¬ψ |= ψ → φ
φ `a ¬¬φ

6) Proof by Contradiction
¬φ→ (ψ ∧ ¬ψ) |= φ
¬φ→ φ |= φ

7) Proof by Cases
φ→ ψ, θ → ψ, |= (φ ∨ θ)→ ψ
φ→ ψ,¬φ→ ψ |= ψ

8) De Morgan’s Laws
¬(φ ∨ ψ) `a ¬φ ∧ ¬ψ
¬(φ ∧ ψ) `a ¬φ ∨ ¬ψ

9) Distributive Laws
φ ∧ (ψ ∨ θ) `a (φ ∧ ψ) ∨ (φ ∧ θ)
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φ ∨ (ψ ∧ θ) `a (φ ∨ ψ) ∧ (φ ∨ θ)

10) Contraposition
φ→ ψ `a ¬ψ → ¬φ

11) The connectives ∧ and ∨ are both commutative and associative.

2. Some Facts About Logical Consequence

1) Σ ∪ {φ} |= ψ iff Σ |= φ→ ψ

2) If Σ |= φi for each i = 1, . . . , n and {φ1, . . . , φn} |= ψ then Σ |= ψ.

3) Σ |= φ iff Σ ∪ {¬φ} is not satisfiable.
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Appendix C: Gothic Alphabet

a Aa b Bb c Cc d Dd
e Ee f Ff g Gg h Hh
i Ii j Jj k Kk l Ll
m Mm n Nn o Oo p Pp
q Qq r Rr s Ss t Tt
u Uu v Vv w Ww x Xx
y Yy z Zz
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